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ABSTRACT
We introduce the public-private model of graphs. In this
model, we have a public graph and each node in the public
graph has an associated private graph. The motivation for
studying this model stems from social networks, where the
nodes are the users, the public graph is visible to everyone,
and the private graph at each node is visible only to the user
at the node. From each node’s viewpoint, the graph is just
a union of its private graph and the public graph.

We consider the problem of e�ciently computing various
properties of the graphs from each node’s point of view, with
minimal amount of recomputation on the public graph. To
illustrate the richness of our model, we explore two powerful
computational paradigms for studying large graphs, namely,
sketching and sampling, and focus on some key problems in
social networks and show e�cient algorithms in the public-
private graph model. In the sketching model, we show how
to e�ciently approximate the neighborhood function, which
in turn can be used to approximate various notions of cen-
trality. In the sampling model, we focus on all-pair shortest
path distances, node similarities, and correlation clustering.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; G.2.2 [Discrete Mathematics]: Graph The-
ory—Graph algorithms; K.4.1 [Computers and Society]:
Public Policy Issues—Privacy
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1. INTRODUCTION
A social network is a perfect poster child for a massive

graph. It embodies all the complexities and subtleties one
might encounter in a typical large graph: degree distribu-
tions that are heavy-tailed, the abundance of local struc-
tures, the existence of global sparsity, the presence of noisy
edges to the constant evolving nature, and so on. The study
of social networks has blossomed into a fertile area of re-
search in the last few years. There are several natural ques-
tions that are key and unique to social networks. Owing to
the scale of the network and its associated idiosyncrasies,
many of these questions cannot be answered well by tradi-
tional algorithmic tools and techniques. A large e↵ort in the
computational social sciences is devoted to the development
of new algorithms and algorithmic paradigms for studying
social networks — this field, though, still is in its infancy.

Privacy issues are a major factor in the algorithmic anal-
ysis of social networks. In fact, privacy controls the way
information is shared among the members of the social net-
work, and also influences the way in which the network itself
can be viewed and processed by algorithms. Privacy guar-
antees are implemented in di↵erent ways by di↵erent social
networks. In the simplest case, a user can mark some of her
friends as private; this would make the edges between this
user and these friends visible only to the user herself. In a
di↵erent instantiation of privacy, a user can be member of
a private group; in this case, all the edges among the group
members (in the extreme case, a clique) are to be considered
private. Thus, each user in the social network has her own
view of the link structure of the network.

In a recent study [16], Dey et al. crawled a snapshot of
1.4 million New York City Facebook users and reported that
52.6% of them hid their friends list. To illustrate the sce-
nario further, consider a social recommendation algorithm.
The social network provider could use only the public por-
tion of the network to run the algorithm and build recom-
mendations; this will easily ensure privacy for all the users.
But, this will not benefit nodes whose edges are overwhelm-
ingly private; as noted in the NYC example, there can be
several such nodes. Alternatively, social network providers
can, naively speaking, run the algorithm once for each user,
on the union of the public portion of the network and the
user’s private network. This also clearly respects the overall
privacy requirements, however, it is grossly ine�cient.

In this paper, we initiate the problem of designing e�cient
algorithms in the public-private network model. We seek al-



gorithms that improve upon a naive implementation (e.g.,
running the vanilla algorithm on each of the di↵erent net-
works seen by the various users; the network seen by a user
is the union of her private network and the public network).
As a first step, we formalize the notion of the public-private
graph model. We show our formalization is simple enough to
be algorithmically useful, while is rich and realistic enough
to be practically relevant.

Our contributions. In the public-private graph model,
there is a public graph G whose nodes are the users and
that is visible to all users in the network. Each node u in the
public graph has a private graph Gu associated with itself;
the nodes of Gu are users from the public graph, and Gu is
only known to u. We stipulate that the private graph cannot
be arbitrary. Each node v in the private graph Gu is at
most distance two from u. While this might seem restrictive
at first, it is su�cient to capture many interesting privacy
settings. For example, if Gu is a star centered at u, then it
captures the setting where u can mark certain of her friends
as private. Likewise, if Gu is a clique containing u, then it
captures the setting where u is part of a private group. Our
models allows Gu to be a bit more general, supporting the
following example. Consider the case of sharing a private
circle in Google+. When a node u builds a private circle,
it can choose that the members of the circle are visible to
the rest of the circle. Consider two members v and w of this
circle that are not in each others’ public or private circles.
Then the edge (u, v) is private to w and the edge (u,w) is
private to node v. In other words, (u,w) 2 Gv and (u, v) 2
Gw, but neither of v nor w is connected to the other in the
public graph, or in either or their private graphs.
We call an algorithm to be e�cient in this model if it can

compute a function on G [ Gu in time proportional to the
size of Gu, i.e., just the number of edges in the private graph.
The algorithm is allowed to preprocess the public graph G
to store a (succinct) synopsis of G.
In this model, we consider two powerful computational

paradigms for massive graphs, namely, sketching and sam-
pling. Sketching algorithms have been developed for some
basic graph problems including connectivity and cut sizes
and more social-network specific problems such as neigh-
borhood estimation and reachability. Some of the sketching
algorithms produce composable sketches, i.e., the sketches of
two graphs can be combined to get a sketch of their union.
Adapting such algorithms to the public-private model is im-
mediate (and thus less interesting). Our neighborhood esti-
mation problems, though, have a quite non-trivial composi-
tion. We obtain an e�cient algorithm for estimating reach-
ability counts in the public-private model; as it is known
from earlier work, this quantity can be an e↵ective heuristic
for estimating various network centrality measures.
In the sampling setting, we illustrate our model with non-

trivial algorithms for three key social network problems: es-
timating all-pair distances, estimating node (pairwise) sim-
ilarities, and correlation clustering. For the first two prob-
lems, we obtain sampling-based algorithms that are e�cient
in the public-private model. For correlation clustering, we
show how to e�ciently update a clustering solution on the
public graph using the edges in the private graph.
We illustrate the e↵ectiveness of our model and the com-

putational e�ciency of our algorithms by performing exper-
iments on real-world social networks.
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Figure 1: An example of an undirected public-private graph.
Here, the blue edges out of node a are private to a and the
red edges out of g and the edge (d, e) are private to g. The
public graph consists of all the black edges.

2. PUBLIC-PRIVATE GRAPHS
We define the public-private model of graphs. In this

model, we have a directed graph G = (V,E), where V is
the set of nodes and E is the set of edges; this graph is
called the public graph. Let n = |V | and m = |E|.

For each node u 2 V , we have an associated private graph

Gu = ({u} [ Vu, Eu),

where Vu = {v
1

, . . . , vk} ✓ V and

Eu ✓ ({u}⇥ Vu) [ (Vu ⇥ {u}) [ (Vu ⇥ V ) [ (V ⇥ Vu).

Sometimes, we will consider the special case when Gu is
a star centered at u; in this case, Eu = {u} ⇥ Vu. For
simplicity, we use G [ Gu to denote the graph with V as
the set of nodes and E [ Eu as the set of edges. In the
above definitions, it is without loss of generality to assume
u 2 V and E \ Eu = ;. Furthermore, these notions can be
extended to the weighted case in an obvious manner.

LetOut(u) denote the out-neighborhood of u and let Out
2

(u)
denote the two-level out-neighborhood of u in G[Gu. While
these definitions are for directed graphs, it is easy to extend
them to undirected graphs.

In this paper we study e�cient algorithms for various ba-
sic graph problems in this model. In particular, we focus
on the following computational question: how best we can
preprocess the public graph G so that we can answer queries
about or compute properties of G [ Gu, for an arbitrary
u, as e�ciently as possible? Ideally, the preprocessing of
G should use space quasilinear in n and time poly(m); the
computation on G [ Gu should use time/space near-linear
in |Eu| and poly(log n). Note that the central parameters of
interest are the preprocessing time and space of G and the
query time to compute a property of G [Gu.

We consider two flavors of algorithms in this model. In
the first we focus on sketching algorithms. In the second we
focus on sampling algorithms.

Warm-up: Number of connected components. To
gain familiarity with the model before presenting other re-
sults, we first show how to e�ciently solve a simple problem
in this setting: computing the number of connected compo-
nents in undirected graphs when Gu is a star. In this setting
we have access to G and all the Gu in advance and we want
to be able to compute e�ciently the number of connected
component in G [Gu for each node u.

In the preprocessing step, we compute the connected com-
ponents of the public graph. We then assign a component
identifier to each node and store this information; this takes
O(m) time and O(n log n) space since all we need is to store



the label `(u) of the component to which each node u 2 V
belongs. Furthermore, we also store the total number of
connected components.

Now, to compute the number of connected components of
G[Gu, we count the number of di↵erent connected compo-
nents that Gu connects. This takes time |Eu| since we only
need to scan all the edges in Gu.

Proposition 1. We can count the number of connected
components in the public-private model using preprocessing
time O(m) and space O(n log n) and query time |Eu|.

3. SKETCHING ALGORITHMS
In this section we show how to use graph sketches to ef-

ficiently compute some interesting and non-trivial functions
in the public-private graph model. We will deal with di-
rected graphs in this section though the results easily apply
to the undirected case as well.

We first make an easy observation about graph sketches.
Informally, a graph sketch is composable if the sketch of
the graph G [H can be easily obtained from the sketch of
G and the sketch of H. Graph problems that are solvable
by composable sketches naturally fit in the public-private
model: compute the sketch of G and store it. To compute
the function on G [Gu, first compute the sketch of Gu and
use the composability property to compute the sketch of
G[Gu using the stored sketch for G. Such sketches (which
use linear projections, and are hence composable) exist for
some basic graph problems such as connectivity and cut-
size estimation [1, 2, 28]. Since the answer is easy for these
problems, we will not consider them further.

For other problems such as neighborhood estimation, even
though sketches exist [7,10,11,29] and even though they are
composable, one has to be careful how to compose them ef-
ficiently in the public-private model. This is precisely what
we do in this section. We show how to e�ciently compute
the number of nodes reachable from a node u in G [ Gu

and hence e�ciently estimate the number of nodes within
distance 1, 2, . . . , and so on from u. We then use these quan-
tities to get an estimate of some centrality measures as in [8].

3.1 Size of the reachability tree
Given a directed graph G = (V,E), the reachability tree

TG(v) at a node v is defined as any directed tree with v as
the root that contains all the nodes reachable from v using
the edges in E. Here, for each edge (x, y) in the tree, x is
the parent, y is the child, and (x, y) 2 E. This is a useful
structure in general, for example, in a social network setting
where the directed edges denote the “follow” relation, the
size of the reachability tree represents the number of people
who follow a specific user (at the root of the tree) directly
or indirectly.

The main tool that we use to e�ciently estimate the size
of the reachability tree for a specific node is the bottom-
k sketch [12]. Before describing our algorithm we briefly
review the bottom-k sketch and show how it can be used to
estimate the size of the reachability tree at a node. Suppose
we are interested in estimating the size of an arbitrary subset
V 0 ✓ V . First, we assign to each node v in the graph a
number r(v) uniformly at random in [0, 1]. Let r(V 0) denote
the set {r(v)}v2V 0 . Assuming |r(V 0)| � k, let Botk(V

0) ✓
r(V 0) be the subset of the k smallest elements in r(V 0) and
let bk(V

0) = max{Botk(V 0)}, i.e., the kth smallest element

in r(V 0). Now we can estimate the size of V 0 just looking
at Botk(V

0) and bk(V
0); it constitutes the sketch of V 0. An

estimate of the size of V 0 is given by
⇢

|Botk(V 0)| if |Botk(V 0)| < k,
(k � 1)/bk(V

0) otherwise.

As shown in [11, 12] the estimate is accurate; indeed, for
any c > 0, it is enough to set k = (2 + c)✏�2 log n to have a
probability of having relative error larger than ✏ bounded by
n�c. A nice property of this sketch is that it is composable;
this is crucial in estimating the size of the reachability tree.

Using such sketches it is possible to estimate the size of
the reachability tree in a graph e�ciently using the follow-
ing algorithm. As before, each node v 2 V has a random
number r(v) 2 [0, 1]. Initially each node v has a sketch
S(v, 0) = Botk(Out(v)), i.e., the set of kth smallest numbers
assigned to nodes in Out(v). Then at iteration i, each node
v in the graph receives S(w, i� 1) for all the out-neighbors
w 2 Out(v), and computes S(v, i) as the set of kth small-
est numbers in its sketch and that of its neighbors, i.e.,

S(v, i) = Botk
⇣
S(v, i� 1) [

S
w2Out(v) S(w, i� 1)

⌘
. After

D iterations, where D is diameter of the graph, S(u,D)
is equal to Botk(T (u)), i.e., the sketch of T (u), where T (u)
is the set of nodes in the reachability tree of u. Thus we
can sketch the size of all the reachability tree in G in time
O(mD✏�2 log n) and using memory O(✏�2n log n). Now we
will show how to use those sketches to estimate the reacha-
bility tree for each node u in G [Gu.

Theorem 2. The size of the reachability tree can be ap-
proximated to within (1+✏)-factor in the public-private model
using preprocessing time O(mD✏�2 log n), space O(✏�2n log n),
and query time O(|Eu|✏�2 log n).

Proof. The main idea of our algorithm is to estimate
T (·), i.e., re-compute S(·), only for nodes in {u} [ Out(u).
In order to prove that this is su�cient we first show the
following lemma. Intuitively, it says that in-neighbors of u
and the in-neighbors of the out-neighbors of u play no role
in computing the reachability tree rooted at u.

Lemma 3. Let G = (V,E) be a directed graph and let
T (u) = TG(u) be the reachability tree rooted at u 2 V in G.
Let G0 = (V,E0) be the graph on the same set of nodes with

E0 = E \ {(w, v) 2 E | v = u or (v 2 Out(u) and w 6= u)} ,

and let T 0(u) = TG0(u) be the reachability tree rooted at u in
G0. Then T (u) = T 0(u).

Proof. Suppose that the statement is false. Since E0 ✓
E, this implies that T (u) \ T 0(u) 6= ;. Let z 2 T (u) \ T 0(u).
Now if z is reachable from a path in G but not in G0, then
this implies that every directed path connecting u to z must
have an edge in {(w, v) | v = u or (v 2 Out(u) and w 6= u)}.
Let ⇡ be one such path and let (y, v) 2 {(w, v) | v =
u or (v 2 Out(u) and w 6= u)}. Now if v = u, we can re-
move all edges after (y, v) and the edge (y, v) and we still
get a directed path connecting u to z, which contradicts
the hypothesis. So we can assume that (y, v) 2 {(w, v) |
v 2 Out(u) and w 6= u} be the first edge in {(w, v) | v 2
Out(u) and w 6= u} that we encounter in ⇡. Now from ⇡ we
can obtain a directed path from u to z that does not use any
edge in {(w, v) | v 2 Out(u) and w 6= u} by removing from
⇡ all edges after (y, v) and the edge (y, v) and by adding



the edge (u, v) that exist because v 2 Out(u). So z 2 T 0(u),
which once again contradicts the hypothesis. This concludes
the proof of Lemma 3.

We continue with the proof of Theorem 2. We will focus
on having an estimate of the size reachability tree for u in
G [ Gu. Consider TG(u) and TG0(u), where G0 = (V,E0),
where E0 = E \ {(w, v) | v = u or (v 2 Out(u) and w 6= u)}.
From Lemma 3, we have TG(u) = TG0(u).

For simplicity, we first assume we have access to all of
TG0(v), 8v 2 V . (Note this is not true in practice since we
only have access to TG(v), 8v 2 V and we cannot precom-
pute TG0(v) since they could be potentially di↵erent for each
node.) We will later show how to eliminate this assumption.

With this assumption, our goal is to estimate |TG[Gu(u)|.
Note that instead of focusing on TG[Gu(u) we can work
with TG0[G0

u
(u), where G0

u = (Vu, E
0
u) with E0

u = {(w, v) |
v = u or (v 2 Out(u) and w 6= u)}; indeed, using Lemma 3
TG[Gu(u) = TG0[G0

u
(u).

Note that in G0 the nodes in {u} [ Out(u) do not have
any incoming edges. So adding incoming edges to {u} [
Out(u) does not change the reachability tree of any node w /2
{u} [ Out(u). Hence 8w /2 {u} [ Out(u) we have TG0(w) =
TG0[G0

u
(w).

Thus, the only sketches that we need to recompute are
the ones for the nodes in {u} [ Out(u). We focus first on
the nodes in Out(u); let z 2 Out(u). Note that all nodes
in Out(z) are at least at distance two from u in G0 and so
for them, we already have (a sketch of) the correct reacha-
bility tree. Using this fact we can recompute the sketch for

TG0[G0
u
(z) as S(z) = Botk

⇣
S(z) [

S
w:(z,w)2E0

u
(S(w) [ r(w))

⌘
,

where r(w) is the random number associated with w. The
correctness of this step follows since the reachability tree
of z is equal to the union of the reachability tree of its out-
neighbors plus its neighbors. So when we add a few outgoing
edges to a node we just need to add the reachability tree of
the new neighbors and the new neighbors to obtain the new
reachability tree.
Using this observation we can compute S(z) for all nodes

z 2 Out(u). So now we can use similar arguments to recom-
pute S(u). In particular we have that

S(u) = Botk
⇣
S(u) [

S
v:(u,v)2E0

u
(S(v) [ r(v))

⌘
. But

TG0[G0
u
(z) = TG[Gu(u) and hence we are done.

Unfortunately so far we assumed to have access to TG0(z)
but this is not true because we only have access to TG(z).
Now we argue that even if we use TG(z) instead of TG0(z),
we will still obtain the correct sketch. Note in particular
that we can restrict our attention only to nodes in Out

2

(u).
Suppose for y 2 Out

2

(u) we have s 2 TG(y) \ TG0(y). (Note
that TG0(y) ✓ TG(y).)
Now if s 2 TG(y), then s 2 TG[Gu(u) since y 2 Out

2

(u).
But TG[Gu(u) = TG0[G0

u
(u), so the fact that we consider s

when computing a sketch for TG(y) will not cause a prob-
lem when computing a sketch for TG0[G0

u
(u0), since s 2

TG0[G0
u
(u). So the random number r(s) associated with

s would have been considered (in computing the sketch) in
any case when computing TG0[G0

u
(u0).

Hence, we can use TG(z) instead of TG0(z) without chang-
ing the value of Botk. In this way we obtain an algorithm to
compute the reachability tree of a node u, by using precom-
puting time O(mD✏�2 log n), using memory O(✏�2n log n)
and processing time O(|Eu|✏�2 log n).

3.2 Centrality measures
Based on the results in the previous section, we now show

how to compute a few interesting centrality measures, namely,
Closeness centrality, Lin’s centrality, and Harmonic central-
ity. The idea is to use the same approach used in the pre-
vious section to compute the volume of the ball of di↵erent
diameters centered at each node. Then we can use those
numbers to obtain approximations to the three centrality
measures as in [8].

Before describing our algorithm, we recall the definition
of these measures. Let d(v, w) be the shortest path distance
between v and w in G and let Bu(d) = {v | d(v, u)  d}.
Let D be the diameter of G.

(i) Closeness centrality is defined as

C(u) =
1P

v2V
d(v, u)

=
1

DP
d=1

d · (|Bu(d)|� |Bu(d� 1)|)
.

(ii) Lin’s centrality is defined as

C(u) =
|{y | d(y, u) < 1}|P

v2V
d(v, u)

=
|{y | d(y, u) < 1}|

DP
d=1

d · (|Bu(d)|� |Bu(d� 1)|)
.

(iii) Harmonic centrality is defined as

C(u) =
X

v2V

1
d(v, u)

=
DX

d=1

1
d · (|Bu(d)|� |Bu(d� 1)|) .

Now note that |{y | d(y, u) < 1}| is the size of the reach-
ability tree rooted at u, which we already saw how to esti-
mate. So we need only to estimate |Bu(d)|� |Bu(d� 1)| to
obtain a formal estimator for the centrality measures. Unfor-
tunately this is hard even for simple graphs. Our approach
will be to compute a good approximation of |Bu(d)| for all
d > 0 using bottom-k sketch as in [11]. We then use it to
estimate |Bu(d)|� |Bu(d�1)|; by subtracting two estimates
we eschew any theoretical guarantees but as in [8], this is an
e↵ective method to estimate these centralities in practice.

For the remainder, we focus on getting a good approxi-
mation for |Bu(d)| in the public-private graph setting. This
can be done using a technique similar to the one used to
estimate the reachability tree. We start by showing how to
compute this estimate in G, then we explain how to compute
it in G [Gu.

The core idea of the algorithm is once again to use the
bottom-k sketch. Initially each node u has a sketch S(u, 0)
and after updating the sketch as before, at the end of the
dth iteration, SG(u, d) contains a sketch of Bu(d) in G. Fur-
thermore, we have the following analog of Lemma 3:

Lemma 4. Let G = (V,E) be a directed graph and let
Bu(d) be the ball of diameter d rooted at u in G. Let G0 =
(V,E0) be the graph on the same set of nodes but where E0 =
E\{(z, v) | v = u or (v 2 Out(u) and z 6= u)}; let B0

u(d) be
the ball of diameter d rooted at u in G0. Then Bu(d) = B0

u(d)

The proof follows as that of Lemma 3 and by the fact that
every time we change a path, we only shorten it.

Now using Lemma 4 and using a similar reasoning as be-
fore, we can compute a sketch of Bu(d) in G[Gu. In fact, for
each v 2 Out(u) we can compute an intermediate bottom-k

sketch as Botk
⇣
SG(v, d� 1) [

S
z:(z,v)2E0(SG(z, d� 2) [ r(z))

⌘
,



Finally we can compute

SG[Gu(u, d) = Botk
⇣
SG(u)(d) [

S
v:(v,u)2E0(SG(v, d) [ r(v))

⌘
.

The correctness of the estimator can be proved using the
same technique showed before; we omit the details in this
version. Note that in this case to compute an estimate for
the ball of diameter d we need to keep a good estimate for
balls of diameter d� 1 and d� 2.

Theorem 5. For any d, we can estimate |Bu(d)| to within
(1 + ✏)-factor in the public-private model using preprocess-
ing time O(mD✏�2 log n), space O(✏�2Dn log n), and query
time O(|Eu|✏�2 log n).

4. SAMPLING ALGORITHMS
In this section we show how a few well-known sampling

algorithms can be e�ciently realized in the public-private
graph model. The examples that we exhibit will be of in-
creasing interest and hardness.

4.1 All-pair shortest paths
The distance between two nodes in a social network is a

useful feature for many applications. For example, it can
be a feature to predict which celebrity a particular user will
follow. In this section we study how to approximate e�-
ciently the distance between any two nodes in the graph in
the public-private model. Note that this problem is particu-
larly interesting in our model because the distances between
two nodes can change dramatically even if we add a single
edge. In this section we assume that the graph is undirected.

Theorem 6. We can approximate the distance between
two nodes to within O(log n) in the public-private model us-
ing preprocessing time O(m log2 n), space O(n log2 n), and
query time O(|Eu| log2 n).

Proof. Consider the all-pair shortest path approxima-
tion of Das Sarma et al. [32]. The basic idea behind the
algorithm is to estimate the distances between two nodes v
and w in a graph G = (V,E) by precomputing the distances
to a random subset of nodes S ✓ V and then to estimate
the distance d(v, w) between v and w by looking at a subset
of the shortest paths that go through S.

More formally, the algorithm computes an O(log2 n)-sized
sample by computing for log n times, a sample of size 2 log n+
2 in the following way. It first generates blog nc+1 random
sets of nodes of sizes 1, 2, . . . , 2r called S

0

, S
1

, . . . , Sr, where
r = blog nc. Then it computes for each node v and for all
i, the closest node vi 2 Si to v and the corresponding dis-
tance. Finally for each node v, the algorithm stores as a
sample the pairs hvi, d(v, vi)i for all i. Note that the pre-
vious computation can be executed in time O(m log2 n) by
doing a breadth-first search (BFS) from each set Si.

Now we can estimate the distance between two nodes v
and w simply by looking at their respective samples. Let
Wv be the sample for each node v. Then, the approximate
distance d̂(v, w) = mink:(k,⇤)2Wv [i],Ww [i](d(v, k) + d(k, w)).
Essentially, the above estimator sums the distance from a
common element in the sample. Note that if the graph is
connected, then this distance is always well defined, other-
wise if there is no common node in the samples, the distance
is set to1. Using such an estimator, it is possible to approx-
imate the distances between any two nodes in undirected

graphs1 by multiplicative factor of O(log n) w.h.p. Thus, it
is possible to compute in time O(m log2 n) samples of total
size O(n log2 n) that allow to approximate the distances be-
tween any two pairs of nodes within a multiplicative factor
O(log n) in time O(log2 n) in G.

Now we discuss how to use those samples to compute an
approximation of the shortest path in G[Gu. In the follow-
ing let dG(·, ·) denote the shortest path between two nodes
in G and dG[Gu(·, ·) denote the shortest path between two
nodes in G [ Gu. The key observation is to note that the
shortest path between two nodes u and v in G [Gu is:

dG[Gu(u, v) = min

8
>>><

>>>:

dG(u, v);
1 + dG(w, v),

8w 2 N(u) and (u,w) 2 Eu;
2 + dG(z, v),

8z 2 N
2

(u) \N(u) and (z, ⇤) 2 Eu.
(1)

Using the samples described earlier, we can obtain anO(log n)
multiplicative approximation for all the distances in dG(⇤, v).
Given that in expression (1) we consider at most O(|Eu|)
such distances and that we can estimate each of them in
O(log2 n) time, the proof is complete.

4.2 Pairwise node similarities
The shortest path is a classic way to estimate the closeness

between nodes in a social network but unfortunately it takes
into account only the length of a path between two nodes
and not the number of paths between them. For this reason
several di↵erent distances have been introduced to capture
the a�nity between two nodes in a social network, including
the work of Katz [21] and personalized PageRank [18].

Personalized PageRank. One of the popular algorithms
for node similarity is personalized PageRank (PPR). Here
we propose an heuristic to e�ciently estimate the PPR of a
node u in the public-private model. (For more background
on PPR, see [18].)

For the public graph G we precompute for each node v 2
G, the vector PPRv(G) in G. In this phase we use the
algorithm of Andersen et al. [4] with the given parameter ✏
to approximate the vectors e�ciently.

For each private graph Gu we obtain the PPR vector of u
based on the decomposition result of Jeh and Widom [20]:

PPRu(Gu) = (1�↵) degGu
(u)�1

X

(u,v)2Eu

PPRv(Gu)+↵1u.

In our heuristic we substitute the results for the precompute
graph G instead of the private graph.

PPRu(Gu) ⇡ (1� ↵) degGu
(u)�1

X

(u,v)2Eu

PPRv(G) + ↵1u.

Note that even if this computation may look rough at first
sight, we can show experimentally that this simple heuris-
tic is very e↵ective in practice (Section 5.3). Unfortunately
we cannot show any theoretical guarantees on the approx-
imation of PPR and therefore we study another similarity
metric for which we can show formal guarantees.

1Unfortunately it is not possible to get a similar theoretical
guarantees for directed graphs. Nevertheless the authors
in [32] show that similar samples give good results in practice
also for some structured directed graphs as the Web graph.



Social a�nity. We now focus on the similarity measure
introduced in Panigrahy et al. [30]; we chose this measure
for its elegance and for its conducive properties. This metric
captures both the number of paths between the two nodes
and the length of the paths between two nodes. Formally,
the similarity A✓(v, w) between two nodes v and w is defined
as the maximum fraction of edges that can be deleted ran-
domly from the graph without disconnecting v and w with
probability at least ✓. The authors also show how to com-
pute this sampling-based similarity measure e�ciently and
show empirically that this measure nicely captures the se-
mantic similarity between users in Twitter. For the remain-
der of this section we assume that the graph is undirected.

Theorem 7. The social a�nity between two nodes can
be estimated in the public-private model using preprocess-
ing time O(m log2 m), space O(n log2 n), and query time
O(|Eu|+ log2 m).

Proof. Let ✏ > 0 be a constant. The main idea in [30]
is to construct logm distinct telescoping sequences of logm
subgraphs2 G

1,1, . . . , G
logm,(logm)/✏ of G where for all i the

probability that an edge is not deleted in Gi,j is (1 � ✏)j ,
for 1  j  (logm)/✏. We then compute the connected
components in all the (log2 m)/✏ subgraphs. Using these,
we estimate A✓(v, w) as:

✏
log

2 m

P
(log

2 m)/✏
i=1

h
✓ < 1

logm

P
logm
j=1

[v, w connected in Gi,j ]
i
,

where we used the Iverson bracket notation: [⇠] equals 1 if
the predicate ⇠ is true and is 0 otherwise. They show that
this estimate is within an additive ±✏ factor from the correct
A✓(v, w), with high probability. Note that this estimation
can be computed in time O(m log2 m) for constant ✏, and
all the samples can be stored in space O(n log2 m). In fact
we need to store only the component ids for each node.

We now show how to e�ciently compute this measure on
the G [Gu graph. The basic intuition is to use an e�cient
algorithm to compute the new connected components. Un-
fortunately using a union-find algorithm on the entire graph
would be impractical because it would take too long to up-
date the connected components ids of all the nodes in the
graphs. For this reason we need to keep the component ids
of all nodes in the graphs in a slightly di↵erent way to allow
for quick updates.

More precisely, each node in the public graph does the fol-
lowing: instead of storing O(log2 m) components ids for the
graphs G

1,1, . . . , G
logm,(logm)/✏, it keeps O(log2 m) pointers

to its components ids. When the edges in Gu are added
to the public graph, we first establish via sampling to which
graph G

1,1, . . . , G
logm,(logm)/✏ they are added. Then instead

of considering their e↵ect on the entire graph, we analyze
their e↵ect on the compressed graph where nodes with the
same component ids are collapsed together.
Note that for a single subgraph this can be done in time

linear in |Eu|. For example, consider the subgraph Gi,j . Let
Eu(i, j) be the edges in Eu that exist in the graph Gi,j after
the random deletions. To compute the new connected com-
ponents in Gi,j , using the pointers to the connected compo-
nents id for all the nodes incident in Eu(i, j), it is possible
to see which components are connected by edges in Eu(i, j).
Then by starting a few BFS visits in the collapsed version

2It is easy to construct such a sequence by constructing
graph Gi from Gi�1

by keeping the edges in Gi�1

with prob-
ability (1� ✏).

(nodes in the same connected components are contracted
together) of Gi,j from connected components incident to
Eu(i, j), it is possible to update the component ids (we keep
an arbitrary id for all the component in the same BFS tree)
in time linear in |Eu|. Using this idea, it is possible to up-
date the component ids for all the nodes in the graph in time
O(|Eu|) and hence the proof is complete.

4.3 Correlation clustering
In this section we consider the problem of clustering in

the public-private graph model. Correlation clustering is
a fundamental problem in social network analysis that has
received a lot of attention over the past decade.

We start with some definitions. A partition of V is a
collection C of subsets of V such that 8{Ci, Cj} 2

�C
2

�
it holds

Ci \Cj = ? and
S

Ci2C = V . We will use the term clusters
to denote the sets Ci 2 C. For this section we assume that
there are two types of edges in the public graph: positive
edges, denoted E+ and negative edges denoted E�. Recall
the correlation clustering problem [5].

Definition 8. The triple (V,E+, E�) is a correlation clus-
tering instance if let E+ \E� = ? and E+ [E� =

�
V
2

�
. A

solution of the correlation clustering problem is a partition
C of V . The cost of C is equal to:

���e 2 E� | e is contained in some Ci 2 C
 ��+

���e 2 E+ | e is not contained in any Ci 2 C
 �� .

The goal of the correlation clustering problem is to find a
partition C of V that minimizes the cost of the clustering. A
partition is an ↵-approximation if its cost is no larger than
↵ times the cost of the optimal partition.

Similar to the edges in the public graph, the edges in Gu are
also of two types: E+

u and E�
u . In the following we will show

that given an (approximate) correlation clustering solution
to the public graph G, we can quickly find an approximate
correlation clustering to G[Gu. The solution to G would be
through a sampling algorithm. For the rest of the subsection
we assume that Gu is a star; extending our results to more
general Gu as in the other sections is an open problem.

Given a correlation clustering instance I = (V,E+, E�),
and some u 62 V , let the instance Iu = (V [ {u}, E+ [
E+

u , E�[E�
u ) be obtained from I by adding u and the edges

incident on u to I (so that E+

u \ E�
u = ? and E+

u [ E�
u =

{{u, v} | v 2 V }). Note that we assumed u /2 V ; this is for
simplicity of exposition. After the proof we will show how
to handle this.

Given a partition C of V and a v 2 V , we consider parti-
tions of V [ {u} that can be obtained by adding u to one of
the clusters of C, or by placing u in a new singleton cluster.
These |C|+ 1 partitions are called the u-neighbors of C. We
now bound the quality of a solution to G [Gu.

Lemma 9. Let C be an ↵-approximation of I. Consider
an instance Iu. Then, at least one of the u-neighbors of C
is an O(↵)-approximation of the instance Iu.

Proof. Let C = {C
1

, . . . , Ct} for some integer t. Let
k+

i (resp., k�
i ) be the number of positive (resp., negative)

neighbors of u in the cluster Ci. Then
Pt

i=1

(k+

i +k�
i ) = |V |.

Let c be the cost of C on the instance I, let c? be the min-
imum cost on the instance I. Also, let c?u be the minimum
cost on the instance Iu. Observe that c?u � c?. Let us also



use cu(Ci) to denote the cost of the edges incident on u, if
we assign u to the cluster Ci, and cu(?) be the cost of those
edges if we let u be in a singleton cluster.

Let us define the cost of a cluster C to be equal to:
c(C) = |E� \C|+ 1

2

· |E+ \ {{v, v0} | v 2 C and v0 62 C})|.
Observe that the cost of a clustering C can be decomposed
in the sum of the cost of its clusters: c(C) =

P
C2C c(C).

Suppose that C is an ↵-approximate solution of the in-
stance I. Suppose we add u to I to obtain Iu. Then, let
us produce a solution Cu by adding u to one of the clus-
ters of C, or to a singleton cluster, to minimize the total
cost of Cu. If u is placed in a new singleton cluster, then
c(Cu)�c(C) =

Pt
i=1

k+

i . If, instead u is added to the cluster
Ci, then we have c(Cu)� c(C) = k�

i +
Pt

i=1,i 6=j k
+

i .
Now, suppose that Cu places u into a new cluster by itself.

By the minimality of the cost of Cu, we have that, for each
i, k+

i  k�
i .

Let us split the total cost cu(Cu) of the clustering Cu as
follows. For each cluster Ci 2 C, let us define cu(Ci) as
the total number of negative edges inside Ci, plus half the
number of the positive edges split between Ci and another
cluster in C, plus k�

i , i.e., cu(Ci) = c(Ci)+k�
i . Observe that

cu(Cu) = c(C) +
Pt

i=1

k�
i .

Before continuing our proof, we now recall that a bad
triangle is a set of three elements of an instance that are
connected by exactly one negative edge (and two positive
edges). A fractional packing of triangles is an assignment of
positive weights to the triangles of the instance such that,
for each edge {v0, v00}, the sum of the weights of the trian-
gles that contain that edge does not exceed 1 (8{v0, v00} :P

v000 62{v0,v00} wv0,v00,v000  1). The total weight of a frac-
tional packing is equal to the sum of the weights of its bad
triangles. It is known [3] that the total weight of a fractional
packing is a lower bound on the cost of the optimal solution
of a correlation clustering instance.

Let us consider the generic cluster Ci 2 C. If it induces
at least �k+

i negative edges, then �k+

i  c(Ci)  cu(Ci).
Otherwise, we have that Ci induces fewer than �k+

i nega-
tive edges. Now, since Ci induces fewer than �k+

i negative
edges, and since k+

i  k�
i , we have that there must exist

a positive matching, of cardinality (1 � �)k+

i , composed of
edges {v, v0} 2

�Ci
2

�
such that {v, u} is positive and {v0, u}

is negative. For each {v, v0} in the matching, we give weight
1 to the triangle {v, v0, u}. This (integral) packing then
proves that the total cost of the edges between the nodes
in Ci[{u}, regardless of how the nodes are partitioned, has
to be at least (1 � �)k+

i . If we choose � = 1

2

, we have that
— regardless of whether the number of negative edges in
Ci is lower or upper bounded by �k+

i — the total cost of
Ci [ {u} has to be at least 1

2

Pt
i=1

k+

i . Since the cost is at

most cu(Cu)  c(C) +
Pt

i=1

k+

i we get that if u ends up in
its own cluster we obtain an O(↵) approximation.

Suppose instead that the optimal Cu positions u in some
cluster Ci 2 C. Then k�

i  k+

i and, moreover, k+

i � k�
i �

k+

j � k�
j , for each j = 1, . . . , t. Then, again, either c(Ci)

was larger than �k�
j , or we can create a matching between a

fraction of (1� �) of the k�
i nodes of Ci that are connected

to u through negative edges and the k�
i nodes of Ci that are

connected to u through positive edges. This gives a packing
of total weight � (1 � �) · k�

i , so (by choosing � = 1

2

) if

k�
i �

Pt
j=1,j 6=i k

+

i , we have proved an O(↵)-approximation.

Finally, we consider the case k�
i 

Pt
j=1,j 6=i k

+

i (and u
is placed in Ci by the solution). Now, either the cost of
c(C) was larger than 1

2

Pt
j=1,j 6=i k

+

i , or there are at most
1

2

Pt
j=1,j 6=i k

+

i positive edges in the cuts induces by C.
We now define a new fractional packing of bad trian-

gles. We will give positive weight to a triangle i↵ it con-
tains u, intersects two di↵erent Cj , Cj0 2 C, and the two
triangle’s nodes in Cj and Cj0 are connected by a nega-
tive edge. Each triangle with positive weight will have the
same weight 1Pt

j=1 k+
j

. By the upper bound on the num-

ber of positive edges in the cut, the number of such tri-

angles is at least
P

{j,j0}2([t]2 )

⇣
k+

j · k+

j0

⌘
� 1

2

Pt
j=1,j 6=i k

+

i �

⌦
⇣P

{j,j0}2([t]2 )

⇣
k+

j · k+

j0

⌘⌘
.

No edge will have weight more than 1, and the total weight
of the triangles will equal:

⌦

0

B@
X

{j,j0}2([t]2 )

k+

j · k+

j0Pt
`=1

k+

`

1

CA = ⌦

 
tX

j=1

k+

j

!
.

Since the cost of the solution is at most c(C)+O
⇣Pt

j=1,j 6=i k
+

i

⌘
,

the approximation ratio is at most O(↵).

The above result tell us that a simple algorithm can start
from a clustering and place a (new) node greedily with-
out losing much in the approximation ratio. In the public-
private graph model, note that the node u is not new. To
handle this, given an instance I = (V,E+, E�), and some
u 2 V , let the instance I�u = (V \ {u}, E+

�u, E
�
�u) be ob-

tained from I by removing u and the edges incident on u
from I.

Suppose that we precompute an approximate solution to
the public graph G. Then, for an arbitrary node u we can
apply Lemma 9 to Gu, with the new edges of u, to obtain
an O(↵)-approximation algorithm. If we use the sampling-
based algorithm of Ailon et al. [3], we get ↵ = 3.

Theorem 10. We can approximate the correlation clus-
tering within a factor O(1) in the public-private model (when
Gu is a star) using preprocessing time O(m), space O(m),
and query time O(|Eu| log n).

5. EXPERIMENTS
In this section we demonstrate the e�ciency of our algo-

rithms in the public-private graph model. For purposes of
showcasing the public-private graph model, we will choose
the following algorithms: reachability tree size estimation by
sketching, shortest path by sampling, and correlation clus-
tering by sampling.

For experimentation purposes, we use some of the social
networks publicly available as part of the Stanford’s SNAP
dataset (http://snap.stanford.edu/data). In Table 1 we
give some basic statistics of the graphs that we used in the
experiments.

To obtain examples in the public-private model, we do
the following: given a graph (V,E), we pick a node u 2 V
uniformly at random and designate the graph induced on the
V \{u} to be the public graph G. To define the private graph
Gu at u, we do one of the two modifications: in the star-
case, we let the private edges Eu be the subset {(v, w) 2 E}
where either v = u or w = u, i.e., the nodes connected to or



Graph # nodes # edges
Slashdot [26] 58,228 428,156
Epinions [26] 77,357 516,575

Wiki-Vote [25, 26] 7,115 103,689
YouTube [34] 1,134,890 2,987,624

Email-EUAll [27] 265,214 420,045
Gnutella [31] 62,586 147, 892

DBLP [34] 317,080 1,049,866
LiveJournal [34] 3,997,962 34,681,189

Orkut [34] 3,072,441 117,185,083

Table 1: Social networks used in the experiments.

from u. In the clique-case, we let the private edges of Eu to
be all the edges in {u} [ Out(u). As we mentioned earlier,
these two cases represent two di↵erent types of privacy.

Since our main emphasis is to show the gains in running
time, we will present the ratio A/B of the following two run-
ning times: A is the running time of our update algorithm
that works on the private graph Gu and a sketch or sample
of the public graph G and B is the running time of the usual
algorithm on G[Gu, i.e., a naive implementation. This ratio
will reflect the average running time savings factor we can
obtain by using our algorithm instead of running the usual
algorithm on G[Gu. Since our algorithms are randomized,
each running time is averaged over 10 independent trials and
we report the ratio A/B averaged over 100 independent pri-
vate graphs. Unless otherwise specified, the quality of the
solutions produced by these two separate methods, namely,
the update-based algorithm and the usual algorithm, are
near-identical (modulo randomness).

5.1 Size of reachability tree
In this section we demonstrate our algorithm for comput-

ing the size of the reachability tree. We construct the public
and private graphs as described before, for both star-case
and the clique-case. We implement the naive sketching al-
gorithm on G [ Gu. We then compare its running time
against our update algorithm, which uses the sketch for G,
generates E0

u from Eu using the definition in Lemma 3, and
updates the sketch of u and nodes in Out(u) according to
the algorithm in Section 3.1.
Table 2 shows the average running time gains over the

naive algorithm for both the star-case and clique-case of
private graphs. Unsurprisingly, the e�ciency gains made
by our algorithm are several orders of magnitude, uniformly
across di↵erent datasets. Figure 2 shows the e↵ect of ✏

Graph A/B A/B
(star-case) (clique-case)

Wiki-Vote 2.02e-05 1.82e-05
Gnutella 2.56e-06 2.57e-06

Email-EUAll 1.89e-06 3.96e-06
Slashdot 1.63e-06 1.12e-06
Epinions 1.79e-06 1.48e-06

Table 2: E�ciency gains for reachability in the star-case and
the clique-case; ✏ = 0.3.

(which controls the accuracy of the estimate) on the e�-
ciency gain. Recall that a smaller value of ✏ means a higher
accuracy. Interestingly, the gains increase as ✏ decreases:
note that a smaller ✏ leads to a larger k (see the algorithm
in Section 3.1) and hence might result in more book-keeping
for maintaining the bottom-k data structure Botk(·).
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Figure 2: Role of ✏ in e�ciency gains for Wiki-Vote.

5.2 Shortest path approximations
We next focus on analyzing the performance of our algo-

rithm to compute the shortest path from a node u to another
arbitrary node in the private graph G[Gu. We run our ex-
periments on YouTube data [34] and we only analyze the
star-case since the clique-case a↵ects the shortest path in
the same way as in the star-case.

More specifically, we compare the running time and the
accuracy of our algorithm with the naive algorithm that exe-
cutes a single-source shortest path algorithm (i.e., Dijkstra’s
algorithm) to compute the distance between two nodes. Af-
ter showing that our algorithm vastly outperforms the naive
solution, we turn our attention on the trade-o↵ between the
size of the sketches that we use and the accuracy of the so-
lution. In our experiments, we observe A/B ⇡ 1/827, where
the comparison is with the classic Dijkstra algorithm. We
also observe that our algorithm obtain a good approxima-
tion of the shortest path (in fact our estimation is almost
never more than a factor 1.5 away from the real value.)

5.3 Personalized PageRank
In this section we evaluate our heuristic for PPR. For each

graph in our dataset with ground truth communities (Orkut,
YouTube, DBLP, LiveJournal) we sampled a set of 20 nodes
whose neighbors belong to at least two di↵erent communi-
ties. Let u be such a node and let Cu be the set of the
communities to which the neighbors of u belong. For each
node u, we declare a random half of the communities in Cu

as private and mark as private all the edges to and within
these communities; the remaining edges are marked public.

For each private subgraph Gu we run the following exper-
iment. We determine the ground truth PPR ranking of u
using the algorithm of Andersen et al. [4], with a given ✏.
We also compute the ranking obtained by our heuristic using
the result of preprocessing the public graph, which is again
obtained using the same algorithm. We evaluate the accu-
racy of the rankings and the performance of our heuristic.
In all the experiments, we set ↵ = 0.15 and vary ✏.

Table 3 (Column A/B) and Figure 3 shows the ratio of the
running time of our heuristic and the algorithm of Andersen
et al. on G[Gu. In all datasets, it is clear that the heuristic
is faster by several orders of magnitude. It is interesting to
notice that as ✏ gets smaller, the performance of the heuristic
degrades. This is because if ✏ is very small, then the rankings
become very long (n in the limit) and hence the heuristic
takes significantly more time to evaluate them.
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Figure 3: Role of ✏ in e�ciency gains for our social networks.

Graph A/B RMSE Cosine ⌧@50
DBLP 6.5e-3 7.8e-4 99.8% 88.5%

LiveJournal 3.5e-4 5.1e-3 99.1% 69.3%
Orkut 1.6e-3 1.0e-3 99.9% 54.6%

YouTube 1.7e-2 6.8e-3 99.8% 80.9%

Table 3: E�ciency and accuracy of our heuristic for the
PPR, ✏ = 0.001. Column A/B, RMSE, Cosine, and ⌧@50
represent the ratio between ground truth time and our
heuristics, the Root Mean Square Error, the Cosine Simi-
larity and the Kendall-⌧ index for the first 50 positions of
the ranking.

Table 3 shows the accuracy measure for the rankings com-
puted. It is clear that the heuristic produces rankings whose
RMSE with the ground truth is remarkably close to 0 and
the cosine similarity is close to 1; this suggests that the dis-
tributions are approximated well. Also the Kendall-⌧ corre-
lation of the first 50 positions of the rankings (which is more
useful from a practical viewpoint) is quite high.

5.4 Correlation clustering
In this section we demonstrate our algorithm for correla-

tion clustering in the public-private graph model. As dis-
cussed before, we construct the public graph G and the
private graph Gu for many u’s. Since our algorithm for
correlation clustering works only for the star-case, we do
not consider the clique-case here. We compute a correlation
clustering of the public graph G using the sampling Pivot
algorithm of Ailon et al. [3]. We use the output of this algo-
rithm, the edges in Gu, and guarantee of Lemma 9 in order
to compute the correlation clustering on G [Gu.

Since correlation clustering is on signed networks, we use
two signed networks from SNAP. The network Epinions
consists of who-trusts-whom network of epinions.com. The
network Slashdot consists of the social network in slashdot.

com from February 2009. We treat every non-edge of the
two networks as a negative edge. Table 4 shows the e�-
ciency gains for two sample graphs. We see that our update

Graph A/B
Slashdot 1.6e-04
Epinions 8.9e-05

Table 4: E�ciency gains for correlation clustering (in the
star-case).

algorithm obtains highly significant savings over the naive
implementation.

6. RELATED WORK
The related work falls into several categories including

dynamic graph algorithms, graph sketching, and graph sam-
pling algorithms.

On the face of it, the public-private model seems related
to the dynamic (aka incremental) graph algorithms. In this
model, at each time step, a new edge or a node is inserted
or deleted, and the goal is to maintain an appropriate data
structure of the changing graph so that one can e�ciently
compute certain functions of the graph at any point in time.
There are several natural functions for which e�cient (and in
many cases, optimal) dynamic algorithms are known, e.g.,
connectivity [23], minimum spanning trees [19], transitive
closure [24], all-pair shortest paths [15], etc. See the survey
by Demetrescu et al. [14] for an overview of the area. There
are basic di↵erences between dynamic graphs and public-
private graphs. First of all, while many dynamic graph algo-
rithms deal with both insertions and deletions and they are
optimized for single insert/delete operations, public-private
graph computation mainly deals with batch additions. Also
the central parameters of interest for dynamic algorithms are
the data structure update time and the (incremental) func-
tion computation time; the space of the data structure plays
a lesser role. In addition, existing algorithms for dynamic
graphs are tailored for computing the function exactly, for
obtaining asymptotic bounds, and for classical graph algo-
rithms; they have not been applied broadly to the social
network settings. Finally, recent attempts [6, 33] to present
more general results for social networks are mainly tailored
toward community detection, and their techniques do not
apply to our problem setting.

Our model is also related to the problem of sketching
graphs to answer queries about them. In the graph sketching
model, a succinct representation of a graph, called a sketch,
is constructed from the graph. This sketch can be used to
compute some functions on the whole graph. The sketch
depends on the actual function to be computed and e�cient
graph sketches are known for a variety of problems includ-
ing connectivity [1], cut size and distance between nodes [2].
However, graph sketching is still in its infancy and sketches
have been developed only for some very basic graph prob-
lems; discouragingly, some of the more interesting problems
are faced with strong lower bounds. On a topic more rele-
vant to social networks, the so-called All Distance Sketches
were developed to approximate the neighborhood function
of graphs; see the original work of Cohen [10,11], ANF [29],
and hyperANF [7]. Some of the graph sketches have the
property that they are composable: the sketch of the union
of two graphs can be computed from their respective indi-
vidual sketches. This is ideal for our setting, where we can
compute a sketch of the public graph and sketches for pri-
vate graphs, and consequently, can compute the sketch of
the union of the public graph with any private graph. Even
though this looks directly applicable, in some cases it is not
clear if such a composition can be e�ciently implemented
in the public-private graph model. In fact, one of our con-
tributions is to show that the neighborhood approximation
sketch can be implemented e�ciently in our model.

Sampling algorithms have been used for several graph and
social network problems. Typically, sampling algorithms



pick nodes (or edges) in the graph according to some dis-
tribution, e.g., uniform on the nodes, or proportional to the
degrees (e.g., by a uniform random walk), etc. Sampling al-
gorithms have been used to estimate basic graph properties
including the size of the network [22], average degree [13],
clustering coe�cient [17]. In the public-private model, these
problems are less interesting since they can be solved triv-
ially and with ease. More sophisticated sampling algorithms
exist for other social network problems including all-pair dis-
tance estimation [32], similarity estimation [30], correlation
clustering [3], densest subgraphs [9], etc. It is not a priori
clear if it is possible at all to adapt these algorithms to the
public-private model. We show how to extend the all-pair
distance estimation, similarity estimation, and correlation
clustering to public-private graphs; showing a similar result
for the densest subgraph problem is an open problem.

7. CONCLUSIONS
In this paper we introduced the public-private model of

computation for online social networks. This model is mo-
tivated by a new classes of features introduced by online
social networks, where users can define public and private
friends, or public and private lists or circles. Our model ab-
stracts the privacy aspects in the link structure of the social
network and establishes a formal framework to study e�-
cient social network algorithms that respect the privacy of
the links; such algorithms operate, for a given user, on this
user’s private graph and on the common public graph. As
a demonstration of the simplicity and the potential of our
model, we study two classes of popular social network algo-
rithms using our framework: sketching and sampling. We
show e�cient algorithms for many important social network
problems and illustrate the computational benefits of the
framework by experimental analysis.

We believe that the public-private model is an abstrac-
tion that can be used to develop e�cient social network al-
gorithms. Our work leaves a number of open interesting
research directions such as: obtaining e�cient algorithms
for the densest subgraph/community detection problems, in-
fluence maximization, computing other pairwise similarity
scores, and most importantly, recommendation systems.
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