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Abstract. For speeding up elliptic curve scalar multiplication and mak-
ing it secure against side-channel attacks such as timing or power analy-
sis, various methods have been proposed using speci�cally chosen elliptic
curves. We show that both goals can be achieved simultaneously even
for conventional elliptic curves over Fp . This result is shown via two
facts. First, we recall the known fact that every elliptic curve over Fp

admits a scalar multiplication via a (Montgomery ladder) Lucas chain.
As such chains are known to be resistant against timing- and simple
power/electromagnetic radiation analysis attacks, the security of our
scalar multiplication against timing and simple power/electromagnetic
radiation analysis follows. Second, we show how to parallelize the 19
multiplications within the resulting \double" and \add" formulas of the
Lucas chain for the scalar multiplication. This parallelism together with
the Lucas chain results in 10 parallel �eld multiplications per bit of the
scalar.

Finally, we also report on a concrete successful implementation of the
above mentioned scalar multiplication algorithm on a very recently de-
veloped and commercially available coprocessor for smart cards.

Keywords: Elliptic Curves, Montgomery ladder, Power Analysis, Tim-
ing Analysis, Electro Magnetic Radiation Analysis, EÆcient and Parallel
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1 Introduction

It is clear that one of the major application �elds of elliptic curve
cryptography (as described in [4, 13, 20]) are smart cards, mobile
phones and PDAs. Their strong limitations concerning chip area,
power consumption and performance can be remedied by the use of
elliptic curve cryptography in a sophisticated way, see, e.g. [1, 21].



Unfortunately, real physical implementations of elliptic curve cryp-
tography within smart cards su�er from so called side-channel at-
tacks (also known as information leakage attacks), cf. [6, 7, 24, 27,
29]. These are attacks on implementations of cryptosystems which
use observations like timings [16], power consumptions [17] or elec-
tromagnetic radiation [26] in order to obtain secret information, that
is originally supposed to be stored safely in the tamper-resistant de-
vice.

Not surprisingly, various proposals have been made to secure
the elliptic curve scalar multiplication against di�erent side-channel
attacks. Although we will not discuss the details of these meth-
ods we will brie
y summarize the existing proposals. The �rst who
addressed the SPA and DPA problem for elliptic curves was [6],
which suggested several randomization techniques to defeat di�er-
ential power analysis. Later, [3] investigated the elliptic curve scalar
multiplication security concerning Koblitz curves. More importantly,
[29] rediscovered the so called Montgomery ladder to defeat side-
channel attacks on the elliptic curve scalar multiplication | a pos-
sibility which was already pointed out earlier by [28]. Originally,
the Montgomery ladder was used by [23] and [19] to accelerate the
elliptic curve scalar multiplication of certain curves. Furthermore,
[29] found some security 
aws in the methods of [6, 19, 28] and also
proposed a (TA, SPA and DPA) secure variant of the Montgomery
ladder. Finally, on CHES 2001 several other methods have been sug-
gested by [14, 15, 18] to defeat side-channel attacks on elliptic curves.
A common disadvantage of the above methods is that each of them
requires speci�cally selected curves which often constitutes only a
small class of all curves and that these are most often not included
in the standards [2, 9, 25].

As said above and already pointed out by [3, 6, 15, 18, 24, 29, 31]
the immunity against di�erential side-channel attacks on elliptic
curve scalar multiplication can easily be achieved by virtue of the rich
algebraic structure of elliptic curves, e.g., point blinding using the re-
dundancy of a projective coordinate representation. Therefore, this
article concentrates on non-di�erential side-channel attacks which
are described in the next section.

Also, only very recently, [31] addressed the idea of parallelizing
the elliptic curve scalar multiplication for the Hessian form of an



elliptic curve. But in contrast to [31] our multiplication method has
several bene�ts. First of all, we address simultaneously the side-
channel attack problem and the parallelization problem. Second, our
method works for an arbitrary curve in Weierstrass form as speci�ed
in [2, 9, 25], whereas the Hessian form constitutes a limited class.
Thus, our paper proposes an alternative countermeasure approach
without a limitation to speci�cally chosen curves. Third, our method
works on a commercially available standard smart card system in
contrast to [31].

The rest of the paper is organized as follows. In the next section
we brie
y summarize non-di�erential information leakage attacks
and how they can reveal the secret keys of an elliptic curve cryp-
tosystem. Moreover, we explain the principles of how to overcome
this information leakage via the above mentioned Montgomery lad-
der. Hereafter, we shortly present in the next section the necessary
details concerning the arithmetic of elliptic curves. Next, we turn
our attention to the so called Montgomery ladder or Lucas chain.
Although it is already known (cf. [8, 12]) that every elliptic curve
over Fp admits a scalar multiplication via a Montgomery ladder, we
systematically derive this result from the classical addition formu-
las for aÆne coordinates and also for the more practical projective
coordinates. We feel that it is necessary to recall this derivation as
it helps to understand the presentation of our parallel algorithm for
the Montgomery ladder. We also discuss in another section a real im-
plementation of our algorithm on a parallel coprocessor for a smart
card.

2 Immunity against Non-Di�erential

Side-Channel Attacks

In elliptic curve cryptosystems, a particular target for side-chan-
nel attacks are the algorithms used for the elliptic curve scalar multi-
plication. Within the aforesaid multiplication one is given a positive
integer k, a point P on a curve C over a �nite �eld Fq and the task
is to add k times the point P to itself, which is usually denoted as
k � P , as the elliptic curves are known to be abelian additive groups
(cf. [30]) with respect to the addition of points. Most often, the point



P is public and can therefore be chosen by an attacker, while the
scalar k is secret and thus of special interest for the attacker.

However, for reasons of exactness one has to distinguish between
two classes of side-channel attacks: di�erential (DPA and DEMA)
and non-di�erential side-channel attacks (TA, SPA and SEMA).

An attack relying on a di�erential analysis guesses unknown
(hardware or software) internal bits and then correlates this guess-
ing over a large number of runs. As already said above, these attacks
are easily prevented by the formerly mentioned and well understood
randomization techniques concerning elliptic curves.

Non-di�erential attacks are conceptually much simpler and they
are harder to safe guard against without a performance loss. To un-
derstand our defence against non-di�erential attacks for the elliptic
curve point multiplication we recall the binary ladder (also known
as classical double and algorithm) for point multiplication. This is
the standard way of computing the scalar multiplication.

Input: An integer k = (kn�1; : : : ; k0) and a point P on the curve C.
Output: kP .

1. Q := O.
2. For i from n� 1 down to 0 do

Q := 2Q
if ki = 1 then
Q := Q+ P .

3. Return Q.

Fig. 1. The binary ladder or the double and add algorithm.

As one sees in the above algorithm, an attacker can attempt to
determine the bits of k by seeing how the program behaves at the if-

branch. Namely, whereas the point doubling is always executed, the
point addition is executed conditionally on the ith bit of k. Thus,
the attacker is able to determine from a timing analysis, a simple
power or a electromagnetic radiation analysis whether the if-branch

was executed or not.
The most common idea is to make point addition and point dou-

bling indistinguishable by adding dummy code to balance the di�er-



ence between addition and doubling even. But one has to recall that
this has to be done down to the level of the underlying hardware.
However, this is not a trivial task to do in practice and also leads to a
performance loss. Thus, it is not a recommendable countermeasure.

In contrast to this naive way, we will use the formerly mentioned
Montgomery ladder, see, e.g., [23, 8]. The Montgomery ladder solves
the problem, as it leads to a uniform execution pattern, as it always
performs an addition and a doubling independently of the scalar k.
It exploits the fact that if the di�erence of two points is known, it
is easier to compute their sum. The Montgomery ladder was origi-
nally introduced to accelerate the scalar multiplication on a certain
restricted class of curves de�ned over Fp . Note that there is also a
version of this algorithm for arbitrary curves over �elds of character-
istic two [19]. But this algorithm for an arbitrary curve over a �eld
of characteristic two doesn't work for curves over �elds Fp with p
greater than 3. This is one aim of our paper. As with the double and
add algorithm, it can be represented either in aÆne or projective
coordinates.

The Montgomery ladder works as follows. Let k be a positive
integer and (kn�1; : : : ; k0) its binary representation where we may
assume that kn�1 = 1. To compute kP we start with the pair (P; 2P ).
At the beginning of each step i we have the pair (P1; P2) = (mP; (m+
1)P ) wherem = (kn�1; : : : ; kn�1�i) and at the end we eventually have
(kP; (k + 1)P ).

Input: An integer k � 1 and a point P on the curve C.
Output: kP .

1. P1  P and P2  2P .
2. For i from n� 2 down to 0 do

if ki = 1 then
P1  P1 + P2 and P2  2P2

else
P2  P1 + P2 and P1  2P1.

3. Return P1.

Fig. 2. The Montgomery Ladder.



First, observe that the above algorithm clearly is resistant to non-
di�erential side-channel attacks (cf. [28]). Second, there is an obvious
way to parallelize each of the branches within step 2. However, on
real arithmetic coprocessors of smart cards this parallelization is not
practical for elliptic curves, as the coprocessors usually have only a
limited number of registers to store intermediate results. Neverthe-
less, for other groups where the basic operation is simpler (e.g. RSA)
this kind of parallelization might be of some particular value.

3 Preliminaries

We will now shortly present the necessary facts which are needed
in the body of our paper. For a thorough introduction to the arith-
metic of elliptic curves we refer to [30].

For p a prime greater than 3, the (short) Weierstrass form of an
elliptic curve C de�ned over Fp is given by the equation

y2 = x3 + ax+ b: (1)

where a; b 2 Fp are such that 4a3 + 27b2 6� 0 mod p. Any elliptic
curve de�ned over Fp can be expressed in this form. Also note that
the Fp-rational points on an elliptic curve together with the point
at in�nity O form an abelian group with the neutral element O. For
points P1 = (x1; y1) and P2 = (x2; y2) di�erent from O, their sum
P3 = (x3; y3) is de�ned by the following equations. If y1 = �y2 then
P3 = O, otherwise �

x3 = �2 � x1 � x2;
y3 = �(x1 � x3)� y1;

where

� =

8><
>:

y2�y1
x2�x1

; if P1 6= P2;

3x2
1
+a

2y1
; if P1 = P2:

4 Presentation of the Algorithm

In the following we will use some ideas from [8] in order to show
that every elliptic curve over Fp admits a scalar multiplication via a
Montgomery ladder.



For a point P on the curve C we write P = (xP ; yP ) = (XP :
YP : ZP ) 2 A

2 = P
2 � P

1 in aÆne resp. projective coordinates. For
these coordinates we have xP � ZP = XP and yP � ZP = YP . For
two given distinct points P and Q, di�erent from O, our task is the
computation of the pair

(P 0; Q0) := (P +Q; 2Q) (2)

from the pair (P;Q) with the additional notion of the point D :=
P � Q (or D := Q � P , but they di�er only in the sign of their
y-coordinate, which is not going to be used). Recall that in our case
D equals the base point of the curve (or its opposite).

The standard formulas for addition and doubling on elliptic curves
from above yield the three formulas

xP 0 =

�
yP � yQ
xP � xQ

�2

� xP � xQ (3)

for the sum of P and Q,

xD =

�
yP + yQ
xP � xQ

�2

� xP � xQ (4)

for the di�erence of P and Q and

xQ0 =

�
3x2Q + a

2yQ

�2

� 2xQ (5)

for the double of Q. Adding (3) and (4) and substituting y2P and y2Q
by virtue of (1) we get

(xP 0 + xD)(xP � xQ)
2 = 2(xP + xQ)(xPxQ + a) + 4b: (6)

Substituting y2P via (1) we get from (5)

4xQ0(xQ
3 + axQ + b) = (xQ

2 � a)2 � 8bxQ: (7)

Now we substitute XP=ZP for xP and XQ=ZQ for xQ and transform
(6) into

XP 0(XPZQ �XQZP )
2 = ZP 0

�
2(XPZQ +XQZP )(XPXQ + aZPZQ)

+4bZ2
PZ

2
Q � xD(XPZQ �XQZP )

2
�



and (7) into

XQ04(XQZQ(X
2
Q + aZ2

Q) + bZ4
Q) = ZQ0

�
(X2

Q � aZ2
Q)

2 � 8bXQZ
3
Q

�
:

Therefore, we can de�ne the \double and add" formulas

8>>>><
>>>>:

XP 0 = 2(XPZQ +XQZP )(XPXQ + aZPZQ)
+4bZP

2ZQ
2 � xD(XPZQ �XQZP )

2

ZP 0 = (XPZQ �XQZP )
2

XQ0 = (XQ
2 � aZQ

2)2 � 8bXQZQ
3

ZQ0 = 4(XQZQ(XQ
2 + aZQ

2) + bZQ
4);

(8)

always ignoring the Y-coordinates.
We now present an algorithm for (P;Q) 7! (P 0; Q0) which uses 8

registers R0, . . . , R7 and is intended to work on a parallel computing
device with unconstrained access to all registers.

Input: (XP ; ZP ; XQ; ZQ)
Output: (XP 0 ; ZP 0 ; XQ0 ; ZQ0)
R0 XP ; R1 ZP ; R2 XQ; R3 ZQ

R6 R2 �R1 (1) j R7 R3 � R0 (2)
R4 R7 +R6 (3) j R5 R7�R6 (4)
R5 R5 �R5 (5) j R7 R1 � R3 (6)
R1 a �R7 (7) j R6 R7 � R7 (8)
R0 R0 �R2 (9) j R6 b � R6 (10)
R0 R0 +R1 (11) j R6 R6 +R6 (12)
R0 R0 �R4 (13) j R1 xD � R5 (14)
R4 R0 +R6 (15) j
R4 R4 +R4 (16) j R6 R2 +R2 (17)
R4 R4�R1 (18) j R7 R3 +R3 (19)
R0 R6 �R7 (20) j R1 R3 � R3 (21)
R2 R2 �R2 (22) j R3 a � R1 (23)
R6 R2�R3 (24) j R7 R2 +R3 (25)
R1 R1 +R1 (26) j
R2 b �R1 (27) j R7 R7 � R0 (28)
R1 R2 �R1 (29) j R0 R0 � R2 (30)
R6 R6 �R6 (31) j
R6 R6�R0 (32) j R7 R7 +R1 (33)

XP 0  R4; ZP 0  R5; XQ0  R6; ZQ0  R7

Fig. 3. Parallel computing of (P 0; Q0) = (P +Q; 2Q).



The above algorithm | consisting of 19 multiplications and 14
additions | needs the time of 10 multiplications and 8 additions on
a parallel architecture. On an architecture with only one computing
device, one would have to do all 33 steps one by one.

After the scalar multiplication kP we have the projective X-
coordinate and Z-coordinate of kP = (XkP : YkP : ZkP ). To obtain
the aÆne coordinates of kP we use the transformation

kP = (XkP ; YkP ; ZkP ) 7! kP = (XkP=ZkP ; YkP=ZkP ) = (xkP ; ykP ):

Similarly we have the aÆne x-coordinate of

(k + 1)P = (X(k+1)P=Z(k+1)P ; Y(k+1)P=Z(k+1)P )

and the aÆne coordinates of the point P = (xP ; yP ). So, in order to
obtain the aÆne y-coordinate of the point kP we have the following
formula if we substitute y2kP and y2P via (1) into (3), applied to the
equation (k + 1)P = kP + P

2yPykP = �(xP�xkP )
2x(k+1)P+(a+x

2
P )xkP+(a+xkP

2)xP+2b: (9)

So, if we substitute xkP by XkP=ZkP and x(k+1)P by X(k+1)P=Z(k+1)P ,
we obtain (now omitting most of the P s in the subscripts)

yk =
2bZk

2Zk+1 + Zk+1(xPXk + aZk)(Xk + xPZk)�Xk+1(Xk � xPZk)
2

2yPZ2
kZk+1

:

(10)

5 Implementation performance

For the implementation of our algorithm we have chosen In�-
neons 8-bit chipcard controller SLE66P [10] equipped with the re-
cently developed crypto coprocessor CRYPTO2000 [11] running at
33MHz. The CPU of the SLE66P is an enhanced 8051 compatible
architecture.

The new CRYPTO2000 is an arithmetic coprocessor dedicated
to modular arithmetic as used in various current cryptographic stan-
dard applications. It is an amalgamation of an optimized 2K RSA
coprocessor and an optimized 1/2K ECC coprocessor. In the RSA



mode the accumulator based machine provides one calculation unit
of 2K bits and two registers for temporary results of the same length.
In the ECC mode the machine is divided in two identical parallel cal-
culation units. Each of the two registers is divided into four 1/2K
registers, resulting in eight temporary result registers altogether.

We have chosen a standard curve from [9] over Fp with 162 bits
for the prime p, P a generating point of this group and a scalar k of
size 158 bits. The following table summarizes our timing results for
a straightforward implementation which is not optimized concerning
performance.

Operation Comp. the proj. X-coordinate Comp. the aÆne Comp. the aÆne
and Z-coordinate of kP x-coordinate of kP coordinates of kP

Time in ms 11.5 13.7 16

Fig. 4. Timings to compute the aÆne coordinates of kP .

6 Conclusion

We have presented a method for elliptic curve point multipli-
cation that provides immunity against non-di�erential side-channel
attacks. The algorithm exploits the so called Montgomery ladder to
ensure that point doublings and point additions occur in a uniform
pattern. No dummy additions are required. The method can easily
be parallelized in a practical way, thus resulting in a performance su-
perior to all existing methods to provide immunity for elliptic curve
point multiplication against non-di�erential side-channel attacks. In
contrast to other methods which are only applicable to special curves
our algorithm works for an arbitrary elliptic curve. Therefore, our
method is the perfect choice for a fast, secure and practical ECC
implementation on a parallel computing device.
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