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Abstract

We describe a cryptanalytical technique for distinguishing some stream ciphers from a truly
random process. Roughly, the ciphers to which this method applies consist of a “non-linear
process” (say, akin to a round function in block ciphers), and a “linear process” such as an
LFSR (or even fixed tables). The output of the cipher can be the linear sum of both processes.
To attack such ciphers, we look for any property of the “non-linear process” that can be distin-
guished from random. In addition, we look for a linear combination of the linear process that
vanishes. We then consider the same linear combination applied to the cipher’s output, and try
to find traces of the distinguishing property.

In this report we analyze two specific “distinguishing properties”. One is a linear approxima-
tion of the non-linear process, which we demonstrate on the stream cipher SNOW. This attack
needs roughly 295 words of output, with work-load of about 2100. The other is a “low-diffusion”
attack, that we apply to the cipher Scream-0. The latter attack needs only about 243 bytes of
output, using roughly 250 space and 280 time.

Key words: Hypothesis testing, Linear cryptanalysis, Linear masking, Low-Diffusion attacks,
Stream ciphers.

1 Introduction

A stream cipher (or pseudorandom generator) is an algorithm that takes a short random string, and
expands it into a much longer string, that still “looks random” to adversaries with limited resources.
The short input string is called the seed (or key) of the cipher, and the long output string is called
the output stream (or key-stream). Although one could get a pseudorandom generator simply by
iterating a block cipher (say, in counter mode), it is believed that one could get higher speeds by
using a “special purpose” stream cipher.

One approach for designing such fast ciphers, is to use some “non-linear process” that may
resemble block cipher design, and to hide this process using linear masking. A plausible rationale
behind this design, is that the non-linear process behaves roughly like a block cipher, so we expect
its state at two “far away” points in time to be essentially uncorrelated. For close points, on the
other hand, it can be argued they are masked by independent parts of the linear process, and so
again they should not be correlated.

Some examples of ciphers that use this approach include SEAL [18] and Scream [11], where the
non-linear process is very much like a block cipher, and the output from each step is obtained by
adding together the current state of the non-linear process and some entries from fixed (or slowly
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modified) secret tables. Other examples are PANAMA [3] and MUGI [21], where the linear process
(called buffer) is an LFSR (Linear Feedback Shift Register), which is used as input to the non-linear
process, rather than to hide the output. Yet another example is SNOW [4], where the linear LFSR
is used both as input to the non-linear finite state machine, and also to hide its output.

In this work we describe a technique that can be used to distinguish such ciphers from ran-
dom. The basic idea is very simple. We first concentrate on the non-linear process, looking for a
characteristic that can be distinguished from random. For example, a linear approximation that
has noticeable bias. We then look at the linear process, and find some linear combination of it
that vanishes. If we now take the same linear combination of the output stream, then the linear
process would vanish, and we are left with a sum of linear approximations, which is itself a linear
approximation. As we show below, this technique is not limited to linear approximations. In some
sense, it can be used with “any distinguishing characteristic” of the non-linear process. In this
report we analyze in details two types of “distinguishing characteristics”, and show some examples
of its use for specific ciphers.

Perhaps the most obvious use of this technique, is to devise linear attacks (and indeed, many
such attacks are known in the literature). This is also the easiest case to analyze. In Section 4
we characterize the statistical distance between the cipher and random as a function of the bias of
the original approximation of the non-linear process, and the weight distribution of a linear code
related to the linear process of the cipher.

Another type of attacks uses the low diffusion in the non-linear process. Namely, some in-
put/output bits of this process depend only on very few other input/output bits. For this type
of attacks, we again analyze the statistical distance, as a function of the number of bits in the
low-diffusion characteristic. This analysis is harder than for the linear attacks. Indeed, here we do
not have a complete characterization of the possible attacks of this sort, but only an analysis for
the most basic such attack.

We demonstrate the usefulness of our technique by analyzing two specific ciphers. One is the
cipher SNOW [4], for which we demonstrate a linear attack, and the other is the variant Scream-0
of the stream cipher Scream [11], for which we demonstrate a low-diffusion attack.

1.1 Relation to prior work

Linear analyses of various types are the most common tool for cryptanalyzing stream ciphers. Much
work was done on LFSR-based ciphers, trying to discover the state of the LFSRs using correlation
attacks (starting from Meier and Staffelbach [17], see also, e.g., [14, 13]). Golić [8, 9] devised
linear models (quite similar to our model of linear attacks) that can be applied in principle to any
stream cipher. He then used them to analyze many types of ciphers (including, for example, a
linear distinguisher for RC4 [10]). Some examples of linear distinguishers for LFSR based ciphers,
very similar to our analysis of SNOW, are [1, 5], among others. Few works used also different
cryptanalytical tools. Among them are the distinguishers for SEAL [12, 6] and for RC4 [7].

The main contribution of the current work is in presenting a simple framework for distinguishing
attacks. This framework can be applied to many ciphers, and for those ciphers it incorporates linear
analysis as a special case, but can be used to devise many other attacks, such as our “low-diffusion
attacks”. (Also, the attacks on SEAL due to [12] and [6] can be viewed as special cases of this
framework.) For linear attacks, we believe that our explicit characterization of the statistical
distance (Theorem 6) is new and useful. In addition to the cryptanalytical technique, the explicit
formulation of attacks on stream ciphers, as done in Section 3, is a further contribution of this
work.
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Organization. In Section 2 we briefly review some background material on statistical distance
and hypothesis testing. In Section 3 we formally define the framework in which our techniques
apply. In Section 4 we describe how these techniques apply to linear attacks, and in Section 5 we
show how they apply to low-diffusion attacks.

2 Elements of statistical hypothesis testing

If D is a distribution over some finite domain X and x is an element of X, then by D(x) we denote
probability mass of x according to D. For notational convenience, we sometimes denote the same
probability mass by PrD[x]. Similarly, if S ⊆ X then D(S) = PrD[S] =

∑
x∈S D(x).

Definition 1 (Statistical distance) Let D1,D2 be two distributions over some finite domain X.
The statistical distance between D1,D2, is defined as

|D1 −D2|
def=

∑
x∈X
|D1(x)−D2(x)| = 2 ·max

S⊆X
D1(S)−D2(S)

(We note that the statistical distance is always between 0 and 2.) In our analysis, we often view
the statistical distance |D1 − D2| as (a scaling of) the expected value of |D1(x)− D2(x)|, where x
is chosen according to the uniform distribution. Namely, we can write

|D1 −D2| = |X| ·
∑
x

1
|X| · |D1(x)−D2(x)| = |X| · Ex[ |D1(x)−D2(x)| ]

Below are two useful facts about this measure:
• Denote by DN the distribution which is obtained by picking independently N elements x1, ..., xn ∈
X according to D. If |D1−D2| = ε, then to get |DN1 −DN2 | = 1, the number N needs to be between
Ω(1/ε) and O(1/ε2). (A proof can be found, for example, in [20, Lemma 3.1.15].) In this work
we sometimes make the heuristic assumption that the distributions that we consider are “smooth
enough”, so that we really need to set N ≈ 1/ε2.
• If D1, ...,DN are distributions over n-bit strings, we denote by

∑
Di the distribution over the

sum (exclusive-or),
∑N
i=1 xi, where each xi is chosen according to Di, independently of all the

other xj ’s. Denote by U the uniform distribution over {0, 1}n. If for all i, |U − Di| = εi, then
|U −

∑
Di| ≤

∏
i εi. (We include a proof of this simple “xor lemma” in Section 2.1 below.) In the

analysis in this paper, we sometimes assume that the distributions Di are “smooth enough”, so
that we can use the approximation |U −

∑
Di| ≈

∏
i εi.

Hypothesis testing. We provide a brief overview of (binary) hypothesis testing. This material
is covered in many statistics and engineering textbooks (e.g., [16, Ch.5]). In a binary hypothesis
testing problem, there are two distributions D1,D2, defined over the same domain X. We are given
an element x ∈ X, which was drawn according to either D1 or D2, and we need to guess which is
the case. A decision rule for such hypothesis testing problem is a function DR : X → {1, 2}, that
tells us what should be our guess for each element x ∈ X. Perhaps the simplest notion of success
for a decision rule DR, is the statistical advantage that it gives (over a random coin-toss), in the
case that the distributions D1,D2 are equally likely a-priori. Namely,

adv(DR) =
1
2

(
Pr
D1

[DR(x) = 1] + Pr
D2

[DR(x) = 2]
)
− 1

2
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Proposition 2 For any hypothesis-testing problem 〈D1,D2〉, the decision rule with the largest ad-
vantage is the maximum-likelihood rule,

ML(x) =

{
1 if D1(x) > D2(x)
2 otherwise

The advantage of the ML decision rule equals a quarter of the statistical distance, adv(ML) =
1
4 |D1 −D2|.

2.1 Proof of the xor-lemma for statistical distance

Lemma 3 Let D1,D2 be two distributions over {0, 1}k, let D3 = D1 + D2, and denote by U the
uniform distribution over {0, 1}k, and εi = |U − Di|. Then ε3 ≤ ε1ε2.

Proof: For each r, s ∈ {0, 1}k, denote er = D1(r) − 2−k and fs = D2(s) − 2−k. By definition of
statistical distance, we have ε1 = |U −D1| =

∑
r |er| and similarly ε2 =

∑
s |fs|. For each t ∈ {0, 1}k,

we then have

D3(t) =
∑
r+s=t

(2−k + er)(2−k + fs)

= 2k · 2−2k +
∑
r+s=t

2−k(er + fs) +
∑
r+s=t

erfs = 2−k +
∑
r+s=t

erfs

(where the last equality holds since
∑
r er =

∑
s fs = 0). Therefore we have

|U − D3| =
∑
t

∣∣∣D3(t)− 2−k
∣∣∣ =

∑
t

∣∣∣∣∣ ∑
r+s=t

erfs

∣∣∣∣∣
≤

∑
t

∑
r+s=t

|erfs| =
∑
r,s

|erfs| =

(∑
r

|er|
)(∑

s

|fs|
)

= ε1ε2

Corollary 4 If Di, i = 1...N are distributions with |U − Di| = εi, then |U −
∑
iDi| ≤

∏
i εi.

3 Formal framework

We consider ciphers that are built around two repeating functions (processes). One is a non-linear
function NF (x) and the other is a linear function LF (w). The non-linear function NF is usually
a permutation on n-bit blocks (typically, n ≈ 100). The linear function LF is either an LFSR, or
just fixed tables of size between a few hundred and a few thousand bits. The state of such a cipher
consists of the “non-linear state” x and the “linear state” w. In each step, we apply the function
NF to x and the function LF to w, and we may also “mix” these states by xor-ing some bits of
w into x and vice versa. The output of the current state is also computed as an xor of bits from
x and w. To simplify the presentation of this report, we concentrate on a special case, similar to
Scream.1 A pictorial decription of this case is shown in Figure 1. In each step i we do the following:

1. Set wi := LF (wi−1)
2. Set yi := L1(wi), zi = L2(wi) // L1, L2 are some linear functions
3. Set xi := NF (xi−1 + yi) + zi // ‘+’ denotes exclusive-or
4. Output xi

1We show how our techniques can handle other variants when we describe the attack on SNOW, but we do not
attempt to characterize all the variants where such techniques apply.
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Figure 1: A style of cipher to which our techniques apply

3.1 The linear process

The only property of the linear process that we care about, is that the string y1z1y2z2 . . . can be
modeled as a random element in some known linear subspace of {0, 1}?. Perhaps the most popular
linear process is to view the “linear state” w as the contents of an LFSR. The linear modification
function LF clocks the LFSR some fixed number of times (e.g., 32 times), and the functions L1, L2
just pick some bits from the LFSR. If we denote the LFSR polynomial by p, then the relevant linear
subspace is the subspace orthogonal to p · Z2[x].

A different approach is taken in Scream. There, the “linear state” resides in some tables, that
are “almost fixed”. In particular, in Scream, each entry in these tables is used 16 times before it is
modified (via the non-linear function NF ). For our purposes, we model this scheme by assuming
that whenever an entry is modified, it is actually being replaced by a new random value. The
masking scheme in Scream can be thought of as a “two-dimensional” scheme, where there are two
tables, which are used in lexicographical order.2 Namely, we have a “row table” R[·] and a “column
table” C[·], each with 16 entries of 2n-bit string. The steps of the cipher are partitioned into batches
of 256 steps each. At the beginning of a batch, all the entries in the tables are “chosen at random”.
Then, in step i = j + 16k in a batch, we set (yi|zi) := R[j] + C[k].

3.2 Attacks on stream ciphers

We consider an attacker that just watches the output stream and tries to distinguish it from a truly
random stream. The relevant parameters in an attack are the amount of text that the attacker must
see before it can reliably distinguish the cipher from random, and the time and space complexity
of the distinguishing procedure. The attacks that we analyze in this report exploit the fact that
for a (small) subset of the bits of x and NF (x), the joint distribution of these bits differs from
the uniform distribution by some noticeable amount. Intuitively, such attacks never try to exploit
correlations between “far away” points in time. The only correlations that are considered, are the
ones between the input and output of a single application of the non-linear function.3

Formally, we view the non-linear process not as one continuous process, but rather as a sequence
of uncorrelated steps. That is, for the purpose of the attack, one can view the non-linear state x at
the beginning of each step as a new random value, independent of anything else. Under this view,

2The scheme in Scream is actually slightly different than the one described here, but this difference does not effect
the analysis in any significant way.

3When only a part of x is used as output, we may be forced to look at a few consecutive applications of NF . This
is the case in SNOW, for example.
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the attacker sees a collection of pairs 〈xj + yj , NF (xj) + zj〉, where the xj ’s are chosen uniformly
at random and independently of each other, and the yj , zj ’s are taken from the linear process.

One example of attacks that fits in this model are linear attacks. In linear cryptanalysis, the
attacker exploits the fact that a one-bit linear combination of 〈x,NF (x)〉 is more likely to be
zero than one (or vice versa). In these attack, it is always assumed that the bias in one step is
independent of the bias in all the other steps. Somewhat surprisingly, differential cryptanalysis too
fits into this framework (under our attack model). Since the attacker in our model is not given
chosen-input capabilities, it exploits differential properties of the round function by waiting for the
difference xi+xj = ∆ to happen “by chance”, and then using the fact that NF (xi)+NF (xj) = ∆′

is more likely than you would expect from a random process. It is clear that this attack too is just
as effective against pairs of uncorrelated steps, as when given the output from the real cipher.

We are now ready to define formally what we mean by “an attack on the cipher”. The attacks
that we consider, observe some (linear combinations of) input and output bits from each step of the
cipher, and try to decide if these indeed come from the cipher, or from a random source. This can
be framed as a hypothesis testing problem. According to one hypothesis (Random), the observed
bits in each step are random and independent. According to the other (Cipher), they are generated
by the cipher.

Definition 5 (Attacks on stream ciphers with linear masking) An attack is specified by a
linear function `, and by a decision rule for the following hypothesis-testing problem: The two
distributions that we want to distinguish are

Cipher. The Cipher distribution is Dc = 〈` (xj + yj , NF (xj) + zj)〉j=1,2,..., where the yjzj’s are
chosen at random from the appropriate linear subspace (defined by the linear process of the
cipher), and the xj’s are random and independent.

Random. Using the same notations, the “random process” distribution is Dr
def=
〈
`(xj , x′j)

〉
j=1,2,...

,

where the xj’s and x′j’s are random and independent.

We call the function `, the distinguishing characteristic used by attack.

The amount of text needed for the attack is the smallest number of steps for which the decision
rule has a constant advantage (e.g., advantage of 1/4) in distinguishing the cipher from random.
Other relevant parameters of the attack are the time and space complexity of the decision rule.
An obvious lower bound on the amount of text is provided by the statistical distance between the
Cipher and Random distributions after N steps.

4 Linear attacks

A linear attack [15] exploits the fact that some linear combination of the input and output bits
of the non-linear function is more likely to be zero than one (or vice versa). Namely, we have a
(non-trivial) linear function ` : {0, 1}2n → {0, 1}, such that for a randomly selected n bit string x,
Pr[`(x,NF (x)) = 0] = (1 + ε)/2. The function ` is called a linear approximation (or characteristic)
of the non-linear function, and the quantity ε is called the bias of the approximation.

When trying to exploit one such linear approximation, the attacker observes for each step j
of the cipher, a bit σj = `(xj + yj , NF (xj) + zj). Note that σj by itself is likely to be unbiased,
but the σ’s are correlated. In particular, since the y, z’s come from a linear subspace, it is possible
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to find some linear combination of steps for which they vanish. Let J be a set of steps such that∑
j∈J yj =

∑
j∈J zj = 0. Then we have∑

j∈J
σj =

∑
j∈J

`(xj , NF (xj)) +
∑
j∈J

`(yj , zj) =
∑
j∈J

`(xj , NF (xj))

(where the equalities follow since ` is linear). Therefore, the bit ξJ =
∑
j∈J σj has bias of ε|J |. If

the attacker can observe “sufficiently many” such sets J , it can reliably distinguish the cipher from
random.

This section is organized as follows: We first bound the effectiveness of linear attacks in terms
of the bias ε and the weight distribution of some linear subspace. As we explain below, this
bound suggests that looking at sets of steps as above is essentially “the only way to exploit linear
correlations”. Then we show how to devise a linear attack on SNOW, and analyze its effectiveness.

4.1 The statistical distance

Recall that we model an attack in which the attacker observes a single bit per step, namely σj =
`(xj + yj , NF (xj) + zj). Below we denote τj = `(xj , NF (xj)) and ρj = `(yj , zj). We can re-write
the Cipher and Random distributions as

Cipher. Dc
def= 〈τj + ρj〉j=1,2,..., where the τj ’s are independent but biased, Pr[τj = 0] = (1 + ε)/2,

and the string ρ1ρ2 . . . is chosen at random from the appropriate linear subspace (i.e., the
image under ` of the linear subspace of the yjzj ’s).

Random. Dr
def= 〈σj〉j=1,2,..., where the σj ’s are independent and unbiased.

Below we analyze the statistical distance between the Cipher and Random distributions, after ob-
serving N bits σ1 . . . σN . Denote the linear subspace of the ρ’s by L ⊆ {0, 1}N , and let L⊥ ⊆ {0, 1}N
be the orthogonal subspace. The weight distribution of the space L⊥ plays an important role in
our analysis. For r ∈ {0, 1, . . . , N}, let AN (r) be the set of strings ~χ ∈ L⊥ of Hamming weight r,
and let AN (r) denote the cardinality of AN (r). We prove the following theorem:

Theorem 6 The statistical distance between the Cipher and Random distributions from above, is
bounded by

√∑N
r=1AN (r)ε2r .

Proof: Recall that the statistical distance |Cipher−Random| (for N observed bits) can be expressed
in terms of the expected value of |PrCipher[~σ]− PrRandom[~σ]|, where ~σ is chosen uniformly at random
from {0, 1}N . Fix a string ~σ ∈ {0, 1}N , and we want to analyze the probability PrCipher[~σ]. That
probability is

Pr
Cipher

[~σ] =
∑
~ρ∈L

1
|L|
·
N∏
j=1

(
1
2

+
ε

2
· sign(ρi + σi)

)
where the sign indicator is taken to be (+1) if ρi = σi, and (−1) otherwise. In other words,
sign(x) def= (−1)x. We can break the expression above into a power series in ε. In this power series,
the constant term is 2−N , and the series looks as follows PrCipher[~σ] = 2−N

(
1 +

∑N
r=1 ε

rcoefr
)
,

where the coefficients coefr are defined as

coefr
def=
∑
~ρ∈L

1
|L|
·
∑
{j1...jr}

r∏
t=1

sign(σjt + ρjt) =
∑
{j1...jr}

1
|L|
·
∑
~ρ∈L

sign

(
r∑
t=1

σjt + ρjt

)
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The summation over {j1...jr} in the expression above ranges over all ordered sets of cardinality r
in [1, N ] (i.e., 1 ≤ j1 < j2 · · · < jr ≤ N .) Consider one such r-set J = {j1...jr}, and we analyze its
contribution to the total sum. Let χ(J) be the characteristic vector of this set. That is, χ(J) is an
N -bit string, which is 1 in bit positions {j1...jr}, and 0 everywhere else.

Proposition 7 Let J = {j1...jr} be a set of cardinality r. If χ(J) /∈ L⊥, then the total contribution
to coefr due to the set J is zero. If χ(J) ∈ L⊥ then the total contribution to coefr due to the set J
is sign

(∑
j∈J σj

)
.

Proof: If ~χ = χ(J) is not in L⊥, then for exactly half of the strings ~ρ ∈ L it holds that
∑
j∈J ρj =

〈~χ, ~ρ〉 = 0. Thus, for exactly half of the strings ~ρ ∈ L we have sign (
∑r
t=1 σjt + ρjt) = +1, and for

the other half we have sign (
∑r
t=1 σjt + ρjt) = −1, so

∑
~ρ∈L sign (

∑r
t=1 σjt + ρjt) = 0. If χ(J) ∈ L⊥,

then for all ~ρ ∈ L we have
∑r
t=1 ρjt = 0, and therefore sign (

∑r
t=1 σjt + ρjt) = sign (

∑r
t=1 σjt). Thus,

we get 1
|L| ·

∑
~ρ∈L sign (

∑r
t=1 σjt + ρjt) = sign (

∑r
t=1 σjt). 2

We now view the terms in the power series above as random variables. For any set J with
χ(J) ∈ L⊥, denote ξJ(~σ) def= sign

(∑
j∈J σj

)
, and we view the ξJ ’es as random variables, which

are defined over the choice of ~σ uniformly at random in {0, 1}N . Then, we define the normalized
probability difference

∆(~σ) def= 2N ·
(

Pr
Cipher

[~σ]− Pr
Random

[~σ]
)

=
N∑
r=1

εr
∑

χ(J)∈AN (r)

ξJ(~σ)

Again, we stress that we view ∆(~σ) as a random variable over the uniform choice of ~σ ∈ {0, 1}N .
It is easy to see that for any non-empty J , we have E[ξJ ] = 0 and VAR[ξJ ] = 1. Also, if J1 6= J2,
then ξJ1 , ξJ2 are independent. Therefore, the variable ∆ has zero mean, and its variance equals
the weighted sum of the ξJ variances. Namely, VAR[∆] =

∑N
r=1AN (r)ε2r. We can now write the

statistical distance between the Cipher and Random distributions as

|Cipher − Random| =
∑
~σ

∣∣∣∣ Pr
Cipher

[~σ]− Pr
Random

[~σ]
∣∣∣∣ =

∑
~σ

2−N |∆(~σ)| = E~σ [|∆|]

By the convexity of the squaring function, E[|∆|] ≤
√

VAR[∆], and therefore

|Cipher − Random| = E~σ [|∆|] ≤
√

VAR[∆] =

√√√√ N∑
r=1

AN (r)ε2r (1)

2

Remark. Heuristically, this bound is nearly tight. In the proof we analyzed the random variable
∆ and used the bound E[|∆−E[∆]|] ≤

√
VAR[∆]. One can argue heuristically that as long as the

statistical distance is sufficiently small, “∆ should behave much like a Gaussian random variable”.
If it were a Gaussian, we would have E[|∆|] =

√
VAR[∆] ·

√
2/π. Thus, we expect the bound from

Theorem 6 to be tight up to a constant factor
√

2/π ≈ 0.8.

4.2 Interpretations of Theorem 6

There are a few ways to view Theorem 6. The obvious way is to use it in order to argue that a
certain cipher is resilient to linear attacks. For example, in [11] we use Theorem 6 to deduce a
lower-bound on the amount of text needed for any linear attack on Scream-0.
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Also, one could notice that the form of Theorem 6 exactly matches the common practice (and
intuition) of devising linear attacks. Namely, we always look at sets where the linear process van-
ishes, and view each such set J as providing “statistical evidence of weight ε2|J |” for distinguishing
the cipher from random. Linear attacks work by collecting enough of these sets, until the weights
sum up of to one. One can therefore view Theorem 6 as asserting that this is indeed the best you
can do.

Finally, we could think of devising linear attacks, using the heuristic argument about this bound
being tight. However, the way Theorem 6 is stated above, it usually does not imply efficient attacks.
For example, when the linear space L has relatively small dimension (as is usually the case with
LFSR-based ciphers, where the dimension of L is at most a few hundreds), the statistical distance
is likely to approach one for relatively small N . But it is likely that most of the “mass” in the power
series in Eq. (1) comes from terms with a large power of ε (and therefore very small “weight”).
Therefore, if we want to use a small N , we would need to collect very many samples, and this
attack is likely to be more expensive than an exhaustive search for the key.

Alternatively, one can try and use an efficient sub-optimal decision rule. For a given bound
on the work-load W and the amount of text N , we only consider the first few terms in the power
series. That is, we observe the N bits ~σ = σ1 . . . σN , but only consider the W smallest sets J for
which ~χ(J) ∈ L⊥. For each such set J , the sum of steps

∑
j∈J σj has bias ε|J |, and these can be

used to distinguish the cipher from random. If we take all the sets of size at most R, we expect
the advantage of such a decision rule to be roughly 1

4

√∑R
r=1AN (r)ε2r . The simplest form of this

attack (which is almost always the most useful), is to consider only the minimum-weight terms. If
the minimum-weight of L⊥ is r0, then we need to make N big enough so that 1

4

√
AN (r0) = ε−r0 .

4.3 The attack on SNOW

The stream cipher SNOW was submitted to NESSIE in 2000, by Ekdahl and Johansson. A detailed
description of SNOW is available from [4]. Here we outline a linear attack on SNOW along the
lines above, that can reliably distinguish it from random after observing roughly 295 steps of the
cipher, with work-load of roughly 2100.

SNOW consists of a non-linear process (called there a Finite-State Machine, or FSM), and a
linear process which is implemented by an LFSR. The LFSR of SNOW consists of sixteen 32-bit
words, and the LFSR polynomial, defined over GF (232), is p(z) = z16 + z13 + z7 + α, where α is
a primitive element of GF (232). (The orthogonal subspace L⊥ is therefore the space of (bitwise
reversal of) polynomials over Z2 of degree ≤ N , which are divisible by the LFSR polynomial p.)
At a given step j, we denote the content of the LFSR by Lj [0..15], so we have Lj+1[i] = Lj [i− 1]
for i > 0 and Lj+1[0] = α · (Lj [15] + Lj [12] + Lj [6]).

The “FSM state” of SNOW in step j consists of only two 32-bit words, denoted R1j , R2j . The
FSM update function modifies these two values, using one word from the LFSR, and also outputs
one word. The output word is then added to another word from the LFSR, to form the step output.
We denote the “input word” from the LFSR to the FSM update function by fj , and the “output
word” from the FSM by Fj . The FSM uses a “32× 32 S-box” S[·] (which is built internally as an
SP-network, from four identical 8×8 boxes and some bit permutation). A complete step of SNOW
is described in Figure 2. In this figure, we deviate from the notations in the rest of the paper, and
denote exclusive-or by ⊕ and integer addition mod 232 by +. We also denote 32-bit cyclic rotation
to the left by �<.

To devise an attack we need to find a good linear approximation of the non-linear FSM process,
and low-weight combinations of steps where the Lj [·] values vanish (i.e., low-weight polynomials

9



1. fj := Lj [0]
2. Fj := (fj +R1j)⊕R2j
3. output Fj ⊕ Lj [15]
4. R1j+1 := R1j ⊕ ((R2j + Fj)�< 7)
5. R2j+1 := S[R1j ]
6. update the LFSR

Figure 2: One step of SNOW: ⊕ is xor and + is addition mod 232.

which are divisible by the LFSR polynomial p). The best linear approximation that we found for the
FSM process, uses six bits from two consecutive inputs and outputs, fj , fj+1, Fj , Fj+1. Specifically,
for each step j, the bit

σj
def= (fj)15 + (fj)16 + (fj+1)22 + (fj+1)23 + (Fj)15 + (Fj+1)23

is biased. (Of these six bits, the bits (fj)15, (Fj)15 and (Fj+1)22 are meant to approximate carry
bits.) We measured the bias experimentally, and it appears to be at least 2−8.3.

At first glance, one may hope to find weight-4 polynomials that are divisible by the LFSR
polynomial p. After all, p itself has only four non-zero terms. Unfortunately, one of these terms is
the element α ∈ GF (232), whereas we need a low-weight polynomial with 0-1 coefficients. What
we can show, however, is the existence of 0-1 polynomials of weight-six that are divisible by p.

Proposition 8 The polynomial q(z) = z16×232−7 + z13×232−7 + z7×232−7 + z9 + z6 + 1 is divisible
by the LFSR polynomial p(z) = z16 + z13 + z7 + α.

Proof: Since α ∈ GF (232), then the polynomial t+α divides t2
32

+t. That is, there is a polynomial
r(·) (with coefficients in GF (232)) such that r(t) · (t + α) = t2

32
+ t, as formal polynomials over

GF (232). It follows that for any polynomial t(z) over GF (232), we have r(t(z)) · (t(z) + α) =
t(z)232

+t(z), again, as formal polynomials over GF (232). Specifically, if we take t(z) = z16+z13+z7,
we get

r(t(z)) · (z16 + z13 + z7 + α) = z16×232
+ z13×232

+ z7×232
+ z16 + z13 + z7

so the polynomial on the right hand side is divisible by p(z). Since p(z) is co-prime with the
polynomial z, we can divide the right-hand-side polynomial by z7 and still get a polynomial divisible
by p(z). 2

Corollary 9 For all m,n, the polynomial

qm,n(z) def= q(z)2m · zn = z16×232+m−7×2m+n + z13×232+m−7×2m+n

+ z7×232+m−7×2m+n + z9×2m+n + z6×2m+n + zn

is divisible by p(z).

If we take, say, m = 0, 1, . . . 58 and n = 0, 1, . . . 294, we get about 2100 different 0-1 polynomials,
all with weight 6 and degree less than N = 295, and all divisible by p(z). Each such polynomial
yields a sequence of six steps, Jm,n, such that the sum of the Lj [·] values in these steps vanishes.
Specifically, the polynomial qm,n(z) corresponds to the sequence of steps

Jm,n = { N − n− 16 · 232+m + 7 · 2m, N − n− 9 · 2m,
N − n− 13 · 232+m + 7 · 2m, N − n− 6 · 2m,
N − n− 7 · 232+m + 7 · 2m, N − n }

10



with the property that for all m,n,
∑
j∈Jm,n Lj [0..15] =

∑
j∈Jm,n Lj+1[0..15] = [0, 0, . . . , 0].

Therefore, if we denote the output word of SNOW at step j by Sj , then for all m,n we have,

τm,n
def=

∑
j∈Jm,n

(Sj)15 + (Sj+1)23 =
∑

j∈Jm,n
σj

and therefore each τm,n has bias of 2−8.3×6 = 2−49.8. Since we have roughly 2100 of them, we can
reliably distinguish them from random.

5 Low-diffusion attacks

In low-diffusion attacks, the attacker looks for a small set of (linear combinations of) input and
output bits of the non-linear function NF , whose values completely determine the values of some
other (linear combinations of) input and output bits. The attacker tries to guess the first set of
bits, computes the values of the other bits, and uses the computed value to verify the guess against
the cipher’s output. The complexity of such attacks is exponential in the number of bits that the
attacker needs to guess.

We introduce some notations in order to put such attacks in the context of our framework. To
simplify the notations, we assume that the guessed bits are always input bits, and the determined
bits are always output bits. (Eliminating this assumption is usually quite straightforward.) As
usual, let NF : {0, 1}n → {0, 1}n be the non-linear function. The attack exploits the fact that
some input bits `in(x) are related to some output bits `out(NF (x)) via a known deterministic
function f . That is, we have

`out(NF (x)) = f(`in(x))

Here, `in, `out are linear functions, and f is an arbitrary function, all known to the attacker. We
denote the output size of `in, `out by m,m′, respectively. That is, `in : {0, 1}n → {0, 1}m, `out :
{0, 1}n → {0, 1}m′ , and f : {0, 1}m → {0, 1}m′ .

In each step j, the attacker observes the bits `in(xj + yj) and `out(NF (xj) + zj) (where yj , zj
are from the linear process, as in Section 3.1). Below we denote uj = `in(xj), u′j = `out(NF (xj)),
vj = `in(yj), v′j = `out(zj), and wj = uj + vj , w′j = u′j + v′j . We can re-write the Cipher and Random
distributions for this case as

Cipher. Dc
def=
〈

(wj = uj + vj , w
′
j = u′j + v′j)

〉
j=1,2,...

, where the uj ’s are uniform and independent,

u′j = f(uj), and the string v1v
′
1v2v

′
2 . . . is chosen at random from the appropriate linear

subspace (i.e., the image under `in, `out of the linear subspace of the y, z’s).

Random. Dr
def=
〈

(wj , w′j)
〉
j=1,2,...

, all uniform and independent.

It is not hard to see that there may be enough information there to distinguish these two
distributions after only a moderate number of steps of the cipher. Suppose that the dimension of
the linear subspace of the vj ’s and v′j ’s is a, and the attacker observes N steps such that m′N > a.
Then, the attacker can (in principle) go over all the 2a possibilities for the vj ’s and v′j ’s. For each
guess, the attacker can compute the uj ’s and u′j ’s, and verify the guess by checking that u′j = f(uj)
for all j. This way, the attacker guesses a bits and gets m′N bits of consistency checks. Since
m′N > a we expect only the “right guess” to pass the consistency checks.

This attack, however, is clearly not efficient. To devise an efficient attack, we can again con-
centrate on sets of steps where the linear process vanishes: Suppose that we have a set of steps J ,
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such that
∑
j∈J [vj , v′j ] = [0, 0]. Then we get∑

j∈J
(wj , w′j) =

∑
j∈J

(uj , u′j) =
∑
j∈J

(uj , f(uj))

and the distribution over such pairs may differ from the uniform distribution by a noticeable amount.
The distance between this distribution and the uniform one, depends on the specific function f ,
and on the cardinality of the set J . 4 Below we analyze in details perhaps the simplest cases, where
f is a random function. Later we explain how this analysis can be extended for other settings, and
in particular for the case of the functions in Scream.

5.1 Analysis for random functions

For a given function, f : {0, 1}m → {0, 1}m′ , and an integer n, we denote

Dnf
def=

〈
d =

n∑
j=1

uj , d
′ =

n∑
j=1

f(uj)

〉

where the uj ’s are uniform in {0, 1}m and independent. We assume that the attacker knows f ,
and it sees many instances of 〈d, d′〉. The attacker needs to decide if these instances come from Dnf
or from the uniform distribution on {0, 1}m+m′ . Below we denote the uniform distribution by R.
If the function f “does not have any clear structure”, it makes sense to analyze it as if it was a
random function. Here we prove the following:

Theorem 10 Let n,m,m′ be integers with n2 � 2m. 5 For a uniformly selected function f :

{0, 1}m → {0, 1}m′, Ef [|Dnf −R|] ≤ c(n) · 2
m′−(n−1)m

2 , where

c(n) =


√

(2n)! / (n! 2n) if n is odd

(1 + o(1))
√

(2n)!
n! 2n −

(
n!

(n/2)! 2n/2

)2
if n is even

Proof: Fix n,m,m′. For the rest of the proof, these integers will always be implicit (for example,
we write Df instead of Dnf , etc.). Recall that we denote the probability mass of (d, d′) according to
Df by Df (d, d′). We can express the expected value of |Df −R|, where f is chosen at random, as:

Ef [|Df −R|] (2)

= Ef

∑
d,d′

[∣∣∣Df (d, d′)− 2−m−m
′
∣∣∣]
 = 2m

′∑
d

Ef,d′
[∣∣∣Df (d, d′)− 2−m−m

′
∣∣∣]

In the last term, we view the Df (d, d′)’s as random variables over the choice of f, d′, and we have
2m such variables, one for each d. Some properties of these random variables are summarized in
the following proposition (which is proved later).

4When |J | = 2, this is just a differential attack, which uses the fact that for some values of ∆ = u1 + u2, a
corresponding ∆′ = f(u1) + f(u2) is more likely than in the random process.

5It can be shown that the same bounds hold also for larger n’s, but assuming n2 � 2m makes some proofs a bit
easier.
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Proposition 11 For any fixed d, Ef,d′ [Df (d, d′)] = 2−m−m
′
. Also, for odd n and any fixed d,

VARf,d′ [Df (d, d′)] ≤ 2−m(n+1)−m′ · (2n)!
n!2n , and for even n and fixed d, VARf,d′ [Df (d, d′)] ≤

2−mn−m
′
((

n!
(n/2)! 2n/2

)2
+ o(1)

(
(2n)!
n! 2n

))
for d = 0

2−m(n+1)−m′(1 + o(1))
(

(2n)!
n! 2n −

(
n!

(n/2)! 2n/2

)2
)

for d 6= 0

We can now continue Eq. (2) as follows:

Ef [|Df −R|] = 2m
′∑
d

Ef,d′
[∣∣∣Df (d, d′)− 2−m−m

′
∣∣∣]

= 2m
′∑
d

Ef,d′

[∣∣∣∣Df (d, d′)− Ef,d′ [Df (d, d′)]
∣∣∣∣]

(a)

≤ 2m
′∑
d

√
VARf,d′ [Df (d, d′)] (3)

where (a) follows since for any random variable X, E[|X − E[X]|] ≤
√

VAR[X]. Plugging the
variance bounds from Proposition 11 completes the proof of Theorem 10. 2

How tight is this bound? Here too we can argue heuristically that the random variables in
the proof “should behave like Gaussian random variables”, and again we expect the ratio between
E[|X − E[X]|] and

√
VAR[X] to be roughly

√
2/π. Therefore, we expect the constant c(n) to be

replaced by
√

2/π · c(n) ≈ 0.8c(n). Indeed we ran some experiments to measure the statistical
distance |Dnf − R|, for random functions with n = 4 and a few values of m,m′. (Note that
c(4) = (1+o(1))

√
96 ≈ 9.8 and

√
2/π ·c(4) ≈ 7.8). These experiments are described in Appendix A.

The results confirm that the distance between these distributions is just under 7.8 · 2(m′−3m)/2.

Proof: (of Proposition 11) We recall that for a given f, d, d′, the term Df (d, d′) is defined
as Df (d, d′) = Pr~u[

∑
ui = d,

∑
f(ui) = d′], where the probability is taken over the choice of

~u = u1 . . . un, uniformly at random in {0, 1}mn. Analyzing the expected value of Df (d, d′) is
straightforward. For any fixed d, we have

Ef,d′ [Df (d, d′)] = Ef,d′

[
Pr
~u

[∑
ui = d,

∑
f(ui) = d′

]]
= Pr

f,d′,~u

[∑
ui = d,

∑
f(ui) = d′

]
= Pr

~u
[
∑

ui = d] · Pr
d′...

[d′ =
∑

f(ui) | · · ·] = 2−m · 2−m′

To analyze the variance, we need to introduce some more notations. For a vector ~u = u1 . . . un of
m-bit strings, denote by [~u]2 the set of strings that appear in ~u odd number of times, and notice
that

∑n
i=1 ui =

∑
u∈[~u]2 u and also

∑n
i=1 f(ui) =

∑
u∈[~u]2 f(u). (In particular, it follows that when

[~u]2 = ∅, then
∑
ui = 0 and

∑
f(ui) = 0 for all f .) With these notations, we can express the

second moment as

Ef,d′ [Df (d, d′)2]

= Pr
f,d′,~u,~v

[∑
ui =

∑
vi = d,

∑
f(ui) =

∑
f(vi) = d′

]
= Pr

f,d′,~u,~v

[
[~u]2 = [~v]2,

∑
ui =

∑
vi = d,

∑
f(ui) =

∑
f(vi) = d′

]
+ Pr
f,d′,~u,~v

[
[~u]2 6= [~v]2,

∑
ui =

∑
vi = d,

∑
f(ui) =

∑
f(vi) = d′

]
13



where the last term in this equation is bounded by

Pr
f,d′,~u,~v

[
[~u]2 6= [~v]2,

∑
ui =

∑
vi = d,

∑
f(ui) =

∑
f(vi) = d′

]
= Pr

~u,~v

[
[~u]2 6= [~v]2,

∑
ui =

∑
vi = d

]
· Pr
f...

[∑
f(ui) =

∑
f(vi)

∣∣∣∣[~u]2 6= [~v]2, · · ·
]
· Pr
d′...

[
d′ =

∑
f(ui)

∣∣∣∣ · · ·]
≤ 2−2m · 2−m′ · 2−m′

Therefore, for any fixed d, the variance is bounded by

VARf,d′ [Df (d, d′)] = Ef,d′ [Df (d, d′)2]− Ef,d′ [Df (d, d′)]2 (4)

≤
(

Pr
f,d′,~u,~v

[
[~u]2 = [~v]2,

∑
ui =

∑
vi = d,

∑
f(ui) =

∑
f(vi) = d′

]
+ 2−2m−2m′

)
− 2−2m−2m′

(a)
= Pr

~u,~v

[
[~u]2 = [~v]2,

∑
ui = d

]
· Pr
d′...

[
d′ =

∑
f(ui)

]
= 2−m

′ · Pr
~u,~v

[
[~u]2 = [~v]2,

∑
ui = d

]
where Equality (a) holds because [~u]2 = [~v]2 implies both

∑
ui =

∑
vi and

∑
f(ui) =

∑
f(vi).

Bounding the last term, Pr~u,~v [[~u]2 = [~v]2,
∑
ui = d], is where we need to distinguish between odd

and even n and between d = 0 and d 6= 0. In the case analysis below, we make use of the following
proposition, which is proved later.

Proposition 12 (i) For two vectors ~u,~v, we have [~u]2 = [~v]2 if and only if [~u|~v]2 = ∅ (where ~u|~v
is the concatenation of the two vectors).

(ii) If n is odd, then for any n-vector ~u, [~u]2 6= ∅. If n is even, then when we pick a random n-vector
~u we have,

B(m,n) ·
(

1− n2

2m+3

)
≤ Pr

~u
[[~u]2 = ∅] ≤ B(m,n),

where
B(m,n) def=

n!
(n/2)! 2n/2

· 2−nm/2

(iii) When n is odd and ~u = (u1 . . . un), ~v = (v1 . . . vn) are chosen at random, we have for any fixed
d,

Pr
~u,~v

[∑
ui = d

∣∣∣∣[~u]2 = [~v]2
]

= 2−m

(iv) When n is even and ~u = (u1 . . . un), ~v = (v1 . . . vn) are chosen at random, we have

Pr
~u,~v

[∑
ui 6= 0

∣∣∣∣[~u]2 = [~v]2 6= ∅
]
≥
(

1− n2

2m+3

)
·
(

1− 1
2m − n

)
and moreover, for any fixed d 6= 0,

Pr
~u,~v

[∑
ui = d

∣∣∣∣[~u]2 = [~v]2 6= ∅
]

=
Pr~u,~v

[∑
ui 6= 0

∣∣∣∣[~u]2 = [~v]2 6= ∅
]

2m − 1
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Using Proposition 12, we now analyze three cases: when n is odd, when n is even and d = 0, and
when n is even and d 6= 0.

Case 1: Odd n. This is the simplest case. Here, for every fixed d, we bound

Pr
~u,~v

[
[~u]2 = [~v]2,

∑
ui = d

]
(a)
= Pr

~u,~v
[[~u|~v]2 = ∅] · Pr

~u,~v

[∑
vi = d

∣∣∣∣[~u]2 = [~v]2
]

(b)

≤ B(m, 2n) · 2−m = 2−m(n+1) ·
(

(2n)!
n! 2n

)
(5)

where equality (a) follows from part (i) of Proposition 12, and inequality (b) follows from the bounds
in parts (ii) and (iii).

Case 2: Even n and d = 0. Here we have

Pr
~u,~v

[
[~u]2 = [~v]2,

∑
ui = 0

]
(6)

= Pr
~u,~v

[[~u]2 = [~v]2 = ∅] + Pr
~u,~v

[[~u]2 = [~v]2 6= ∅] · Pr
~u,~v

[∑
ui = 0

∣∣∣∣[~u]2 = [~v]2 6= ∅
]

≤ Pr
~u,~v

[[~u]2 = [~v]2 = ∅] + Pr
~u,~v

[[~u]2 = [~v]2] · Pr
~u,~v

[∑
ui = 0

∣∣∣∣[~u]2 = [~v]2 6= ∅
]

(a)

≤ 2−mn
(

n!
(n/2)! 2n/2

)2

+ 2−mn
(

(2n)!
n! 2n

)
·
(

1−
(

1− n2

2m+3

)(
1− 1

2m − n

))

= 2−mn
((

n!
(n/2)! 2n/2

)2

+
(

(2n)!
n! 2n

)
· o(1)

)

Inequality (a) follows from the bounds in parts (ii) and (iv) of Proposition 12.

Case 3: Even n and d 6= 0. For any fixed d 6= 0, we have

Pr
~u,~v

[
[~u]2 = [~v]2,

∑
ui = d

]
(a)
= Pr

~u,~v

[
[~u]2 = [~v]2 6= ∅,

∑
ui = d

]
(7)

= Pr
~u,~v

[[~u]2 = [~v]2 6= ∅] · Pr
~u,~v

[∑
ui = d

∣∣∣∣[~u]2 = [~v]2 6= ∅
]

(b)
=
(

Pr
~u,~v

[[~u]2 = [~v]2] − Pr
~u,~v

[[~u]2 = [~v]2 = ∅]
)
·

Pr~u,~v
[∑

ui 6= 0
∣∣∣∣[~u]2 = [~v]2 6= ∅

]
2m − 1

(c)

≤
(

2−mn
(2n)!
n! 2n

−
(

2−mn/2
n!

(n/2)! 2n/2
·
(
1− n2

2m+3

))2
)
· 1

2m − 1

= 2−m(n+1)

(
(2n)!
n! 2n

−
(

n!
(n/2)! 2n/2

)2
)

(1 + o(1))

Equality (a) holds because
∑
ui = d 6= 0 implies [~u]2 6= ∅. Inequality (b) follows from part (iv) of

Proposition 12, and inequality (c) follows from the bounds in part (ii).

Plugging the bounds from Equations (5), (6) and (7) into Eq. (4) completes the proof of Proposi-
tion 11. 2
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Proof:(of Proposition 12) Part (i) is obvious. To prove the bounds in part (ii), we count the
number of vectors with [~u]2 = ∅ as follows: First we partition the n entries in ~u into pairs, then we
pick a sequence of n/2 strings, and finally we assign each string to one pair. Hence the number of
such vectors is at most(n

2

)(n−2
2

)
· · ·
(4
2

)
(n/2)!

· 2mn/2

(n/2)!
· (n/2)! = 2mn/2

n!
(n/2)! 2n/2

On the other hand, as long as the sequence of strings that we pick in this process does not contain
duplicates, which happen with probability at least 1 −

((n/2)
2

)
/2m, then each of the choices above

yields a different vector ~u, hence the lower bound.

(iii) When n is odd, the sum
∑
ui is independent of the event [~u]2 = [~v]2. Indeed, for any fixed

d1, d2, denote ∆ = d1 + d2, and consider the mapping

ψ(~u) = ψ(u1 . . . un) = (u1 + ∆ . . . un + ∆)

The mapping ψ is a permutation over {0, 1}mn, that preserves the relation [~u]2 = [~v]2, and it
satisfies

∑
ψ(u)i = d2 if and only if

∑
ui = d1.

(iv) The “moreover” part is proved similarly to (iii) above. For any fixed non-zero d1, d2, denote
∆ = d2

d1 (where the operations are in GF (2n)), and consider the mapping

φ(~u) = ψ(u1 . . . un) = (u1 ·∆ . . . un ·∆)

(again, everything in GF (2n)). As before, the mapping φ is a permutation over {0, 1}mn, that
preserves the relation [~u]2 = [~v]2, and it satisfies

∑
φ(u)i = d2 if and only if

∑
ui = d1. It follows

that conditioned on
∑
ui 6= 0, the sum

∑
ui is independent of the event [~u]2 = [~v]2. We note also

that conditioned on
∑
ui 6= 0, the events [~u]2 = [~v]2 and [~u]2 = [~v]2 6= ∅ coincide.

Proving the bound on Pr[
∑
ui 6= 0|[~u]2 = [~v]2 6= ∅] is a bit harder. Denote by S the space of

pairs of vectors ~w = (~u|~v), with [~u]2 = [~v]2 6= ∅, restricted so that each string that appears in ~w,
appears in it exactly twice. In terms of the process for selecting such ~w’s, as described in part (ii)
above, this means that there are no duplicates in the sequence of strings that we select. As before,
the space S captures at least a fraction 1 − n2

2m+3 of the entire space of [~u]2 = [~v]2 6= ∅. Consider
now the following random process, for picking an element out of S:

1. Pick a uniformly selected element ~w = (~u,~v) ∈ S.

2. Pick a pair of indexes (i, j), so that wi = wj and the index i is in the ~u part and the index
j is in the ~v part. (At least one such pair must exist, since [~u]2 = [~v]2 6= ∅. If there is more
than one, then just pick the first one.)

3. Pick at random a string that does not appear anywhere else in ~w, and replace entries i, j in
~w by this string.

4. Return the modified vector ~w′.

It is easy to see that this procedure returns a uniformly selected element in S. On the other hand,
since the string in step 3 is chosen at random from a set of 2m−n+ 1 strings, then the probability
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of
∑
ui = 0 is at most 1/(2m − n+ 1). We therefore conclude that

Pr
[∑

ui 6= 0
∣∣∣∣[~u]2 = [~v]2 6= ∅

]
≥ Pr

[
(~u,~v) ∈ S

∣∣∣∣[~u]2 = [~v]2 6= ∅
]
· Pr

[∑
ui 6= 0

∣∣∣∣(~u,~v) ∈ S
]

≥
(

1− n2

2m+3

)(
1− 1

2m − n

)
2

5.2 Variations and extensions

Here we briefly discuss a few possible extensions to the analysis from above.

Using different f ’s for different steps. Instead of using the same f everywhere, we may have
different f ’s for different steps. I.e., in step j we have `out(NF (xj)) = fj(`in(xj)), and we assume
that the fj ’s are random and independent. The distribution that we want to analyze is therefore
〈d =

∑
uj , d

′ =
∑
fj(uj)〉. The analysis from above still works for the most part (as long as `in, `out

are the same in all the steps). The main difference is that the factor c(n) is replaced by a smaller
one (call it c′(n)).

For example, if we use n independent functions, we get c′(n) = 1, since all the symmetries in
the proof of Proposition 11 disappear. Another example (which is used in the attack on Scream-0)
is when we have just two independent functions, f1 = f3 = · · · and f2 = f4 = · · ·. In this case (and

when n is divisible by four), we get c′(n) = (1 + o(1))
√(

n!
(n/2)! 2n/2

)2
−
(

(n/2)!

(n/4)! 2n/4

)4
.

When f is a sum of a few functions. An important special case, is when f is a sum of
a few functions. For example, in the functions that are used in the attack on Scream-0, the
m-bit input to f can be broken into three disjoint parts, each with m/3 bits, so that f(x) =
f1(x1) + f2(x2) + f3(x3). (Here we have |x1| = |x2| = |x3| = m/3 and x = x1x2x3.) If f1, f2, f3

themselves do not have any clear structure, then we can apply the analysis from above to each of
them. That analysis tells us that each of the distributions Di def= (

∑
j u

i
j ,
∑
j f

i(uij)) is likely to be
roughly c(n) · 2(m′−(n−1)m/3)/2 away from the uniform distribution.

It is not hard to see that the distribution Dnf that we want to analyze can be cast as D1+D2+D3,

so we expect to get |Dnf − R| ≈
∏
|Di − R| ≈

(
c(n) · 2(m′−(n−1)m/3)/2

)3
= c(n)32(3m′−(n−1)m)/2.

More generally, suppose we can write f as a sum of r functions over disjoint arguments of the same
length. Namely, f(x) =

∑r
i=1 f

i(xi), where |x1| = ... = |xr| = m/r and x = x1...xr. Repeating the
argument from above, we get that the expected distance |Dnf − R| is about c(n)r2(rm′−(n−1)m)/2

(assuming that this is still smaller than one). As before, one could use the “Gaussian heuristics”
to argue that for the “actual distance” we should replace c(n)r by (c(n) ·

√
2/π)r. (And if we have

different functions for different steps, as above, then we would get (c′(n) ·
√

2/π)r.)

Linear masking over different groups. Another variation is when we do linear masking over
different groups. For example, instead of xor-ing the masks, we add them modulo some prime q, or
modulo a power of two. Again, the analysis stays more or less the same, but the constants change.
If we work modulo a prime q > n, we get a constant of c′(n) =

√
n!, since the only symmetry that
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is left is between all the orderings of {u1, . . . , un}. When we work modulo a power of two, the
constant will be somewhere between c′(n) and c(n), probably closer to the former.

5.3 Efficiency considerations

The analysis from above says nothing about the computational cost of distinguishing between Dnf
and R. It should be noted that in a “real life” attack, the attacker may have access to many
different relations (with different values of m,m′), all for the same non-linear function NF . To
minimize the amount of needed text, the attacker may choose to work with the relation for which the
quantity (n− 1)m−m′ is minimized. However, the choice of relations is limited by the attacker’s
computational resources. Indeed, for large values of m,m′, computing the maximum-likelihood
decision rule may be prohibitively expensive in terms of space and time. Below we review some
strategies for computing the maximum-likelihood decision rule.

Using one big table. Perhaps the simplest strategy, is for the attacker to prepare off-line a table
of all possible pairs 〈d, d′〉 with d ∈ {0, 1}m, d′ ∈ {0, 1}m′ . For each pair 〈d, d′〉 the table contains
the probability of this pair under the distribution Dnf (or perhaps just one bit that says whether
this probability is more than 2−m−m

′
).

Given such a table, the on-line part of the attack is trivial: for each set of steps J , compute
(d, d′) =

∑
j∈J(wj , w′j), and look into the table to see if this pair is more likely to come from Dnf

or from R. After observing roughly 2(n−1)m−m′/c(n)2 such sets J , a simple majority vote can be
used to determine if this is the cipher or a random process. Thus, the on-line phase is linear in the
amount of text that has to be observed, and the space requirement is 2m+m′ .

As for the off-line part (in which the table is computed), the naive way is to go over all possible
values of u1 . . . un ∈ {0, 1}m, for each value computing d =

∑
ui and d′ =

∑
f(ui) and increasing the

corresponding entry 〈d, d′〉 by one. This takes 2mn time. However, in the (typical) case where m′ �
(n− 1)m, one can use a much better strategy, whose running time is only O(log n(m+m′)2m+m′).

First, we represent the function f by a 2m × 2m
′

table, with F [x, y] = 1 if f(x) = y, and
F [x, y] = 0 otherwise. Then, we compute the convolution of F with itself,6

E[s, t] def= (F ? F )[s, t] =
∑

x+x′=s

∑
y+y′=t

F [x, y] · F [x′, y′] = |{x : f(x) + f(x+ s) = t}|

(Note that E represents the distribution D2
f .) One can use the Walsh-Hadamard transform to

perform this step in time O((m + m′)2m+m′) (see, e.g., [19]). Then, we again use the Walsh-
Hadamard transform to compute the convolution of E with itself,

D[d, d′] def= (E ? E)[d, d′] =
∑

s+s′=d

∑
t+t′=d′

E(s, t) · E(s′, t′)

=
∣∣{〈x, s, z〉 : f(x) + f(x+ s) + f(z) + f(z + s+ d) = d′}

∣∣
=

∣∣{〈x, y, z〉 : f(x) + f(y) + f(z) + f(x+ y + z + d) = d′}
∣∣

thus getting the distribution D4
f , etc. After log n such steps, we get the distribution of Dnf .

6Recall that the convolution operator is defined on one-dimensional vectors, not on matrices. Indeed, in this
expression we view the table F as a one-dimensional vector, whose indexes are m+m′-bits long.
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When f is a sum of functions. We can get additional flexibility when f is a sum of functions
on disjoint arguments, f(x) = f1(x1) + · · · + f r(xr) (with x = x1 . . . xr). In this case, one can
use the procedure from above to compute the tables Di[d, d′] for the individual f i’s. If all the
xi’s are of the same size, then each of the Di’s takes up 2m

′+(m/r) space, and can be computed
in time O(log n(m′ + (m/r))2m

′+(m/r)). Then, the “global” D table can again be computed using
convolutions. Specifically, for any fixed d = d1...dr, the 2m

′
-vector of entries D[d, ·] can be computed

as the convolutions of the 2m
′
-vectors D1[d1, ·], D2[d2, ·], ..., Dr[dr, ·],

D[d, ·] = D1[d1, ·] ? D2[d2, ·] ? · · · ? Dr[dr, ·]

At first glance, this does not seem to help much: Computing each convolution takes time O(r ·
m′2m

′
), and we need to repeat this for each d ∈ {0, 1}m, so the total time is O(rm′2m+m′). However,

we can do much better than that.
Instead of storing the vectors Di[di, ·] themselves, we store their image under the Walsh-

Hadamard transform, ∆i[di, ·] def= H(Di[di, ·]). Then, to compute the vector D[
〈
d1...dr

〉
, ·], all

we need is to multiply (point-wise) the corresponding ∆i[di, ·]’s, and then apply the inverse Walsh-
Hadamard transform to the result. Thus, once we have the tables Di[·, ·], we need to compute
r · 2m/r “forward transforms” (one for each vector Di[di, ·]), and 2m inverse transforms (one for
each

〈
d1...dr

〉
. Computing each transform (or inverse) takes O(m′2m

′
) time. Hence, the total time

(including the initial computation of the Di’s) is O
(
log n(rm′ +m)2m

′+(m/r) +m′2m+m′
)
, and the

total space that is needed is O(2m+m′).
If the amount of text that is needed is less than 2m, then we can optimize even further. In this

case the attacker need not store the entire table D in memory. Instead, it is possible to store only
the Di tables (or rather, the ∆i[·, ·] vectors), and compute the entries of D during the on-line part,
as they are needed. Using this method, the off-line phase takes O(log n(rm′+m)2m

′+(m/r)) time and
O(r2m

′+m/r) space to compute and store the vectors ∆i[·, ·], and the on-line phase takes O(m′2m
′
)

time per sample. Thus the total time complexity here is O(log n(rm′ + m)2m
′+(m/r) + Sm′2m

′
),

where S is the number of samples needed to distinguish D from R.

5.4 An attack on Scream-0

The stream cipher Scream (with its variants Scream-0 and Scream-F) was proposed very recently
by Coppersmith, Halevi and Jutla. A detailed description of Scream is available in [11]. Below we
only give a partial description of Scream-0, which suffices for the purpose of our attack.

Scream-0 maintains a 128-bit “non-linear state” x, two 128-bit “column masks” c1, c2 (which
are modified every sixteen steps), and a table of sixteen “row masks” R[0..15]. It uses a non-linear
function NF , somewhat similar to a round of Rijndael. Roughly speaking, the steps of Scream-0
are partitioned to chunks of sixteen steps. A description of one such chunk is found in Figure 3.

Here we outline a low-diffusion attack on the variant Scream-0, along the lines above, that
can reliably distinguish it from random after observing merely 243 bytes of output, with memory
requirement of about 250 and work-load of about 280. This attack is described in more details in
the long version of [11].

As usual, we need to find a “distinguishing characteristic” of the non-linear function (in this
case, a low-diffusion characteristic), and a combination of steps in which the linear process vanishes.
The linear process consists of the ci’s and the R[i]’s. Since each entry R[i] is used sixteen times
before it is modified, we can cancel it out by adding two steps were the same entry is used. Similarly,
we can cancel c2 by adding two steps within the same “chunk” of sixteen steps. However, since c1
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1. for i = 0 to 15 do
2. x := NF (x+ c1) + c2
3. output x+R[i]
4. if i is even, rotate c1 by 64 bits
5. if i is odd, rotate c1 by some other amount
6. end-for
7. modify c1, c2, and one entry of R, using the function NF (·)

Figure 3: sixteen steps of Scream-0.

is rotated after each use, we need to look for two different characteristics of the NF function, such
that the pattern of input bits in one characteristic is a rotated version of the pattern in the other.

The best such pair of “distinguishing characteristics” that we found for Scream-0, uses a low-
diffusion characteristic for NF in which the input bits pattern is 2-periodic (and the fact that c1
is rotated every other step by 64 bits). Specifically, the four input bytes x0, x5, x8, x13, together
with two bytes of linear combinations of the output NF (x), yield the two input bytes x2, x10, and
two other bytes of linear combinations of the output NF (x). In terms of the parameters that we
used above, we have m = 48 input and output bits, which completely determine m′ = 32 other
input and output bits.

To use this relation, we can observe these ten bytes from each of four steps, (i.e., j, j + 1, j +
16k, j+ 1 + 16k for even j and k < 16). We can then add them up (with the proper rotation of the
input bytes in steps j+1, j+17), to cancel both the “row masks” R[i] and the “column masks” c1, c2.
This gives us the following distributionD = 〈u1 + u2 + u3 + u4, f1(u1) + f2(u2) + f1(u3) + f2(u4)〉,
where the ui’s are modeled as independent, uniformly selected, 48-bit strings, and f1, f2 are two
known functions fj : {0, 1}48 → {0, 1}32. (The reason that we have two different functions is that
the order of the input bytes is different between the even and odd steps.) Moreover, each of the two
fj ’s can be written as a sum of three functions over disjoint parts, fj(x) = f1

j (x1)+f2
j (x2)+f3

j (x3)
where |x1| = |x2| = |x3| = 16.

This is one of the “extensions” that were discussed in Section 5.2. Here we have n = 4, m = 48,
m′ = 32, r = 3, and two different functions. Therefore, we expect to get statistical distance of
c′(n)3 · 2(3m′−(n−1)m)/2, with

c′(n) ≈
√

2/π ·

√√√√( n!
(n/2)! 2n/2

)2

−
(

(n/2)!
(n/4)! 2n/4

)4

Plugging in the parameters, we have c′(4) ≈
√

2/π ·
√

8, and the expected statistical distance is
roughly (16/π)3/2 · 2−24 ≈ 2−20.5. We therefore expect to be able to reliably distinguish D from
random after about 241 samples. Roughly speaking, we can get 8 ·

(14
2

)
≈ 210 samples from 256

steps of Scream-0. (We have 8 choices for an even step in a chunk of 16 steps, and we can choose
two such chunks from a collection of 14 in which the three row masks in use remain unchanged.)
So we need about 231 · 256 = 239 steps, or 243 bytes of output.

Also, in Section 5.3 we show how one could efficiently implement the maximum-likelihood
decision rule to distinguish D from R, using Walsh-Hadamard transforms. Plugging the parameters
of the attack on Scream-0 into the general techniques that are described there, we have space
complexity of O(r2m

′+m/r), which is about 250. The time complexity is O(log n(rm′+m)2m
′+(m/r)+

Sm′2m
′
), where in our case S = 241, so we need roughly 280 time.
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6 Conclusions

In this work we described a general cryptanalytical technique that can be used to attack ciphers that
employ a combination of a “non-linear” process and a “linear process”. We analyze in details the
effectiveness of this technique for two special cases. One is when we exploit linear approximations
of the non-linear process, and the other is when we exploit the low diffusion of (one step of) the
non-linear process. We also show how these two special cases are useful in attacking the ciphers
SNOW [4] and Scream-0 [11].

It remains an interesting open problem to extend the analysis that we have here to more general
“distinguishing characteristics” of the non-linear process. For example, extending the analysis of
the low-diffusion attack from Section 5.1 to the case where the functions f is key-dependent (and
thus not known to the adversary) may yield an effective attack on Scream [11].

In addition to the cryptanalytical technique, we believe that another contribution of this work
is our formulation of attacks on stream ciphers. We believe that explicitly formalizing an attack as
considering sequence of uncorrelated steps (as opposed to one continuous process) can be used to
shed light on the strength of many ciphers.
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A Experimental results

We tested our analysis from Section 5.1, by choosing a few random functions f : {0, 1}m → {0, 1}m′

(for several settings of m,m′), and evaluating the distance |D4
f−R|. For each function f , we used the

techniques from Section 5.3 (based on the Welsh-Hadamard transform) to compute the statistical
distance. We used the SPIRAL implementation of the Welsh-Hadamard transform, due to Markus
Pueschel, Bryan Singer, and Adrian Sox (see http://www.ece.cmu.edu/∼spiral).
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For each setting of m,m′, we chose sixteen random functions, and computed the average distance
for these functions. The results are presented below. One can see that the only deviation from the
expected values in our analysis, is in the cases where m is significantly smaller than m′. In these
cases, the distance is less than what we expect from the analysis. We speculate that the reason
for this deviation, is that for such settings the variables in the proof are “not as smooth”, and
therefore, there is a larger gap between the quantities E[|X − E[X]|] and

√
VAR[X].

m=6, m’=6: average distance is 1.174e-01 = 7.514 * 2^{(m’-3m)/2}
m=8, m’=8: average distance is 3.022e-02 = 7.736 * 2^{(m’-3m)/2}
m=10, m’=10: average distance is 7.569e-03 = 7.750 * 2^{(m’-3m)/2}

m=6, m’=12: average distance is 5.700e-01 = 4.560 * 2^{(m’-3m)/2}
m=8, m’=12: average distance is 8.417e-02 = 5.387 * 2^{(m’-3m)/2}
m=10, m’=12: average distance is 1.310e-02 = 6.706 * 2^{(m’-3m)/2}

m=12, m’=6: average distance is 2.380e-04 = 7.799 * 2^{(m’-3m)/2}
m=12, m’=8: average distance is 4.767e-04 = 7.811 * 2^{(m’-3m)/2}
m=12, m’=10: average distance is 9.520e-04 = 7.799 * 2^{(m’-3m)/2}
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