
An OAEP Variant With a Tight Security Proof –

Draft 1.0

Jakob Jonsson

RSA Laboratories

March 18, 2002

Abstract

We introduce the OAEP++ encoding method, which is an adap-
tation of the OAEP encoding method, replacing the last step of the
encoding operation with an application of a block cipher such as AES.
We demonstrate that if f is a one-way trapdoor function that is hard
to invert, then OAEP++ combined with f is secure against an IND-
CCA2 adversary in the random oracle model. Moreover, the security
reduction is tight; an adversary against f -OAEP++ can be extended
to an f -inverter with a running time linear in the number of oracle
queries. 1

1 Introduction

The purpose of this paper is to introduce a new encoding method, which will
be denoted OAEP++. This method is a minor tweak of the OAEP encoding
method [3], replacing the last step in the latter encoding operation with
an application of a block cipher (i.e., a pseudo-random permutation). The
OAEP++ encoding method can be combined with any one-way trapdoor
function f , for example RSA [31]. The components of OAEP++ are a mask
generation function similar to the one used in the first round of OAEP and
a block cipher such as AES [25]. In addition, a block cipher key derivation
function is required if the block cipher does not support long key sizes.

OAEP++ takes as input a message m of a fixed length, generates a
random seed r, and forms a padded message p‖m, where p is a fixed string.
The mask generation function is applied to r to form an output s′ of the

1The information in this document is provided as is, and no warranty is given or
implied that the information is fit for any particular purpose. The user thereof uses the
information at its sole risk and liability.

1

2 Jakob Jonsson

same length as p‖m; put s = s′ ⊕ (p‖m). Finally, the seed r is encrypted
with the block cipher using s as the key to form an output t. The OAEP++

encoded message is the string t‖s. If the block cipher does not support keys
of length |s| (this is typically the case), s is transformed into an encryption
key of appropriate length via the key derivation function. To encrypt a
message with f -OAEP++, encode the message with OAEP++ and apply
f to the OAEP++ encoded message. The OAEP++ encoding operation is
illustrated at the end of this paper.

The only difference between OAEP++ and OAEP is that the latter
method defines t as the xor sum of r and a string derived from s via the
mask generation function; OAEP encrypts the seed with a stream cipher,
whereas OAEP++ encrypts it with a block cipher.

A typical parameter choice for OAEP++ would be |r| = |p| = 128 with
AES as the underlying block cipher and with the mask generation function
and the key derivation function based on SHA-256 [24] (this means that we
use AES with 256-bit keys). A potential variant of OAEP++ defined entirely
in terms of AES is discussed in Appendix C.

The main advantage of the OAEP++ encoding method is that the secu-
rity of the combination f -OAEP++ can be tightly related to the hardness of
inverting f . For example, this holds for f = RSA. While the reduction
requires non-standard “random oracle” assumptions on the components,
we claim that these assumptions are not stronger than the corresponding
assumptions needed to prove the security of RSA-OAEP and the variant
RSA-OAEP+ [35]. Recall from [35] and [13] that the best known security
reductions for RSA-OAEP and RSA-OAEP+ are not tight (see Section 2).

Another advantage of OAEP++ is that it provides compact ciphertexts;
with parameters as above, a plaintext of size k − 256 can be encrypted,
resulting in a ciphertext of size k, where k is the bit length of the input to
f . Similar properties hold for RSA-OAEP and RSA-OAEP+ as well, while
encryption schemes such as [37, 2, 36, 28] based on RSA-KEM (“simple-
RSA”; see Section 2) have a ciphertext overhead compared to RSA-OAEP++

of size at least the length of the message to be encrypted. While RSA-KEM-
based schemes are particularly attractive choices for key agreement and key
establishment applications, RSA-OAEP++ might be a preferable alternative
in applications where rather small secrets need to be transmitted securely.

The running time for the OAEP++ encoding operation is the same as for
OAEP plus the time needed to perform one block encryption. OAEP++ and
OAEP+ require roughly the same amount of operations; there is no block
cipher within the latter mechanism, but instead one application of a hash
function is required. The conclusion is that neither variant is particularly
advantageous or disadvantageous in terms of performance; one application
of the trapdoor function (or its inverse in case of decryption) is typically
several magnitudes more time-consuming than any of the encoding methods
discussed in this section.

An OAEP Variant With a Tight Security Proof – Draft 1.0 3

Organization of the paper In Section 2 we give a brief overview of
the history of RSA encryption schemes, concentrating on schemes based on
the encode-and-encrypt paradigm. OAEP++ design rationale is provided in
Section 3; the formal definition of OAEP++ is given in Section 4. In Section 5
we provide a heuristic argument for the tight security of OAEP++; a formal
security analysis is given in Section 6. Finally, Section 7 elaborates on an
extended version of f -OAEP++ applicable to messages of arbitrary length.

2 Background

Ever since the RSA public-key encryption scheme [31] was introduced by
Rivest, Shamir, and Adleman in the late seventies, one of the most important
and most widely studied problems is how to properly pad a message to be
encrypted. Celebrated cryptanalytic results such as [16], [6], and [7] stress
the need for a nontrivial padding method rather than just applying RSA to
the message directly. Specifically, the larger part of the RSA inverse of the
ciphertext must be unpredictable for an adversary even if the plaintext is
known. The obvious solution is to introduce some randomness; to encrypt
a message, mix the message and the generated randomness somehow before
applying the RSA encryption function.

The most widely used encoding method as of today is the PKCS #1 v1.5
padding method introduced in [33]. This method, from now on denoted
P1, generates a random string r (with some prespecified structure) and
concatenates r with the message m to be encrypted.

We believe that RSA-P1 is adequate for key agreement protocols such
as the handshake protocol in TLS [11], where the plaintext is a random and
unpredictable secret. Yet, as an ordinary encryption scheme, the technique
suffers from the lack of a convincing security argument. Indeed, Bleichen-
bacher’s “Million Messages Attack” [4] implies that RSA-P1 is not secure
against adaptive chosen-ciphertext attack without additional countermea-
sures. In addition, the results in [8] indicate that there is little hope to find
a security proof even in the chosen-plaintext attack model without counter-
measures.

One further concern about P1 is that an adversary who knows how to
extract, say, the last few bits of the RSA inverse from the ciphertext will be
able to derive information about the plaintext. Ideally, an encryption scheme
based on RSA should have a security that can be provably related to the
hardness of fully (rather than partially) inverting RSA on a random input.
While there are polynomial-time reductions to a “partial” RSA inverter
from a full RSA inverter, these reductions are typically far from tight and
are therefore not very useful for concrete parameters. See [17] for a survey
of different reduction techniques; a related technique for large partial blocks
can be found in [13].

4 Jakob Jonsson

RSA-OAEP, introduced by Bellare and Rogaway in 1994 [3], is a scheme
that turns out to have many of the desired security properties. The seminal
paper [3] provides a security proof for RSA-OAEP in terms of RSA in a
chosen-ciphertext attack model. The proof is based on the assumption that
the underlying mask generation function g is uniformly chosen from the set
of all possible functions and unpredictable for the adversary; if the adversary
wants to compute g on a certain value r, she must send r to an external
oracle, which responds with a uniformly random value g(r).

In the attack model in [3], decryption queries from the adversary are
accepted only before the adversary is given the target ciphertext to be ex-
amined. For several years, it was widely believed that the security proof for
OAEP could be extended to the more general model in which the adversary
is allowed to send decryption queries during the entire attack (i.e., the attack
is adaptive). However, Shoup [35] demonstrated that this cannot be true for
OAEP combined with a general trapdoor function. To address this concern,
Shoup introduced OAEP+, which is an adapted version of OAEP that is
provably secure against adaptive chosen-ciphertext attack when combined
with a secure trapdoor function. Fortunately however, Fujisaki, Okamoto,
Pointcheval, and Stern [13] were able to provide a security proof also for
OAEP when combined with RSA.

Some other members in the OAEP family worth mentioning are the
SAEP [18] and SAEP+ [5] methods. SAEP is similar to OAEP except that
the second application of the mask generation function is omitted. SAEP+
is derived from OAEP+ in the same manner. Boneh [5] has demonstrated
that both schemes are secure when combined with the Rabin [29] trapdoor
function. Also, SAEP+ can be securely combined with RSA.

Thus, we have an entire family of encoding methods that are provably
secure in a random oracle model. However, none of these methods has
a known tight security reduction (except for when combined with certain
trapdoor functions such as Rabin and RSA with exponent 3). More precisely,
the reductions are much more time-consuming than the running time of the
underlying adversary. What has been proven is roughly that if RSA cannot
be inverted in time T , then the corresponding encryption scheme cannot
be broken in time O(

√
T). This is not a very useful result for practical

parameters such as T ≈ 280 or even T ≈ 2128.
However, it has been known for years how to provide an RSA-based

encryption scheme with a tight reduction; Zheng and Seberry [37] introduced
such a scheme as early as in 1992. The idea is to generate a random integer
r between 0 and N − 1 (N is the RSA modulus), encrypt r with RSA,
and encrypt and authenticate the message with a symmetric key (or a key
stream) derived from r. The procedure of deriving a symmetric key using
RSA and a key derivation function in this manner is denoted RSA-KEM
[36].

The most well-known encryption schemes based on RSA-KEM are RSA-

An OAEP Variant With a Tight Security Proof – Draft 1.0 5

REACT [28] and RSA-KEM-DEM1 [36]. Among numerous attractive fea-
tures of these constructions, we mention that they can handle messages of
arbitrary length and that they can be defined in terms of any public-key en-
cryption primitive, not only trapdoor functions such as RSA. This property
is true also for a third variant called RSA-GEM [9], which has a slightly
smaller ciphertext overhead (the integrity check is embedded in the input
to RSA). However, this scheme suffers from a weaker security reduction.

The only significant drawback of schemes based on RSA-KEM compared
to schemes in the OAEP family is the ciphertext overhead when the message
to be encrypted is smaller than the RSA modulus length. The problem of
finding a practical encoding method with a tight security reduction and no
ciphertext overhead appears to have been unsettled thus far. In this paper
we provide a solution that we believe satisfies those two conditions.

3 Design goals and OAEP++ design rationale

We want to define an encoding method in terms of random oracles such
that an adversary must be able to determine the entirety of x = f−1(y) for
a target ciphertext y to be able to say anything about the corresponding
plaintext m. More precisely, if the adversary is able to determine nontrivial
information about m, then she must have leaked the entirety of x in her
correspondence with the oracles. An inverter simulating the oracles is then
able to determine x from the communication.

This is true for RSA-OAEP and RSA-OAEP+. Yet, the best known re-
ductions for these schemes are not tight. The drawback of these schemes is
that a combination of two oracle queries is needed to recover the whole of x.
Thus the inverter must check many pairs of queries before he finds the cor-
rect pair, which makes the time bound for the inverter proportional to the
square of the number of oracle queries rather than linear in the number of
queries. The obvious design goal is hence to construct an encoding method
such that the plaintext cannot be recovered unless the entire encoded mes-
sage is included in one single oracle query.

As a comparison, we analyze the OAEP encoding method in greater
detail. After the first Feistel half-round, the encoded message consists of
the seed r and a string s that is the xor sum of the padded message and
a pseudo-random string generated from r. In the second round, a mask
generation function h is applied to s and xored to r; the result is a new
string t = h(s)⊕ r. To recover the original message, we need to send first s
to one oracle and then r to another oracle. However, neither the query s nor
the response h(s) leak any a priori information about r or h(s)⊕ r. This is
the core reason why RSA-OAEP (as well as RSA-OAEP+) does not have a
tight security reduction; each pair of queries (r, s) corresponds to a possible
encoded message, which may well be the f inverse of the target ciphertext.

6 Jakob Jonsson

Yet, look at the second step of the OAEP encoding operation again; we
transform r by xoring h(s) to it. This means that we encrypt r with the
stream cipher h using the encryption key s. A stronger encryption method
is to apply a well-trusted block cipher E to r using s as the encryption key.
Assuming that Es is a random permutation for each s, we obtain a scheme
where an adversary cannot determine any non-negligible information about
the decryption of a ciphertext y = f(t‖s) unless she asks for the block cipher
decryption of t under the key s. This implies that the adversary must know
the entire inverse of y under f . Of course, this argument is very heuristic,
but we will demonstrate in Section 6 that the security of this scheme is
indeed tightly related to the hardness of inverting f .

There are two remaining concerns regarding this construction, which will
be denoted OAEP++; see Section 4 for a formal description.

• While the length kr of r may well be a standard block length such as
128 (which means that AES [25] might be used), the length k − kr of
the key s is typically not a standard block cipher key length. While
there are block ciphers that support variable key length (for example,
RC6 [32]), the construction would be more versatile if the key length
were fixed to a certain value (for example, 256). The solution is to
apply a key derivation function h (idealized as a random oracle) to s
and use the result h(s) as the key.

Now it seems that we violate the property that each block cipher
decryption query (“D-oracle” query) should correspond to a unique
ciphertext y = f(t‖s). Namely, the query corresponding to y contains
the string t to be decrypted and the key h(s), but not s. Yet, an adver-
sary cannot guess h(s) with non-negligible probability unless she has
queried s before at the h-oracle. In particular, queries to the h-oracle
and the D-oracle are tightly related; to each D-oracle (and E-oracle)
query corresponds at most one relevant h-oracle query unless there are
known h-collisions. See Lemma 6.1 for a formal demonstration of this
fact.

• It may seem that the random oracle assumption on a block cipher is
less reasonable than the corresponding random oracle assumption on a
hash function or a mask generation function.2 Namely, a hash function
is one-way and does not have a simple description of how to recover
the original message from the hash. A block cipher however must be
reversible; given the key, it should be straightforward to recover the
plaintext. Intuitively, this seems to imply that an block cipher has
more “structure” than a hash function.

2We stress that the random oracle assumption is an ideal assumption that cannot be
interpreted in the real world.

An OAEP Variant With a Tight Security Proof – Draft 1.0 7

However, there are quite a few efficient constructions for deriving a
block cipher from a pseudo-random function (PRF); see [20, 23] (a hash
function is easily transformed into a PRF). These constructions may
not have very good security bounds for concrete security parameters,
but they indicate that the above intuition is not entirely accurate.

In addition, standard hash functions such as the ones in the SHA fam-
ily are typically defined in terms of a compression function, following
the Merkle-Damg̊ard [10, 22] paradigm. In certain cases (including the
SHA family), this compression function (or a slight variant thereof), is
a pseudo-random permutation. This has been observed by Handschuh
and Naccache, who submitted the compression function in SHA-1, de-
noted SHACAL [15], as a block cipher to the NESSIE project [27]. If
the random oracle assumption on a block cipher is unreasonable, then
so is clearly the corresponding assumption on a hash function that is
based on a block cipher in a very straightforward manner.

4 Scheme description

Let k, kr, kp, and ku be parameters such that kr + kp < k. The OAEP++

encoding operation transforms a message of bit length km = k − kr − kp

into an encoded message of bit length k. This is done via a mask generation
function

g : {0, 1}kr → {0, 1}k−kr ,

a key derivation function

h : {0, 1}k−kr → {0, 1}ku ,

and a symmetric block cipher (pseudo-random permutation)

E : {0, 1}ku × {0, 1}kr → {0, 1}kr .

A block cipher E has the property that r → E(u, r) is a permutation for
each fixed key u. To E corresponds a decryption operation D such that
D(u, E(u, r)) = r for all (u, r) ∈ {0, 1}ku × {0, 1}kr . Put Eu(r) = E(u, r)
and Du(t) = D(u, t); u is the (encryption) key. Note that Du = E−1

u . We
assume that g, h, E, and D are all “efficient” functions.

The OAEP++ encoding operation is defined as follows. The operation
takes as input a message m of length km and a parameter string p of length
kp.

OAEP++-Encode(m, p)
– m′ ← p‖m;
– r

R← {0, 1}kr ;

8 Jakob Jonsson

– s← m′ ⊕ g(r);
– u← h(s);
– t← Eu(r);
– x← t‖s;
– Output x.

Note that we have fixed the length of m. An alternative that is probably
more useful in practice is to redefine the scheme such that it can handle
messages m of variable length. For example, if we replace the second step
in the above description with

m′ ← p‖0km−|m|−1‖1‖m, (1)

then the resulting scheme can handle any message of length less than km.
We want to combine OAEP++ with a one-way trapdoor permutation

f : X → X such that X ⊇ {0, 1}k. We define the concept of one-way
trapdoor permutations formally in Section 6. Define the combined scheme
f -OAEP++ as follows. First, fix an encoding parameter string p of length kp.
The f -OAEP++ encryption operation takes as input the one-way trapdoor
permutation f and a message m of length km.

f-OAEP++-Encrypt(f , m)
– x← OAEP++-Encode(m, p);
– y ← f(x);
– Output y.

The mathematical description of the reverse operations OAEP++-Decode
and f-OAEP++-Decrypt are easily derived from the encoding and encryp-
tion operations. Yet, there are some concerns that need to be addressed.
Namely, since {0, 1}k (X for typical trapdoor functions such as RSA, not
all elements in X are possible outputs from OAEP++-Encode. This means
that the decoding operation should report an error if its input is not an el-
ement in {0, 1}k. Yet, attacks by Bleichenbacher [4] and Manger [21] on
RSA-PKCS #1 v1.5 and RSA-OAEP, respectively, demonstrate that such
errors must not be distinguishable from other kinds of errors.

To avoid potential implementation weaknesses, we will need to deal with
elements x ∈ X \ {0, 1}k. For this reason, introduce a function ω : X →
{0, 1}k such that ω(x) = x if x ∈ {0, 1}k. For example, if X = ZN , then we
can define ω(x) = x mod 2k.

To decode x ∈ X, proceed as follows.

OAEP++-Decode(x, p)
– Put x′ = ω(x);
– Write x′ = t‖s (|t| = kr);

An OAEP Variant With a Tight Security Proof – Draft 1.0 9

– u← h(s);
– r ← Du(t);
– m′ ← s⊕ g(r);
– Write m′ ← p′‖m;
– If p′ 6= p or x /∈ {0, 1}k; then output “Decoding error” and exit;
– Output m.

Note that all errors are reported simultaneously (if a padding scheme such
as (1) is used, then there might be additional potential errors that should
be reported in the very same step).

The f -OAEP++ decryption operation takes as input the inverse f−1 of
the one-way trapdoor function f and a ciphertext y ∈ X.

f-OAEP++-Decrypt(f−1, y)
– x← f−1(y);
– m← OAEP++-Decode(x, p);
– In case of decoding error, output “Decryption error” and exit;
– Output m.

5 A heuristic security argument

Before proceeding with formal definitions and proofs, we provide a (very)
heuristic argument for the security of f -OAEP++.

We assume that the block cipher E is a random oracle; for each key u,
Eu is a random permutation chosen uniformly at random from the set of all
permutations. This means that an adversary who wants to compute Eu(r)
must submit both u and r to the oracle simulating E. Even more important,
to compute Du(t), she must submit both u and t to the oracle simulating
D. We assume that the other functions g and h are random oracles as well.

Let y∗ be a ciphertext, and let s∗, t∗, u∗, r∗, and m∗ be the values
corresponding to y∗. An adversary is given y∗ and wants to determine
information about m∗. It seems intuitively clear that if the adversary is
able to achieve this goal (using a strategy better than pure guessing), then
she must have submitted (u∗, t∗) to the D-oracle. Namely, to recover any
information about m∗, the adversary must know g(r∗), because otherwise
g(r∗) would be a completely random string, which implies that g(r∗) ⊕ s∗

would be completely random as well. Thus r∗ must be a previous g-oracle
query. Since r∗ is (almost) completely random unless (u∗, t∗) is a previous
query to the D-oracle, we conclude that (u∗, t∗) must indeed be a D-oracle
query with overwhelming probability.

Also, without having queried s∗ at h, the adversary has no information
about u∗. Thus if (u∗, t∗) is a D-oracle query, then, with overwhelming
probability, s∗ is an h-oracle query. Unless there are h-collisions, these two

10 Jakob Jonsson

queries are tightly related; there is only one h-oracle query that is relevant for
each E- and D-oracle query. As we will see, this implies that an f -inverter
defined in terms of the adversary will be able to determine the inverse of y∗

in time linear in the number of queries.

6 Security analysis of OAEP++

6.1 Trapdoor permutations

We want to analyze the security of f -OAEP++ for a given one-way trapdoor
permutation f . First we define the concept of trapdoor permutations. Let
F be a finite family of pairs (f, f−1) of permutations f, f−1 : Xf → Xf such
that f−1 is the inverse of f . This means that f−1(f(x)) = x for any x ∈ Xf .
We assume that f(y) and f−1(y) are “easy” to compute on any inputs (f, y)
and (f−1, y), respectively.

Let G be a probabilistic polynomial-time (PPT) algorithm that outputs
a pair (f, f−1) ∈ F . G is a trapdoor permutation generator. An f -inverter
I is an algorithm that on input (f, y) tries to compute f−1(y) for a random
y ∈ Y . 3 I has success probability ε and running time T if

Pr
(
(f, f−1)← G;x R← Xf ; y ← f(x) : I(f, y) = x

)
≥ ε

and the running time for I is at most T . In words, I should be able to
compute f−1(y) with probability ε within time T , where (f, f−1) is derived
via the trapdoor permutation generator and y is random.

6.2 Attack model

We define an attack model employing an adversary against f -OAEP++ who
is given free access to a decryption oracle; hence we consider the family of
adaptive chosen-ciphertext attacks (CCA2; see [14]). The task for the ad-
versary is to distinguish a plaintext m∗

0 corresponding to a certain ciphertext
y∗ from another plaintext m∗

1.
The decryption oracle responds to a query y with the corresponding

plaintext m = f-OAEP++-Decrypt(f−1, y) unless there is a decryption
error, in which case the oracle responds with a generic error message. The
decryption oracle accepts any query, except that y∗ is not a valid query after
the challenge generator (see below) has been triggered.

The functions g and h are instantiated as random oracles. Thus the
adversary has no information about h(r) unless she sends the query r to
an oracle instantiating h (and similar for g). A random oracle responds

3f−1 not being an input to I means that I must find out himself how to compute
f−1(y); he is not provided with an explicit description of f−1, only the implicit description
given by f .

An OAEP Variant With a Tight Security Proof – Draft 1.0 11

to queries with strings chosen uniformly at random and independent from
earlier queries and responses, except that a string that is repeatedly queried
to the oracle should have the same response every time.

Similarly, the block cipher E is assumed to be ideal. This means that Eu

is a permutation chosen uniformly at random from the set of all random per-
mutations for each u ∈ {0, 1}ku and that all permutations Eu are mutually
independent. There is one oracle simulating E and one oracle simulating
the inverse D (obviously, those two oracles are tightly related).

The attack experiment runs as follows. First, the adversary is given a
trapdoor permutation f generated via a trapdoor permutation generator
G. The adversary is allowed to send queries to the random oracles and the
decryption oracle during the entire attack. At any time of the attack –
but only once – the adversary triggers a challenge generator with an input
(m∗

0,m
∗
1); m∗

i ∈ {0, 1}km . The challenge generator flips a fair coin b and
applies the f-OAEP++-Encrypt operation to m∗

b , producing a ciphertext
y∗. The generator returns y∗.

At the end, the adversary outputs a bit b′. The distinguishing advantage
of the adversary is defined as(

Pr(b′ = b)− Pr(b′ 6= b)
)

= 2Pr(b′ = b)− 1; (2)

the probability is computed over all possible trapdoor mappings. The ad-
versary is an IND-CCA2 adversary [14, 30] (IND = indistinguishability).

6.3 A preliminary reduction

Due to the excessive number of oracles, we want to get rid of some oracle
before proceeding; in this manner, the security analysis is simplified. More
precisely, we will exclude the h-oracle from the model and replace E with
a block cipher Ê using a string s ∈ {0, 1}k−kr instead of h(s) ∈ {0, 1}ku as
the encryption key. Let S-OAEP++ (“simplified” OAEP++) be the encod-
ing operation obtained in this manner; S-OAEP++-Encode is defined as
follows.

S-OAEP++-Encode(m, p)
– m′ ← p‖m;
– r

R← {0, 1}kr ;
– s← m′ ⊕ g(r);
– t← Ês(r);
– x← t‖s;
– Output x.

Our first goal is to reduce an adversary against f -S-OAEP++ to an adversary
against f -OAEP++. This is done via the following lemma.

12 Jakob Jonsson

Lemma 6.1 Let A be an IND-CCA2 adversary against f-OAEP++ with
advantage ε′ within running time T ′. Assume that A makes at most qg

number of g-oracle queries, qh number of h-oracle queries, qE number of E-
and D-oracle queries, and qf number of decryption queries. Then there is
an IND-CCA2 adversary Â against f-S-OAEP++ with advantage ε within
running time T making qg number of g-oracle queries, qE number of Ê- and
D̂-oracle queries, and qf number of decryption queries. Here,

ε = ε′ − (qh + qf + 1) · (2qE + qh + qf) · 2−ku−1

and
T = T ′ + O(qh + qE).

The proof is given in Appendix A.

Remark. The additional failure probability for the f -S-OAEP++ adver-
sary in Lemma 6.1 will be non-negligible if the square of the number of
queries is close to 2ku . For this reason, ku must be fairly large; ku = 128 is
way too small for most practical applications. We recommend ku = 256 for
applications requiring up to approximately 128 bits of security.

6.4 Relating f-OAEP++ to f

We will now give a security proof for f -S-OAEP++, relating the scheme
to the underlying trapdoor permutation f . Using Lemma 6.1, we obtain a
proof for f -OAEP++. To simplify notation, let E (rather than Ê) denote
the block cipher in S-OAEP++.

Theorem 6.2 Let qg, qE , qf , kr, kp be parameters. Put q0 = qg + qf + 2qE

and assume that 2q0 ≤ max{2kp , 2kr}; put

ϕ =
⌈

kp + log2 q0

kp − log2 q0

⌉
(see the remark below). Assume that there is an IND-CCA2 adversary break-
ing f-S-OAEP++ with advantage ε′ within time T ′ and making qg number
of g-oracle queries, qE number of E- and D-oracle queries, and qf number
of decryption queries. Then there is an f-inverter with success probability ε
within time T , where

ε =
2k

|X|

(
ε′ − ((2ϕ + 1)qf + qg + 2qE)(2−kr + 2−kp)

)
.

and
T = T ′ + O(qf + (qg + qE)Tf);

Tf is the running time for f .

The proof of Theorem 6.2 is given in Appendix B.

An OAEP Variant With a Tight Security Proof – Draft 1.0 13

Remark. Note that ϕ =
⌈

kp+log2 q0

kp−log2 q0

⌉
implies

qϕ+1
0 ≤ 2(ϕ−1)kp .

This unorthodox assumption is to facilitate analysis of the special case that
kr = 128. Such a small kr means that there will be E-collisions (values
(s, r) and (s′, r′) such that Es(r) = Es′(r′)) and D-collisions with a large
probability. To be able to handle this situation, we need kp to be slightly
larger than the security parameter log2 q; ϕ is a probabilistic bound on the
maximal number of collisions on the kp first positions among all known
outputs from g.

Combining Theorem 6.2 and Lemma 6.1, we obtain the following security
result for f -OAEP++.

Corollary 6.3 Let qg, qh, qE , qf , kr, kp, ku be parameters. Put q0 = qg +qf +
2qE and assume that 2q0 ≤ max{2kp , 2kr}; put

ϕ =
⌈

kp + log2 q0

kp − log2 q0

⌉
.

Put
q = max{(2ϕ + 1)qf , qh, qE , qg}.

Assume that there is an IND-CCA2 adversary breaking f-OAEP++ with
advantage ε′ within time T ′ and making qg number of g-oracle queries, qh

number of h-oracle queries, qE number of E- and D-oracle queries, and
qf number of decryption queries. Then there is an f-inverter with success
probability ε within time T , where

ε =
2k

|X|

(
ε− 4q · (2−kr + 2−kp)− 2q(2q + 1) · 2−ku

)
and

T = T ′ + O(q) + O(qTf);

Tf is the running time for f . �

7 Encrypting messages of arbitrary length with
OAEP++ and f

One concern about f -OAEP++ (as well as f -OAEP and f -OAEP+) is that
the size of a message that can be encrypted is bounded by k − kr − kp. In
case we want to encrypt a long message, only a small part can be input to
the encryption scheme while the remaining part must be handled in some
other way, including means for authentication of the encrypted message.

14 Jakob Jonsson

In this section we will address this concern. The application we have in
mind is a simple one-pass protocol where a single message is to be transmit-
ted. This is the one situation where an “encode-and-encrypt” scheme based
on RSA might be more attractive than a scheme based on RSA-KEM. In
other more complex multi-pass settings, RSA-KEM would be more benefi-
cial.

We proceed as follows on a message m of bit length km ≥ k − kr − kp

(shorter messages can be padded in the appropriate manner as in (1)). What
we do is that we encode the entire message m using the OAEP++ encoding
operation and then encrypt only the last k bits of the encoded message with
f . The reason why this works is very simple: If f : X → X is a one-way
trapdoor function, then so is fl : {0, 1}l×X → {0, 1}l×X for every l, where

fl(u, x) = (u, f(x)).

Namely, a function being one-way means that it is hard to determine the en-
tirety of f−1(y) with y randomly chosen. An adversary may easily determine
the first l bits of fl

−1(u, y) (they are simply the string u), but determining
the remaining part is just as hard as inverting the original function f .

The security proof for this variant of f -OAEP++ is a straightforward
consequence of Corollary 6.3, except that we now have a situation where
the plaintext length km is variable (with a fixed km, Corollary 6.3 would
apply directly). We need to analyze the OAEP++ components h, E, and g:

• The key derivation function h must be extended to accept inputs of
any size; in the random oracle model, all outputs are assumed to be
independent and uniformly random in the usual manner. Note that
each input s to the key derivation function h is tightly related to a
certain message length; if |s| = ks, then the corresponding message
length is ks − kp.

• Assuming that h is collision-resistant (meaning, in the random oracle
model, that the output length is large enough), each key input u to
E will correspond to at most one known s such that h(s) = u with
overwhelming probability; thus u is tightly related to at most one
message length with overwhelming probability.

• Before applicable to this extended scheme, the mask generation func-
tion g needs to be updated to be able to handle outputs of different
lengths; hence let g be a function {0, 1}kr ×Z→ {0, 1}∗ ({0, 1}∗ is the
set of all bitstrings) such that g(r, l) is a bit string of length l for each
positive integer l (l might be upper-bounded by some large constant).
Assuming that g is a random oracle in both arguments, we obtain that
each input to g is tightly related to a certain output length; the value
g(r, l) does not leak any information about any other output from g

An OAEP Variant With a Tight Security Proof – Draft 1.0 15

in the random oracle model. We stress that this property does not
hold for the MGF in standards such as [34]; the first l′ < l bits of
g(r, l) coincide with g(r, l′). However, it is straightforward to update
this MGF in the appropriate manner.

We define the extended X-OAEP++ encoding method as follows; the input
message m is a string of bit length km ≥ k − kp − kr.

X-OAEP++-Encode(m, p)
– m′ ← p‖m;
– r

R← {0, 1}kr ;
– s← m′ ⊕ g(r, kp + km);
– u← h(s);
– t← Eu(r);
– x← t‖s;
– Output x.

Thus the only difference to the original OAEP++ encoding operation is
that the X-OAEP++ operation accepts messages of different lengths. The
decoding operation is defined in the obvious way. The encryption operation
is defined as follows; again, the message is a string of bit length at least
k − kp − kr.

f -X-OAEP++-Encrypt(f,m)
– x← X-OAEP++-Encode(m, p);
– Write x = y0‖x1, where |x1| = k;
– y1 ← f(x1);
– Output y = y0‖y1.

With assumptions on the components as above, it is a straightforward exer-
cise to check that Corollary 6.3 holds for f -X-OAEP++; modify the proofs
in Appendices A and B in the appropriate manner.

Remark. In the same manner as described in this section, one may de-
fine an extended version of f -OAEP. With k as above, if we require that
km ≥ k − kp, then the resulting scheme f -X-OAEP is provably secure. The
argument is as follows. In [13] a reduction from “set-partial-f” to f -OAEP is
provided. Given a target ciphertext f(t‖s) (|t| = kr), the set-partial-f prob-
lem is to output a set of strings including s. In f -X-OAEP, the encrypted
seed t is left unmodified. Thus f -X-OAEP can be related to “set-f”; for
a given target ciphertext y = f(x), the set-f problem is to output a set
X of strings including x. Since f is deterministic, we may easily check for
each x′ in the set X whether y = f(x′); thus we obtain a reduction from an
ordinary f -inverter to an f -X-OAEP adversary. In fact, it turns out that

16 Jakob Jonsson

the security reduction in [13] can be substantially tightened for f -X-OAEP,
yielding a reduction time linear in the number of queries [19]. Thus the
only drawback of f -X-OAEP compared to f -X-OAEP++ is an additional
ciphertext overhead of kr bits for small messages.

References

[1] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway. Relations among Notions of
Security for Public-Key Encryption Schemes. Advances in Cryptology – Crypto ’98,
pp. 26 – 45. Springer Verlag, 1998.

[2] M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. Proceedings of the First Annual Conference on Computer and
Communications Security. ACM, 1993.

[3] M. Bellare and P. Rogaway. Optimal Asymmetric Encryption – How to Encrypt with
RSA. Advances in Cryptology – Eurocrypt ’94, pp. 92 – 111. Springer Verlag, 1994.

[4] D. Bleichenbacher. Chosen Ciphertext Attacks against Protocols Based on the RSA
Encryption Standard PKCS #1. Advances in Cryptology – Crypto ’98, pp. 1 – 12.
Springer Verlag, 1998.

[5] D. Boneh. Simplified OAEP for the RSA and Rabin Functions. Advances in Cryptol-
ogy – Crypto 2001, pp. 275 – 291. Springer Verlag, 2001.

[6] D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology, 10, pp. 233 – 260, 1997.

[7] D. Coppersmith, M. Franklin, J. Patarin and M. Reiter. Low-Exponent RSA with
Related Messages. Advances in Cryptology – Eurocrypt ’96, pp. 1 – 9. Springer Verlag,
1996.

[8] J.-S. Coron, M. Joye, D. Naccache and P. Paillier. New Attacks on PKCS #1 v1.5
Encryption. Advances in Cryptology – Eurocrypt 2000, pp. 369 – 379. Springer Verlag,
2000.

[9] J.-S. Coron, H. Handschuh, M. Joye, P. Paillier, D. Pointcheval, C. Tymen. GEM:
A Generic Chosen-Ciphertext Secure Encryption Method. Cryptographers’ Track –
RSA Conference 2002, pp. ?? – ??. Springer Verlag, 2002.

[10] I. Damgard. A Design Principle For Hash Functions. Advances in Cryptology – Crypto
’89, pp. 416–427. Springer-Verlag, 1990.

[11] T. Dierks and C. Allen. IETF RFC 2246: The TLS Protocol Version 1.0. January
1999.

[12] W. Diffie and M. Hellman. Privacy and Authentication: An Introduction to Cryp-
tography. Proceedings of the IEEE, 67, pp. 397 – 427, 1979.

[13] E. Fujisaki, T. Okamoto, D. Pointcheval and J. Stern. RSA-OAEP Is Secure under
the RSA Assumption. Advances in Cryptology – Crypto 2001, pp. 260 – 274. Springer
Verlag, 2001.

[14] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and
System Sciences, 28 (2). April 1984.

[15] H. Handschuh and D. Naccache. SHACAL. Submission to the NESSIE project, 2000.

[16] J. H̊astad. Solving Simultaneous Modular Equations of Low Degree. SIAM Journal
of Computing, 17(2), pp. 336 – 341., 1988.

[17] J. H̊astad and M. Näslund. The Security of Individual RSA Bits. 39th Annual Sympo-
sium on Foundations of Computer Science, FOCS’98, pp. 510 – 521. IEEE Computer
Society, 1998.

An OAEP Variant With a Tight Security Proof – Draft 1.0 17

[18] D. Johnson, A. Lee, W. Martin, S. Matyas and J. Wilkins. Hybrid Key Distribution
Scheme Giving Key Record Recovery. IBM Technical Disclosure Bulletin, 37 (2A),
pp. 5 – 16, 1994.

[19] J. Jonsson. How to Combine OAEP With an Arbitrary Trapdoor Permutation. In
preparation.

[20] M. Luby, C. Rackoff. How to Construct Pseudorandom Permutations from Pseudo-
random Functions. SIAM Journal of Computing, 17(2), pp. 373 – 386, 1988)

[21] J. Manger. A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption
Padding (OAEP) as Standardized in PKCS #1 v2.0. Advances in Cryptology – Crypto
2001, pp. 260 – 274. Springer Verlag, 2001.

[22] R.C. Merkle. One Way Hash Functions And DES. Advances in Cryptology – Crypto
’89, pp. 428 – 446. Springer-Verlag, 1990.

[23] M. Naor and O. Reingold. On the Construction of Pseudo-Random Permutations:
Luby-Rackoff Revisited. Journal of Cryptology, pp. 29 – 66, 1999.

[24] National Institute of Standards and Technology (NIST). Draft FIPS 180-2: Secure
Hash Standard. Draft, May 2001.

[25] National Institute of Standards and Technology (NIST). FIPS 197: Advanced En-
cryption Standard (AES). November 2001.

[26] National Institute of Standards and Technology (NIST). AES Key Wrap Specification.
November 2001.
Available at www.nist.gov/kms/key-wrap.pdf.

[27] NESSIE Project. Information is available at www.cryptonessie.org.

[28] T. Okamoto and D. Pointcheval. REACT: Rapid Enhanced-security Asymmetric
Cryptosystem Transform. CT – RSA’2001, pp. 159 – 175. Springer Verlag, 2001.

[29] M. O. Rabin. Digitalized Signatures and Public-Key Functions as Intractable as Fac-
torization. MIT Laboratory for Computer Science Technical Report 212, 1979.

[30] C. Rackoff and D. R. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. Advances in Cryptology – Crypto ’91, pp. 433 – 444.
Springer-Verlag, 1992.

[31] R. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM, 21(2), pp. 120 – 126.
February 1978.

[32] R. Rivest, M. Robshaw, R. Sidney, and L. Yin. The RC6 Block Cipher. v1.1, August
1998. Available at www.rsasecurity.com/rsalabs/rc6/.

[33] RSA Laboratories. PKCS #1 v1.5: RSA Encryption Standard. November 1993.

[34] RSA Laboratories. PKCS #1 v2.0: RSA Encryption Standard. October 1, 1998.

[35] V. Shoup. OAEP Reconsidered. Advances in Cryptology – Crypto 2001, pp. 239 –
259. Springer Verlag, 2001.

[36] V. Shoup. A Proposal for an ISO Standard for Public Key Encryption. Preprint,
December 2001. Available from eprint.iacr.org/2001/112.

[37] Y. Zheng and J. Seberry. Practical Approaches to Attaining Security Against Adap-
tively Chosen Ciphertext Attacks. In Advances in Cryptology – Crypto 2001. Springer
Verlag, 1992.

18 Jakob Jonsson

A Proof of Lemma 6.1

We are given an adversary A against f -OAEP++ and want to define an ad-
versary Â against f -S-OAEP++ in terms of A. This is done in the following
manner. Â stores information on an “h-list”, an “E-list”, and a “U -list”.
All lists are empty at the beginning of the experiment.

The h-oracle is simulated as follows on input s.

H1 Checks whether s is on the h-list. If this is the case, then u = h(s) is
already defined; output u and exit.

H2 Generate a uniformly random string u and output u.

The E-oracle is simulated as follows on input (u, r).

E1 Check whether u is on the h-list. If this is the case, then there is an s
such that h(s) = u; send (s, r) to the Ê-oracle, output the response and
exit.

E2 If u is not on the U -list, then add u to the U -list.

E3 Check whether (u, r) is on the E-list. If this is true, then t = Eu(r) is
already defined; output t and exit.

E4 Generate a string t uniformly at random such that (u, r′, t) is not an
entry on the E-list for any r′; add (u, r, t) to the list, output t, and exit.

Note that step 1 is ambiguous if there are several s such that h(s) = u.
However, we will account for this ambiguity in the security analysis below.
The D-oracle is simulated in a manner analogous to the E-oracle simulation,
with E and Ê replaced with D and D̂ and with r and t swapped.

The other oracles are easy to simulate. For each decryption query y,
Â applies her own decryption oracle to y and returns the response; note
that this oracle applies the D̂-oracle and the g-oracle. When A triggers the
challenge generator with a pair (m∗

0,m
∗
1), Â triggers her own generator with

the very same pair and returns the response to A; this oracle applies the
g-oracle and the Ê-oracle. Finally, g-oracle queries are just passed on to Â’s
g-oracle.

We need to compute the probability that this simulation fails. The part
that may go wrong is that Â may not provide a perfect simulation of E and
D. More precisely, if h(s) = u, then we must have that Ês = Eu. This
must hold for all s and u that ever occur in the simulation, including those
s (within the decryption oracle and target generator computations) that are
never queried to the h-oracle.

Specifically, let S be the set of all elements s ∈ {0, 1}k−kr that are part
of an h-oracle query or an intermediate step in a decryption oracle or target
generator computation (i.e., the underlying ciphertext is equal to f(t‖s) for

An OAEP Variant With a Tight Security Proof – Draft 1.0 19

some t). Let U be the set of all elements u on the U -list. An error occurs
only if h(s) = h(s′) for some distinct s, s′ ∈ S or if h(s) = u for some s ∈ S
and u ∈ U . Namely, otherwise Ês will provide a perfect simulation of Eh(s)

for each s ∈ S, and Â will provide a perfect simulation of Eu for each u ∈ U .
There are at most qf + qh + 1 elements in S and at most qE elements

in U . First consider elements in S. The probability of an h-collision among
the elements in S is bounded by

(qh + qf + 1)(qh + qf) · 2−ku−1.

Next consider elements in U . By definition, an element u is in U if u is
part of an E- or D-query before being the response to an h-oracle query.
The probability that u = h(s) for some later h-oracle query s is bounded by
qh · 2−ku . The probability that u = h(s) for some s ∈ S that is not queried
to the h-oracle is bounded by (qf + 1) · 2−ku . Namely, such an s appears
only within the decryption oracle or the target generator; since h(s) is never
computed, the whole simulation is independent of h(s).

Summing over all u ∈ U , we yield the bound

qE(qh + qf + 1) · 2−ku .

Thus the total failure probability is bounded by

(qh + qf + 1)(qh + qf + 2qE) · 2−ku−1.

At the end, when A outputs a bit b′, Â outputs the very same bit. Clearly,
the success probability is the same for both adversaries, except that A may
be successful in the true simulation on coin flips leading to a simulation
failure in the modified simulation. �

B Proof of Theorem 6.2

We are given an IND-CCA2 adversary A against f -S-OAEP++; our goal is
to define an f -inverter I in terms of A. To achieve this goal, we must provide
a simulation of A’s oracles. Since there are as many as four oracles, it seems
prudent to somehow reduce the number of oracles before proceeding. This is
done as follows. Define P : {0, 1}k → {0, 1}k on input r‖m′ (m′ ∈ {0, 1}k−kr)
as

P (r‖m′) = Em′⊕g(r)(r)‖m′ ⊕ g(r).

Note that
P−1(t‖s) = Ds(t)‖s⊕ g(Ds(t)).

We want to define an adversary B in terms of A such that B has access to
oracles for P and P−1, but not for the components E, D, and g. Proceed
as follows.

20 Jakob Jonsson

In case of a g-oracle query r, B generates a random string m′, sends
r‖m′ to the P -oracle, and gets as response a string t‖s. By definition,
s = g(r)⊕m′; B returns s⊕m′ to A.

In case of an E-oracle query (s, r), B again generates a random string
m′, sends r‖m′ to the P -oracle, and gets as response a string t′‖s′. Next, B
sends the string r‖(s ⊕ s′ ⊕m′) to the P -oracle. Since g(r) = s′ ⊕m′, the
response is Es(r)‖s, from which B easily extracts Es(r), which she returns
to A.

In case of a D-oracle query (s, t), B sends t‖s to the P−1-oracle and gets
as response a string Ds(t)‖m′. B extracts r = Ds(t) and returns r to A.

In case of a decryption query y, B sends y to her decryption oracle, who
computes f−1(y), applies P−1 to the result, extracts the padded plaintext
m′ = p′‖m, and checks whether p′ = p. If yes, m is returned; otherwise
“Decryption Error” is returned.

It is clear that this simulation is perfect; B does not generate anything
herself but uses only her own oracles. The number of P - and P−1-oracle
queries from B is at most qg + 2qE .

Now, we want to define an inverter I in terms of B. Let y∗ be the target
ciphertext; with probability |X|/2k, f−1(y∗) /∈ {0, 1}k and I fails. From
now on, assume that f−1(y∗) ∈ {0, 1}k. Write f−1(y∗) = t∗‖s∗.
I has to simulate the P -oracle, the P−1-oracle, the decryption oracle,

and the challenge generator. During the simulation, he stores information
on a list. Each entry on the list is a 5-tuple (r, s, t, m′, y) such that Es(r) = t,
g(r) = m′ ⊕ s, and f(t‖s) = y. Whenever we say that a certain value r (or
r′) is or is not contained in an entry on the list, we are referring to the first
position in the entry (not the third position, which may well be equal to r
in some entry) and analogous for s, t, and m′.

The P -oracle is simulated as follows on input r‖m′.

P1 If there is an entry on the list containing r and m′, then s = g(r)⊕m′

and t = Es(r) are already defined; output t‖s and exit.

P2 If there is an entry on the list containing r, then g(r) is defined; put
s = g(r)⊕m′. Otherwise, generate a uniformly random string s.

P3 There is no entry on the list containing both r and s. Generate a random
string t such that (s, t) is not part of any entry on the list and define
Es(r) = t.

P4 Compute y = f(t‖s) and add (r, s, t, m′, y) to the list.

P5 Output t‖s.

The P−1-oracle is simulated as follows on input t‖s.

PInv1 Compute y = f(t‖s).

An OAEP Variant With a Tight Security Proof – Draft 1.0 21

PInv2 If there is an entry on the list containing s and t, then r = Ds(t)
and m′ = g(r)⊕ s are already defined; output r‖m′ and exit.

PInv3 There is no entry on the list containing both s and t. Generate a
random string r such that (r, s) is not part of any entry on the list
and define Ds(t) = r.

PInv4 If there is an entry on the list containing r, then g(r) is defined; put
m′ = g(r)⊕ s. Otherwise, generate a uniformly random string m′.

PInv5 Add (r, s, t, m′, y) to the list.

PInv6 Output r‖m′.

The decryption oracle is simulated as follows on input y.

F1 If y is on the list next to some (r, s, t, m′), then write p′‖m = m′ =
g(r)⊕ s. If p′ = p, then output m and exit.

F2 Output “Decryption Error”.

During the first phase of the algorithm (before the challenge generator
is triggered), there is nothing that can go wrong with the simulation of the
P - and P−1-oracles since they act in a completely random manner. Yet,
the decryption oracle may reject a ciphertext that is actually valid. Let
BadReject1 be this event.

After the first phase, B sends two messages m∗
0 and m∗

1 to the chal-
lenge generator. Clearly, those messages are independent from y∗. I flips
a coin b, generates a random string r∗ ∈ {0, 1}kr and defines (implicitly)
g(r∗) = s∗ ⊕ (p‖m∗

b) and Es∗(r∗) = t∗. I adds the entry (r∗, ?, ?,m∗
b , y

∗)
to the list (question marks since I does not know s∗ and t∗). Since the
first phase is independent from s∗, m∗

b is independent from s∗, which implies
that the string s∗ ⊕ (p‖m∗

b) is completely random from the view of B. In
particular, this is a perfect simulation of the challenge generator in terms of
unpredictability.

Yet, there are a few possible errors that may occur in this step. Namely,
the definitions g(r∗) = s∗ ⊕ (p‖m∗

b) and Es∗(r∗) = t∗ must be consistent
with earlier oracle queries. This is true if rQuery1 or sQuery1 have not
occurred, where rQuery1 is the event that r∗ is part of some step of the
above simulations (implicitly in the case of the decryption oracle queries)
and sQuery1 is defined analogously for s∗.

Now, the experiment continues with the second phase with oracles sim-
ulated in the same manner as before with two exceptions:

• The decryption oracle refuses to decrypt the ciphertext y∗.

• In step PInv1 of the P−1-oracle simulation, if y = y∗, then replace
the list entry (r∗, ?, ?,m∗, y∗) with (r∗, s, t,m∗, y∗). Note that I knows
the inverse of y∗ if this happens.

22 Jakob Jonsson

Again, there is a possibility that a decryption oracle query is erroneously
rejected; let BadReject2 be this event and let BadReject be the event that
either of BadReject1 or BadReject2 occurs. Also, we consider as bad the
event that a P−1-oracle query different from (s∗, t∗) has response r∗ or that
a P -oracle query contains r∗ before (s∗, t∗) is a P−1-oracle query; let rQuery2
be this event and let rQuery be the event that either of rQuery1 or rQuery2
occurs. In this event we include the case that r∗ turns up as an intermediate
value in a decryption query (though in practice the decryption oracle as
simulated by I aborts without consulting the P−1-oracle).

In the end, B outputs a bit b′. In case r∗ is not part of any query, B cannot
guess b with probability better (or worse) than 1/2 (g(r∗) = s∗ ⊕ (p‖m∗

b′)
with probability 1/2). Thus the advantage of B is 0 in this case. Assume
that sQuery1 or rQuery have not occurred but that B knows g(r∗). The
only possibility is that (s∗, t∗) is a P−1-oracle query in the second phase.
However, this implies that I knows the f -inverse of y∗. We conclude that
the success probability for I is at least

ε− Pr(sQuery1)− Pr(rQuery)− Pr(BadReject). (3)

The probability that rQuery occurs is at most (qf + qg +2qE)2−kr (there are
at most qf + qg + 2qE different r∗ that can turn up in P - and P−1-oracle
queries from A or the decryption oracle). Similarly, the probability that
sQuery1 occurs is at most (qf + qg + 2qE)2−(k−kr). Thus

Pr(sQuery1) + Pr(rQuery) < (qf + qg + 2qE)
(
2−kr + 2−kp

)
. (4)

It remains to analyze the event BadReject. Let y be the first failed
decryption query (a rejected but valid ciphertext). Write f−1(y) = t‖s. By
construction, (s, t) is not included in the list by the time of the query. Thus
r = Ds(t) is a completely random string, except that we know that r cannot
be equal to r′ = Ds(t′) for previously known values r′.

For each earlier rejected decryption query y′, there are implicit values
r′, s′, t′, m′′ that are never computed; add the 5-tuple (r′, s′, t′,m′′, y′) to
the list of entries. Also, add the target 5-tuple (r∗, s∗, t∗,m∗

b , y
∗) to the list.

Let q ≤ (qf − 1) + 1 + qg + 2qE = q0 be the number of entries on this list at
the time of the decryption query under consideration. Let q1 be the number
of entries including s; for each such entry, the corresponding r′ cannot be
equal to r (namely, this would imply either that I would be able to simulate
a correct response to the decryption query or that y is an earlier decryption
query). This means that there are 2kr − q1 possibilities for r.

We need to compute the probability that g(r)⊕ s starts with the string
p. In case there are at most ϕ values r′ on the list such that g(r′)⊕ s starts
with p, this probability is at most

2kr − (q − q1)
2kr − q1

· 2−kp +
ϕ

2kr − q1
< 2−kp + 2ϕ · 2−kr .

An OAEP Variant With a Tight Security Proof – Draft 1.0 23

Namely, either r is not on the list, in which case g(r) is unknown and the
probability of decryption failure is 2−kp , or r is on the list, in which case
there are at most ϕ possibilities for g(r) to be bad. The inequality follows
from the assumption that 2q0 ≤ 2kr ; note that q1 ≤ q0.

The probability that there are more than ϕ elements r′ on the list such
that g(r′)⊕ s starts with p is at most the probability of an (ϕ + 1)-collision
among q random strings of length kp (note that the adversary may form a
decryption query from an optimal s). This probability is less than qϕ+1 ·
2−ϕkp (there are less than qϕ+1 subsets with ϕ+1 elements and each subset
has the desired property with probability 2−ϕkp). By assumption,

qϕ+1 · 2−ϕkp ≤ 2−kp ,

which implies that the probability that g(r) ⊕ s starts with the string p is
bounded by

2−kp + 2ϕ · 2−kr + 2−kp = 2 · 2−kp + 2ϕ · 2−kr .

The total probability of BadReject is hence less than

2qf · 2−kp + 2qfϕ · 2−kr . (5)

Combining (3), (4), and (5), we obtain that the probability that the inverter
fails but not the adversary is bounded by

(qf + qg + 2qE)
(
2−kr + 2−kp

)
+ 2qf · 2−kp + 2qfϕ · 2−kr

< ((2ϕ + 1)qf + qg + 2qE)
(
2−kr + 2−kp

)
.

This concludes the proof. �

C AES-based instantiation of OAEP++

Note that OAEP and OAEP+ can be defined in terms of one single hash
function such as SHA-1 or SHA-256 [24]; there are standardized mask gen-
eration functions defined in terms of a hash function (see [34]). It would
be possible to define also OAEP++ in terms of SHA-1 or SHA-256; use the
underlying compression function as the block cipher E (compare to [15]).

However, this construction works only for hash functions that are based
on a block cipher and is in addition highly non-standard. It seems more
natural to go in the other direction, defining a mask generation function
and a key derivation function in terms of the block cipher E. Here, AES
[25] seems to have attractive properties; recall that there are three possible
key sizes (128, 192, and 256 bits). For independence between the three
functions, one may base the mask generation function on 128-bit AES and

24 Jakob Jonsson

the key derivation function on 192-bit AES, and use 256-bit AES as the
block cipher.

Defining a mask generation function with input length the block length
kr = 128 of AES is not very hard. The most obvious approach would be to
apply CTR mode, thus defining g(r) as the first k − kr bits of

Er(a + 0)||Er(a + 1)||Er(a + 2)|| . . .

(addition modulo 2kr). Er(i) is the encryption of the kr-bit representation of
the integer i, while a is a fixed initialization vector chosen in the appropriate
manner. For example, the 32 most significant bits of a might be a 32-bit
representation of the desired output length k − kr. Assuming that E is an
ideal block cipher and (k − kr)/kr is significantly smaller than 2kr/2, this
construction is almost as secure as a random oracle producing uniformly
random outputs. Namely, the output will be close to indistinguishable from
uniformly random output if k − kr is not very large; due to the birthday
paradox, the lack of colliding output blocks from Er would be a concern for
very large values of k − kr.

Defining a key derivation function (KDF) appears to be harder, espe-
cially if E is a block cipher such as AES with block length only 128 bits and
the desired KDF output length is 256 bits.
AUTHOR’S NOTE. In an attempt to define an AES-based version of RSA-KEM [36],

RSA Laboratories is currently examining different potential AES-based KDF constructions;

our hope is to find a function with a security that can be tightly related to the security of the

underlying block cipher. Clearly, such a KDF would be useful within OAEP++ as well.

An OAEP Variant With a Tight Security Proof – Draft 1.0 25

E

r (seed) m (message)

m′

s

t

t‖s (encoded message)

p

g

h

OAEP++ encoding operation.

