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Abstract

In [16], Naor, Pinkas and Reingold introduced schemes in which some
groups of servers distribute keys among a set of users in a distributed
way. They gave some specific proposals both in the unconditional and
in the computational security framework. Their computationally secure
scheme is based on the Decisional Diffie-Hellman Assumption. This model
assumes secure communication between users and servers. Furthermore
it requires users to do some expensive computations in order to obtain a
key.

In this paper we modify the model introduced in [16], requiring au-
thenticated channels instead of assuming the existence of secure channels.
Our model makes the user’s computations easier, because most compu-
tations of the protocol are carried out by servers, keeping to a more re-
alistic situation. We propose a basic scheme, that makes use of ElGamal
cryptosystem, and that fits in with this model in the case of a passive ad-
versary. We then add zero-knowledge proofs and verifiable secret sharing
to prevent from the action of an active adversary. We consider general
structures (not only the threshold ones) for those subsets of servers that
can provide a key to a user and for those tolerated subsets of servers
that can be corrupted by the adversary. We find necessary combinatorial
conditions on these structures in order to provide security to our scheme.

1 Introduction

When a group of users wish to communicate securely over insecure channels,
either symmetric or public key cryptosystems are used. Public key schemes
present some drawbacks both from the communication and the computational
point, of view. On the other hand, when symmetric algorithms are considered
in order to solve this problem, the question is then how to set up an efficient
protocol to give each group of users a common key.



The solution of setting a server responsible of the distribution and manage-
ment of the secret keys was introduced in [17] by Needham and Schroeder. This
idea of a Key Distribution Center was formalized in [3]. This model presents
some drawbacks. A single server that is in charge of the distribution of keys
to a group of users presents some weak points. It is a possible bottleneck of
the system and it must be trusted. Among the proposed solutions in order to
remove this drawback, the use of Distributed Key Distribution Centers is one
of the most accepted.

The model in which the task of a single server is distributed among a set
of servers, the Distributed Key Distribution Center model, was introduced
in [16]. Schemes fitting this model are called Distributed Key Distribution
Schemes. Some specific realizations were proposed both in the information the-
oretic model, where no limits in the computational power of an adversary are
assumed, and in the computationally secure framework, where the computa-
tional capability of an adversary is bounded.

With regard to the information theoretic point of view some studies have
been done since then: in [5] an exhaustive study on the amount of information
needed to set up and manage such a system was presented. They considered
threshold access structures, that is, those sets of servers that are authorized to
provide keys have at least ¢ servers (¢ is the threshold). Afterwards, in [6] it was
extended to a model considering general access structures. Moreover, a relation
between distributed key distribution schemes and secret sharing schemes was
shown.

However, in this paper we focus on computationally secure distributed key
distribution schemes. Previously, in [16] such a scheme was proposed, based
on the Decisional Diffie-Hellman Assumption [11], as an application of their
scheme for evaluating a pseudo-random function in a distributed way. This
scheme assumes secure communication between users and servers. Moreover, it
requires users to do some expensive computations in order to get a key.

We propose a new model for describing distributed key distribution schemes,
where the secure channel assumption is weakened to an authenticated channel
assumption. We provide an explicit construction realizing this model. The use
of the homomorphic properties of the ElGamal cryptosystem [12] allows the
servers to carry out most computations of the protocol. Note that this fact fits
with a more real world oriented situation. The basic scheme is secure against
a passive adversary which can corrupt some set of servers and obtain all their
secret information, but can not force them to change their correct role in the
protocol. Those subsets of servers that can be corrupted by the adversary are
given by an adversary structure A, which must be monotone decreasing: if a
set of servers B; € A can be corrupted, and Bs C By, then the set of servers
By € A can be corrupted, too.

But we want our scheme to be secure even under the most powerful attacks.
In this case, in which we accept the presence of an active adversary which is
able to alter the behavior of the corrupted players during the protocol, we must
add some mechanisms in order to maintain the security and the correctness of
the scheme. These tools are basically the use of verifiable secret sharing and



non-interactive zero-knowledge proofs of knowledge.

In all cases, we consider general adversary and access structures in the set of

servers, not only the threshold ones. That is, those subsets of dishonest servers
tolerated by the system as well as those subsets of servers that can provide a
valid key to a user are not necessarily defined according to their cardinality. This
general framework modelizes situations in which servers do not have all the same
power or the same susceptibility to be corrupted. We state the combinatorial
conditions that these structures must satisfy if we want our schemes to run
securely.
Organization of the paper. In Section 2 we review some cryptographic tools
that we will need throughout the rest of the paper, such as ElGamal encryption
or basics on zero-knowledge proofs, and we also present the model of distributed
key distribution schemes described in [16]. In Section 3 we explain secret sharing
schemes for general access structures, and how they can be used by a set of
participants to jointly generate a random secret shared value. In Section 4 we
propose a new model in order to minimize users’ computations and we propose
a distributed key distribution scheme for this model, computationally secure
against both passive and active adversaries. We give an explicit construction for
the passive case, based on the homomorphic properties of ElGamal encryption
scheme. Then, we introduce all the techniques that we use in order to provide
robustness for the active case to our proposal. All our results consider general
structures, not only threshold ones. Finally, in Section 5 we conclude the work
summarizing our contribution and future research.

2 Preliminaries

In this section we describe some cryptographic tools that we will need later
on. We will also explain the model of computationally secure Distributed Key
Distribution Schemes introduced in [16].

2.1 ElGamal Encryption

In [12], ElGamal proposed a public-key probabilistic encryption scheme. We
explain here an specific version of this scheme, but it can be generalized to work
in any finite cyclic group (see [15], Section 8.4.2, for example).

The public parameters of the scheme are two large primes p and ¢, such that
qlp — 1, and a generator g of the multiplicative subgroup of Zj with order g.
Every user U generates both his public and private keys by choosing a random
element z € Zj and computing y = g modp. The public key of user U is
(p,q,9,y) and his private key is z.

If a user wants to encrypt a message m € Z, for user U, he chooses a
random element 3 € Zj, and computes r = ¢° modp and s = my® modp. The
ciphertext of message m that is sent to user U is ¢ = (r, s).

When U wants to recover the original message m from the ciphertext ¢ =



(r,s), he computes
m = sr~ " modp

The semantic security of ElGamal cryptosystem is equivalent to the Deci-
sional Diffie-Hellman Assumption [11]. One of the most useful features of this
encryption schemes is its homomorphic property: if ¢; = (r;,s;) is a ciphertext
corresponding to the plaintext m;, for ¢ = 1,2 then ¢ = (172, s152) is a cipher-
text corresponding to plaintext m = mjymsy. This property is the one we need
for the encryption scheme that we will use in our proposal of a new distributed
and computationally secure key distribution scheme.

2.2 Zero-Knowledge Proofs of Knowledge

A zero-knowledge proof of knowledge allows a prover to demonstrate knowledge
of a secret while revealing no information about it to the verifier of the proof,
other than the mentioned knowledge and what the verifier was able to deduce
prior to the protocol run. Zero-knowledge protocols are examples of interactive
proof systems, in which a prover and a verifier exchange multiple messages,
typically dependent on random numbers which they may keep secret. In these
systems, there are security requirements for both the prover and the verifier:
for the prover, security means that the protocol should be zero-knowledge, that
is, the verifier gains no information on the secret; for the verifier, it means that
the protocol should be a proof of knowledge: complete and sound. Intuitively,
these two conditions mean that, with overwhelming probability, a honest verifier
accepts a proof if and only if the prover is also honest. See [15], Section 10.4.1,
for a comprehensive definition of these concepts.

Interactive proof systems can be transformed into non-interactive protocols,
following the techniques and ideas of [14] and [19]. The security of such a non-
interactive system is argued by showing that the plain interactive protocol is
secure and then replacing the verifier with a collision resistant and random hash
function; this approach has been formalized as the random oracle model [2].

In the context of this paper, we are specially interested in zero-knowledge
proofs of the validity of statements about discrete logarithms. This topic has
been deeply studied in works such as [8, 9]. We will use notation introduced by
Camenisch and Stadler [9]: for instance, the statement

PK {(a,8): A=g{g5 A B=g5}

denotes a zero-knowledge proof of knowledge of values o and 8 such that A =
gf’gg and B = g§. By convention, Greek letters («,f3,...) denote quantities
whose knowledge is being proved, while all other parameters are known to the
verifier (in this case, the values A, B, g1, g2, g3)-

2.3 Previous Computational Distributed Key Distribution
Schemes

In [16] it was introduced the notion of Distributed Key Distribution Schemes in
order to avoid the main drawbacks that the existence of a single Key Distribution



Scheme had. They considered a set of servers S = {Si,...,S,} and a group of
users U = {Uy,...,Un} (they also referred to them as clients). Each user U
has private communication with at least ¢ servers. Let C C 2 a family of sets
of users, the conferences , who want to communicate securely among them.

Initialization: Each server S; receives a share «; of some random secret
a, shared among the servers by means of Shamir secret sharing scheme. The
generation of these values can be performed by either a central authority or
jointly by a group of servers.

Regular Operation: if a user U in a conference C € C needs the key of this
conference, he proceeds as follows:

e He contacts ¢ servers Sy, ..., .S; and asks them for the key of the conference
C. Each conference C is related to a public value h¢.

e Each server S;, for ¢ = 1,...,t, verifies that the user is allowed to ask for
that key and, if so, computes the value A2/ and sends it to him through
their private channel.

e After receiving the information from the servers, the user is able to com-
pute the conference key k¢ as follows: ko = he = [['_, (h&), where \;
are the Lagrange interpolation coefficients.

3 Secret Sharing Schemes and Distributed Gen-
eration of a Random Secret Shared Value

In a secret sharing scheme, a dealer distributes shares of a secret value among
a set of players P = {Py,..., P,} in such a way that only authorized subsets
of players (those in the called access structure) can recover the secret value
from their shares, whereas non-authorized subsets do not obtain any informa-
tion about the secret. The access structure is usually noted I'. It must be
monotone increasing, i.e. any subset containing an authorized subset will also
be authorized.

Secret sharing schemes were introduced independently by Shamir [21] and
Blakley [4] in 1979. Shamir proposed a threshold scheme, i.e. subsets that can
recover the secret are those with at least ¢ members (¢ is the threshold). Other
works have proposed schemes realizing more general structures, such as vector
space secret sharing schemes [7]. An access structure T" is realizable by such a
scheme defined in a finite field Z,, for some prime g, if there exists a positive
integer r and a function ¢ : P U {D} — (Z,)" such that W € I if and only
if (D) € (¢(P;))p,ew. Here D denotes a special entity (real or not), outside
the set P. If a dealer wants to distribute a secret value = € Z,, he takes a
random element v € (Z,)", such that v - ¢(D) = z. The share of a participant
P,ePisx; =v-y(P;) € Ly Let W be an authorized subset, W € T'; then,



(D) = Y p cw MV (P;), for some A}V € Z,. In order to recover the secret,
the players of W compute

oAz = YA vap(P) = v > AVY(P) = vp(D) = z modg .

PewW PeWw PeWw

Simmons, Jackson and Martin [22] introduced linear secret sharing schemes,
that can be seen as vector space secret sharing schemes in which each player can
be associated with more than one vector. They proved that any access structure
can be realized by a linear secret sharing scheme (in general, the construction
they proposed results in an inefficient secret sharing scheme). From now on in
our work, we will consider any possible access structure I', so we will know that
there exists a linear secret sharing scheme realizing this structure. For simplicity,
however, we will suppose that this scheme is a vector space one defined by a
function ¢ over Z,. See [24] for a comprehensive introduction to secret sharing
schemes.

In many protocols, it is interesting to avoid the presence of a dealer who
knows all the secret information of the system. The role of the dealer can be
distributed among the players, as long as the secret is chosen at random. This
distributed protocol must be protected against the presence of some coalition
of players corrupted by an adversary. The monotone decreasing family of these
tolerated coalitions of corrupted servers is the adversary structure A. If the
adversary is passive, the only required condition is 'NA = (), and the distributed
generation of a random secret value can be performed by any authorized subset
A €T, as follows:

e Each player P; € A chooses at random a value k; € Z,, and distributes
it among all players in P, using the corresponding vector space secret
sharing scheme. That is, P; chooses a random vector vi € (Z,)" such
that v; - (D) = k;. Then P; sends to each player P; in P his share
kij = vi -9 (P;). The generated random secret will be x = Y, , k.

e Each player P; € P computes his share of the secret = as z; = >, 4 kij-

In effect, suppose that an authorized subset of players W € I' wants to
recover the secret . We know that there exist values {)\}’V}jew such that

(D) =3 ;cw A} 9(P;). Then players in W can obtain the secret z from their
shares:

S e = XA Yok = T e e) = Yo T AR =

JEW JEW icA JEW icA i€cA  jew
= Zvi¢(D) = Zkz =z
icA icA
We denote an execution of this distributed protocol, in the passive adversary
scenario, with the following expression:

P.T,A
(T1,-.-,%n) AL



However, if the adversary is active, some players of P can cheat during the
protocols. Verifiable secret sharing schemes were introduced in order to tolerate
this kind of situations. The two most used verifiable secret sharing schemes
are the proposals of Pedersen [18] and Feldman [13], which are both based on
Shamir’s secret sharing scheme. Whereas the security of secret sharing schemes
is unconditional, that is, subsets that are not in the access structure do not
obtain any information about the secret, independently of their computational
capability, the security of some verifiable secret sharing schemes is based on some
computational assumption; for instance, Feldman’s scheme is secure assuming
that the discrete logarithm problem in some finite field is hard.

Now we explain a distributed generation of a random secret value, shared
among players in P according to the access structure I', and secure against
the action of an active adversary who can corrupt a subset of players in the
adversary structure A. It must be performed by a subset R of players satisfying
that for all B € A, we have R— B € I'. We denote by Q = Q(T, A) the monotone
increasing family formed by those subsets R. This family is not empty if and
only if A° C T, where A° = {P — B | B € A}. In effect, P € Q if and only if
for all B € A we have that P — B € I, and this is equivalent to A° C I.

In the threshold case, where I' = {W C P : |W| > t} and the adversary
structure is usually taken as A = {B C P : |B| < t}, we have that Q = {R C
P : |R| > 2t — 1}. This family is not empty if and only if n > 2¢ — 1.

The protocol for generating a random secret value in a distributed way can
be performed by a subset R € () as follows:

e Each player P; € R chooses at random a value k; € Z,, and distributes
it among all players in P, using the following (verifiable) vector space
secret sharing scheme (it is a generalization of the threshold scheme of
Feldman [13]). Let ¢ and p be large primes such that g|p — 1. Let § be a
generator of a multiplicative subgroup of Zy with order g.

P; chooses a random vector v; = (UZ(I), .. .,vlm) € (Z,)" such that v; -

(D) = k;. Then P; sends to each player P; in P his share k;; = vi-9(FP;).

He also makes public the commitments V;; = gvﬁe), for1<?¢<r.

e Each player P; € P verifies the correctness of his share k;; by checking
that

r
ks (0
gkw — H(‘/’l )¢(PJ)
(=1
If this check fails, P; makes public a complaint against P;.

e If player P; € R receives complaints from players that form a subset
that is not in A, he is rejected. Otherwise, P; makes public the shares k;;
corresponding to the players that have complained against him. If any one
of these published shares do not satisfy the previous verification equation,
P; is also rejected.



e We denote by Qual C R the (public) set of players that pass this verifica-
tion phase. Due to the definition of the structure 2, we have that Qual
belongs to .

e The generated random secret will be z = ZiEQual ki. Note that, since
Qual € T, we have that Qual ¢ A, and so any subset in A cannot ob-
tain the secret z from their initial secret values k;. Each player P; € P

computes his share of the secret z as x; = >, 0,01 Kij-

An authorized subset of players could obtain the value of  from their shares
exactly in the same way explained for the passive case.
Note that the values D; = g% can be publicly computed by all players as

follows:
kl‘j

Djzgiﬂ%:ual — H gkij: H ﬁ(Viz)w(Pj)m

1€EQual 1€EQual (=1

We denote the output of this protocol with the expression:

(P.T,A)
—

(wlv"'vwn) (xaga{Dj}lngn)

4 Our Computational Secure Distributed Key
Distribution Scheme

In [16] a construction based on the decisional Diffie-Hellman assumption was
presented. However, this proposal requires a user to compute O(t) exponenti-
ations in order to obtain a key (where ¢ is the minimum number of servers the
user must contact with) whereas a server should compute only a single exponen-
tiation in order to help a user. This may not correspond to real situations, where
it is possible to take profit of the computational power of the servers. Thus,
we are interested in a scheme minimizing the computational effort of the user.
Next we will set up the new model of computationally secure distributed key
distribution scheme that we will use from now on. Afterwards, we will present
an explicit construction based on ElGamal encryption. We will take into ac-
count both passive and active adversaries. When we describe the protocol, first,
we will consider a passive adversary, and later on, we will note which changes
should be made in the protocol to provide security against an active adversary.

4.1 Setting up the model

Let U = {Ui,...,Un} be a set of m users and S = {S,...,S,} a set of n
servers. Let I' C 2° be a general monotone increasing access structure, formed
by those subsets of servers that are allowed to recover a secret from their shares;
and let A C 2° be a general monotone decreasing adversary structure, formed
by those subsets of dishonest servers that the system is able to tolerate. These
two structures must satisfy ANT = (). For simplicity, we assume that the access
structure I' can be realized by a vector space secret sharing scheme. That is,



there exist a positive integer r and a function ¢ : SU{D} — (Z,)" such that
A eTif and only if ¥(D) € (¢(S;))s;ea-

Let C C 2Y be a family of sets of users (conferences). Every user in a
conference needs to know the conference key in order to communicate securely
with other members of the conference. Let R C 2° be the family of sets of
servers that a user must contact with in order to obtain the conference key.
This family R must be monotone increasing, and will be different depending on
the kind of adversary (passive or active) that we consider. We say that a set
of servers in R is robust. We divide a distributed key distribution scheme into
three different phases:

Initialization Phase. We assume that the initialization phase is performed by
a robust subset of servers, that jointly performs the generation of shares {«;}ics
of a random value a, realizing the access structure I', by using the protocols
explained in Section 3. Each server has a share a; of a and any set that is not
in I' can obtain no information of this random secret value a.

Key Request and Computational Phase. A user U; in a conference C' €
C contacts with a robust subset of servers A € R asking for the key of the
conference C', which we will call k¢. Every server S; € A checks for membership
of U; in C. If he belongs to, server S; computes a share of the conference key
using «; and a value related with the conference C. Afterwards, server S;
encrypts his share of the key by means of a suitable homomorphic encryption
scheme with the public key of user U;. The contacted group of servers A, by
using homomorphic properties of the used cryptosystem, is able to compute an
encryption of the conference key k¢ from the encryptions of the shares of the
key.

Key Delivery Phase. Either a single server in A or the whole set A (de-
pending on the behavior of the adversary, passive or active, respectively) sends
the computed result to user U; through an authenticated channel. Using his
private key, the user will be able to decrypt this message obtaining in this way
the conference key.

4.2 Our Proposal for the Passive Adversary Case

Now we propose a method to construct a Distributed Key Distribution Scheme
computationally secure against a passive adversary who corrupts servers on a
subset in 4, following the model introduced in Section 4.1. We use ElGamal
cryptosystem [12], and take profit from its homomorphic properties.

We have an access structure I', such that the condition I' N A = @) holds. In
this passive case, we have that the family of robust subsets is R = T". Let p and
g be two large primes such that g|p — 1. Let H be a hash function (collision
and pre-image resistant) that inputs a conference in C and outputs an element
in Z;. We assume that each user U; has a public ElGamal key (p,q,g,y;)
corresponding to a private key z; € Z7; that is, y; = ¢*/ mod p, where g is an
element with order ¢ in Z;. Here we present our scheme:



Initialization Phase

A subset in R = T jointly performs the passive version of the protocol in Section
3 for the generation of a random shared secret, which results in

(8.0,4)
(a1,...,0p) 5

where a, a; € Z, are random.
Key Request and Computational Phase

A user Uj in a conference C' € C asks for the conference key k¢ to a robust
subset of servers A € R. These servers check the membership of the user
in the conference and perform the following distributed encryption protocol.
Note that A € R = I is an authorized set of servers and we are assuming
that the access structure I is realized by a vector space secret sharing scheme
defined by the function +. Thus, there exist values {A\1}s,c4 in Z, such that
Y(D) =3 s.ca A)(S;) and so a = dsicA AMa; mod g (in the threshold case,
these values {\!}s,c 4 would be the Lagrange interpolation coefficients). Servers
in A proceed as follows:

e Fach server S; € A applies the hash function H to the conference C,
obtaining ho = H(C) € Z;. The conference key will be k¢ = h¢. Then
each S; € A encrypts the value Y modp using the ElGamal public key
of user Uj;, which is (p, ¢, g,y;). That is:

— Server S; chooses a random element (3; € Ly,
— He computes 7; = ¢% modp and s; = hgyf mod p.

— Server S; broadcasts the ciphertext ¢; = (r;, s;).

e Now each server S; € A can mpute the encryption (r, s) of the conference
key ko = (he)® as follows:

> A8

A
r= [I7% = (@ modp
S;€EA
AL > Ao > A8 S OB
5= H sit = (he)™ e (y;)%:€4 = hg(y;)i<t mod p

S;eA

Since the elements {3;}s;c 4 are random, we have that the element ) _ , MAB;
is also random, and so (r, s) is a valid ElGamal encryption of the message
h&. We also note that the resulting ciphertext (r,s) does not depend on
the authorized subset A € ' that has been considered.

Key Delivery Phase

The ciphertext ¢ = (r, s) is sent by some server S; € A to user U;, who decrypts
it (he is the only one who can do this) and obtains automatically the conference
key ko = hg.

10



4.3 Achieving Robustness Against an Active Adversary

Next we will consider an adversary who corrupts servers on a subset in A4, in an
active way; that is, those corrupted servers may not follow the protocol properly.
The condition I' N A = ) is still necessary, of course. In this active scenario,
the family R of robust subsets of servers will be R = Q(T', A) defined as in
Section 3. Note that the condition A4¢ C I is necessary and sufficient in order to
make sure that the family R is not empty (again, the justification is explained
in Section 3).
The following changes must be introduced in each one of the phases:

Initialization Phase

We require a robust subset of servers to perform this phase. They jointly gen-
erate a random shared secret, using verifiable secret sharing (see Section 3) to
detect corrupted servers:

(a1, vam) 5 (0,5 {Dihcica)
where g is an element with order ¢ in Z} and D; = g** are the public commit-
ments associated with the shares «;’s of the secret value «.

Note that although the adversary corrupts a tolerated set of servers, these
corrupted servers will be detected; the remaining servers of the robust subset
will belong to the access structure ', because of the definition of the family R,
and they will able to finish the protocol correctly.

Key Request and Computational Phase

Now a user must ask for a conference key k¢ to a robust subset A of servers.
After this, every server S; in A broadcasts a ciphertext ¢; = (r;, s;) of its share
h¢i of the conference key as in the passive case.

We must deal with the case of corrupted servers who want to boycott the
system, by broadcasting a ciphertext & = (;, ;) which does not correspond to
the plaintext hg/.

We will detect these corrupted servers if we impose them to do a determined
proof of knowledge. After the joint generation of the secret shared value «, all
servers know public commitments D; = g% to the value «;, for 1 <1i < n. Each
server, after broadcasting ¢; = (r;, s;), must prove that he knows values «; and
B; such that D; = g%, r; = (g)% and s; = (hc)¥ (y;)%. The rest of servers
will play the role of a verifier in this non-interactive proof of knowledge. So,
following the notation of Section 2.2, each server must perform :

PK { (i) Di=g% A ri=g" A s;=(he)™(y;)" }

where D;,r;, s, g, 9%, hc, g are elements known to the verifiers. We present now
a protocol to achieve this non-interactive proof of knowledge; it is similar to the
one that appears in [1], and uses standard techniques introduced by Camenisch
[8], Stadler [23] and Camenisch and Stadler [9]. In the random oracle model,
the security of this protocol can be proved using the same strategies as them.

11



The proof PK{(a,8): A=g¥ N B = gg AN C= gg’gf} is as follows: let
¢ < k be two security parameters and H : {0,1}* — {0,1}* be a hash function.
The prover does the following;:

1. Generate 2¢ numbers uy,...,u; and vy, ..., v, at random in 7}

2. Compute, for 1 < i < ¢, the values t; = ¢\, t; = ¢g5* and t] = g3* gy’

3. ComPUte c= ﬁ(A,B,C,gl,g2,93,g4,t1,- . '7tl7t117' v 7tleatllla' .. 7tlél)
4. Compute, for 1 <i </

if ¢[i] = 0 then w; = u; and w} = v;

if ¢[i] = 1 then w; = u; — o and w} = v; — 3
5. The proof of knowledge is the tuple (¢, w1,...,w,,wi,...,w}))

The verifier of the proof must do the following;:

1. Compute, for 1 <i </

if c[i] = 0 then t; = g} , #. = gg}; and ¢! = gé”igff;
if c[i] = 1 then #; = Agl"" | . = Bgy* and ! = Cgyg,"

2. Compute c = g(A,B,C,gl,gQ,g3,g4,£1, AN ,Eg,f’l, .. .,Elé, ~Ill, N ,Elél)
3. If ¢ = ¢, then accept the proof; otherwise, reject the proof.

Each server S; verifies the proofs published by the rest of servers, until he
obtains accepted partial ciphertexts from a subset of servers in I'. Notice that
this subset in I' always exists, because of the definition of the family R. Then
S; can use the correct values ¢; = (r;,s;) corresponding to servers S; in this
subset in ' to compute, exactly in the same way as we have shown in Section
4.2, an encryption (r, s) of the conference key ko = h®, using the homomorphic
properties of ElGamal cryptosystem.

Key Delivery Phase

Each server in A sends the encryption of the conference key to user U;. After
receiving these messages, user U; selects from the whole list of values, the one
which is sent by all the servers of a subset that is not in A. This implies
that there exists at least one honest server in this subset (otherwise, the subset
would be in A), and so the corresponding ciphertext must be the correct one.
U; decrypts it by means of his private key, obtaining in this way the required
conference key.
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4.4 Some Remarks

Note that, although ElGamal cryptosystem is probabilistic, all the honest servers
obtain the same ciphertext (r, s) of the requested conference key, because of the
deterministic way in which they must calculate this ciphertext from the proba-
bilistic ciphertexts (r;, s;).

In the case of a passive adversary, all servers follow the protocol correctly.
So, a user could ask a single server for the key instead of an entire robust subset.
This server will then contact with a robust subset, and the protocol will follow
as we explain in Section 4.2. In the active case, this is not possible because
the users do not know which servers are honest, thus they could ask wrongly a
corrupted server, who could boycott the protocol.

The fact that we denote as robust the subsets of servers that can provide a
valid conference key to a user is not accidental. We define these robust subsets
in such a way that their members can execute the protocol correctly even if they
contain some subset of players corrupted by the adversary. Roughly speaking,
that is the definition of a robust distributed protocol, and for this reason we use
the terminology of robust subsets.

And last but not least, note that in some way, the model we propose can
be rewritten as a Multi-party protocol. Indeed, the protocol in which servers
compute shares of the encryption of a conference key from their shares of the
random secret value « fits in a Multi-party framework. This could be used in
order to prove security properties of the protocol by means of using techniques
of Canetti [10] to prove security in Multi-party protocols.

5 Conclusion

In this paper we introduce a new model for distributing keys in a distributed
way in the computationally secure framework, and we design a protocol realizing
it. This model minimizes the computations that every user has to carry out in
order to obtain a key, and transmits them to the servers, which are supposed
to have more powerful computational resources. In order to fit this protocol
into a real oriented scenario we introduce techniques to provide security against
both passive and active adversaries who can corrupt some groups of servers.
We consider general structures, not only threshold ones, for both subsets of
servers that can provide a valid key to a user and subsets of servers that can
be corrupted by the adversary. We find the combinatorial conditions that these
structures must satisfy if we want our scheme to run securely.

In our model, we require secure and authenticated channels among the
servers only in the initialization phase. In the rest of phases, servers only need
an authenticated broadcast channel among them. In the communication be-
tween a user and a server, authenticated channels are needed, but not secure
ones, because the information that servers send to users is encrypted. This
last point is an improvement with respect to the model in [16], because in that
proposal secure channels between servers and users were required. Even the
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requirement of secure channels among the servers can be eliminated (in our
proposal as well as in [16]), if the secret sharing schemes that servers use in the
initialization phase are publicly verifiable (see [23, 20] for the details). The use
of these schemes, however, reduces the efficiency of the distributed generation
of a random secret shared value in Section 3.

In the passive case, a user only needs to decrypt a value (basically, one
exponentiation) in order to obtain the requested key. Recall that in the proposal
of [16] each user had to compute O(t) exponentiations to get the key. In the
active case, he must in addition compare a list of values and detect the correct
ciphertext. But these operations are always necessary if we consider an active
adversary, because the user must verify in some way which of the informations
that he receives come from a corrupted server and are, therefore, incorrect.

Some interesting questions arise from this work: first of all, it must be defined
in a formal way all security requirements that must satisfy a distributed key
distribution scheme and prove the security of our scheme based on this security
model. Maybe the strategy is to see these schemes as Multi-Party protocols,
and apply the security results of Canetti [10] in this scenario. It would be also
interesting to check if other cryptosystems could fit in with our model, and if so,
to study the efficiency of the consequent schemes. Likewise, some other security
requirements such as proactivity or resharing would be desirable.
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