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Abstract. We present an algorithm for computing the zeta function of
an arbitrary hyperelliptic curve over a finite field F, of characteristic 2,
thereby extending the algorithm of Kedlaya for odd characteristic. For a
genus g hyperelliptic curve defined over F»» , the average-case time com-
plexity is O(g***n®¢) and the average-case space complexity is O(g3n?),
whereas the worst-case time and space complexities are O(g°T*n®*T¢) and
0O(g*n®) respectively.
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1 Introduction

Computing the zeta function of abelian varieties over finite fields is one of the
most important problems in computational algebraic geometry and has many
applications [29], e.g. the construction of cryptosystems based on Jacobians
of curves. The most important systems use elliptic curves as introduced by
Miller [22] and Koblitz [16] or hyperelliptic curves which were proposed by
Koblitz [17]. More general, but less practical systems work in the Jacobian of
superelliptic curves [12] and of Cqp curves [1].

The problem of counting the number of points on elliptic curves over finite
fields of any characteristic can be solved in polynomial time using Schoof’s al-
gorithm [33] and its improvements due to Atkin [2] and Elkies [7]. An excellent
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account of the resulting SEA-algorithm can be found in [3] and [20]. For finite
fields of small characteristic, Satoh [30] described an algorithm based on p-adic
methods which is asymptotically faster than the SEA-algorithm. Skjernaa [34]
and Fouquet, Gaudry and Harley [9] extended the algorithm to characteristic 2
and Vercauteren [36] presented a memory efficient version. Mestre proposed a
variant of Satoh’s algorithm based on the Arithmetic-Geometric Mean, which has
the same asymptotic behaviour as [36], but is faster by some constant. Recently,
Satoh, Skjernaa and Taguchi [31] described an algorithm which has a better
complexity than all previous algorithms, but requires some precomputations. A
nice overview of all these variants can be found in the survey by Satoh [32].

The equivalent problem for higher genus curves seems to be much more dif-
ficult. Pila [28] described a theoretical generalization of Schoof’s approach, but
the algorithm is not practical, not even for genus 2 curves as shown by Gaudry
and Harley [13]. An extension of Satoh’s method to higher genus curves needs
the Serre-Tate canonical lift of the Jacobian of the curve, which need not be
a Jacobian itself and thus is difficult to compute with. The AGM method does
generalize to hyperelliptic curves, but currently only the genus 2 case is practical.

Recently Kedlaya [15] described a p-adic algorithm to compute the zeta func-
tion of hyperelliptic curves over finite fields of small odd characteristic, using the
theory of Monsky-Washnitzer cohomology. The running time of the algorithm is
O(g*+*n®*¢) for a hyperelliptic curve of genus g over F,» . The algorithm readily
generalizes to superelliptic curves as shown by Gaudry and Gurel [14].

A related approach by Lauder and Wan [18] is based on Dwork’s proof of
the rationality of the zeta function and leads to a polynomial time algorithm for
computing the zeta function of an arbitrary variety over a finite field. Note that
Wan [37] suggested the use of p-adic methods, including the method of Dwork
and Monsky, already several years ago. Despite the polynomial time complexity
of the Lauder and Wan algorithm, it is not practical for cryptographical sizes. Us-
ing Dwork cohomology, Lauder and Wan [19] adapted their original algorithm for
the special case of Artin-Schreier curves, resulting in an O(g®+ten3*+¢) time algo-
rithm. In [6], we described an extension of Kedlaya’s algorithm to Artin-Schreier
curves in characteristic 2 which has the same time complexity O(g®+°n3+).

In this paper we extend Kedlaya’s algorithm to arbitrary hyperelliptic curves
defined over a finite field of characteristic 2. For a genus g hyperelliptic curve de-
fined over [y , the average-case time complexity is O(g***n3+¢) and the average-
case space complexity is O(g®n®), whereas the worst-case time and space com-
plexities are O(g°+*n3t¢) and O(g*n?) respectively.

Furthermore, a first implementation of this algorithm in the C programming
language shows that cryptographical sizes are now feasible for any genus g. For
instance, computing the order of a 160-bit Jacobian of a hyperelliptic curve of
genus 2, 3 or 4 takes less than 100 seconds.

The remainder of the paper is organized as follows: after recalling the for-
malism of Monsky-Washnitzer cohomology in Section 2, we study cohomology
of hyperelliptic curves over finite fields and show how to extend Kedlaya’s algo-
rithm to characteristic 2 in Section 3. Section 4 contains a ready to implement



description of the resulting algorithm and a detailed complexity analysis. In Sec-
tion 5, we present running times and memory usages of an implementation of
this algorithm in the C programming language and we give a few examples of
hyperelliptic curves suitable for use in cryptography.

2 Monsky-Washnitzer Cohomology

In this section we briefly recall the definition and main properties of Monsky-
Washnitzer cohomology. More details can be found in the seminal papers by
Monsky and Washnitzer [24-26], the lectures by Monsky [27] and the survey by
van der Put [35].

Let X be a smooth affine variety over a finite field k := F, with coordinate
ring A. Let R denote a complete discrete valuation ring with uniformizer T,
residue field R/mR = k and fraction field K of characteristic 0. Elkik [8] showed
that there always exists a smooth finitely generated R-algebra A such that
A/mA = A. To compute the zeta function of X we need to lift the Frobenius
endomorphism F on A to the R-algebra A, but in general this is not possible.
Note that for elliptic curves, Satoh solves this problem by using the Serre-Tate
canonical lift which does admit a lift of the Frobenius endomorphism. To remedy
this difficulty one could work with the m-adic completion A of A. But again
we run into difficulties since the de Rham cohomology of A is larger than that
of A. As an example, consider the affine line over F,, so A = R[z], then each
term in ) 7 o p"aP" ~'dx is an exact differential form, but its sum is not, since
S , 2P is not in A®. The main problem is that the series o0  p"a?" !
does not converge fast enough for its integral to converge as well. Monsky and
Washnitzer solve this problem by working with a subalgebra Af of A, whose
elements satisfy growth conditions. This dagger ring or weak completion Al is
defined as follows: write A := R[z1,...,2,]/(f1,---, fm), then

AT = R<$1y-"7$n>T/(f17"'7fm)7 (1)

where R{(x1,...,z,)! consists of power series

{Zaam“ € R[[z1,...,2,]] | C,p e R,C > 0,0 < p < L,Va: |a,| < Cp""'},

(2)
with @ = (a1,...,ap), 2% := z{* -+ 2% and |a| := 31 ; o;. Equivalently,
R(zy,...,z,)" can be defined as the set of overconvergent power series, i.e.
elements of R[[x1,...,z,]] that converge in a polydisc

{(x1,...;2,) € K" | |z1| < p1,.. ., |20| < pn} (3)

with all p; > 1. A homomorphic image of R(zi,...,z,)! is called a weakly
complete finetely generated (w.c.f.g.) algebra over R. The ring A clearly is a
w.c.f.g. algebra and furthermore satisfies At/mAt = A and is flat over R. An
algebra which satisfies these three properties is called a lift of A. One can show
that if A is smooth and finitely generated, there always exists a lift AT of A and



that every lift of A is R-isomorphic to Af. Furthermore, let B/k be smooth and
finitely generated, with lift Bt and let G : A — B be a morphism of k-algebra’s,
then there exists an R-homomorphism G : At — Bt lifting G. This last property
implies that we can lift the g-power Frobenius from A to Af.

For A we can define the universal module D'(A") of differentials

D'(A") = (Al day + -+ Al dxn)/(i at( 94

i=1

ofi
P dzy +---+ Bz,

dxy,)). (4)
Let Di(At) := A" D'(A!) be the i-th exterior product of D'(A) and denote
with d; : D}(A"T) — D**1(A") the exterior differentiation. Since d;;1 od; = 0 we
get the de Rham complex D(A')

0 — D(Ah) 2 D'(4l) & D?(At) 25 D3(4l). .. (5)

The i-th cohomology group of D(A') is defined as H*(A/R) := Ker d;/Im d; ;
and Hi(A/K) := H'(A/R) ®g K finally defines the i-th Monsky-Washnitzer
cohomology group. One can prove that for smooth, finitely generated k-algebra’s
A the map A — H*(A/K) is well defined and functorial, which justifies the
notation. Let F be a lift of the g-power Frobenius endomorphism of A to Af, then
F' induces an endomorphism F, on the cohomology groups. The main theorem
of Monsky-Washnitzer cohomology is that the H?(A/K) satisfy a Lefschetz fixed
point formula.

Theorem 1 (Lefschetz fixed point formula) Let X/F, be a smooth affine
variety of dimension d, then the number of I, -rational points on X equals

d

SO ()T (¢F | HU(E/K)) (6)

i=0

3 Cohomology of Hyperelliptic Curves

3.1 Overview of Kedlaya’s Construction

Let F, be a finite field with ¢ = p™ elements and fix an algebraic closure Fq.
Throughout this section we will assume that p is a small odd prime. Let Q(z)
be a monic polynomial of degree 2g 4 1 over [F, without repeated roots and let
C be the affine hyperelliptic curve defined by the equation y? = Q(z). Kedlaya
does not work with the curve C itself, but with the affine curve C' which is
obtained from C by removing the locus of y = 0, i.e. the points (£;,0) € F, x F,
where &; is a zero of Q(z). The coordinate ring A of C is clearly given by
F,lz,y,y 1]/ (¥* — Q(x)). It is not really necessary to work with the curve c
instead of C, but in practice it is more efficient to do so.

Let K be a degree n unramified extension of Q,, with valuation ring R, such
that R/pR = F,. Take any monic lift Q(z) € R[z] of Q(x) and let C be the



smooth affine hyperelliptic curve defined by 3> = Q(z). Let C’ be the curve
obtained from C' by removing the locus of y = 0. Then the coordinate ring
of C'is A = R[z,y,y']/(y> — Q(x)). Let A" denote the weak completion of
A. Since F = ", with & the p-power Frobenius, it is sufficient to lift & to an
endomorphism o of Af. It is natural to define o as the Frobenius substitution
on R and to extend it to At by mapping = to 2% := 2P and y to y” with

W) v io (1 {2) (Q(m)"y;p?(m)p)i.

An easy calculation shows that ord, (*/?) > 0 which implies that y? is an element
of At since p divides Q(x)” — Q(x)?. Note that it is essential that y~! is an
element of At which explains why we compute with C” instead of C. By choosing
a different lift of F' one can avoid working with C’ altogether, but this will be
less efficient since the analogue of the Newton iteration (7) is more involved.

Since C' has dimension one, the only non-trivial Monsky-Washnitzer coho-
mology groups are H°(A/K) and H'(A/K). Finding a basis for H*(A/K) is
easy since by definition H°(4/K) := Kerdy, with dy the derivation from Af
into D' A", which implies that H°(A/K) is a one dimensional K-vectorspace.
The case H!(A/K) is more difficult and proceeds in two steps. Kedlaya first
constructs a basis for the algebraic de Rham cohomology of A and devises re-
duction formulae to express any differential form on this basis. Then he proves
that these formulae lead to a convergent process when applied to the de Rham
cohomology of At i.e. H'(A/K) and concludes that the basis for the algebraic
de Rham cohomology also is a basis for H!(A/K).

The de Rham cohomology of A splits into eigenspaces under the hyperelliptic
involution: a positive eigenspace generated by z‘/y?dz for i = 0,...,2g and a
negative eigenspace generated by x?/y dx fori = 0,...,2g—1. Using the equation
of the curve, any differential form can be written as EkB:L_ Bu Zfi 0 a; rzt [y* de
with a; ; € K and By, B, € N. Since Q(z) has no repeated roots, we can always
write an arbitrary polynomial P(z) € K[z] as P(z) = S(2)Q(z) + T(2)Q'(z).
Using the fact that d(T(z)/y®~?) is exact, one obtains

P(z) , 2T'(z)\ dz
ys dx = (S(:U)-i— (s—2)> F; (8)

where = means equality modulo exact differentials. This congruence can be used
to reduce everything to the case k = 1 and k = 2. A differential P(z)/ydz with
deg P(x) = m > 2g can be reduced by repeatedly subtracting suitable multiples
of the exact differential d(x 29y) for i = m,...2g. Finally, it is clear that the
differential P(x)/y?dx is congruent to (P(z) mod Q(z))/y?dr modulo exact
differentials.

Kedlaya then proves two lemmata which bound the denominators introduced
during the above reduction process. The result is as follows: let A(x) € R[z] be
a polynomial of degree at most 2g, then for k € Z the reduction of A(z)y2**+! dx

y’ =yf (1 + (M)

becomes integral upon multiplication by le°gP(2|k|+1)J. This implies that the
reduction process converges for elements of D'(A).



The final step in the algorithm consists of computing the action induced by o
on a basis of H'(A/K). Using the Lefschetz fixed point theorem, Kedlaya shows
that it is sufficient to compute the matrix M through which ¢ acts on the anti-
invariant part H'(A/K)~ of H'(A/K). Therefore we only need to compute
(¢ Jydz)® = pxPlHD=1/yo dg for i = 0,...,2g — 1. Using the aforementioned
reduction process we express (z'/ydz)° on the basis of H!(A/K)~ and com-
pute the matrix M. The characteristic polynomial of Frobenius can then be
recovered from the coefficients of the characteristic polynomial of the matrix
MM?---M°""" through which the Frobenius F = o™ acts on H!(A4/K)".

3.2 Cohomology of Hyperelliptic Curves over Fan

Let F, be a finite field with ¢ = 2" elements and fix an algebraic closure F,.
Consider the smooth affine hyperelliptic curve C' of genus g defined by the equa-
tion

C:y* +h(z)y = f(2), (9)
with h(z), f(z) € F, [], f(z) monic of degree 29 4+ 1 and degh(z) < g. Write
h(z) as ¢- [[,_o(z — 6;)™ with 6; € F;, ¢ € F,; \ {0} the leading coefficient

of h(z) and define H(z) = [[[_,(z — 6; ) e Iy [z]. If h(z) is a constant, we set
H(z) = 1. Without loss of generality we can assume that H(z)| f(z). Indeed, the
isomorphism defined by z — z and y » y + > :_, bz transforms the curve in

y% + h(z)y Z bia® —h(z) Y bt (10)
1=0

The polynomial H () w111 d1v1de the right hand side of the above equation if and
onlyif f(6;) = > i 0! b 0 ‘forj =0,...,s. Thisis a system of linear equations in
the indeterminates bi and its determinant is a Vandermonde determinant. Since

the §j are the zeros of a polynomial defined over Fy, the system of equations is
invariant under the g-th power Frobenius automorphism F' and it follows that

the 52 and therefore the b; are elements of F,. We conclude that we can always
assume that H(z)| f(x).

Let 7 : C(F,) — A (F,) be the projection on the z-axis. It is clear that 7
ramifies at the points (0;,0) € F, x F, for i = 0,...,s where H(6;) = 0. Note
that the ordinate of these points is zero, since we assumed that H(z)| f(x). Let
C' be the curve obtained from C by removing the ramification points (;,0) for
i=0,...,s. Then the coordinate ring 4 of C is

Fylz,y, H(@)™')/(y* + h(z)y - f(2)) (11)

Analogous to the odd characteristic case, it is not really necessary to work with
= A
the affine curve C' instead of C, but again it turns out to be more efficient. The

coordinate ring of C' contains the inverse of F(a:)_whic_h will enable us to choose
a particular lift of the Frobenius endomorphism F' of A.



Let K be a degree n unramified extension of » with valuation ring R and
residue field R/2R = F,. Write h(z) = ¢ - [[;_, P;i(z), where the P;(z) are
monic irreducible over F,. Let D = max;t;, then h(z) divides H(x)P, since
we have the identity H(z) = [[;_, Pi(z). Lift P;i(z) for i = 0,...,r to any
monic polynomial P;(z) € R[z]. Define H(z) = [[;_, Pi(z) and h(z) = c-
[Ti_o Pi(z)%, with c any lift of ¢ to R. Since H(z) divides f(z) we can define
Q(z) = f(x)/H(z). Let Q;(z) € R[z] be any monic lift of Q#(2) and finally
set f(x) = H(z)Qs(x). The result is that we have now constructed a lift C' of
the curve C' to R defined by the equation

C:y* +h(z)y = f(z). (12)

Note that due to the careful construction of C' we have the following properties:
H(z)|h(z), H(z)| f(z) and h(z) | H(x)P. Let K" be the maximal unramified
extension of K with valuation ring R"". For k = 0,...,s, let ; be the zeros of
H(z) and note that these are units in R"". Furthermore, let 7 : C(K) — A! (K)
be the projection on the z-axis, then the (g, 0) are ramification points of .

Consider the curve C’ obtained from C by deleting the ramification points
(0x,0) for £ =0,...,s, then the coordinate ring A of C’ is

Rlz,y, H(z) "]/ (y* + h(z)y — f(z)) (13)

and there exists an involution ¢ on A which sends z to z and y to —y — h(z). Let
At denote the weak completion of A. Using the equation of the curve, we can
represent any element of A" as a series }7°° _(U;(z) + Vi(z)y)S(z)?, with the
degree of U;(x) and V;(z) smaller that the degree of S(x), where S(z) = H(z) if
deg H(z) > 0 and S(z) = z if H(z) = 1. The growth condition on the dagger ring
implies that there exist real numbers § and € > 0 such that ords(U;(x)) > €-]i|+4
and ords(Vi(z)) > €-]i + 1|+ J, where ords(P(x)) is defined as min; ords(p;) for
P(z) =) pja’ € K|z].

Lift the 2-power Frobenius o on F; to the Frobenius substitution o on R. We
extend o to an endomorphism of At by mapping = to 22 and y to y°, with

()2 4+ h(z)°y’ — f()° =0 and y° =y* mod 2. (14)

Using Newton lifting we can compute the solution to the above equations as an
element of the 2-adic completion of A as

Wi + h(z)” Wi — f(2)”

Wir = Wi = oWy, + h(z)”

mod 2k +1, (15)

The only remaining difficulty in the above Newton iteration is that we have to
invert 2W, + h(z)? in the ring A%°. Since h(z) | H(z)?, it makes sense to define
Qu(z) := H(z)P/h(z) and we clearly have 1/h(z) = Qg(x)/H(z)P. We can
now compute the inverse of 2Wj, + h(z)? as

Qn(z)?
H(z)2D - (1 + QH(w>2<szZk(:)gg>v—h<w>2))

(16)




Note that h(z)° = h(z)? mod 2, which implies that the denominator in the
above formula is invertible in A°°. Contrary to the odd characteristic case it
is not immediately clear that the solution W := limj_, o W} is an element
of At. The existence of such a solution follows immediately from a theorem by
Bosch [4], but since we need an explicit estimate of the rate of convergence, we
prove the following lemma.

Lemma 1 Fork>1,let W, = 2% Ui(2)S(@)i+ 2, Vi(z)S(z)iy € A,

i:—Lk i:—Lk

with S(z) = H(xz) if deg H(z) > 0 and S(z) = z if H(z) = 1, satisfy
W2 + h(z)° Wy — f(x)° =0 mod 2% and Wj, = y? mod 2 (17)

with orda(U;(x)) < k for —Ly, <i < Ay and ord2(Vi(z)) < k for —Ly < i < By.
Then Ay, By and Ly can be bounded for k > 1 as
Ay < 2k(df — 2d%) + 2d%,
By, < 2(k — 1)(af — 2d%) + (df - d2), (18)
Ly <4kD - 2D,
with dg := deg f(z)/ deg S(z) and d% := deg h(x)/ deg S(z).

Proof: The lemma is clearly valid for k¥ = 1 since Wy = f(x) — h(x)y which
implies that 4; < df;, B; <d% and L; < 0. The Newton iteration (15) can be
rewritten as

h(z)2 W1 = W2 + (h(z)? = h(z)°) Wi, + f(2)° mod 2F+. (19)

Let ax(z) == Y%, Ui(z)S(z)' and Bi(z) := Y7, Vi(2)S(z)' such that
Wi = ar(x) + Br(z)y. Note that Wi = Wi_1 mod 2¥~1, so we can define

Br(x) — Br—1(x)

ok—1 ’

ap(z) — ap_1(x)
ok—1

Ag k() == and  Agy(z) = (20)

for k > 1 and Ay o(z) := Ag,e(z) := 0. It is clear that W}, can be written as
Wi = Aq1+2002++25 1Ay p+y (A1 + 2452 +---+28 1A ,) . (21)

Plugging this into the Newton iteration gives the following equation

W@ Wi =— Y 271 (A Aa; + (f(z) — h(z)y) Asids,)
i+ 1Sk

—y Y 2 A Az = Y 20D (AL + (f(e) - h(z)y)AF,)
i+j—1<k+1 2(i—1)<k+1

+ (h(z)? = h(z)7) D 27 (Awi + Apiy) + f(2)” mod 2671 (22)
i<k+1



By definition Qg (z)h(z) = H(z)?, which implies 1/h(z)? = Qu(x)?/H (z)?P
and deg Qu(x) = D deg H(z)—deg h(z). Since deg Ay ,; < A; and deg Ag; < B;,
we conclude that Ay, is less than or equal to

. . B: 1t . 9B: + d?
max <i+rjyl<%x+2(Az + A;,B; + B; + dy), 2Zn<1%§3(2A1, 2B; +d%),

Jmax A; + 2dg,2d3;) —2dk. (23)

Using the bounds given in (18) for A; and B; we see that Ag41 also satisfies the
bounds (18). A similar reasoning can be used to prove that Bpy1 and Lg41 also
satisfy the given bounds. |

The previous lemma indeed shows that we can lift the g-power Frobenius
F to an endomorphism F on the dagger ring A'; it suffices to take F := o".
Before we can actually compute the zeta function using the Lefschetz fixed point
theorem, we need to determine a basis of the K-vectorspace H*(A/K).

Analogous to the odd characteristic case, the algebraic de Rham cohomology
H},z(A/K) of A splits into eigenspaces under the hyperelliptic involution. The
positive eigenspace Hp »(A/K)7 is generated by z¢/H (z)dz fori =0,...,s and
the negative eigenspace H,(A/K)~ is generated by z'ydz fori = 0,...,2g — 1.
Note that the positive eigenspace corresponds to the deleted ramification points
(6k,0) for k = 0,...,s. Every element of Hh(A/K) can be written as a lin-
ear combination of differentials of the form z* H(z)™y! dz, zF H(z)™y' dy with
k,l € N and m € Z. Using the equation of the curve, we can reduce to the
case [ = 0 or 1. Since d(z*H(z)™y) and d(z*H(z)™y?) are exact, we con-
clude that H}(A/K) is generated by differentials of the form z*H(z)™ dz
and % H(z)™y dz with k € N and m € Z.

It is clear that ¥ H(z)™ dx is exact for k € N and m > 0. If deg H(z) > 0
and m < 0 we can assume that 0 < k < deg H(x) and since H(z) is squarefree
we can write z* as A(z)H (z) + B(z)H'(z), which leads to

2 H(z)™ do = A(z)H(z)™*" de + B(z)H'(z)H(z)™ dz. (24)

Since d(B(z)H(x)™*!) is exact we can reduce the above differential further for
m < —1 by using the relation

B'(z)H (z)™+!

B(z)H'(z)H(z)™ dx = — o1

dz, (25)
where = means equality modulo exact differentials. As a result we can now reduce
any form z* H(x)™ dz to a linear combination of the differentials 2/ H (z) dx for
1=0,...,8.

For m > 0 we can reduce the differential form z* H(x)™y dx for k € N if we
know how to reduce the form z’ydz for i € N. Rewriting the equation of the
curve as (2y + h(z))? = 4f(x) + h(z)? and differentiating both sides leads to



(2y + h(z))d(2y + h(x)) = (2f'(z) + h(z)h' (z)) dz. Furthermore, for all j > 1,
we have the following relations

21 (2f'(x) + h(z)R' (2))(2y + h(z)) dz = 27 (2y + h(z))? d(2y + h(z))

(2y + h(z))? da?

1
-3

—Jui 1 41(0) + hw) 2y + i) o

Since P(z)h(z)dz is exact for any polynomial P(z) € KJz], we finally obtain
that

[:vj(2f’(x) + h(z)h'(z)) + %mj_l(élf(x) + h(z)?)| ydr =0.

The polynomial between brackets has degree 2¢g + j and its leading coefficient is
2(2g +1) + 4j/3 # 0. Note that the formula is also valid for j = 0. This means
that we can reduce ziydz for any i > 2g by subtracting a suitable multiple of
the above differential for j =i — 2g.

For m < 0 we need an extra trick to reduce the form z*H (z)™ydz with
k € N. Recall that Qs(xz) = f(x)/H(x) and since the curve is non-singular,
we conclude that gcd(Qs(x), H(z)) = 1. Furthermore, H(z) has no repeated
roots which implies ged(H (z), Qs(x)H'(x)) = 1. Let ¢ = —m > 0, then we can
partially reduce z*y/H(z)!dz by writing z* as A(z)H(z) + B(z)Qs(z)H'(z),
which leads to

a* _ Az B(z)Qy(z)H'(z)
HE ' T B ' T )y

ydzx. (26)

The latter differential form can be reduced using the following congruence

5((;6)),~ (2f'(z) + h(z)h' (2))(2y + h(z)) do = 5 ((j)) (2y + h(z))?d(2y + h(z))
= —%(23} + h(z))3d (}?(Z?z) .

Substituting the expressions h(z) = Qp(z)H(z), f(z) = Qs(x)H(z) and
(2y + h(x))? = 4f(z) + h(z)?, we get

B(2)Qy(z)H'(z)
H(z)

ydr =

B(iH'Qj — 6Q; — 3Qnh') — B'(4Q; + Qnh)
(6 — 4i)Hi~1

I
ydx + ﬁda:, (28)

where I(x)/H(z)dz is a suitable invariant differential. As a result we can write
any form z*¥H (z)™y dz for k € N and m € Z as a linear combination of the
differentials z'y dz for i =0,...,29 — 1 and z¢/H(z)dz for i = 0,...,s.
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To show that the Monsky-Washnitzer cohomology H'(A/K) is generated by
the same differential forms as the algebraic de Rham cohomology, we need to
bound the denominators introduced during the reduction process. Therefore we
prove the following two lemmata.

Lemma 2 Let A := R[z,y]/(y* + h(z)y — f(z)) and suppose that
2g—1
2"y dr = Z a;z'y dz + dS, (29)
=0
withr €N, a; € K and S € A® K. Then 2™a; € R, 2™'S — 8 € A, where

m = 3+ |logy(r+g+1)], m =1+ m+ |log,(2g + deg h(z))| and B some
sustable element in K.

Proof: The proof has two distinct parts. The first part is similar to Kedlaya’s
argument in [15, Lemma 3], and is based on a local analysis around the point at
infinity of the curve C. Put ¢t = 29 /y, then one easily verifies that

e=t2 14 ot | and y=t"[1+) 8],  (30)
j=1

j=1

with aj, 8; € R. To see this, put z = 1/z, rewrite the equation of the curve C
as z + 291 h(1/2) — 122291 f(1/2) = 0 and write z as a power series in ¢ using
Newton iteration. The relation (29) can be rewritten as

2g—1

212" (2y + h(x)) dx = Z 2™ a2t (2y + h(z)) dz + dT, (31)

i=0
with T € A ® K. Considering the involution 1 of A which sends z to z and
2y + h(z) to —(2y + h(x)), we see that we can write T = Zﬁio Az (2y + h(z)),
with IV big enough and A; € K. This yields

2g—1

2m 1" (2y + h(z)) dz — Z 2™ g, 2" (2y + h(z)) dx
=0

N
=d (Z Azt (2y + h(m))) . (32)

=0

In the above equation we express z and y in terms of ¢ using equalities (30).
Since ziy = 7272971 ... we get 2'(2y + h(x)) dx = (—4t~2297% ... dt,
which yields

2mt Nyt dt

j=— max(2r+2g+4,69+2)

N
—d (Z 24,;(¢7272071 4y Ay (et 2im2deghl(e) -)) , (33)

=0

11



with ; € K for all j and v; € R when j < —2(29g—1) —2g—4 = —6g — 2
and ¢ the leading coefficient of h(x). Note that ¢ is a unit in R. Integrating with
respect to ¢t and dividing by 2 gives

N N
. . A ,
14j — ($4—2i-2g—-1 4 | v (np—2i—2degh(z) 4 |
E vt = E At + )+.§ 5 (ct +--4),
j>— max(2r+2g+3,69+1) =0 =0

(34)
with 7} € K for all j and v; € R when j < —6g — 1. Indeed the integration
process introduces denominators which become integral after multiplication with
2Uos(2r+29+2)] — 9m=2 if p > 29 — 1. A first consequence of (34) is that A; = 0
for all i > max(r + 1,2g). We claim that (34) implies that A; € R for all i > 2g.
Suppose the claim is false. Then let iy be the largest integer with i > 2¢ and
A;, € R. Note that —2ip —2g—1 < —6g — 1, since ¢9 > 2g. Hence the monomials
in the left hand side of (34) with degree < —2ig — 2g — 1 have coefficients in R.
Moreover the monomials of degree < —2ig — 29 — 1, in the first sum in the right
hand side of (34) also have coefficients in R, but this is false for the monomial of
degree —2io—2g—1. Hence the second sum in the right hand side of (34) contains
a monomial of degree —2iy — 29 — 1 whose coefficient is not in R. That means
that there is a maximal i; with 4;, /2 ¢ R and —2i; —2degh(z) < —2ip—2g—1.
Because of parity we have that —2i; —2 deg h(z) < —2ip—2g—1. Since ¢ is a unit,
the right hand side of (34) contains a monomial of degree —2i; — 2degh(z) <
—2ig — 2g — 1 whose coefficient is not in R. But this contradicts what we said
about the left hand side. This finishes the claim that 4; € R for all i > 2g.

We now turn to the second part of the proof. Note that (2y + h(z))? =

v(z) with v(z) := 4f(z) + h(z)2. Moreover, d(2y + h(z)) = 2yw+(,f()w) dz, where
w(z) := 2f'(z) + h(z)h'(x). We will use these formulae to deduce from (32)

a relation which does not involve y. For this purpose we multiply (32) with

2y+h(z) _ .
ydz(x) = d(2;”4(_?(z)) obtaining
291 . N . N .
2T y(x) — Z 2m g xtu(z) = Z Aziz" o(z) + ZA,-:U’U)(:U). (35)
=0 =0 =0

We rewrite this in the form

(Z 2m_1aiwi> v(z) + (Z Aii.fl?i_l) v(z) + (Z Ai$i> w(z) = F(z), (36)
i=0 =0 =0
where

N N
F(z) =2 ¢"v(z) — Z Azt (z) — Z Agriw(z) (37)

i=2g+1 i=2g+1

is a polynomial over R, since A; € R for all i > 2g. From equations (36) and (37)

it follows that Efi o Aibli, has valuation > 0 for each root ) of H(z), because

12



0 and w(6g) # 0. To get rid of the disturbing factor 2 in the definition
, we consider g(z) = h'(z)H(z)/h(z) € Rz] and u(z) := L(w(z) —
)/H(z)) = f'(z) — 2¢(=)f(x)/H(z). Note that u(z) € R[z], degq(z) =
max(0,deg H(x) — 1), degu(x) = 2g and that the leading coefficient of u(x) is a
unit in R. Rewrite equation (36) in such a way that w(z) gets replaced by u(z):

2g—1 29 q(x) 2g
2™ gzt + Azt 2L Azt ) v(z
(X >+ 405"

=0 =0
+ (Z 2A,-:ci> u(z) = F(z). (38)
=0

Write q(z) 379, Azt = H(;c) 329" Biz' + Rem(z), with Rem(z) € Kl[z] of
degree < deg H(x). Since ;7 29, A;Bi has valuation > 0 for each root 8y, of H(z),
the same holds for Rem(6y,). Thus Rem(a:) € RJz] since the discriminant of H (x)
is a unit in R. Hence

<2gz_1(2m Ya; + (i + 1) A1 + B;) ) (ZQA&C)

) Rem(z)v(z) ‘

=F0 " )

(39)
We consider (39) as a system of 4g+1 linear equations in the unknowns 2™~ 1a; +
(i+1)Aip1 + Bifori =0,...,2g — 1 and 24, for ¢ = 0,...,2¢g. The determi-
nant of this system is the resultant Res(v(z),u(z)) of v(z ) and u(x) because
degv(z) = 2g + 1 and degu(x) = 2¢g. This resultant is a unit in R because the
valuation of v(£) is zero for each root & of u(z), since the resultant of f'(z) and
h(z) is a unit. We conclude that the solutions of the linear system are elements
of R, thus 24; € R and 2™ 'a;+ (i+1)A;41+ B; € R. From the definition of the
B; it follows that 2B; € R since 24; € R and Rem(z) € R[z]. Hence 2™a; € R,
which concludes the proof of Lemma 2. O

Remark Lemma 2 remains valid when we replace 325" by 329" whenever
r > k € N. The proof is the same, except that we also have to show that A; =0
for all ¢ < k. This follows from (32) using a local analysis at a point on the curve
with 2 = 6. Such a local analysis is given in the proof of Lemma 3 below.

Lemma 3 Let A := R[z,y, H(z) ]/ (y? + h(z)y — f(z)) with degh(z) > 0 and
suppose that

B(x) _29 1
H(a:) y de = ;a,myd:c—l-ZH—d x4+ dS, (40)

where v € N, B(z) € R[z] of degree < deg H(z), a;,b; € K and S € A® K.
Then 2™a; € R, 2™ b; € R, 2™ S — B € A, withm = 3+ |logy(r+1)|, m' =
1+ m+ |log,(29 + deg h(z))| and B some suitable element in K.

13



Proof: The proof again consists of two distinct parts. The first part is similar
to Kedlaya’s argument in [15, Lemma 2] and is based on a local analysis around
the ramification points (0y,0) for £ = 0,...,s. In the completion of the local
ring of the curve at (6,0) we can write

T =0k =2y + D> Ve, (41)
>3

with v,; € R" and 7,2 a unit in R"". Indeed, to see this write h(z) and f(z) as
a Taylor expansion around 6y and use the equation of the curve and the condition
F'(6r) # 0 mod 2, to express z — 6, as a power series in y using Newton iteration.

Applying the involution & to equation (40), we see that this relation implies

2g—1

2™ 1 B(2)H(z)""(2y + h(z)) dz — Z 2™~ L2t (2y + h(z)) dx
i=0

M
=d ( Y Bi(@)H(x)'(2y + h(w))) , (42)

i=—N
with N and M large enough integers. Expressing  — 6}, in terms of y, we get

B;i(z)H(z)! = ug;Bi(0k)y* + - -+ with ug; a unit in R%. Substituting this in
equation (42) and dividing by 2 we obtain

2" D gy dy

j>—2r+42
& m (i)
:d< Z (uk,z’Bz’(ek)yzH_l +___)+( k, 2( k) k,2 ' y21+2m;c +)
i=—N mg:

(43)

with 7} ; € K% for all j and v, ; € R* when j < 1. Integrating the left
hand side of this equation with respect to y yields a series whose terms of de-
gree < 2 have coefficients in R"". The leading term of the right hand side is
ug,— NB_n(0k)y~2Nt1] which implies that B_n(fy) is integral for k =0, ..., s.
Since the discriminant of H(z) is a unit in R we conclude that B_ y(z) has inte-
gral coefficients. Bringing the integral terms to the left hand side and repeating
the same argument, shows that B;(z) € R[z] for i = —N,...,0. This terminates
the first part of the proof.

The second part of the proof proceeds along the same lines as in Lemma 2.
Rewrite the sum Zf\il Bi(z)H(z)!(2y + h(z)) as Zf\ilo Az (2y + h(z)) with
M' € N and A; € K. Using the same formulae as in Lemma 2 we deduce
from (42) a relation which does not involve y by multiplying both sides with

14



2y+h w(z i
LS — JoSh—ss, which leads to

B(z) 29—1 ' 0 ' M’ '
gm—1 Wv(m) — Z 2m=lgaty(z) = Z B;i(z)H (z) w(z) + Z Aixtw(x)
=0 i=—N =0
0 M’
+ > (Bi(@)iH (2)" " H'(z) + Bj(z)H(2)") v(z) + Y _ Asiz'v(z). (44)
i=—N i=0

Comparing the valuation at infinity of both sides shows that A; = 0 for ¢ > 2g.
We can therefore rewrite the above equation in the form

(Z 2m1a,~xi> v(z) + (Z Aii$i1> v(z) + (Z Ai-’ll'i) w(z) = F(z), (45)

where
0
Flz) = 21 If((;))rv(a:) - i;N Bi(z)H (z)w(z)
0
- Y (Bi@)iH(z)"""H'(z) + Bj(x)H (z)")v(x) (46)
i=—N

is a polynomial over R since the B;(z) € R[z] for i = —N,...,0 and the left-
hand side of (45) is a polynomial. The local analysis around (6, 0) shows that

S22, Aifi has valuation > 0 for k = 0,...,s. It is now easy to see that the rest
of the proof is exactly the same as in the proof of Lemma 2, hence 2™a; € R
and this concludes the proof of Lemma 3. O

Remark Lemma 3 remains valid when we replace the term Efi 61 a;x'y dz in

equation (40) by Y27 Ci(x)H(z)'y de, with A = (29— 1)/ deg H(z)| and
Ci(z) € KJ[z] of degree < deg H(x) whenever r > k € N. The proof is exactly
the same.

Remark If r = 0, then in the above proof the B;(zx) are zero for all i < 0,
and for 0 < i < 2g — 1 the a; are completely determined by (45) as we saw by
considering resultants. This shows that the xly dx for i = 0,...,29 — 1 and the
#;) dz for i = 0,...,s are linearly independent in H},,(A/K).

Lemma 2 and 3 show that the basis for H},,(A/K) is a generating set for
H'(A/K), since the reduction process converges. Indeed, for D ki ar z*S(z)ly €
Af with k,1 € Z and 0 < k < degS(z) the valuation of aj; grows as a linear
function of |/|, while the valuation of the denominators introduced during the
reduction process are only logarithmic in ||.

The Monsky-Washnitzer cohomology H'(A/K) is the direct sum of the
r-invariant part H'(A/K)* on which 1 acts trivially and the s-anti-invariant
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part H'(A/K)~ on which ¢ acts as multiplication by —1. Let r be the num-
ber of ramification points (,0) defined over F x, then the Lefschetz fixed point
formula applied to C' gives

#C(Fye) — 1, = #C' (Fy)
=T (¢" F M H (A/K)) — Tr (¢"F7*|H' (A/K))
=q" = Tr (¢"*F7 M| H' (A/K)*) - Tr (¢" F7H|H' (A/K)7)
=q" =y = Tr (" F7FH' (A/K)7).

Let C be the unique smooth projective curve birational to C, then
#C(Fp)=q" +1-Te (" F,FH' (A/K)") =¢" +1- ) af,
i=1

where «; are the eigenvalues of ¢F! on H'(A/K)~. By the Weil conjectures
there exists a polynomial x(t) € Z[t] of the form t*9 4+ a;t?9~! + - - - + as,, whose
roots f1,..., By satisfy Bify1s = qfori=1,...,9,|6i| = Jgfori=1,...,29
and #5(]Fqk) =q¢"+1- 2?11 BE for all k > 0. This implies that we can label
the B’s such that o; = f3; for i = 1,...,2g. Since a;ay4; = g, the a; are also
the eigenvalues of F, on H!(A/K)~. It is well known that the zeta function
Z(C/F,;t) can be written as

t29x(1/)
A-t)(1—qt)

Therefore, it is sufficient to compute x(t) as the characteristic polynomial of Fi
on H'(A/K)~.

Z(é/Fq§t)=

4 Algorithm and Complexity

Using the formulae of the previous section, we describe an algorithm for com-
puting the characteristic polynomial of Frobenius x(t) and the zeta function of
a smooth projective hyperelliptic curve C of genus g over F, with ¢ = 2.

4.1 Precision of Computation

We have shown that x(t) = t29 + a1t?9~! + - + ay, can be computed as the
characteristic polynomial of F, on H!(A/K)~. The Weil conjectures imply that
¢ ta; = asg—i, so it suffices to compute ay,...,ay. Furthermore, fori =1,...,9
the a; can be bounded by

lai| < <29> qi/2 < (29) qg/z < 22gqg/2_
? g
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Therefore it suffices to compute the action of F, on a basis of H'(4/K)~ modulo

2B with
e o (:(2)07)]

However, it is not sufficient to compute y° modulo 2 since we need to take
into account the loss of precision introduced during the reduction process of the
differential forms.

Let ¥ = an + Byy mod 2V and write By = f:N_LN Vi(x)S(x)?, then
Lemma 1 implies that Ly < 4ND—2D and By < 2(N —1)(d}—2d%)+(df—dk),
with df, := deg f(z)/ deg S(z) and d% := deg h(z)/ deg S(x).

Algorithm 1 (Hyperelliptic Zeta Function)

IN: Hyperelliptic curve C over F, given by equation y> + h(z)y = f(z).
OUT: The zeta function Z(C[F,;t).

1. B= [log2 (2(2;)(19/2)-‘ ; N —max(cny,1,en2) > B;

2. (h(z), f(z), H(z), D) = Lift_Curve(h(z), f(z));

3. an, pny = Lift Frobenius y(h, f,H,D,N);

4. For ¢ =0 To 29 —1 Do
4.1. Red;(x) = Reduce MW_Cohomology (22%*'3n, h, f, H, B);
4.2. For j =0 To 2g — 1 Do M[j][{] = Coeff (Red;,j);

5. Mp=MM---M°""" mod 2B;

6. x(T) = Characteristic Pol(Mp) mod 25;

7. For i =0 To g Do

7.1. If Coeff(x,29—14) > (*?)q"/? Then Coeff(x,2g—i) — =25;
7.2. Coeff (x,i) = q?* Coeff(x,29—1i);
~ t29x(1/t)
8. Return Z(C/F,;t) = ———.
R [T
Since we have to reduce the forms z%*+1y? dx for i = 0,...,2g — 1, the loss of

precision will be determined by the reduction of 2*~ 'V, (z)S(z)B~¥y dz and
2V_rS(z)" ¥y dz. The highest power of x appearing in the former differential
form is less than 2N (deg f(z)—2 deg h(z))+6g and by Lemma 2 the loss of preci-
sion is bounded by ¢y 1 := 3+ [log, (2N (deg f(z) — 2deg h(z)) + 7Tg + 1)|. Simi-
larly, Lemma 3 implies that the loss of precision introduced during the reduction
of the latter differential form is bounded by cn 2 := 3 + [logy(4ND — 2D +1)|.
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As a result, we conclude that it is sufficient to compute modulo 2V with

N — max(cN’l,cN,z) >B. (48)

4.2 Detailed Algorithm

The function Hyperelliptic Zeta Function given in Algorithm 1 computes the
zeta function of a smooth projective hyperelliptic curve C' defined over F, with
g = 2™. Step 1 determines the minimal precision N satisfying inequality (48).

Algorithm 2 (Lift _Frobenius_y)

IN: Curve C:y?> + h(z)y = f(z) over R, polynomial H(z) € R[x] with
H|h and H|f, D € N such that h|HP and precision N.
OUT: Series an,n € Rz, H, H"'] with y* = ay + Bny mod 2V.

1. B=[log, N]+1;T=N; Qyq := H" div h;

2. For i =B Down To 1 Do Pli]=T;T = [T/2];

3. a = fmod2; B=—-hmod 2;y=1;6=0;

4. For i =2 To B Do
41. Ty = ((@+h%)-a+ B2 f— f7) - Q% - H 2P mod 2F11;
4.2.Tg=Q2a—h-B+h%)-B-Q% - H 2P mod 2Pl
4.8.Dg =1+ (h° = h? + 2a) - Q% - H 2P mod 2Fli-11;
4.4. Dp =2B-Q% - H~2P mod 9Pli-1],
4.5.VA=Dy-v+Dp-6-f—1mod oPlLi-1],
4.6. Vs =D4 -0+ Dp-(y—6&-h) mod 2Pl-1;
4.7 v=v—=(Va-v+ V-6 f) mod 2P,
4.8.6=6—(Va-04+Vg-(y—46-h)) mod 2°0—1;
49.a=a—(Ta-y+Tg-6-f) mod 2°1;
4.10. B=B—(Ta-6+Tp-(y—6-h)) mod 2F1;

5. Return ay = a, fn = .

In step 2 we call the subroutine Lift _Curve, which first constructs an isomor-
phic curve such that H(z)|h(z) and H(z)|f(z) and lifts the curve using the
construction described in Section 3.2. The result of this function is a hyperellip-
tic curve C : 42 + h(z)y = f(z) over R, a polynomial H(z) and an integer D
such that H(z) |h(z), H(z)| f(z) and h(z) | H(z)P. Since this function is rather
straightforward, we have omitted the pseudo-code.
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In step 3 we compute y° mod 2"V using the function Lift_Frobenius_y given
in Algorithm 2. The parameters ay, Sy are Laurent series in S(x) with coef-
ficients polynomials over R mod 2V of degree < deg S(z). This function im-
plements the Newton iteration (15), but has quadratic, instead of linear, con-
vergence. Note that Algorithm 2 is in fact a double Newton iteration: a + Sy
converges to y?, whereas v + dy is an approximation of the inverse of the de-
nominator (16) in the Newton iteration.

Once we have determined an approximation of y?, we compute the action
of o, on the basis of H'(A/K)~ as 22**1ydz for i = 0,...,2g — 1. In step 4
we reduce these forms using the function Reduce MW_Cohomology given in Algo-
rithm 3, which is based on the reduction formulae devised in Section 3.2. Given
a differential Gy dzr with G € R[z, H, H '], this function computes a polynomial
A € K[z], with deg A < 2g such that for a given precision B we have the follow-
ing equivalence modulo exact forms and invariant forms Ay dz ~ Gy dx mod 2B,
where mod 22 means modulo 28 (Ry dz+- - -+ Rz?9~'y dz). The result of step 4
of Algorithm 1 is an approximation modulo 22 of the matrix M through which
o, acts on H(A/K)~. In step 5 we compute its norm Mg as MM --- M.
Note that since M is not necessarily defined over R, we have to compute this
product with a high enough precision to obtain the correct result.

Algorithm 3 (Reduce MW_Cohomology)

IN: Series G € R[z, H, H '], polynomials h, f, H € R[x] and precision B.
OUT: A € K[z], with deg A < 2g such that Ay dx ~ Gy dz mod 2B.

. N —max(en,1,¢n,2) > B;
. Dg = degG; Vg = Valuation(G); Dr = (Dg +1) -degH; T = 0;
. For i = Dg Down To 0 Do T =T - H+ Coeff(G,i) mod 2V;

ENG P S

. For i = D7 Down To 2g
4.1. P=2729(2f + h-h') + 222172971 (4f + h%) mod 2N,
4.2. T =T — (Coeff (T,i)-P)/ Coeff(P,i) mod 2V;

5.Qf=fdivH;Qy=hdivH; P=0;

6. For i = Vg To —1

6.1. V = P+ Coeff(G,i) mod 2V;

6.2. P=V div Hmod 2V;V =V — P- H mod 2V;

6.3. C,La,Lp =XGCD(V -H, V -Qs-H', N);

A—iO2 .75 _ ! N1,
6.4. P= Pt Ly Lo O —8CQ QM) Ly (104G 1y o,

7. Return A =T + P mod 25.
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In steps 6 and 7 we recover the characteristic polynomial of Frobenius from the
first g coefficients of the characteristic polynomial of Mp. Finally, we return the
zeta function of the smooth projective hyperelliptic curve C birational to C in
Step 8.

4.3 Complexity

In this section we analyze the space and time requirements of Algorithm 1 for
a genus ¢ hyperelliptic curve over Fon assuming fast arithmetic, i.e. multiplica-
tion of two objects of bit-size O(m) can be computed in time O(m'**). Before
proceeding through the individual steps of the algorithm, we analyze the com-
plexity of the basic operations in Algorithm 1 and the asymptotic behaviour of
the bounds given in Lemma 1.

For a fixed precision N, let Ry denote the degree n unramified extension of
Zs/ 2NZ.,. Elements of Ry are represented as polynomials over Z / 2N7, modulo
a sparse irreducible polynomial P(t) of degree n. Since each element of this ring
requires O(nN) space, we can perform the basic operations, i.e. multiplication
and division, in time O(n'T*N1¥¢).

Computing the Frobenius substitution ¢ on Ry can be accomplished in time
O(n*te N1+¢) as follows. Since t is a root of P(t), t* will also be a root of P(t) and
t° = ¢ mod 2. Therefore, t° can be computed using the Newton iteration Ty =
Ty — P(Ty)/P'(T},) initialized with ¢?. Since the Newton iteration converges
quadratically and we compute with the minimal precision in each step, the total
complexity will be determined by the last step which takes O(n) multiplications
in Ry . Precomputing ” mod 2V can thus be accomplished in time O (n?+e N1+¢).
After this precomputation, we can compute the Frobenius substitution of any
element E(t) as E(t”), which needs O(n) multiplications in Ry and thus takes
O(n?*+¢ N1+¢) time.

Lemma 1 bounds the maximum bit-size of the Laurent series we compute with
and therefore determines the complexity of Algorithm 1. Since these bounds de-
pend on the degree and splitting type of h(z), we make a distinction between
average-case and worst-case complexity. To this end we introduce three param-
eters which allow us to analyze both cases simultaneously.

— Let the asymptotic behaviour of deg f(z) — 2deg h(z) be O(g*). Since the
degree of f(x) is 2¢g + 1 and h(z) is a random polynomial of degree < g, we
conclude that A =0 on average and A =1 in the worst case.

— Let the asymptotic behaviour of deg H(z) be O(g*). With very high prob-
ability a random polynomial of degree < g has O(g) different roots, which
implies that ¢ = 1 on average and x4 = 0 in the extreme case.

— Let the asymptotic behaviour of D be O(g¥), then v = 0 on average and
v = 1 in the worst case, since a random polynomial only has roots with
multiplicity O(1).

The function Lift_Frobenius_y in Step 3 of Algorithm 1 is a Newton lifting.
Since the precision doubles in every iteration, we see that its complexity is de-
termined by the last iteration, which consists of O(1) multiplications of Laurent
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series in S(x) with coefficients polynomials over Ry of degree less than deg S(x).
Lemma 1 implies that the bit-size of these objects is O((g* + g#t*)nN?). Since
the cost of the other operations in Lift_Frobenius_y, e.g. computing the Frobe-
nius substitution of O(g) elements of Ry, is less than the O(1) multiplications,
the overall time complexity of Step 3 is O((g* + gttV) 1 Henlte N2+e),

In step 4 of Algorithm 1 we reduce the 2g differential forms 2z2+!8yy dx
for i = 0,...,2g9 — 1 using the function Reduce MW_Cohomology given in Algo-
rithm 3. Write Sn as Ef:N_ Ly Vi(z)S(z)', then Step 2 essentially is Horner’s
rule to compute Zf:“é Vi(z)S(z)?. Note that in practice we perform this step
only once for all of the 2g reductions and use a binary tree algorithm which
is asymptotically faster than Horner’s method. The complexity of Step 2 then
becomes O(g*t*n!*teN2+%). Lemma 1 implies that Substeps 3.1 and 3.2 have
to be executed O(g*N) times and since each iteration consists of O(g) multi-
plications in Ry, the time complexity of Step 3 is O(g' T *n!T*N2+¢). In Step 5
the dominant operations are O(1) multiplications of polynomials over Ry of
degree O(g) and the extended GCD computation of two such polynomials. The
former operation clearly takes time O(g'*en!*¢ N1*¢) and using Moenck’s algo-
rithm [23] the latter operation can also be performed in time O(gltenl+e N1+¢),
Note that in practice we precompute polynomials A(z) and B(z) such that
A(z)H(z) + B(z)Qs(z)H'(z) = 1 and compute La(x) as the reduction of
A(z)V (x) modulo Qs (z)H'(x) and Lp(x) as the reduction of V (z)B(z) modulo
H(z). Lemma 1 implies that these operations have to be repeated O(g” N) times,
so the time complexity of Step 5 is O(g!t*+enlte N2+¢). Since we have to reduce
O(g) differential forms, the overall time complexity of Step 4 of Algorithm 1 is
O((g2+)\ + g2+V+E)TL1+5N2+E).

In Step 5 we need to determine the norm of a 2g x 2g matrix M over Ry as
MM?---M°" "' This can be accomplished by computing M;,; = M,-sz’21 for
i=0,...,|log, n| and combining these to recover the norm of M. Multiplication
of two matrices takes O(g®) ring operations at a cost of O(g>n!tcN*¢) time.

To compute M{’y for i = 0,...,[logyn|, we need O(g?logn) applications of
powers of o. If we precompute t° , this requires O(g?n>+¢ N1+¢) time.

Finally, we need to compute the characteristic polynomial of a 2g X 2g ma-
trix over Ry, which can be done using the classical algorithm based on the
Hessenberg form [5, Section 2.2.4]. The complexity of this algorithm is O(g®)
ring operations or O(g>n!te N1*¢) time.

Since equation (48) implies that N is O(gn), the overall time complexity of
Algorithm 1 is O((g* + g*)g*+*n3t¢) and the overall space complexity becomes
O((g* + g**t¥)g?n?). Note that this means the following:

— Average case: the time complexity reduces to O(g*t*n®t¢) and the space
complexity is O(g3n?).

— Worst case: the time complexity grows to O(g°+t°n®+¢) and the space com-
plexity becomes O(g*n?).
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5 Implementation and Numerical Results

In this section we present running times of an implementation of Algorithm 1
in the C programming language and give some examples of Jacobians of hyper-
elliptic curves with almost prime group order.

The basic operations on integers modulo 2V for N < 256 were written in
assembly language. Elements of Ry are represented as polynomials over Z /2N7,
modulo a degree n irreducible polynomial, which we chose to be either a trinomial
or a pentanomial. For multiplication of elements in Ry, polynomials over Ry
and Laurent series over Ry[x] we used Karatsuba’s algorithm. In the near future,
we plan to implement Toom’s algorithm which will lead to a further speed-up of
about 50%.

5.1 Running Times and Memory Usage

Table 1 contains running times and memory usages of our algorithm for genus 2, 3
and 4 hyperelliptic curves over various finite fields of characteristic 2. These
results were obtained on an AMD XP 1700+ processor running Linux Redhat 7.1.
Note that the fields are chosen such that gn, and therefore the bit size of the
group order of the Jacobian, is constant across each row.

Table 1. Running time (s) and memory usage (MB) for genus 2, 3 and 4 hyperelliptic
curves over [Fon

Size of Jacobian Genus 2 curves Genus 3 curves Genus 4 curves
gn Time (s)|Mem (MB)||Time (s)|Mem (MB)||Time (s)|Mem (MB)
120 30 4.5 38 5.4 35 5.2
144 44 5.7 61 7.3 59 7.2
168 71 8.6 101 11 100 11
192 116 13 143 14 139 13
216 170 16 196 17 185 16

5.2 Hyperelliptic Curve Examples

In this subsection we give three examples of Jacobians of hyperelliptic curves
with almost prime group order. The correctness of these results is easily proved
by multiplying a random divisor with the given group order and verifying that
the result is principal, i.e. is the zero element in the Jacobian Jz(F,). It is clear
that the given curves are non-supersingular, since the coefficient a, is odd [11].
Furthermore, all curves withstand the MOV-FR attack [10,21].
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Genus 2 hyperelliptic curve over Fass

Let Fyss be defined as Fy [t]/P(t) with P(t) = t¥3+¢7+t*+¢*>+1 and consider
the random hyperelliptic curve Cy of genus 2 defined by

2 4
v+ (Z hi')y = 2° + Z fiz®,
i=0 i=0

where
ho = TFF29B08993336B479CD2 h1 = 32C101713C722F8FB5BC9
ho = 553E16B6A3BC6B2432CAS8
fo = TAD44882C02B9743CD58B f1 = 327254FA330B44958262A
f2 204AB23E12828D061AF04 f3 = 1C827250FFDEFF93B43BE
fa 13D80106COES571DFD139

The group order of the Jacobian Jg, of Cy over Fass is

#J5, = 2-46768052394566313810931349196246034325781246483037,

where the last factor is prime. The coefficients a; and as of the characteristic
polynomial of Frobenius x(T) = T* + a1T® + a2T? + a3T + a4 are given by

a1 = —4669345964042 and ax = 18983903513383986646766787 .

Genus 3 hyperelliptic curve over Fase

Let Fys0 be defined as Fy [t]/P(t) with P(t) = t3° +¢"+t*+¢?>+1 and consider
the random hyperelliptic curve C3 of genus 3 defined by

3 6
y* + (Z hia')y = 2" + Z fix®,
i=0 i=0

where

ho = 569121E97EB3821 h1 = 49F340F25EA38A2
h2 = 2DE854D48D56154 hs = 0B6372FF7310443
fo = 1104FDBEB454C58 f1 = 0C426890E5C7481
f2 = 34967E2EB7D50C3 f3 = 1F1728AA28C616C
fa = 1AE177BFE49826A f5 = 3895A0E400F7D18
fe = 6DF634A1E2BFASE

The group order of the Jacobian J53 of C3 over Fyso is
#Jz, = 2-95780971407243394633762332360123160334059170481903949 ,

where the last factor is prime. The coeflicients a1, as and a3 of the characteristic
polynomial of Frobenius x(T') = T + a1T® + a2T* + a3T? + a4T? + asT + as
are given by

a1 = 620663068,

az = 848092512078818380,

asz = 341008017371409573053936945 .
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Genus 4 hyperelliptic curve over Faas

Let Fyas be defined as Iy [t]/P(t) with P(t) = #*3+t%+¢*+¢3+1 and consider
the random hyperelliptic curve Cy of genus 4 defined by

where

ho = 28E79976104  hi = 6D6BITFBB9B  ho = 2D6524209DB
hs = TF68B16B438  hy = 1407613976D

fo = 4D8C53DO3FB  fi = 427CDCD7B63  fo = 282064866B4
fs = BAFETCA7C26  f4 = TD3E9ACFE87  fs = 45A6C030DDF
fé = OFATOE4047B  f, = TBCTF15221C  fs = 2F380FD7563

The group order of the Jacobian Jg, of Cy over Fass is
#Jz, = 2-299315405741779291222484741307515836611456 7502366357 ,

where the last factor is prime. The coefficients ai, as, az and a4 of the char-
acteristic polynomial of Frobenius x(T) = T® + a1T" + axT® + asT® + a,T* +
asT? + agT? + a;T + ag are given by

a1 = —3808120,

az = 4933477855906,

as = 6263305780455915698,

as = —14840229309879529733065395 .

6 Conclusion

We have presented an extension of Kedlaya’s algorithm for computing the zeta
function of an arbitrary hyperelliptic curve C' over a finite field F, of charac-
teristic 2. As a byproduct we obtain the group order of the Jacobian associated
to C' which forms the basis of the cryptographic schemes based on hyperel-
liptic curves. For a genus g hyperelliptic curve defined over Faz. , the average-
case time complexity is O(g*+*n3*¢) and the average-case space complexity is
0O(g®n3), whereas the worst-case time and space complexities are O(g5Ten3+t¢)
and O(g*n®) respectively. A first implementation of this algorithm in the C pro-
gramming language shows that cryptographical sizes are now feasible for any
genus g. Computing the order of a 160-bit Jacobian of a hyperelliptic curve of
genus 2, 3 or 4 takes less than 100 seconds. In the near future we plan to use the
formalism of Monsky-Washnitzer cohomology as a basis for computing the zeta
function of any non-singular Cy; curve over finite fields of small characteristic.
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