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Abstract

The characterization of ideal access structures and the search for bounds
on the optimal information rate are two important problems in secret sharing.
These problems are studied in this paper for access structures with intersection
number equal to one, that is, access structures such that there is at most one
participant in the intersection of any two different minimal qualified subsets.
The main result in this work is the complete characterization of the ideal ac-
cess structures with intersection number equal to one. Besides, bounds on the
optimal information rate are provided for the non-ideal case.

Keywords. Cryptography; secret sharing schemes; information rate; ideal
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1 Introduction

A secret sharing scheme Σ is a method to distribute shares of a secret value k ∈ K
among a set of participants P in such a way that only the qualified subsets of P are
able to reconstruct the value of k from their shares. Secret sharing was introduced
by Blakley [1] and Shamir [15]. A comprehensive introduction to this topic can be
found in [17]. A secret sharing scheme is said to be perfect if no information about
the value of the secret can be obtained from the shares of all the participants in a
non-qualified subset . We are going to consider only perfect secret sharing schemes.
The security of these schemes is unconditional because it does not depend on the
amount of computation that can be carried out by a subset of participants.

The access structure of a secret sharing scheme is the family of qualified subsets,
Γ ⊂ 2P . In general, access structures are considered to be monotone, that is, any
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superset of a qualified subset must be qualified. Then, the access structure Γ is
determined by the family of minimal qualified subsets, Γ0, which is called the basis
of Γ. We assume that every participant belongs to at least one minimal qualified
subset. The rank and the corank of Γ are, respectively, the maximum and the
minimum number of participants in a minimal qualified subset. The intersection
number of Γ is the maximum number of participants in the intersection of two
different minimal qualified subsets.

The first works about secret sharing [1, 15] considered only schemes with a
(t, n)-threshold access structure, whose basis is formed by all subsets with exactly
t participants from a set of n participants. Further works considered the problem
of finding secret sharing schemes for more general access structures. Ito, Saito
and Nishizeki [10] proved that there exists a secret sharing scheme for any access
structure, and Brickell [5] introduced the vector space construction which provides
secret sharing schemes for a wide family of access structures, the vector space access
structures. While in the threshold schemes proposed by Blakley [1] and Shamir [15]
and in the vector space schemes given by Brickell [5] the shares have the same size
as the secret, in the schemes constructed in [10] for general access structures the
shares are, in general, much larger than the secret.

Since the security of a system depends on the amount of information that must
be kept secret, the size of the shares given to the participants is a key point in the
design of secret sharing schemes. Therefore, one of the main parameters in secret
sharing is the information rate ρ(Σ,Γ,K) of the scheme, which is defined as the ratio
between the length (in bits) of the secret and the maximum length of the shares given
to the participants. That is, ρ(Σ,Γ,K) = log | K |/maxp∈P log | Sp |, where Sp is the
set of all possible values of the share sp corresponding to the participant p.

In a secret sharing scheme the length of any share is greater than or equal to
the length of the secret, so the information rate can not be greater than one. Secret
sharing schemes with information rate equal to one are called ideal . We say that
an access structure Γ ⊂ 2P is an ideal access structure if there exists an ideal secret
sharing scheme for Γ. For example, threshold access structures and the vector space
ones are ideal.

It is not possible in general to find an ideal secret sharing scheme for a given
access structure Γ. So, we may try to find a secret sharing scheme for Γ with
information rate as large as possible. The optimal information rate of an access
structure Γ is defined by ρ∗(Γ) = sup(ρ(Σ,Γ,K)), where the supremum is taken
over all possible sets of secrets K with | K | ≥ 2 and all secret sharing schemes Σ
with access structure Γ and set of secrets K. Of course, the optimal information
rate of an ideal access structure is equal to one.

The above considerations lead to two problems that have received considerable
attention: to characterize the ideal access structures, and to find bounds on the
optimal information rate.

A necessary condition for an access structure to be ideal was given in [6] in terms
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of matroids. A sufficient condition is obtained from the vector space construction [5].
Several techniques have been introduced in [4, 7, 18] in order to construct secret
sharing schemes for some families of access structures, which provide lower bounds on
the optimal information rate. Upper bounds have been found for several particular
access structures by using some tools from Information Theory [2, 3, 8]. A general
method to find upper bounds was given in [2] and was generalized in [14].

Nevertheless, both problems are far to be solved. There are some important
open questions about the characterization of ideal access structures, and there ex-
ists a wide gap between the best known upper and lower bounds on the optimal
information rate for most access structures.

Due to the difficulty of finding a general solution, those problems have been
studied in several particular classes of access structures: access structures on sets
of four [17] and five [12] participants, access structures defined by graphs [2, 3, 4,
6, 7, 8, 18], bipartite access structures [14], and access structures with three or four
minimal qualified subsets [13]. The ideal access structures in all these families have
been completely characterized. The optimal information rate of almost all access
structures on a set of at most five participants has been determined. Bounds on
the optimal information rate, which are tight in some cases, have been given for the
other families.

There exist remarkable coincidences in the results obtained for all these classes
of access structures. Namely, the ideal access structures coincide with the vector
space ones, and there is no access structure Γ whose optimal information rate is such
that 2/3 < ρ∗(Γ) < 1. A natural question that arises at this point is to determine
to which extent these results can be generalized.

In the present paper, we study those problems in another family of access struc-
tures: the access structures with intersection number equal to one, that is, access
structures such that there is at most one participant in the intersection of any two
different minimal qualified subsets. We obtain similar results as in the previously
considered families. Namely, we prove that the ideal access structures with intersec-
tion number equal to one coincide with the vector space ones, and that there is no
access structure with intersection number equal to one and optimal information rate
between 2/3 and 1. Besides, we completely characterize the ideal access structures
with intersection number equal to one, and we provide some bounds on the optimal
information rate for the non-ideal case.

These results include those previously obtained for access structures defined by
graphs. The access structure Γ = Γ〈G〉 defined by a graph G with vertex set V (G)
and edge set E(G) is the access structure on the set of participants P = V (G) having
basis Γ0 = E(G). Observe that Γ has rank and corank equal to two and intersection
number equal to one. Therefore, the family of access structures we consider in this
paper can be seen as a generalization of those defined by graphs.

The access structures associated to a finite projective plane are other examples
of access structures with intersection number equal to one. In this case, the set of
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participants is the set of points of the plane, while the lines are the minimal qualified
subsets. For instance, an access structure with rank and corank equal to three, seven
participants and seven minimal qualified subsets is obtained from the Fano plane,
the projective plane of order two.

Our main result, Theorem 3.1, states that there are relatively few ideal access
structures with intersection number equal to one. Namely, we prove that they are
one of the following: the access structures defined by complete multipartite graphs,
those defined by stars, and the one associated to the Fano plane together with three
other access structures related to it.

The organization of the paper is as follows. The above mentioned access struc-
tures are introduced in Section 2 and we prove there that they are vector space access
structures. Section 3 is devoted to characterize the ideal access structures having
intersection number equal to one by proving that they are precisely the access struc-
tures considered in Section 2. Finally, some bounds on the optimal information rate
are presented in Section 4.

2 Some vector space access structures

An access structure Γ on a set of participants P is said to be a vector space access
structure over a finite field K if there exist a vector space E over K and a map
ψ : P ∪ {D} −→ E \ {0}, where D /∈ P is called the dealer , such that A ∈ Γ if and
only if the vector ψ(D) can be expressed as a linear combination of the vectors in the
set ψ(A) = {ψ(p) : p ∈ A}. In this situation, the map ψ is said to be a realization
of the K-vector space access structure Γ. Any vector space access structure can be
realized by an ideal scheme (see [5] or [17] for proofs). For instance, the threshold
access structures and those defined by a complete multipartite graph Kn1,...,n`

are
vector space access structures [17] and, hence, they are ideal.

The purpose of this section is to point out some vector space access structures
with intersection number equal to one. Namely we present the access structures
Γ〈S(p0)〉 defined by a star (Proposition 2.1), the access structure Γ2 associated to
the Fano plane (Proposition 2.2), and its related access structures Γ2,1, Γ2,2 and
Γ2,3 (Propositions 2.3, 2.4 and 2.5). In fact, as we will prove later, these access
structures together with those defined by a complete multipartite graph are the
only ideal access structures with intersection number equal to one.

It is said that an access structure Γ on a set of participants P is a star access
structure if there exists p0 ∈ P such that A∩A′ = {p0} for any two different minimal
qualified subsets A,A′ ∈ Γ0. In such a case we denote Γ0 = S(p0) and Γ = Γ〈S(p0)〉.
Observe that the intersection number of a star access structure is equal to one.

Proposition 2.1 Let Γ〈S(p0)〉 be a star access structure on the set of participants
P. Then, Γ〈S(p0)〉 is a vector space access structure.
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Proof. Let Γ = Γ〈S(p0)〉 be a star with basis Γ0 = S(p0) = {A1, . . . , Ar}. For any
i = 1, . . . , r we select a participant pi ∈ Ai \ {p0} and we identify all participants
in Ai \ {p0} to pi. We obtain in this way the access structure Γ̃ on the set of r + 1
participants P̃ = {p0, p1, . . . , pr} having basis Γ̃0 = {{p0, p1}, . . . , {p0, pr}}. Since
Γ̃0 = K1,r is a complete multipartite graph, then Γ̃ is a vector space access structure
over any finite field K. In this situation, it is not difficult to prove that Γ is also a
vector space access structure over any finite field K. �

A finite projective plane of order n consists of n2 + n+ 1 points and n2 + n+ 1
lines with n + 1 points on each line, n + 1 lines through each point, each pair of
lines meeting at one point, and dually each pair of points lying on one line. The
finite projective plane of order n = 2 is called the Fano plane. See [9] for a complete
introduction to finite projective planes.

For any finite projective plane, we can consider its associated access structure
Γn, whose set of participants P is the set of n2 +n+1 points of the plane, and whose
basis (Γn)0 consists of its n2 + n + 1 lines. Notice that Γn has intersection number
equal to one and rank and corank equal to n+ 1.

Proposition 2.2 Let Γ2 be the access structure associated to the Fano plane. That
is, Γ2 is the access structure on the set P = {p1, p2, p3, p4, p5, p6, p7} of seven partici-
pants with basis (Γ2)0 = {{p1, p2, p3},{p1, p4, p7},{p1, p5, p6}, {p2, p4, p6},{p2, p5, p7},
{p3, p4, p5},{p3, p6, p7}}. Then, Γ2 is a vector space access structure.

Proof. Let K be a finite field of characteristic two and let ψ : P ∪ {D} → K
4

be the map defined by ψ(D) = (1, 0, 0, 0), ψ(p1) = (1, 0, 1, 0), ψ(p2) = (0, 1, 1, 0),
ψ(p3) = (0, 1, 0, 0), ψ(p4) = (1, 1, 1, 1), ψ(p5) = (0, 0, 1, 1), ψ(p6) = (0, 0, 0, 1), and
ψ(p7) = (1, 1, 0, 1). It is not hard to check that if A ⊂ P then, A ∈ Γ2 is and only if
the vector ψ(D) can be expressed as a linear combination of the vectors in the set
ψ(A) = {ψ(p) : p ∈ A}. So, Γ2 is a vector space access structure over any finite
field of characteristic two. �

Finally, we introduce some access structures related to the Fano plane that are
also vector space access structures with intersection number equal to one.

Proposition 2.3 Let Γ2,1 be the access structure on the set of six participants
P = {p1, p2, p3, p4, p5, p6} with basis (Γ2,1)0 = {{p1, p2, p3}, {p1, p5, p6}, {p2, p4, p6},
{p3, p4, p5}}. Then, Γ2,1 is a vector space access structure.

Proof. Let Γ be an access structure on a set of participants P. Let p0 ∈ P. On
the set of participants P \ {p0} we consider the access structure Γ | p0 induced by
Γ. That is, Γ | p0 = {A ⊂ P \ {p0} such that A ∈ Γ}. It is easy to show that if
Γ is a K-vector space access structure, then Γ | p0 is so. In our case we have that
Γ2,1 = Γ2 | p7. Hence, Γ2,1 is a vector space access structure. �
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Proposition 2.4 Let Γ2,2 be the access structure on the set of six participants
P = {p1, p2, p3, p4, p5, p6} with basis (Γ2,2)0 = {{p1, p2, p3}, {p1, p5, p6},{p2, p4, p6},
{p3, p4, p5}, {p1, p4}, {p2, p5}, {p3, p6}}. Then, Γ2,2 is a vector space access structure.

Proof. The dual Γ∗ of an access structure Γ is the access structure Γ∗ = {A ⊂ P :
P \ A /∈ Γ}. It is well known that an access structure Γ is a vector space access
structure over a finite field K if and only if its dual Γ∗ is so [11]. Therefore, since
Γ2,2 = (Γ2,1)∗, hence Γ2,2 is a vector space access structure. �

Proposition 2.5 Let Γ2,3 be the access structure on the set of five participants P =
{p1, p2, p3, p4, p5} with basis (Γ2,3)0 = {{p1, p2, p3}, {p3, p4, p5}, {p1, p4}, {p2, p5}}.
Then, Γ2,3 is a vector space access structure.

Proof. This proof works as the one of Proposition 2.3. Namely, since Γ2,2 is a
vector space access structure hence it follows that Γ2,3 = Γ2,2 | p6 is so. �

Remark 2.6 Observe that no new vector space access structure can be obtained
by duality from the Fano plane Γ2 because Γ∗

2 = Γ2. Since Γ∗
2,3

∼= Γ2,3, the same
occurs with the structure Γ2,3.

Remark 2.7 It is well known that the access structure defined by a complete mul-
tipartite graph Kn1,...,n`

is a vector space access structure over any finite field K

with at least ` + 1 elements. Besides, from the proofs of the above propositions it
follows that Γ〈S(p0)〉 is a vector space access structure over any finite field, while the
access structures Γ2, Γ2,1, Γ2,2 and Γ2,3 are vector space access structures over any
finite field of characteristic two. Therefore, for any finite family Γ1, . . . ,Γr, where
every Γi is one of the above access structures, there exists a finite field K such that
Γi is a K-vector space access structures for any i = 1, . . . , r. It is interesting to
notice that, in fact, the access structure Γ2,3 can also be realized as a vector space
access structure over any finite field K. Namely, if K is a finite field then the map
ψ : P ∪ {D} → K

3 defined by ψ(D) = (1, 0, 0), ψ(p1) = (1, 0, 1), ψ(p2) = (1, 1, 0),
ψ(p3) = (1, 1, 1), ψ(p4) = (0, 0, 1), and ψ(p5) = (0, 1, 0), is a realization of Γ2,3 as a
K-vector space access structure.

3 Characterization of ideal access structures

The aim of this section is to prove Theorem 3.1, which provides a complete charac-
terization of ideal access structures with intersection number equal to one. Besides,
this theorem states that ideal access structures coincide with the vector space ones
and with those having optimal information rate greater than 2/3. Therefore, there
does not exist any access structure with intersection number equal to one and opti-
mal information rate between 2/3 and 1.
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Let us introduce first some definitions. Let Γ be an access structure on a set of
participants P. We say that Γ is connected if for any pair of participants p, q ∈ P
there exist A1, . . . , A` ∈ Γ0 such that p ∈ A1, q ∈ A`, and Ai ∩ Ai+1 6= ∅ for
any 1 ≤ i ≤ ` − 1. For any subset Q ⊂ P, the access structure induced by Γ
on the subset Q is defined by Γ(Q) = {A ∈ Γ : A ⊂ Q}. It is clear that, for
any access structure Γ on a set of participants P, there exists an unique partition
P = P1 ∪ · · · ∪ Pr such that the induced access structures Γ(P1), . . . ,Γ(Pr) are
connected and Γ = Γ(P1)∪· · ·∪Γ(Pr). In this situation we say that Γ(P1), . . . ,Γ(Pr)
are the connected components of Γ.

Theorem 3.1 Let Γ be an access structure on a set of participants P with intersec-
tion number equal to one. Then, the following conditions are equivalent:

1. Γ is a vector space access structure.

2. Γ is an ideal access structure.

3. ρ∗(Γ) > 2/3.

4. Every connected component of Γ is either an access structure defined by a com-
plete multipartite graph Γ〈Kn1,...,n`

〉, or a star Γ〈S(p0)〉, or the access structure
associated to the Fano plane Γ2, or one of its related access structures Γ2,1,
Γ2,2 or Γ2,3.

The rest of this section is devoted to prove this theorem. A vector space access
structure is ideal and, hence, its optimal information rate is equal to one. Therefore
we have that (1) implies (2) and that (2) implies (3). Furthermore, from the next
lemma and the results in Section 2 it follows that (4) implies (1).

Lemma 3.2 Let Γ(P1), . . . ,Γ(Pr) be the connected components of an access struc-
ture Γ on a set of participants P. Assume that Γ(P1), . . . ,Γ(Pr) are vector space
access structures over a finite field K. Then, the access structure Γ is so.

Proof. We assume that Γ(P1), . . . ,Γ(Pr) are K-vector space access structures. So,
for 1 ≤ i ≤ r there exists a realization ψi : Pi∪{Di} → Ei of Γ(Pi). We can suppose
that Ei = K × E′

i and that ψi(Di) = (1, 0) ∈ K × E′
i. Let us consider the K-vector

space E = K × E′
1 × · · · × E′

r and the map ψ : P ∪ {D} → E defined by ψ(D) =
(1, 0, . . . , 0) and, if p ∈ Pi, ψ(p) = (ξp, 0, . . . , vp, . . . , 0) ∈ K×E′

1×· · ·×E′
i×· · ·×E′

r,
where ψi(p) = (ξp, vp) ∈ K×E′

i. It is not difficult to check that ψ is a realization of
Γ as a K-vector space access structure. �

Therefore, the proof of Theorem 3.1 will be concluded by proving that (3) im-
plies (4). Let Γ be an access structure with connected components Γ(P1), . . . ,Γ(Pr).
Observe that any secret sharing scheme Σ for Γ with set of secrets K induces,
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for every i = 1, . . . , r, a secret sharing scheme Σi for Γ(Pi) with the same set of
secrets and information rate ρ(Σi,Γ(Pi),K) ≥ ρ(Σ,Γ,K). Then, it is clear that
ρ∗(Γ) ≤ min{ρ∗(Γ(P1)), . . . , ρ∗(Γ(Pr))}. Thus, to finish the proof of Theorem 3.1,
it is enough to demonstrate that any connected access structure Γ on a set of par-
ticipants P with intersection number equal to one and optimal information rate
ρ∗(Γ) > 2/3 is either a complete multipartite graph Γ〈Kn1,...,n`

〉, or a star Γ〈S(p0)〉,
or the access structure associated to the Fano plane Γ2, or one of its related access
structures Γ2,1, Γ2,2 or Γ2,3.

In order to prove it we distinguish two cases. The first one, which is solved in
Subsection 3.1 by Proposition 3.6, deals with access structures with corank greater
than two. The second one considers access structures with corank equal to two and
is proved by Proposition 3.11 in Subsection 3.2.

Some lemmas, which determine several forbidden situations in an ideal access
structure with intersection number equal to one, are needed to prove these proposi-
tions. The independent sequence method is a key point in the proof of these lemmas.
This method was introduced by Blundo, De Santis, De Simone and Vaccaro in [2,
Theorem 3.8] and was generalized by Padró and Sáez in [14, Theorem 2.1]. The
independent sequence method works as follows. Let Γ be an access structure on a
set of participants P. Let ∅ 6= B1 ⊂ · · · ⊂ Bm /∈ Γ be a sequence of subsets of P that
is made independent by a subset A ⊂ P, that is to say, there exist X1, . . . ,Xm ⊂ A
such that Bi∪Xi ∈ Γ and Bi−1∪Xi /∈ Γ for any i = 1, . . . ,m where B0 is the empty
set. Then, ρ∗(Γ) ≤ |A|/(m + 1) if A ∈ Γ, while ρ∗(Γ) ≤ |A|/m whenever A /∈ Γ.

3.1 Ideal access structures with corank greater than two

The purpose of this subsection is to prove Proposition 3.6. In the following three
lemmas, which are used in its proof, we assume that Γ is an access structure on
a set of participants P having basis Γ0, with intersection number equal to one,
corank(Γ) ≥ 3, and optimal information rate ρ∗(Γ) > 2/3.

Lemma 3.3 Let A1, A2, A3 ∈ Γ0 be three different minimal qualified subsets and
p12, p23, p13 ∈ P be three different participants such that Ai ∩ Aj = {pij} if 1 ≤ i <
j ≤ 3. Then, (A1 ∪A2 ∪A3) \ {p12, p23, p13} ∈ Γ.

Proof. We are going to prove first that (A1∪A2∪A3)\{p12, p23} ∈ Γ. Let us suppose
that it is false. In this case, we can consider the subsets B1 = (A2∪{p13})\{p12 , p23},
B2 = (A1 ∪ A2) \ {p12, p23} and B3 = (A1 ∪ A2 ∪ A3) \ {p12, p23}. On one hand we
have that the subsets B1∪{p12, p23}, B2∪{p12} and B3∪{p23} are qualified because
A2 ⊂ B1 ∪ {p12, p23}, A1 ⊂ B2 ∪ {p12} and A3 ⊂ B3 ∪ {p23}. On the other hand
we claim that the subsets B1 ∪ {p12} = (A2 ∪ {p13}) \ {p23} and B2 ∪ {p23} =
(A1 ∪ A2) \ {p12} are not qualified. In effect, since the intersection number of Γ is
equal to one, any minimal qualified subset C ∈ Γ0 such that C ⊂ (A2∪{p13})\{p23}
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or C ⊂ (A1 ∪ A2) \ {p12} has at most two elements, which is a contradiction with
corank(Γ) ≥ 3. Therefore, the sequence ∅ 6= B1 ⊂ B2 ⊂ B3 /∈ Γ is made independent
by the set A = {p12, p23} /∈ Γ by taking X1 = {p12, p23}, X2 = {p12} and X3 =
{p23}. Hence, by the independent sequence method it follows that ρ∗(Γ) ≤ 2/3, a
contradiction.

Let us prove now that (A1 ∪ A2 ∪ A3) \ {p12, p23, p13} ∈ Γ. Let A4 ∈ Γ0 be
a minimal qualified subset such that A4 ⊂ (A1 ∪ A2 ∪ A3) \ {p12, p23}. We only
have to prove that p13 /∈ A4. If p13 ∈ A4, then A4 has at most two elements
because A4 =

⋃3
i=1(A4 ∩ Ai), the intersection number of Γ is equal to one, and

p13 ∈ A4 ∩A1 ∩A3. But this is a contradiction with corank(Γ) ≥ 3. �

Lemma 3.4 Let A1, A2, A3 ∈ Γ0 be three different minimal qualified subsets and
p12, p23, p13 ∈ P be three different participants such that Ai ∩ Aj = {pij} if 1 ≤ i <
j ≤ 3. Then, |Ai| = 3 for every i = 1, 2, 3.

Proof. By symmetry, it is enough to prove that |A2| = 3. From Lemma 3.3, there
exists a minimal qualified subset A ∈ Γ0 such that A ⊂ (A1∪A2∪A3)\{p12, p23, p13}.
Since Γ has intersection number one and its corank is at least three, A = {α1, α2, α3}
where A∩Ai = {αi}. We can apply now Lemma 3.3 to the minimal qualified subsets
A1, A2 and A. Then, there exists a minimal qualified subset B ∈ Γ0 such that
B ⊂ (A1 ∪A2 ∪A) \ {p12, α1, α2}. As before, we have that B = {β1, β2, α3}, where
B ∩ A1 = {β1}, B ∩ A2 = {β2} and B ∩ A = {α3}. We apply now Lemma 3.3 to
the minimal qualified subsets A1, A and B and we see that there exists a minimal
qualified subset C ∈ Γ0 such that C ⊂ (A1∪A∪B)\{α1, α3, β1} and, then, |C| = 3.
Observe that C ∩ A = {α2} and C ∩ B = {β2} and, hence, α2, β2 ∈ A2 ∩ C. Since
α2 6= β2 and the intersection number of Γ is equal to one, we have that A2 = C and,
then, A2 has exactly three elements. �

Lemma 3.5 Let A1, A2, A3 ∈ Γ0 be three different minimal qualified subsets such
that A1 ∩ A2 6= ∅, A3 ∩ (A1 ∪ A2) 6= ∅ and A1 ∩ A3 6= A2 ∩ A3. Then, Ai ∩A3 6= ∅
for every i = 1, 2.

Proof. Since A3 ∩ (A1 ∪ A2) 6= ∅, we can assume that A1 ∩ A3 6= ∅. We have to
prove that A2 ∩A3 6= ∅. By assumption, A1 ∩A3 6= A2 ∩A3 and Γ has intersection
number equal to one. Then, there exist two different participants a, c ∈ P such that
{a} = A1 ∩A2 and {c} = A1 ∩A3. We have to prove that there exists a participant
b 6= a, c such that {b} = A2 ∩A3.

We are going to prove first that (A1 ∪ A2 ∪ A3) \ {a, c} ∈ Γ. Let us suppose
that this is false. In this case, we consider the subsets B1 = A1 \ {a, c}, B2 =
(A1 ∪ A2) \ {a, c} and B3 = (A1 ∪ A2 ∪ A3) \ {a, c}. It is clear that the subsets
B1 ∪ {a, c}, B2 ∪ {a} and B3 ∪ {c} are qualified, while the subset B1 ∪ {a} is not
qualified. Furthermore, since Γ has intersection number equal to one and its corank
is at least three, B2 ∪ {c} = (A1 ∪ A2) \ {a} is not a qualified subset. Therefore,

9



the set {a, c} makes independent the sequence ∅ 6= B1 ⊂ B2 ⊂ B3 /∈ Γ by taking
X1 = {a, c}, X2 = {a} and X3 = {c}. Hence, by the independent sequence method
it follows that ρ∗(Γ) ≤ 2/3, a contradiction.

Let A4 ∈ Γ0 be a minimal qualified subset such that A4 ⊂ (A1∪A2∪A3)\{a, c}.
Since corank(Γ) ≥ 3 and the intersection number of Γ is equal to one, we have that
A4 = {α1, α2, α3}, where αi ∈ Ai \ (Aj ∪ Ak) if {i, j, k} = {1, 2, 3}. Observe that
we can apply Lemma 3.4 to the subsets A1, A3 and A4 and we get |A1| = |A3| =
3. Therefore A1 = {a, c, α1} and A3 = {c, α3, b} for some participant b. From
Lemma 3.3, {a, α2, b} = (A1 ∪ A3 ∪ A4) \ {c, α1, α3} ∈ Γ. Since a, α2 ∈ A2 and the
intersection number of Γ is equal to one, hence it follows that A2 = {a, α2, b} and,
so, {b} = A2 ∩A3. �

Proposition 3.6 Let Γ be a connected access structure on a set of participants P
with intersection number equal to one, corank(Γ) ≥ 3, and optimal information rate
ρ∗(Γ) > 2/3. Then, Γ is either a star Γ〈S(p0)〉, or the access structure associated
to the Fano plane Γ2, or the access structure Γ2,1.

Proof. Let us suppose that Γ is not a star. Then, there exist three minimal qualified
subsets A1, A2, A3 ∈ Γ0 such that A1 ∩A2 6= ∅, A1 ∩A3 6= ∅ and A1 ∩A2 6= A1 ∩A3.
From Lemma 3.5, we have that A2 ∩ A3 6= ∅. Applying Lemmas 3.3 and 3.4, it
follows that A1 = {p1, p2, p3}, A2 = {p3, p4, p5} and A3 = {p1, p5, p6} and, besides,
A4 = {p2, p4, p6} ∈ Γ0.

If Γ0 = {A1, A2, A3, A4}, then Γ = Γ2,1. The proof is concluded by checking that
Γ = Γ2, the Fano plane, if Γ0 6= {A1, A2, A3, A4}.

Let us suppose that there exists a fifth minimal qualified subset A5 ∈ Γ0. Since
Γ is connected, A5 ∩ {p1, . . . , p6} 6= ∅. Without loss of generality, we can suppose
that p1 ∈ A5. Observe that p2, p3, p5, p6 /∈ A5 because the intersection number of Γ
is equal to one. We can apply Lemmas 3.5 and 3.4 to A1, A2 and A5 and we get
that A5 ∩A2 6= ∅ and |A5| = 3. Therefore, there exists a participant p7 6= p1, . . . , p6

such that A5 = {p1, p4, p7}. Besides, from Lemma 3.3, A6 = {p2, p5, p7} ∈ Γ0.
Let us apply now Lemma 3.3 to the subsets, A1, A3 and A6 to obtain that A7 =
{p3, p6, p7} ∈ Γ0. It is not difficult to check that {A1, . . . , A7} = (Γ2)0, the basis
of the access structure associated to the Fano plane. We finish by proving that
Γ0 = {A1, . . . , A7}. In effect, let us suppose that there exists another minimal
qualified subset A8 ∈ Γ0. As before, we can suppose that p1 ∈ A8 without loss of
generality. Then, since the intersection number of Γ is equal to one, pi /∈ A8 for any
i = 2, . . . , 7. A contradiction is obtained by applying Lemma 3.5 to A1, A2 and A8.
This completes the proof of the proposition. �

3.2 Ideal access structures with corank equal to two

The characterization of the ideal access structures with intersection number equal
to one is concluded by Proposition 3.11. Its proof is obtained by a similar method as
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in the previous case. Namely, it is based on the following four lemmas determining
some forbidden situations in such access structures. In these lemmas, we assume that
Γ is an access structure on a set of participants P having basis Γ0, with intersection
number equal to one, corank(Γ) = 2, and optimal information rate ρ∗(Γ) > 2/3.

Lemma 3.7 Let A1, A2 ∈ Γ0 be two minimal qualified subsets such that |A1| ≥ 3
and |A2| = 2. Assume that A1 ∩A2 6= ∅. Then, (A1 ∪A2) \ (A1 ∩A2) /∈ Γ.

Proof. Let us suppose that (A1∪A2)\(A1∩A2) ∈ Γ. Let us consider the participants
a, b such that A2 = {a, b} and A1 ∩ A2 = {a}. Let A0 ∈ Γ0 be a minimal qualified
subset such that A0 ⊂ (A1∪A2)\(A1 ∩A2) = (A1∪A2)\{a}. Since the intersection
number of Γ is equal to one, hence it follows that A0 = (A0 ∩ A1) ∪ (A0 ∩ A2) =
{b, c} where c is a participant in A1. Let us consider the subsets B1 = {c} and
B2 = A1 \ {a}. Observe that B1 ∪ {b} and B2 ∪ {a} are qualified subsets, while
the subset B1 ∪ {a} is not qualified because |A1| ≥ 3. Therefore, the sequence
∅ 6= B1 ⊂ B2 /∈ Γ is made independent by the subset {a, b} ∈ Γ. Hence, by the
independent sequence method, we have that ρ∗(Γ) ≤ 2/3, a contradiction. �

Lemma 3.8 Let A1, A2, A3 ∈ Γ0 be three different minimal qualified subsets such
that |A1| ≥ 3, |A2| = 2 and |A3| ≥ 2. Assume that ∅ 6= A1 ∩ A2 6= A2 ∩ A3 6= ∅.
Then, |A1| = 3, |A3| = 3, A1 ∩A3 6= ∅ and (A1 ∪A3) \ (A2 ∪ (A3 ∩A1)) ∈ Γ.

Proof. Let A2 = {a, b}. We may assume that {a} = A1∩A2 and that A2∩A3 = {b}.
First we are going to prove that (A1 ∪A3)\ (A2 ∪ (A3 ∩A1)) ∈ Γ. To do it let us

consider the subsets B1 = A1\{a} and B2 = (A1∪A3)\A2. Notice that B1∪{a} and
B2∪{b} are qualified subsets while, from Lemma 3.7, B1∪{b} = (A1∪A2)\(A1∩A2)
is not qualified. So, if B2 6∈ Γ, then the sequence ∅ 6= B1 ⊂ B2 is made independent
by the subset {a, b} ∈ Γ and hence, by the independent sequence method, we have
that ρ∗(Γ) ≤ 2/3, a contradiction. Therefore B2 = (A1 ∪ A3) \ A2 ∈ Γ. Since
the intersection number of Γ is equal to one, (A1 ∪ A3) \ A2 ∈ Γ if and only if
(A1 ∪A3) \ (A2 ∪ (A3 ∩A1)) ∈ Γ. Therefore, (A1 ∪A3) \ (A2 ∪ (A3 ∩A1)) ∈ Γ and,
hence, there exist a′ ∈ A1 \ (A2 ∪A3) and b′ ∈ A3 \ (A1 ∪A2) such that {a′, b′} ∈ Γ0.

Now let us show that |A3| ≥ 3. We are going to prove that a contradiction
holds if |A3| = 2. If |A3| = 2, then a A3 = {b, b′}. In such a case we consider
the subsets B1 = {a} and B2 = {a, a′}. On one hand, B1 ∪ {b} and B2 ∪ {b′}
are qualified subsets. On the other hand, from Lemma 3.7, B1 ∪ {b′} = {a, b′} ⊂
(A1 ∪ {a′, b′}) \ (A1 ∩ {a′, b′}) /∈ Γ. Besides, B2 6∈ Γ because |A1| ≥ 3. Therefore
we have that the sequence ∅ 6= B1 ⊂ B2 6∈ Γ is made independent by the subset
{b, b′} ∈ Γ. Thus, ρ∗(Γ) ≤ 2/3, a contradiction.

To finish the proof of the lemma we must demonstrate that |A1| = 3, |A3| = 3
and A1 ∩ A3 6= ∅. Notice that A1 and A3 play the same role. So, it is enough to
show that |A3| = 3 and that A1 ∩A3 6= ∅.
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In order to do it first we are going to prove that (A1 ∪ {b, b′}) \ {a, a′} ∈ Γ.
Otherwise we consider the subsets B1 = A1 \ {a, a′}, B2 = (A1 ∪ {b}) \ {a, a′} and
B3 = (A1 ∪ {b, b′}) \ {a, a′}. It is clear that B1 ∪ {a, a′}, B2 ∪ {a} and B3 ∪ {a′} are
qualified subsets, while B1 ∪{a} is not qualified. Furthermore, applying Lemma 3.7
it follows that B2 ∪ {a′} = (A1 ∪ A2) \ (A1 ∩A2) /∈ Γ. Therefore {a, a′} /∈ Γ makes
independent the sequence ∅ 6= B1 ⊂ B2 ⊂ B3 /∈ Γ by taking X1 = {a, a′}, X2 = {a}
and X3 = {a′}. So, ρ∗(Γ) ≤ 2/3, a contradiction.

Let A0 ∈ Γ0 such that A0 ⊂ (A1 ∪ {b, b′}) \ {a, a′}. We have that |A3| ≥ 3
and that {b, b′} ⊂ A3. Hence, since the intersection number of Γ is equal to one, it
follows that A0 ∩ A1 6= ∅. Let {x} = A0 ∩ A1. So A0 = {x, b}, or A0 = {x, b′}, or
A0 = {x, b, b′}. On one hand {x, b} ⊂ (A1 ∪ A2) \ (A1 ∩ A2). On the other hand
{x, b′} ⊂ (A1∪{a′, b′})\ (A1 ∩{a′, b′}). Thus, applying Lemma 3.7 we conclude that
A0 = {x, b, b′}. Therefore A0 = A3. Hence, |A3| = 3 and A1 ∩A3 6= ∅, as we wanted
to prove. �

Lemma 3.9 Let A1, A2, A3 ∈ Γ0 be three different minimal qualified subsets such
that |A1| ≥ 3, |A2| = 2 and |A3| = 2. Assume that ∅ 6= A1 ∩ A2 6= A1 ∩ A3 6= ∅.
Then, |A1| = 3, A2 ∩A3 = ∅ and (A1 ∪A2 ∪A3) \ ((A1 ∩A2) ∪ (A1 ∩A3)) ∈ Γ.

Proof. Let {a} = A1 ∩ A2 and {b} = A1 ∩ A3. If A2 ∩ A3 6= ∅, then A3 ⊂
(A1 ∪ A2) \ (A1 ∩ A2). So (A1 ∪ A2) \ (A1 ∩ A2) ∈ Γ which is a contradiction with
Lemma 3.7. Therefore we have that A2 ∩ A3 = ∅ and hence, A2 = {a, x} and
A3 = {b, y} with x 6= y.

Now let us show that (A1∪{x, y})\{a, b} = (A1∪A2∪A3)\((A1∩A2)∪(A1∩A3)) ∈
Γ. If not we consider the subsets B1 = A1 \ {a, b}, B2 = (A1 ∪ {x}) \ {a, b} and
B3 = (A1 ∪ {x, y}) \ {a, b}. Notice that B1 ∪ {a, b}, B2 ∪ {a} and B3 ∪ {b} are
qualified subsets, while B1 ∪ {a} is not qualified. Furthermore, from Lemma 3.7,
B2 ∪ {b} = (A1 ∪A2) \ (A1 ∩A2) /∈ Γ. Therefore {a, b} /∈ Γ makes independent the
sequence ∅ 6= B1 ⊂ B2 ⊂ B3 /∈ Γ by taking X1 = {a, b}, X2 = {a} and X3 = {b}.
So, ρ∗(Γ) ≤ 2/3, a contradiction.

To finish we must demonstrate that |A1| = 3. Since (A1 ∪ {x, y}) \ {a, b} ∈ Γ,
hence there exists A0 ∈ Γ0 such that A0 ⊂ (A1 ∪ {x, y}) \ {a, b}. Without loss of
generality we may assume that x ∈ A0. Thus we have that A1, A2, A0 ∈ Γ0 are three
different minimal qualified subsets such that |A1| ≥ 3, |A2| = 2, |A0| ≥ 2 and such
that {a} = A1 ∩A2 6= A2 ∩A0 = {x}. So, from Lemma 3.8, we get that |A1| = 3 as
we wanted to prove. �

Lemma 3.10 Let A1, A2, A3 ∈ Γ0 be three different minimal qualified subsets such
that |A1| ≥ 3, |A2| = 2 and |A3| ≥ 3. Assume that ∅ 6= A1 ∩ A2 6= A1 ∩ A3 6= ∅.
Then, |A1| = 3, |A3| = 3, A2 ∩A3 6= ∅ and (A1 ∪A3) \ (A2 ∪ (A3 ∩A1)) ∈ Γ.

Proof. Let a, b, c be three different participants such that A2 = {a, b}, A1∩A2 = {a}
and A1 ∩A3 = {c}.
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We claim that (A1∪A3∪{b})\{a, c} is a qualified subset. Let us show our claim.
Assume that (A1 ∪ A2 ∪ {b}) \ {a, c} /∈ Γ. In such a case we consider the subsets
B1 = A1 \ {a, c}, B2 = (A1 ∪ {b}) \ {a, c} and B3 = (A1 ∪ A3 ∪ {b}) \ {a, c}. It is
clear that B1 ∪ {a, c}, B2 ∪ {a} and B3 ∪{c} are qualified subsets, while B1 ∪ {a} is
not qualified. Furthermore, from Lemma 3.7, B2 ∪ {c} = (A1 ∪A2) \ (A1 ∩A2) /∈ Γ.
So, {a, c} /∈ Γ makes independent the sequence ∅ 6= B1 ⊂ B2 ⊂ B3 /∈ Γ by taking
X1 = {a, c}, X2 = {a} and X3 = {c}. Hence, ρ∗(Γ) ≤ 2/3, a contradiction.
Therefore, our claim holds.

Let A0 ∈ Γ0 be a minimal qualified subset such that A0 ⊂ (A1∪A3∪{b})\{a, c}.
Since Γ has intersection number equal to one hence it follows that either A0 =
{a1, a3, b}, or A0 = {a1, b}, or A0 = {a3, b}, or A0 = {a1, a3}, where a1 ∈ A1 and
a3 ∈ A3. We are going to prove that A0 = {a1, a3}. If A0 = {a1, a3, b} then, applying
Lemma 3.8 to A1, A2 and A0 we get that {c, a3} ∈ Γ, so A3 = {c, a3} which is a
contradiction because |A3| ≥ 3. If A0 = {a1, b} then a contradiction is obtained
by applying Lemma 3.7 to A1 and A2. While, if A0 = {a3, b} then a contradiction
is obtained by applying Lemma 3.8 to A1, A2 and A0 since |A0| 6= 3. Therefore
A0 = {a1, a3}.

We apply now Lemma 3.9 to the minimal qualified subsets A1, A2 and A0.
Hence we get that |A1| = 3 and that (A1 ∪A2 ∪A0) \ ((A1 ∩A2) ∪ (A1 ∩A0)) ∈ Γ.
Therefore, A1 = {a, a1, c} and {b, c, a3} ∈ Γ. Since c, a3 ∈ A3, thus A3 = {b, c, a3}.
So, |A3| = 3, A2 ∩ A3 = {b} 6= ∅ and (A1 ∪ A3) \ (A2 ∪ (A3 ∩ A1)) = {a1, a3} ∈ Γ.
This completes the proof of the lemma. �

Proposition 3.11 Let Γ be a connected access structure on a set of participants P
with intersection number equal to one, corank(Γ) = 2, and optimal information rate
ρ∗(Γ) > 2/3. Then, Γ is either a complete multipartite graph Γ〈Kn1,...,n`

〉, or a star
Γ〈S(p0)〉, or the access structure Γ2,2, or the access structure Γ2,3.

Proof. The access structure Γ is defined by a graph if rank(Γ) = 2. In this case,
Γ = Γ〈G〉, where G is a complete multipartite graph [4, 6]. Therefore we must
demonstrate that, if rank(Γ) ≥ 3 then Γ is either an access structure defined by a
star, or the access structure Γ2,2, or the access structure Γ2,3.

Assume that rank(Γ) ≥ 3 and that Γ is not a star. We claim that then there
exist five different participants p1, . . . , p5 ∈ P such that the subsets A1 = {p1, p2, p3},
A2 = {p1, p4}, A3 = {p3, p4, p5} and A4 = {p2, p5} are minimal qualified subsets of
the access structure Γ.

Let us show our claim. Since Γ is a connected access structure with rank(Γ) ≥ 3
and corank(Γ) = 2, there exist minimal qualified subsets A1, A2 ∈ Γ0 with |A1| ≥ 3,
|A2| = 2 and A1∩A2 6= ∅. Due to the fact that Γ is not a star, there must exist a third
minimal qualified subset A0 ∈ Γ0 such that A0 ∩A1 6= A0 ∩A2. If |A0| ≥ 3 then, by
Lemmas 3.8 and 3.10, it follows that A0 ∩Ai 6= ∅ for i = 1, 2, that |A1| = |A0| = 3,
and that (A1 ∪ A0) \ (A2 ∪ (A1 ∩ A0)) ∈ Γ. So, if |A0| ≥ 3 we define A3 = A0
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and A4 = (A1 ∪ A0) \ (A2 ∪ (A1 ∩ A0)) ∈ Γ0. To finish the proof of our claim we
must examine the case |A0| = 2. If |A0| = 2 then, by Lemma 3.8 it follows that
A0∩A2 = ∅ and, hence, A0∩A1 6= ∅. Now applying Lemma 3.9 we get that |A1| = 3
and that (A1 ∪ A2 ∪ A0) \ ((A1 ∩ A2) ∪ (A1 ∩ A0)) ∈ Γ. Therefore, if |A0| = 2 we
define A3 = (A1 ∪ A2 ∪ A0) \ ((A1 ∩ A2) ∪ (A1 ∩ A0)) ∈ Γ0 and A4 = A0. This
completes the proof of our claim.

Notice that, if Γ0 = {A1, A2, A3, A4} then Γ = Γ2,3. Hence, to conclude the
proof of the proposition we must demonstrate that if Γ0 6= {A1, A2, A3, A4} then
Γ = Γ2,2.

Let us assume that Γ0 6= {A1, A2, A3, A4}. Since Γ is connected, there exists
another minimal qualified subset A5 ∈ Γ0 with A5 ∩ Ai 6= ∅ for some i = 1, 2, 3, 4.
We are going to distinguish two cases.

First we suppose that p3 ∈ A5. In this case, p1, p2, p4, p5 /∈ A5 because Γ has
intersection number equal to one. If |A5| ≥ 3, we apply Lemma 3.10 to A1, A2

and A5, and we have that p4 ∈ A5, a contradiction. Therefore |A5| = 2. Hence,
A5 = {p3, p6} where p6 6= pi if 1 ≤ i ≤ 5. From Lemma 3.9 applied to A1, A2 and A5,
we have that A6 = {p2, p4, p6} ∈ Γ0. Besides, we obtain that A7 = {p1, p5, p6} ∈ Γ0

is also a minimal qualified subset by applying Lemma 3.9 to A1, A4 and A5.
We assume now that p3 /∈ A5. By symmetry, we can suppose that p1 ∈ A5.

Observe that p2, p3, p4 /∈ A5 because the intersection number of Γ is equal to one.
Applying Lemma 3.8 to A3, A2 and A5, we have that |A5| = 3, A5 ∩ A3 6= ∅
and (A3 ∪ A5) \ (A2 ∪ (A5 ∩ A3)) ∈ Γ. Then A5 = {p1, p5, p6} where p6 6= pi if
1 ≤ i ≤ 5. Moreover, A6 = {p3, p6} = (A3 ∪A5) \ (A2 ∪ (A5 ∩A3)) ∈ Γ0. We apply
now Lemma 3.9 to A5, A2 and A4 and we obtain another minimal qualified subset
A7 = {p2, p4, p6}.

In both cases we have that, if Γ0 = {A1, . . . , A7} then Γ = Γ2,2. Therefore we
conclude the proof of the proposition by checking that Γ0 = {A1, . . . , A7}.

Let us suppose that there exists another minimal qualified subset A8 ∈ Γ0.
Since Γ is connected and by symmetry among the participants, we may assume that
p1 ∈ A8. Hence, p2, p3, p4, p5, p6 /∈ A8 because the intersection number of Γ is equal
to one. From Lemma 3.8 applied to A3, A2 and A8, we have that A8 ∩ A3 6= ∅, a
contradiction. This completes the proof of the proposition. �

4 Bounds on the optimal information rate

We present in Proposition 4.1 a bound on the optimal information rate for non-ideal
access structures with intersection number equal to one. This result generalizes the
one for access structures defined by graphs. Besides, we give in Proposition 4.2 a
lower bound on the optimal information rate that holds to any access structure. To
compare both bounds and to illustrate our results Some examples are given.

In order to prove our results we use the decomposition technique. A decomposi-
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tion of an access structure Γ is a family Γ0,1, . . . ,Γ0,r ⊂ Γ0 such that Γ0,1∪· · ·∪Γ0,r =
Γ0. Several decomposition methods have been presented providing lower bounds on
the optimal information rate. The λ-decomposition method given by Stinson in [18]
is one of the most powerful of them. We apply this method only for decompositions
consisting of ideal substructures. Namely, we are going to use the following result,
which is a direct consequence from [18, Theorem 2.1]. Let Γ be an access structure
on a set of participants P having basis Γ0. Let Γ0,1, . . . ,Γ0,r ⊂ Γ0 be a decomposi-
tion of Γ. Let Γi be the access structure with basis Γ0,i on the set Pi =

⋃
A∈Γ0,i

A.
Let us suppose that, for any i = 1, . . . , r, there exists an ideal secret sharing scheme
Σi with access structure Γi and set of secrets a finite field K. Then, the optimal
information rate of Γ verifies ρ∗(Γ) ≥ min{λA : A ∈ Γ0}/max{rp : p ∈ P}, where
λA = | {i ∈ {1, . . . , r} : A ∈ Γ0,i} | and rp = | {i ∈ {1, . . . , r} : p ∈ Pi} |.

Proposition 4.1 Let Γ be an access structure with intersection number equal to
one on a set of participants P. For every p ∈ P, we define nΓ(p) as the number
of participants q ∈ P such that p, q ∈ A for some minimal qualified subset A ∈ Γ0.
We define also the degree of p in the access structure Γ as the number of minimal
qualified subsets it belongs to, that is degΓ(p) = |{A ∈ Γ0 : p ∈ A}|. Assume that Γ
is not realizable by an ideal secret sharing scheme. Then,

2
3
≥ ρ∗(Γ) ≥ corank(Γ)

max{nΓ(p) : p ∈ P} ≥ corank(Γ)
(rank(Γ) − 1)max{degΓ(p) : p ∈ P} + 1

·

Proof. We assume that Γ is not realizable by an ideal secret sharing scheme. Hence
applying Theorem 3.1 it follows that ρ∗(Γ) ≤ 2/3. Next we prove the lower bound
by using a suitable decomposition of Γ. Let us denote P = {p1, . . . , pn}. For every
i = 1, . . . , n, let us consider Γ0,i = {A ∈ Γ0 : pi ∈ A} and Pi =

⋃
A∈Γ0,i

A.
Since the intersection number of Γ is equal to one, Γ0,i is a star S(pi) for any
i = 1, . . . , n. Then, from Proposition 2.1 the access structure Γi on Pi having basis
Γ0,i is a vector space access structure. It is clear that the substructures Γ0,i form
a decomposition of Γ. Hence, ρ∗(Γ) ≥ min{λA : A ∈ Γ0}/max{rp : p ∈ P}. On
one hand we have that λA = | {i ∈ {1, . . . , n} : A ∈ Γ0,i} | = |A| for every A ∈ Γ0.
On the other hand it is not difficult to check that, for every participant p ∈ P,
rp = | {i ∈ {1, . . . , n} : p ∈ Pi} | = nΓ(p) ≤ (rank(Γ) − 1) degΓ(p) + 1. Therefore,
the lower bounds follow. �

Notice the last inequality in the previous proposition is an equality, whenever Γ
is homogeneous, that is, whenever rank(Γ) = corank(Γ). Hence, we get the lower
bound

2
3
≥ ρ∗(Γ) ≥ r

(r − 1)d+ 1

for any non-ideal homogeneous access structure Γ with rank r, intersection number
equal to one, and maximum degree d = max{degΓ(p) : p ∈ P}.
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We apply this result to the access structures defined by graphs. Let Γ = Γ〈G〉 be
the access structure defined by a graphG. Then, Γ is a homogeneous access structure
of rank r = 2, with intersection number equal to one and maximum degree d equal
to the maximum degree of the graph G. If G is a complete multipartite graph, then
Γ〈G〉 is an ideal access structure. While, if G is not a complete multipartite graph,
then 2/3 ≥ ρ∗(Γ〈G〉) ≥ 2/(d+1). This lower bound on the optimal information rate
of access structures defined by graphs was given by Stinson in [18]. Besides, Blundo
et al. [2] proved that this lower bound is tight.

Let us apply now this result to the access structures associated to finite projec-
tive projective planes. Let Γ = Γn be the access structure associated to the finite
projective plane of order n. Then, Γn is a homogeneous access structure of rank
r = n+ 1, with intersection number equal to one, and maximum degree d = n+ 1.
If n = 2 then the access structure is defined by the Fano plane and so it is ideal,
while 2/3 ≥ ρ∗(Γn) ≥ (n+ 1)/(n2 + n+ 1) whenever n ≥ 3.

We present next a lower bound on the optimal information rate that applies to
any access structure. This lower bound improves in some cases the one in Proposi-
tion 4.1.

Proposition 4.2 Let Γ be an access structure on a set of participants P. Let m =
|Γ0| and let d = max{degΓ(p) : p ∈ P}. Then,

ρ∗(Γ) ≥ 2(m− 1)
d(2m − d− 1)

·

Proof. Let Γ0 = {A1, . . . , Am}. For every pair of different minimal qualified subsets
Ai, Aj , we consider Γ0,{i,j} = {Ai, Aj}. It is not difficult to prove that any access
structure with exactly two minimal qualified subsets is a vector space access structure
over any finite field K. Then, we can apply the λ-decomposition method to the
decomposition given by the substructures Γ0,{i,j}, where 1 ≤ i < j ≤ m, and we
obtain ρ∗(Γ) ≥ min{λA : A ∈ Γ0}/max{rp : p ∈ P}. On one hand, it is clear that
λA = m− 1 for any A ∈ Γ0. On the other hand, for every participant p ∈ P,

rp = degΓ(p)(m− degΓ(p))
(

degΓ(p)
2

)
=

1
2

degΓ(p)(2m− degΓ(p) − 1).

Notice that the function f(x) = x(2m−x−1) is monotone increasing if x ≤ m−1/2
and that f(m− 1) = f(m) = m2 −m. Then, since d = max{degΓ(p) : p ∈ P} ≤ m,
it follows that rp = f(degΓ(p))/2 ≤ f(d)/2 = d(2m− d− 1)/2 for any p ∈ P. �

The lower bounds given in Propositions 4.1 and 4.2 are easily comparable for
homogeneous access structures with intersection number equal to one. In effect, let
Γ be an homogeneous access structure with rank r and intersection number equal
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to one. In this case, applying Propositions 4.1 and 4.2, we obtain

ρ∗(Γ) ≥ max
{

r

(r − 1)d+ 1
,

2(m− 1)
d(2m− d− 1)

}
=




r

(r − 1)d+ 1
if 2m ≥ rd+ 2

2(m− 1)
d(2m− d− 1)

if 2m < rd+ 2

Notice that, if Γ = Γ〈G〉 is an access structure defined by a graph G, then r = 2,
m ≥ d, and m = d if and only if Γ is a star and, hence, Γ is ideal. Then, for non-ideal
access structures defined by graphs, the bound given by Proposition 4.1 is always
better than the one obtained from Proposition 4.2.

Besides, if Γ = Γn is the access structure associated to the finite projective plane
of order n, then m = n2 + n + 1 and r = d = n + 1. So, in this case, 2m ≥ rd+ 2.
In this case, the bound given by Proposition 4.1 is also better than the one given by
Proposition 4.2.

Nevertheless, the following example points out a homogeneous access structure
with intersection number one, in which the lower bound given by Proposition 4.2 is
better than the one given by Proposition 4.1.

Example 4.3 Let us consider the set of 3(n+1) participants P = {x, y, z, a1, . . . , an,
b1, . . . , bn, c1, . . . , cn}, where n ≥ 1, and the access structure Γ having basis Γ0 =
{A1, A2, A3}, where A1 = {x, y, a1, . . . , an}, A2 = {y, z, b1, . . . , bn} and A3 = {x, z,
c1, . . . , cn}. It is clear that Γ is a homogeneous access structure with rank r = n+2,
intersection number equal to one and maximum degree d = 2. From Theorem 3.1 and
Propositions 4.1 and 4.2 we get that 2/3 ≥ ρ∗(Γ) ≥ max{(n+2)/(2n+3), 2/3} = 2/3.
Therefore, ρ∗(Γ) = 2/3.

We conclude the section by studying, in the following examples, the optimal
information rates of two non-homogeneous access structures. In the first example
we find bounds improving the ones obtained from the results in this section. While in
the second one we find bounds on the optimal information rate of an access structure
with intersection number different from one by considering its dual.

Example 4.4 Let us consider now the access structure Γ on a set of eight par-
ticipants P = {p1, p2, p3, p4, p5, p6, p7, p8} having minimal qualified subsets A1 =
{p1, p2, p4}, A2 = {p1, p5, p6}, A3 = {p2, p6, p7}, A4 = {p3, p7, p8} and A5 = {p2, p3}.
This access structure has intersection number equal to one, rank equal to three and
corank equal to two. From Theorem 3.1 and Propositions 4.1 and 4.2, we get that
2/3 ≥ ρ∗(Γ) ≥ max{1/3, 4/9} = 4/9. In this case we can improve both the upper
and the lower bounds. Namely, we are going to prove that 3/5 ≥ ρ∗(Γ) ≥ 1/2.
The new upper bound is obtained by means of the independent sequence method.
Let us consider the subsets B1 = {p4}, B2 = {p4, p5, p6}, B3 = {p4, p5, p6, p7} and
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B4 = {p4, p5, p6, p7, p8}. Equally, we take the subsets X1 = {p1, p2}, X2 = {p1},
X3 = {p2} and X4 = {p3}. It is not difficult to check that the sequence ∅ 6= B1 ⊂
B2 ⊂ B3 ⊂ B4 /∈ Γ is made independent by the set A = {p1, p2, p3}. Since A ∈ Γ,
we have that ρ∗(Γ) ≤ 3/5. In order to find the new lower bound, we consider the
decomposition {Γ1,Γ2} of Γ defined by (Γ1)0 = {A1, A3, A5} and (Γ1)0 = {A2, A4}.
Since Γ1 is a star and Γ2 has two minimal qualified subsets, both are ideal access
structures. This decomposition implies that ρ∗(Γ) ≥ 1/2.

Example 4.5 Let Γ be the access structure on P = {p1, p2, p3, p4, p5, p6, p7} defined
by Γ0 = {{p1, p2, p3, p4}, {p1, p2, p7}, {p1, p3, p6}, {p1, p6, p7}, {p2, p3, p5}, {p2, p5, p7},
{p3, p5, p6}, {p5, p6, p7}}. Notice that Γ has intersection number equal to two, rank
equal to four and corank equal to three. The dual access structure Γ∗ of Γ has
basis (Γ∗)0 = {A1, A2, A3, A4} where A1 = {p1, p5}, A2 = {p2, p6}, A3 = {p3, p7}
and A4 = {p4, p5, p6, p7}. Therefore Γ∗ has intersection number equal to one, rank
equal to four and corank equal to two. From Theorem 3.1 it follows that Γ∗ is not
an ideal access structure. Hence, Γ is not an ideal access structure. Furthermore,
from Propositions 4.1 and 4.2, we get that 2/3 ≥ ρ∗(Γ∗) ≥ max{2/5, 3/5} = 3/5.
Therefore, 2/3 ≥ ρ∗(Γ) ≥ 3/5.

5 Conclusion and open problems

This paper deals with the characterization of ideal access structures and the search
for bounds on the optimal information rate for the access structures with intersection
number equal to one. Then, our results generalize the previously obtained ones for
access structures defined by graphs [3, 6, 8, 18].

Theorem 3.1 is the main result in this paper. It contains the complete character-
ization of the ideal access structures with intersection number equal to one. Namely,
we prove that the complete multipartite graphs, the stars and the access structure
associated to the Fano plane, together with three other access structures related to
it, are the only ideal connected access structures with intersection number equal to
one. Besides, Theorem 3.1 states also that the ideal access structures in that family
coincide with the vector space ones and with those having optimal information rate
greater than 2/3. That is, there is no access structure with intersection number
equal to one such that its optimal information rate verifies 2/3 < ρ∗(Γ) < 1.

Apart from the access structures defined by graphs, similar results had been
previously obtained for several families of access structures: access structures on
sets of four [17] and five [12] participants, bipartite access structures [14], and access
structures with three or four minimal qualified subsets [13]. These coincidences lead
to the following two questions:

1. Is there any ideal access structure that is not a vector space access structure?

2. Is there any access structure Γ such that 2/3 < ρ∗(Γ) < 1?
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As far as we know, the second question remains open. A negative answer to the
first question is given in [16]. Namely, by using the Theorem of Pappus, the authors
present an ideal access structure that does not admit a vector space realization.
Nevertheless, this access structure can be realized by an ideal linear secret sharing
scheme. So, the following question seems to be still without answer:

1’. Is there any ideal access structure that is not realized by any ideal linear secret
sharing scheme?

Besides the characterization of the ideal access structures with intersection num-
ber equal to one, we give some lower bounds on the optimal information rate for the
non-ideal case. These bounds are obtained from decomposition techniques. When
applied to the access structures defined by graphs, our bounds become the well
known bound ρ∗(Γ〈G〉) ≥ 2/(d + 1) given by Stinson [18], which Blundo et al. [2]
proved to be tight. The tightness of the bounds we present here is an open problem,
both in the general case of access structures with intersection number equal to one
or considering only the homogeneous structures with rank greater than 2. Another
open question is the search of new techniques to construct secret sharing schemes
for the access structures with intersection number equal to one. In this way, better
lower bounds on their optimal information rate could be found.

References

[1] G.R. Blakley. Safeguarding cryptographic keys. AFIPS Conference Proceedings.
48 (1979), 313–317.

[2] C. Blundo, A. De Santis, R. De Simone, U. Vaccaro. Tight bounds on the
information rate of secret sharing schemes. Designs, Codes and Cryptography.
11 (1997), 107–122.

[3] C. Blundo, A. De Santis, L. Gargano, U. Vaccaro. On the information rate of
secret sharing schemes. Advances in Cryptology CRYPTO’92. Lecture Notes in
Computer Science. 740, 148–167.

[4] C. Blundo, A. De Santis, D.R. Stinson, U. Vaccaro. Graph decompositions and
secret sharing schemes. J. Cryptology. 8 (1995), 39–64.

[5] E.F. Brickell. Some ideal secret sharing schemes. J. Combin. Math. and Combin.
Comput. 9 (1989), 105–113.

[6] E.F. Brickell, D.M. Davenport. On the classification of ideal secret sharing
schemes. J. Cryptology. 4 (1991), 123–134.

[7] E.F. Brickell, D.R. Stinson. Some improved bounds on the information rate of
perfect secret sharing schemes. J. Cryptology. 5 (1992), 153–166.

19



[8] R.M. Capocelli, A. De Santis, L. Gargano, U. Vaccaro. On the size of shares of
secret sharing schemes. J. Cryptology. 6 (1993), 157–168.

[9] P. Dembowski. Finite geometries. Reprint of the 1968 original. Classics in Math-
ematics. Springer-Verlag, Berlin, 1997.

[10] M. Ito, A. Saito, T. Nishizeki. Secret sharing scheme realizing any access struc-
ture. Proc. IEEE Globecom’87. (1987), 99–102.

[11] W.-A. Jackson, K.M. Martin. Geometric secret sharing schemes and their duals.
Designs, Codes and Cryptography. 4 (1994), 83–95.

[12] W.-A. Jackson, K.M. Martin. Perfect secret sharing schemes on five partici-
pants. Designs, Codes and Cryptography. 9 (1996), 267–286.
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