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Abstract

We describe and analyze new combinations of multi-exponentiation algorithms with represen-
tations of the exponents. We deal mainly but not exclusively with the case where the inversion
of group elements is fast: This is true for example for elliptic curves, groups of rational divisor
classes of hyperelliptic curves, trace zero varieties and XTR.

These methods are most attractive with exponents in the rang&€rto256 bits, and can also
be used for computingingleexponentiations in groups which admit an automorphism satisfying
a monic equation of small degree over the integers.

The choice of suitable exponent representations allows us to match or improve the running
time of the best multi-exponentiation techniques in the aforementioned range, while keeping the
memory requirements as small as possible. Hence some of the methods presented here are par-
ticularly attractive for deployment in memory constrained environments such as smart cards. By
construction, such methods provide good resistance against side channel attacks.

We also describe some applications of these algorithms.
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phisms, Smart card applications
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1 Introduction

Some public-key cryptographic protocols such as the verification of digital signatures require the
computation of the product of powers of two [1], three [12] or more elements of a group. Furthermore,
in some algebraic structures the computation of a single exponentiation can be reduced to such a
product: If a commutative grou@ admits an automorphism satisfying a monic equation over the
integers of degred then ¢g¢ can be computed ag® - o(g)° --- 0% 1(g)¢~ for suitable integers

eo, - - - , €41 Which in many practical instances have sﬁezl/d) (see [15, 27]). In this context, too,

the casesl = 2 andd = 3 are of particular practical relevance because of trace zero varieties and
XTR (see Section 5).

Such computations can be performed by computing the various powers separately and then mul-
tiplying them together. If one of the bases is known in advance and one can afford to store a lot
of precomputed values, one can obtain very good performance from this idea [10]. However, if the
intermediate results are not needed elsewhere, one can do much better in the general case.

Shamir’s trick can be extended in a straightforward way by using sliding windows: To our knowl-
edge this was first reported in [33]. So far, this generalisation of Shamir’s trick has been applied only
to the usual binary representation of the exponents, and only in this basic foller klas compared it
to other methods such @terleaved exponentiatid23]. We combine the idea of [33] with different
exponent recodings and compare these variants with interleaved multiexponentiation, thus extending
Moller’'s analysis. One of our main concerns is to keep the memory requirements as small as possible,
which is important for smart card implementations. Our results can be summarized as follows:

(1) We propose and analyze variants of the algorithm from [33] which are better suited to groups
where inversion is cheap. This is done by considering signed digit representations — first intro-
duced in [6] — of the exponents. In particular we considerrthr-adjacent fornj26, 24] (see
Theorem 3.6 and Remark 3.7) and a new representation of pairs of integers due to Solinas [30]
(see Theorem 3.12).

Our best algorithms perform double exponentiations with similar performance as the best pre-
vious methods while having much smaller memory requirements: See Tables 5 and 6 (the num-
ber of operations there does not include the number of squarings, which is essentially the same
in all methods which we consider) and Remark 4.6 (2). For example for a bit lengttth

124 < n < 354 a double exponentiation is done Byt 3n/8 multiplications on average and
aboutn squarings, using only2 precomputed values: the precomputations can be reduced fur-
ther paying only a minimal performance penalty.
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(2) To our knowledge Theorem 3.6 complements existing literature on single exponentiations.

(3) We show in Section 5 how all these methods can be used to speed up current and proposed
cryptosystems.

Power analysis of cryptosystems has aroused a lot of attention in the last years. It attempts to guess
secret keys by monitoring power signals of cryptographic devices. Since distinct operations have
different power consumptions, the use of simple square-and-multiply exponentiation methods can
allow a potential attacker to recover the binary representation of the exponent. If, for example, digits
+1 are used like in the NAF, the attacker can gain less information. Window methods are even better
and the adoption of multi-exponentiation algorithms such as those presented in this paper hide the
secret information very efficiently.

In the next section we will introduce the general form of the algorithm from [33], which will
be analysed in detail in Section 3: this forms the main part of this paper. In Section 4 the optimal
parameters will be discussed and the resulting time and space complexities will be compared against
those of interleaved exponentiation. Next, some applications will be outlined.

AcknowledgementsThis paper would not exist, at least not in its present form, without Professor Gerhard Frey’s steady
encouragement and support. The author is grateful to Tanja Lange who drew the author’s attention to Solinas’ work and
proofread the manuscript. Many thanks also to Arjen Lenstra for kindly providing a reprint of [33].

Some computations have been performed usingdlp@e computer algebra system [8].

2 The algorithm

We now proceed with the derivation and the description of the algorithm from [33)G et a com-
mutative group of ordey ~ 2™ andd a (small) integer. Suppose we are given elemegnts ., gq € G

and integers, . . ., eq and want to compute := Hle g;*. Write
n—1
€; = Z €i,j 27 (1)
§=0

with e; ; € {0, +1}. The coefficients; ; are called bitsk{it meansinary digit): unsigned bitsf the
value —1 is not allowedsigned bitsotherwise. In this paper, as it is now customdryeans—1 in
signed bit expansions of integers.

For the moment we assume that the chosen representation is the unsigned binary one.

The most obvious way of performing the desired computation, as already mentioned, consists in
computing the powers separately and multiplying them together. The second most obvious way is
perhaps the following one, which saves some squarings.

Algorithm 2.1 Simple multi-exponentiation

INPUT: Group elementg, ..., g4 and corresponding exponemts ..., eq written as in (1) in
base2 (i.e.withe; ; € {0,1})
outpuT: TI, ¢&

7
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Stepl. z—1€@G

Step2. forj=n—1..0 do {
T — x2 [Skip at first iteration]
fori=1..d do {ife;; =1 thenz —x-g; } }

Step 3. returnx

Shamir’s trick improves Algorithm 2.1 as follows: First precompute Zﬁe/alues]_[le gi{o’l}.

Then putz = [[%, ¢;*"~" by one table look-up. Finally, fof = n —2,...,1,0, replacez by

z? - Hle gfi*j by one squaring, one table look-up and one multiplication. Shamir’s method requires
24 — d—1 multiplications to prepare the table squarings and on average— 2~%)n multiplications,

2~ being the probability that for a fixeg, eijisOforalli = 1,2,...,d. If the exponents are
written in a signed binary representation, the tablean be formed from the producﬁf:1 gf with

k; € {0, £1}. If the cost of an inversion in the groupis negligible, which is usually the main reason

for adopting a signed binary representation, one only needs a half of those vialubese where the

first nonzerdk; equalsl. Then some products are replaced by divisions. This method can be improved
by means of sliding windows [19] in the same way as the square-and-multiply method. We describe
the resulting algorithm.

Algorithm 2.2 Multi-exponentiation with parallel sliding windows

INPUT: A window sizew, integerses, ..., eq as in (1) and a sef of precomputed elements of
the groupG of the forme=1 gf?‘ includinggs, . . ., ga (the se depends o and on the chosen
representation for the integers: see Remarks 2.3 (3—4) for examples)

OuTPUT: [, ¢

Stepl. t«—nandz+— 1€ G
Step 2. if(e;4—1 =0fori=1,2,...,d) then{
(@) t —t—1andx «— z2
} else{
(b) ift>w thent —t—w else{w — tandt — 0 }
(©) fori=1,2,....d dofi — > ;4,2
(d) Lets be the largest integer> 0 such thag?|f; for all i
(e) fori=1,2,...,d do f; « f;/2°
0 @) z—a2""; @)z —a-T[,¢" and (iii)z — 22" }

Step 3. ift =0 thenreturn x elsegoto Step 2

Remarks 2.3 (1) In the casel = 1 the above algorithm is the usual sliding window exponentiation
algorithm. Ifw = 1 then it is just Shamir’s trick.

(2) At the beginning of Step 2 (¢) is the integer represented by a stringwfconsecutive bits
from the exponent;. Nows is the largest non-negative integer such that,, = 0 for all ¢ and allu
with 0 < uw < s. ThenormalisationStep 2 (e) is performed such that at least one of the intefjéss
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odd, in order to reduce the number of element§ afithout impacting the total number of operations
done in Step 2 (f).

(3) In Step 2 (f) the first time it is = 1, so one multiplication can be saved and onlyquarings
are needed.

(4) If the exponents are written in bagethené consists of all elements of the folff"_, ¢ such
that0 < k; < 2" and at least one of thi; is odd. Then Step 2 (f) is done with one table look-up, one
multiplication andw squarings.

(5) The changes to Algorithm 2.2 required to work with the NAF are straightforward. A detailed
discussion of this case is found in Subsection 3.2. One important consequence of the fact that inversion
is free is that the size of can be reduced: In fact in Step 2 (f,ii) one can compute either
z-T1%, gl orz — z/TIL, ;7 so only a half of the full table is required.

3 Complexity analysis

In this section we are concerned only with Algorithm 2.2 and its complexity.

Definition 3.1 A columnis defined as al-tuple of digitse® = (eq4,...,eq,) of the representa-
tion of integers (1) and the ordered sequente ), ("2 .. ¢ of such columns is callejint
representationf thed exponentg;, ..., e,.

If e("=1) £ 0 then the joint representation is said to peperandn is itslength
The number of nonzero colums in the joint representation is callddateming weightand its
densityis the ratio of the Hamming weight to the length.

For simplicity we require that the joint representation of the exporants. , ¢4 is proper. Thus
at the first iteration of Step (2), substeps (b)—(f) are always performed. To evaluate the number of
squarings one should not consider those which can be avoided in the first iteration, whicimsmes
the expected first value of

Algorithm 2.2 scans the joint representation of thexponents;, ..., e; one column at a time,
starting with the column formed by the most significant digits in the chosen representation. Step 2 is
iterated until the joint representation has been scanned completely. At each iteration one column is
read and the algorithm enters in one of two possible distinct states:

So- A zero column is found, so the scanning advances by one column (Step 2 (a)).
S1. A nonzero column is found and the scanning advances bglumns (Steps 2 (b)—(f)).

The number of multiplications (excluding squarings) performed by the algorithm equals the num-
ber of times we are in the second state. L&t the probability that the column read in Step 2 is zero.
After m iterations, the expected number of columns read by the scanning pro¢essig 1 —m))m.
Suppose that for some this number is». The number of multiplications performed by Algorithm
2.2 in Step 2(d) is the(l — 7)m — 1 (remember that the first multiplication can be replaced by an
assignmentj.e.

1—m
R w(l —m)

This is, with some adaptations, the approach followed in the next two subsections.

1 )

Definition 3.2 Lete = Z?;()l e; 27 be an integer. We say that an algorithm scans (generates,
rewrites...) thebits e; right-to-left (resp.left-to-right) if it scans (generates, rewrites...) them from
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the least significant ones to the most significant ones, i.eefirsheney, es, etc. (resp. from the most
significant ones to the least significant ones, i.e. &igst;, thene,,_5, and so on).

Similar definitions hold for algorithms which deal with the colums of a joint representation of
several integers.

Remark 3.3 Algorithm 2.2 processes the columns of the chosen joint representation of the exponents
left-to-right. However most recoding algorithms for producing signed binary representations, such
as Reitwiesner’s algorithm [26] and Solinas’ own algorithm for the Joint Sparse Form, rewrite the
exponents right-to-left. In such situations recoding and (multi-)exponentiation cannot be interleaved,
and the recoded representations must be stored explicitly. This is a general problem with window
methods.

3.1 Unsigned binary inputs

Here the exponents are written in base.e.e; ; € {0,1}. The set€ consists of all elements of the
form Hle gfi suchthad < k; < 2* and at least one of the is odd. It has cardinalitg®d—2(w—1d,

Half of the powers of the base elemepiscan be computed by squarings and all other elements by
products.

The bits in each representation are assumed to be zero or one with equal probability and inde-
pendent from the adjacent bits, so= 2~¢. To evaluate the number of squarings in the main loop
of the algorithm we must determine the expected value aff the first iteration. As all the bits are
independent from each other> u with 1 < « < w with probability2—"?. Hence the expected value
of sis W= 27ud = %jl_l) We have thus the following result:

Theorem 3.4 Suppose that in Algorithm 2.2 the unsigned binary representation is used for the expo-
nents and that their joint representation has length

Then the sef has cardinality2*? — 2(w—1d and requires2%¢ — 2(w=1d _  gperations to be
computed: of these at leagt2~! — 1) can be assumed to be squarings.

The expected number of multiplications in the algorithrmm — 1 and that of the
1—2~d(w-1)

squarings isn — w + 55—

Remark 3.5 In the casew = d = 2, the set€ consists of the valueﬁgg with0 < a,b < 3 and at
least one ofi, b odd. To determine them one has to compute and gtoaadg;, as well ag3 andgs.
This require squarings and multiplications. Computing the remainirggvalues requires further
multiplications.

3.2 Using the NAF

A non-adjacent form(abbreviated as NAF) is a signed binary representation of an integer

Z?;()l b;27 with b; € {0,+1} andb;b;_; = 0. Each integer admits a NAF, which is uniquely
determined. It is the signed binary representation of minimal Hamming weight and it has expected
densityl/3 (see [24] and [2] for proofs).

Reading NAFs through non-sliding windows has been considered already but only for a single
NAF (i.e.d = 1) and not in the case of joint representations: See the paper [13], of which we use some
arguments in this subsection. We consider here sliding windows, which lead to lower complexity.
Hence, even in the cask = 1 our results will complement existing literature. This must not be
confused with thevNAF, cfr. §4.2.4.
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Theorem 3.6 Suppose that in Algorithm 2.2 the exponents are input in NAF, and that their joint
representation is bits long.
The se€ has cardinality(7¢ — 1¢_,)/2 wherel,, =
The number of squarings in the main loop of the algorithm is betweenv andn — 1, with an

2 w—+2 (71)11)
3

heuristically expected value — w + ( )d% In the casedl = 1,2 and 3 respectively, the
expected number of multiplicationsris #(;))ﬂw) — 1 where
w _ (1w wo__
o _ 4 (2¥ = (=1)*) . 16 (4 1) and
72w —4.(=1)w 43 - 4w +24 - (=2)v — 16 (3)
3 _ 64 (2 + (=1)")(8“ — (=1)*)
253 - 16Y + 397 - (—8)w + 324 - 4w + 80 - (—2)¥ — 64

In particular for d = 1 the expected number of multiplicationsis —;——L—w~ — 1.

D)

Remark 3.7 In the casew = d = 2, the set€ consists of the valueg' g5 with either0 < a < 2
and—2 < b < 2 where at least one af, b odd, ora = 0 andb = 1. A chain for computing by 6
multiplications or multiplications with the inverse is

{a, 9. 9192, a9, a9, n95°,  9ige, 9%951}-

The remainder of this subsection is devoted to the proof of Theorem 3.6.

First note that the largest integer representabledybét number in NAF i5(10. .. 01), for oddw
and(10...10), for evenw: Itis easy to see that this numbeflis = (2*+2? —3 — (-1)*)/6. Hence,
there arel,, = (2**2 — (—1)¥)/3 integers in the interva]-T,, ..., T,]. Now &£ consists ofall
elements of the forrﬂf:1 gfi such thatk;| < T, fori =1,2,...,d, atleast one of th&; is odd and
the first nonzero element in the sequehggks, . . ., k, is positive.In this way, if in Step 2(f ii) the
first nonzeraof; is positive we compute « z - ]_[Z 1 ng otherwise we compute «— x/ ]_[Z 1 g;fl
Hence we need onlyf — I¢_,)/2 elements irt.

Definition 3.8 A joint representation of integers in NAF will be callegodnt NAF.

Definition 3.9 Lete = (ey,...,eq) be ad-tuple of n-bit mtegers so that (1) is proper. THut-
reversinge of e is thed-tuple formed by the numbefs = Zj 0 €i(n—1)—j 97,

To avoid ambiguity, we define bit-reversing only for proper joint representations. The mapping
which associates to a proper joint NAF its bit-reversing induces a bijection between the set of proper
joint NAF's of d integers ofn bits and the set of joint NAF’s (not necessarily proper)/ahtegers
of n bits, at least one of the integers being oddence the expected number of windows made by
Algorithm 2.2 onn-bit proper joint NAF’s ofd integers equals the expected number of windows
formed by a sliding window algorithm which scans from right to left joint NAF'g aftegers ofn
bits, at least one oddThe parity condition amounts to the fact that at the first iteration a nonzero
column is found, exactly as in the original algorithm.

Consequently we will consider an algorithm which forms sliding windows on joint NAF’s from
right to left, and we will model it as a Markov chain: At each iteration one column is read and the
algorithm enters in one af + 1 possible distinct states, defined by the number of nonzero entries in
the colums:
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S}. A zero column is found, so the scanning advances by one column.

S, (for 1 < k < d). A column is found with exactly nonzero entries and (*)
the scanning advances bycolumns.

To determine the transition probability from statgto stateS; we need a few preliminary results.

We begin with a review of Reitwiesner’s algorithm for recoding the unsigned binary representation
of anumber = 37~ b;27 into a NAFY"_ ;2. Forj = 0,1,...,n — 1, the digite; of the NAF
is a function of the values df; 1, b; and of thej-th carryc;, which is equal to one if the NAF of
the truncated number = Z{;& b;2" is one bit longer than its unsigned binary representation. At
the beginningey = 0. The recoding is then done as shown in Table 1 — where we also write the
admissible following state according to the valueepfs and the corresponding output — and at the
ende, = ¢,_1. If e, # 0 then the NAF is longer than the original representation. Since in the

State Input Output Next State (and; 1)
(biz1bi)2 ¢ | e ciyr || Fbiga=0 ifbo=1
S0 ( 00 ) 0 0 0 S0 (O) S4 (0)
S1 ( 00 ) 1 1 0 S0 (0) Sq (0)
S92 (0 1 ) 0 1 0 S0 (0) Sq (0)
S3 (0 1 ) 1 0 1 S1 (1) S5 (i)
S4 ( 10) 0 0 0 So (1) S6 (i)
S5 (10) 111 1 sz (0) s7 (0)
56 (11) 0|1 1 sz (0) s7 (0)
s7 (11) 1o 1 s3 (0) s7 (0)

Table 1: States of Reitwiesner’s Algorithm

unsigned binary representation each bit assumes a value of zero or one with equal probability and
there is no dependency between any two bits, it is clear that all admissible transitions fromsa state
to a states;, occur with probability%. It is straightforward to write down the corresponding transition
probability matrixP. The resulting limiting probabilities for the states . . . , sy are thus [13] given
by the vector
fr 11 11 1 1 1

Vo612 1267671271276
whose components add upt@nd which satisfie® - v = vI. (Here the symbol. denotes matrix
transposition.) From this it is immediate, upon summing the probabilities for states, s; and
sg, to obtain the known result that the expected Hamming weight of a NA}E i$he fact which
is more relevant to us here is that statgsss, s, and sy, which all output a zero, occur with equal
probabilities, and that in two cases another zero will be output by the next state, whereas in the other
two a nonzero bit will be output. We have thus proved the following lemma.

Lemma 3.10 The probability that in a NAF the digit immediately to the left d¥ & another0 is %
and that itis1 or —1 is in each case.

We now generalize this by determining the probabilities that a;bit,, which isw places to the left
of e; ; is zero or one, depending on the value=pf andw.

Lemma3.111If ¢;; = 0, thene; ;,, = 0 with probability7,, o ande; ; ., # 0 with probability 7, .,

where

2w+l + (_1)w
32w

ou _ (_1)w

3. 2v “)

and Tw,x = 1- Tw,0 = 57711)71,0 =

Tw,0 =
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Since a nonzero bit is always followed by a zero, we also have that i 0, thene;;,, = 0 with
probability 7,,—1,0 ande; ;1., 7 0 with probability m,,_1 ..

Proof. Clearlym,,o + Ty, = 1. By Lemma 3.10 we have, o = 7. = 3 and

1 1
Ti41,0 = Tix T 570 = 1- 50
1
Tit1,% = §7Ti,0-
Now (4) follows easily by induction. O

We are now in the position to model the right-to-left scanning process as a Markov chain with
statesS;, . .., S/, defined in(x). Denote byr, ;, the transition probability from stat§} to states; .
Suppose that a zero column is read. Then no window is being formed and at the next iteration
the scanning algorithm will read the next column to the left. The probabijifythat this column
contains exactly: nonzero entries iéﬁ) o5
On the other hand suppose that a colunwith exactly/ = 0 nonzero entries has been read. The
bit-reversing of the numbers represented by this column and themnext columns at its left are the
exponentsfy, ..., fy in Step 2(c). The next column checked by the right-to-left scanning process,
sayc’, will be then that which is exactly places to the left o€. Now 7, is the probability that’
has exactlyk nonzero entries (wher@ < k£ < d). For some integer, in exactlyr of the positions
occupied by the nonzero digits inc there will be nonzero bits in the respective positionsg’irand
in the positions of the remaining— r nonzero bits irc there will be zeros ir’. Therefore, to exactly
k — r of the zero bits irc will correspond nonzero bits ief, and to the othed — ¢ — (k — r) zeros of
c will correspond zeros ie’. Finally

0\ (d— ¢ O (k—
_ r l—r k—r__d—L—(k—r)
Tek = Z <7“ k—r Tw—1,%Tw—1,0"w,x Tw,0

r:0<r/
0<k—r<d—¢

= 2 (00 a0 )

r:0<r<{¢
k+0—d<r<k

min{¢,k}

l d—1 -7 —27r d—L—k)+r r
= > <r> <k B T) ol lth=2r(1 — g, )T (1 Zom, L)

r=max{0,k+¢—d}

Put
1/2¢ To  Tao - Tdo
((f) /2d T1,1 72,1 s Td,1
Ti = (Tek)ir=0 = : : : :
(dil)/Qd Tid—1 T2,d-1 *°° Tdd—1
1/2d T1,d T2,d Td,d

The limiting probabilitiesoy, . .., o4 of the algorithm being in statsj, . .., S), respectively satisfy
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Eizl o =1andTy - (o¢ -+ 04)' = (00 - -+ 04)’. Hence, upon putting

1 1 1 e 1
d/2d T —1 T2 1 . Td1
(;l)/2d T2 T22—1 - Td,2
Ug = . . ) . ;
d/2®  Ta1 Tea-1 o Tdd-1
1/2¢ TLd Tod 0 Tad—1

we havel, - (o --- 04)* = (1,0,...,0)*. Hence, provided thdt, is invertible, (g - -- 04)* =
Ud‘1 -(1,0,...,0)* and in particular is the value in the top left corner @I‘d‘l.

We are interested ity; only in the cased = 1,2 and3. Upon puttinga = 2 and = (—1)%
we obtain

1 1 1
1 1 2 2 _
I R [
2 S 1 (@=p)e+28)  (a420)* 4
1 9a2 9a2
1 1 1 1
3 (2046)(20°—af+26?) _ 4 4(a®—p%) 4(a—p)2(a+28)
Us — 8 9a3 9a3 9a3
3713 2(a—3%) (a+20)(20°—af+26%) _ ¢ 2(a=p)(a+26)°
8 9a3 9a3 9a3
1 (a—B)(a+28) (a—B)(a+28)? (at20)* _ 4
8 273 2703 273

The above matrices have been written down using simgié e [8] code. With he same software it is
immediate to verify that fod = 1, 2 and3 the matrixUy; is invertible and to computey, i.e.the value
of 7 in the introductory part of this section. We thus obtain the vatues=(® given in equation (3),
Theorem 3.6.

To estimate the value of at the first iteration of the main loop, we proceed heuristically. [13,
Theorem 1] states that the probability that a lengthit section of a number in NAF is zero %s(%)“

Foru = 1,...,w — 1 we apply this result to the least significant bits used to form each of the
integersfi, ..., fq in Step 2 (c) at the first iteration of the loop of Algorithm 2.2. We then proceed as
in the proof of Theorem 3.4, the only difference consisting in the multiplicative fa(c%‘t)adr. O

3.3 Using the JSF

The Joint Sparse Form has been introduced by Solinas [30] to make Shamir’s trick more effective for
elliptic curves. It applies however to all groups where inversion is for free. It has been defined only
for pairs of integers: accordingly we will restrict ourselves to the cdse 2 here. We shall also
assume thaty = 2: this assumption fits naturally with the defining properties of the JSF, and by a
good stoke of luck this brings the highest improvement over the methods studied before for exponents
in the range in which we are interested. For more precise statements see Subsection 4.1, in particular
the row forw = 2 in Table 2 and Remark 4.1.

In this subsection we prove the following theorem.

Theorem 3.12 Suppose that in Algorithm 2.2 Solinas’ JSF is used for the exponents; and = 2.
Assume further that the JSF of the exponents has length
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The expected number of multiplications in the main loop of the algorithé’nis 1, and the
heuristically expected number of squaringsiis- 2 + % =n- %
The set consists of tha0 elementg¢ g4 with: (i) a = 0 andb = 1; (i) a = 1and -2 < b < 2;
(i) @ = 2andb € {£+1,43} and(iv) « = 3 andb = +2. A chain for precomputing all thé0

required values other thag, and g2 and requiring10 multiplications or divisions is

{91, @ 9192, 9195", 0195, 91957

_ _ _ 5)
9ige, digy'. gigs. dign’, gig3. digy?. )

We assume that the reader is acquainted with the results in Solinas’ cited technical report, from
which we recall however a few important facts. The joint Hamming weight of the JSF of two integers
is minimal among all (un)signed joint binary representations of the same pair of integers. Its average
density isl /2 — which gives the heuristical estimate of the squarings in the main loop — whereas that
of the joint unsigned binary representation and of the joint NAB/i$ and5/9 respectively. It is
natural then to expect that using the JSF in Algorithm 2.2 would lead to an improvement over the
complexities of the other two cases evewif> 1.

The JSF is uniquely determined by the following properties:

(JSF-1) Of any three consecutive columns, at least one is zero.
(JSF-2) Adjacent nonzero bits have the same sign. In other wesds,ie; ; = 0 or 1.
(JSF-3) If €ij+1€ij #0 theneg_m‘_H #0 andeg_m' =0.

Solinas provides proofs for existence and uniqueness of the JSF, as well as an algorithm for de-
termining it. His algorithm generates the JSF right-to-left. Analysing it Solinas considers three states
which he simply calls4, B andC'. In stateC' this algorithm outputs a zero column. In statesr B
it outputs nonzero columns. The transition probabilities between these states are explicitly given: we
return to this later.

Property(JSF-1) suggests that the representation is particularly suitable for an implementation
of Algorithm 2.2 with a window widthw = 2. As already announced we restrict ourselves to this
case in the sequel. Further, this choice also simplifies the complexity analysis, by the following
observation: Algorithm 2.2 scans a joint representation left-to-right in order to form windows, but
consecutive nonzero columns always belong to one window regardless of the direction in which we
are scanning the joint representationhis is easy to see, as by propefiF-1)there can be at most
two consecutive nonzero columns, which must be preceded and followed by zero columns or by the
boundaries of the representation.

Therefore to estimate the number of nonzero windows (which corresponds to the number of multi-
plications performed by Algorithm 2.2 plus one) we scan our input right-to-left. In Solinas’ algorithm
State A is always followed by Statd3, StateB by StateC, and there are the following transition
probabilities: P(C — A) = 1/4, P(C — B) = 1/2 andP(C — C) = 1/4. We thus consider a
Markov chain withthreestates, which correspond to those in Solinas’ algorithm, as follows:

S;. A nonzero column is output by Staté of Solinas’ algorithm: this column will be the second
column in a “square” window when read left-to-right, as the next state in Solinas’ algorithm is
always State3.

S7. Anonzero column is output by Staieof Solinas’ algorithm: this column will be the first column
in a window when read left-to-right, whereas the second column is non-zero if we are coming
from stateA or zero if we come from Stat€.
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S5. A zero column is output by Staté of Solinas’ algorithm.

The number of times we enter & corresponds to the number of windows formed and thus to the
number of multiplications performed by our algorithm. The transition probability matrix is

0 1 0
T = (P(S] 5;‘))?7].:0 =0 o 1
1/4 1/2 1/4

which yields limiting probabilitiesty = 3, 7y = 2 andr, = 3. Hence the expected number of
multiplications performed by Algorithm 2.2 %n — 1 with n-bit inputs.

According to the defining properties of the JSF, the admissible nonzero c()jygjﬁand windows
(e €52~} ) with both columns non zero that, up to sign, can be found are

€2,j €2,j-1

Wb [ [ o] o 8] [ wnemsnanal ]

thus proving the statements abgut O

4 Comparisons

4.1 Algorithm 2.2: Optimal parameters for d=2 and 3

First of all, it is important to know for which values of the parametethe algorithms run fastest,
given the bit lengt of the inputs and the numbédrof the exponents. For simplicity we ignore the
number of squarings performed in the main loop and we consider it onlyyfo2 and3.

Suppose firsi = 2: Table 2 contains the cardinality §fand the sum of the number of operations
needed to build it with the expected number of multiplications in the main loop of the algorithm.
This performance parameter (similar to that used for instance in [23]) is a hatural way of comparing
exponentiation algorithms. In fact, it is easy to adapt these values to the relative costs of squarings by
addingcs n, wherec, is the cost of a squaring relative to that of a multiplication. In the column for
the JSF there is of course no entry for= 3.

Table 3 collects the analogous data do+ 3: Note that the JSF, being defined only tbe 2, is
not represented.

w Unsigned NAF JSF
#& and# Ops #& and# Ops #E& and+# Ops
3 ) 1
1 3 Zn 4 1+ §n 4 1+ in
2 | 12 9+ 3 8 5+ 1 12 9+ 5
7" 27" 8"
3 32
3 | 48 45+1—On 48 45+f7”

Table 2: Cardinality o€ and number of operations fdr= 2
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w Unsigned NAF
#E and# Ops #E and# Ops
1 7 3+ gn 13 9+ ;i;n
2 56 52+ 1—75n 49 45 + %n
3 | 448 444 + %n 603 599 + %n

Table 3: Cardinality o€ and number of operations fdr= 3

Remark 4.1 Assumeal = 2 and consider Table 2. Using the unsigned binary representation, the
optimal choice ofv isw = 1 forn < 28, andw = 2 for 28 < n < 280. In particular the parameter
w = 2 is optimal for the exponents sizes which interests us.
With the NAF the thresholds are= 27 andn = 1420 = 298.72 respectively.
With the JSF the parametar = 1 is optimal forn < 64. Furthermore, using the JSF with = 2
is better than using the NAF with either= 2 or 3when124 < n < 354: in the range which concerns
us most however using the NAF can be marginally slower but requires fewer precomputations.

Remark 4.2 In the casal = 3 (see Table 3) the thresholds are higher, as intuition suggests. Using
the unsigned binary representation, the optimal choiceé w = 1 for n < 120, andw = 2 for
121 < n < 2640. In the NAF casew = 1 is optimal forn < 137 andw = 2 for 138 < n < 3841.

If w = 1, the NAF leads to better performance as longhas 35, if w = 2 the NAF will always
yield a better algorithm. However, if = 3, the much larger constant term in the complexity when
using the NAF has a price: for < 7264 it is better to use the unsigned binary representation.

Remark 4.3 As already mentioned, the algorithms of Reitwiesner and Solinas recode the exponents
right-to-left, so extra storage must be reserved for the recoded representations. There exists an alter-
native to the NAF with the same Hamming weight and which can be computed from left to right [17]
by a simple algorithm. However this representation dispenses with the non-adjacency property, which
has a very negative impact on memory usage. For instance ferd = 2 the set of precomputations

£ consists of the valueﬁgg with either0 < ¢ < 3and -3 < b < 3, at least one of;, b odd or

a = 0andb = 1 or 3, a total 0f20 values instead of or 12. Therefore both the total memory usage

of Algorithm 2.2 combined with this recoding and its running time would be worse than the variants
we analysed. For this reason it should not be considered.

4.2 Interleaved exponentiation and exponent representations

A multi-exponentiation algorithm callethterleaved exponentiatiohas been described by dlller
[23]. Itis better understood in terms of exponent recording, and it is nothing but Algorithm 2.1 applied
to a different representation of the exponents. Suppose that the expenentse, are written as

n—1
e, = Z ei,j 2j (6)
j=0

where the coefficients; ; are allowed to vary in a set larger thé, =1}. Then the following gener-

alization of the left-to-right exponentiation algorithm computes- Hle gt
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Algorithm 4.4 Left-to-right interleaved multi-exponentiation

INPUT: Group elements, . .., g4 of which some powers have been precomputed and exponents
—1 :
ei =5 g €ij 2

OuTpuT: [, ¢

Stepl. z— 1€ G
Step2. forj=n—1...0 do{
@ z« 2? [Skip at first iteration]
fori=1..d do{
(b) if e;; #0 thenz «—x-g;"7 } }

Step 3. returnx

This algorithm becomes efficient if a careful choice of the recoding of the exponents is done,
balancing a low density of the representations with the work done in the precomputation stage: this
should allow Step 2 (b) to be done always with a table access and a single multiplication (or multipli-
cation with the inverse). We see now four candidates for the representations.

4.2.1 Radixt representation

A first possibility is offered by radix- recoding where- = 2" is a power of2. We embed this
representation into a redundant baséf e = Z?:_Ol b;2° we put

;o 21;;01 buk+e2t  if k=0 (mod w)
0 otherwise,

for0 < k < n—1and assuming; = 0fori > n, then consider = """ g okw — S~ 1yyoi

The last representation is that which is actually used to represent the exponents in Algorithm 4.4.
This is very easy to implement, for exponents are scanned oalibigs at a time and all blocks of
multiplications are done only every squarings. The density of a radixrepresentation i§;—1 and

so Algorithm 4.4 requires abod 25! multiplications anch squarings.

4.2.2 The generalized non-adjacent form

A better alternative, assuming free inversion, can begiweralized non-adjacent forror GNAF,
which is asignedradix- recoding. A radixr GNAF of the integee is a representation= Z?;OI b;r'
with —r < b; < r and satisfying the following two properties

(GNAF-1) |b; 4 biy1| < r for all 4.
(GNAF-Z) If b; bi-‘,—l <0 then|b,\ < |b7;+1|.

This form coincides with the definition of the NAF when= 2. Moreover, as for the NAF, it can be
proven that this form is unique and has minimal Hamming weight among signedsraelpresenta-
tions [7]. Here we consider only the case thas a power o2 and we embed the representation into
a redundant baseone as in the previous paragraph.
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Using the GNAF the density of the nonzero digits decreases #;drmf the radixs representation
to % hence it leads to a multi-exponentiation ialgorit_hm requiﬁﬁéﬁ% multiplications and about
n squarings to compute the productdpowers withn-bit exponents.

The GNAF is recoded right-to-left, and thus cannot be used online.

There exists a left-to-right recoding with the same weight as the GNAF [18].

4.2.3 Width-w left-to-right sliding windows

One can let a sliding window of size scan right-to-left the binary representation of an integer,
skipping zeros and reading the value contained in the window only if a bit equaktiound. This

gives a recoding = Z?:‘OI b; 27 where the coefficients; are either zero or odd, satisfy< b; < 2%

and of anyw consecutive of them at most one is nonzero. Itis very well known that this representation
has densityl /(w + 1).

We want however éeft-to-right sliding window algorithmIn the most n&ve way it produces a
recoding where the coefficients are either zero or and satist’~! < b; < 2%, except perhaps
for the least significant nonzero coefficient. Clearly this representation has the same expected density
1/(w+1). If however we do not include always bits in the window bubnly as many bit as possible
as long as they are at mogtand not only the most significant one but also the least significant one is
1, we get a recoding where tle are zero or odd and satisfy< b; < 2* and with the same weight
as before. Note that two nonzero coefficients need no longer to be separated by at-lehstero
coefficients. We call this recoding thedth w sliding window recodingor wSWR for short. It can
be used online but some care is required in the implementation.

ThewSWR is better than radi2¥ as long asv > 1 (and equal ifw = 1) and also better than the
GNAF if w > 3. Moreover only about a half of the elements need to be precomputed compared to
those needed for the radX* and GNAF for the same.

The result is that theoSWR is preferable over using the radi¥-form or the GNAF for the
optimal value ofw for a given exponent size (which is eitheor 5 for 160 < n < 256).

4.2.4 The flexible window exponentiation algorithm and thevNAF

Cohen'sflexible windowexponentiation algorithm [10, 9] which was also proposed independently by
Solinas [28, 29] consists in the application of Algorithm 4.4 with: 1 to thewNAF of the exponent.
ThewNAF of the integee is a representation= Z?:_g b; 27 where the integer coefficients satisfy

the following two conditions:

(WNAF-1) Eitherb; = 0 orb; is odd andb;| < 2v.
(WNAF-2) Of anyw + 1 consecutive coefficients ., . . . , b; at most one is nonzero.

It is also calledwidthw + 1) NAF and it must not be confused with the GNAF. The special case

w = 1 is the usual NAF. Every integer admitsudNAF which is uniquely determined. In the cited
papers by Solinas and by Cohen et al. there are algorithms for computing it. The density of the
representation i$/(w + 2). This immediately leads to an exponentiation algorithm requiring about
n/(w + 2) multiplications for am-bit exponent. ThevNAF recoding algorithm works right-to-left,
therefore it cannot be used online.

Remark 4.5 In general the recoding of choice for Algorithm 4.4 is th8 WR if inversion is expen-
sive, and thevNAF otherwise, because of their better densities and smaller precomputation tables
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d=2 d=3
Algorithm 2.2 Algorithm 4.4 Algorithm 2.2 Algorithm 4.4
n (base2) (wSWR) (base2) (wSWR)
#E& and# Ops (w) #& and# Ops (w) #E& and# Ops (w) #& and# Ops (w)
56 || 12 33 w=2| 8 35 w=3) 7 52 w=p | 12 53 =9
64 | 12 36.43w=2 | 8 39 =3 7 59 W=y | 12 59 w=3
80 | 12 42.43w=2) | 8 47  w=3) 7 73 w=y | 12 71 w=3
96 || 12 50.14w=2) | 16 53.40w=3) 7 87 w=y | 12 83 W=
128 || 12 63.86w=2 | 16 66.20w=3) || 56 111.86w=2) | 12 107 @=3)
160 || 12 77.57w=2) | 16 79 =3 || 56 126.67w=2) | 12 131 @=3)
192 || 12 91.28w=2) | 16 91.80w=3) || 56 141.6Qw=2) | 24  138.20w=4
240 || 12 111.86w=2 | 16 111 =4 || 56 164 (w=2) | 24 167 w=4
256 || 12 118.71w=2 | 16 117.40w=4 || 56 171.47w=2 | 24 176.60w=4)
Table 4: Complexity of multi-exponentiation using unsigned representations
Algorithm 2.2 Algorithm 2.2 Algorithm 4.4
n (NAF) (JSF) (wNAF)
#E& and# Ops (w) #& and+# Ops (w) #& and+# Ops (w)
56 || 8 27.81w=2) | 4 29 w=1 | 8 29.40w=3)
64 || 8 31.07w=2 | 4 33 w=1 | 8 32.60w=3)
80| 8 37.59w=2) | 12 39 w=2| 8 39 =3
96 || 8 44.11w=2) | 12 45 w=2 | 8 45,40w=3)
128 || 8 57.15w=2) | 12 57 w=2| 16 57.66w=4)
160 || 8 70.19w=2) | 12 69 =2 | 16 68.33w=4)
192 || 8 83.22w=2) | 12 81 w=2 | 16 79 w=9
240 | 8 102.78w=2) | 12 99 w=2 | 16 95 (w=4
256 || 8 109.30w=2) | 12 105 ®=2 | 16 100.33w=9)

Table 5: Complexity of multi-exponentiation using signed representatibas?

with respect to the simpler radixform and GNAF. ThevSWR can be a good backup choice for Al-
gorithm 4.4 even if inversion is free if memory usage is critical. For the corresponding penalty hit see
the tables in the next subsection.

4.3 Comparing the two algorithms

If inversion in the group is not for free, we recode online the exponenisS8R’s in Algorithm 4.4.

One requires thedsquarings and(2*~! —1) multiplications in the precomputation stage %ﬁg—l
multiplications and about — 1 squarings in the main loop (note that the first multiplication is just a
variable assignment). In Table 4 we add the total number of operations in the precomputation stage
to the number of multiplications in the main loop of the algorithms. (This is the same performance
parameter used before.) In each case the valuewhich minimizes the running time is chosen.

If inversion in the group is cheap, we write the exponentsyB&\F’s. Algorithm 4.4 needs!
squarings and(2¥~! — 1) multiplications for the precomputations agéj—z — 1 multiplications and
aboutn squarings in the main loop. Tables 5 and 6 collect the complexity data for these algorithms
which exploit signed representations in the cases2 andd = 3 respectively.
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Algorithm 2.2 Algorithm 4.4
n (NAF) (wNAF)

#E and# Ops (w) #E and# Ops (w)

56 || 13 48.40w-1 | 12 44.60w=3)
64 || 13 54.03w=1) | 12 49.40w=3)
80 || 13 65.29w=1) | 12 59 w=y
9 || 13 76.55w=1) | 12 68.60w=3)
128 || 13 99.07w=1) | 24 87 w=9
160 || 49 11557w=2 | 24 103 =9
192 || 49 129.69w=2 | 24 119 w=9
240 | 49 150.86w=2 | 24 143 (=9
256 || 49 157.91w=2) | 24 151 (w=9)

Table 6: Complexity of multi-exponentiation using signed representatibas3

Remarks 4.6 (1) Only implementation can decide which of the algorithms is fastest for a particular
purpose if the number of operations is similar. In these cases memory usage can be the decisive
factor. In the case of double exponentiations with unsigned representations Algorithm 2.2 seems the
best choice, either yielding better performance than Algorithm 4.4 or yielding similar performance
while requiring less memory.

(2) Algorithm 2.2 with the NAF or with the JSF seems be preferable to Algorithm 4.4 for double
exponentiations with exponents frdg0 to 256 bits in memory constrained environments. In partic-
ular the use of the NAF reduces considerably the number of required precomputations, saving RAM
and, in the case of one fixed base, also ROM. The use of the NAF is undisputably preferable also
for smaller bit sizes, i.e80 to 128 bits, and this gives the method of choice for implementing single
exponentiations in groups with an automorphism of de@esuch as trace zero varieties or XTR
subgroups as described in Section 5.

(3) For triple exponentiations Algorithm 4.4 seems always preferable with unsigned representa-
tions (using thevSWR) andh > 128 or with signed representations (using th&lAF).

5 Applications

In this section we show a few applications of the above multi-exponentiation algorithms.

5.1 Elliptic and hyperelliptic curves

Here, as well as in the next subsection, we shall use additive terminology (and shall speak, for exam-
ple, of a scalar product - P instead of an exponentiatiaf").

The natural application of Algorithm 2.2 is to electronic signature schemes based on the discrete
logarithm problem in the rational point group of an elliptic curve (ecc) or of the Jacobian variety of
an hyperelliptic curve (hec) over a finite field. Hente= 2 and for the current applications (where
exponent sizes are betweé60 and 256 bits) we have already seen that the optimal value of the
parameter isv = 2.

In the ecc case we observe that mixed coordinate systems can be used exactly as in [11], as we
have sequences of repeated doublings (always at least two of them) alternated with single additions of
points from a precomputed table. We compute directly the double scalar product, whereas Cohen et
al. compute the two scalar products separately and then they add the results: For the fixed base scalar
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multiplication they use essentially a comb method and for the variable base scalar product the flexible
window algorithm (seg 4.2.4). For brevity we call the resulting method the CMO method.

We work out the costs in the case of an elliptic curve defined over a prime field of about
elements, where = 160 and240. We shall denote by, S and! the timings of a multiplication, of
a squaring and of an inversion respectively in the base field of our curve.

In [11] fivecoordinate systems for elliptic curves are described, namely affinprpjective P),
jacobian (7), Chudnovsky jacobianf¢) and modified jacobian{™) coordinates. Adding points in
coordinate systems; and(Cs yielding a result in syster@s is denoted byC; + C» = Cs, doubling
is notated aQC; = (. If the coordinate systems are the same one writes sidiply C; and2C;.
Timings are denoted by(---). The gist is that all these operations have different costs (explicitly
given in the cited paper), so a different system can be selected for each operation. Three coodinate
systems are employed: the first system) (s used for all the doublings but the final one before an
addition with a precomputed point, the second ofig for the result of a final doubling, and the
third one (3) for the precomputed points. Therefore, if Algorithm 2.2 requi¥gsadditions andV,
doublings, its total cost is

(Na — Ny)t(2C1) + Ny (£(2C1 = Ca) + t(Co + C3 =C1)) + 1,

wheret,, is the cost of the precomputations. Since doublings; iare the most frequent operatiah,
should be the system with fastest doubling,C; = J™ with costt(2J™) = 4M + 4S. The result
of a final doubling is done i6y = 7, andt(2J™ = J) = 3M + 45.

Now we consider two possible choices tar.A and 7¢.
If C3 = A, all additions with a precomputed point are as fast as possiblg+ A = J™) =
9M + 5S. The total running-time is

Ny(4M + 48) + Ny (8M + 58) + t,(A).

We proceed to estimatg = ¢,(A). Sinceg; is the fixed point of the system, we assume that it is
given in A, whereagy», belonging to the signature to be verified, isinIn the NAF (resp. JSF) case
we haved (resp.6) additions of typed + 7 = P, and2 (resp.4) of type P + P. Then we convert
the results to affine coordinates, which can be dorieetaby inverting7 (resp.11) field elements
and performingl4 (resp.22) multiplications. Using Montgomery’s trick, one can investnumbers
by one inversion and(m — 1) multiplications. So in the NAF case the total precomputation cost is
tp(ANAF) =4t(A+P=P)+2t(P+P)+ (14+3-6)M +1 =4(8M +25) +2(12M +
25) +32M + I = 88M + 125 + I whereas in the JSF case ittjg.A, JSF) = 148M + 205 + 1.

If C3 = J¢ we havel(J + J¢ = J™) = 12M + 55 and the total running-time is

Ny(4M + 48) + Ny (11M + 55) + t,(T°).

To estimater, (7€) we first have to converf, from P to 7€, requiringlM + 1S. Then in the NAF
(resp. JSF) case we havéresp.6) additions of typed + 7¢ = J¢, and2 (resp4) of type 7¢ + J°.
The total precomputation costs a7, NAF) = (1M + 15) +4 (8M + 35) + 2 (11M + 35) =
55M + 195 andt,(J¢, JSF) = (1M + 15) + 6 (8M + 3S5) + 4 (11M + 3S5) = 93M + 315.

Algorithm 2.2 with the NAF hasV, = n — & and N, = iln — 1 (cfr. Theorem 3.6). With the
JSFNy =n — % andN, = %n — 1.

In what follows we shall assume = 0.8 M, which is confirmed by experience.

The scalar multiplication of the variable point in the CMO methodrfee 160 andn = 240 has
costs1488.4M +41I and2228+41 if the coordinate$ 7™, 7, .A) are used, anti610.2M and2400M
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respectively with the coordinat¢g ™, 7, 7¢). The cost of the scalar multiplication of the fixed point

is 454.4M and620.8M in the cases = 160 and240 respectively. We have computed these values
by adapting their comb algorithm alsono= 240 (in which case it requires a precomputed tabledf
elements), assuming that the precomputed table.i§ Bnd computing the results ifi. Forn = 160

there arel5 doublings 2.7) and31 additions (7 + A = J). If n = 240 the doublings remain5

and the additions increase4@. Note that our cost fon = 160 is better than the valuel74) stated

in [10]. A further addition in jacobian coordinates yielding a projective result is needed, with cost
12M + 25 =~ 13.6 M.

Upon putting all pieces together, we get the results of Table 7.

n C;);Sr;:iérr%aste Alg?lgwg 2.2 Algo(sltShFrr; 2.2 CMO method

160 Jgm,.J,A) 2011.82M + 1 2013.2M + 1 1956.4M + 41
(JmJ,J) 2177.03M 2144M 2078.2M

240 (Jgm,J,A) 2978.93M + 1 2949.2 4+ IM 2862.4M + 41
(JmJ,J°) 3256.86 M 3170M 3034.4M

Table 7: Comparison of double scalar multiplication methodsan

Whereas on modern CPUs~ 20M for n = 160 and ~ 40M for n = 240, on smart card
architectures these values are much worse, é\efor n = 160 and 100 for n = 240, or higher.
One sees at once that the different methods have comparable performance. One advantage of our
method is that it does not require a tableG¥ to 93 fixed precomputed points to be stored in ROM,
as in the CMO method, where the cost of computing those pointadidseen taken into account.
The size of such tables varies fredB0 bytes forn = 160 to 5580 bytes forn = 240. In the CMO
method the fixed base scalar multiplication needs to be reengineered for each exponent range for
best performance. This is not necessary with our method. The conclusion is that our method can be
used much more efficiently in systems which do not assume a fixed point (this is optimal if fast system
configuration is an issue).

We note that mixed coordinate systems also exist for hyperelliptic curves of Q¢aRk

5.2 Trace zero varieties

Trace zero varieties are abelian varieties constructed essentially by Weil Descent from other varieties,
such as elliptic curves [25, 14] or Jacobians of hyperelliptic curves [20, 21].

Construction and security parameters. We start with an elliptic curve (resp. hyperelliptic curve of
genusy) defined over a prime fieltl, wherep? (resp.p??) has the order of magnitude of the desired
group size. We also assume that the characteristic polynomial of the Frobenius endomorphism is
known. Next, we consider the group of rational points of the elliptic curve (resp. ideal class group)
over the finite field extensidR,s and consider the elements defined by the property that its eleients

are of trace zerad,e. they satisfy(c2 +o +1)(D) = 0. In general for a genugcurve considered over

[, the elements of trace zero form a subgroup as they are the kernel of a homomorphism. Therefore
they form an abelian subvariety of dimensigfi — 1), which is called therace zero variety We

shall denote it by in the sequel and catl, the subgroup of large prime ordém which we actually
implement the cryptographic primitives. As usual we want to choose it so that it has a cofaGtor in

as small as possibleg. ¢ ~ p?9.
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It has been noted that fgd — 1) < 4 the best attacks known to work on trace zero varieties have
complexityO(v/Gp) [25, 21].

In what follows we consider only the case whére 3 for simplicity.

As we require the same level of security offered by, say, elliptic curves over fieldi dfits, we
havel ~ 2'60 also for trace zero varieties and the filgmust satisfyp ~ 250/9.

Performance advantages in cryptographic applications. The main performance advantages of
trace zero varieties come from the fast arithmetic in the extension field (where explicit closed formulae
can be given for multiplication and squaring: if furthermore the polynomial defining the extension
field is chosen carefully one can even use short convolutions [5, 4]), and by the presence of the
automorphismr of small degree.

The latter fact enables one to speed-up asirgleexponentiations. Instead of using single scalars
to compute-- D for an ideal clas®), one considers a pair, 1 ) of scalars bounded by some quantity
which isO(p?), and computes the double scalar prodtct D + r; - o(D). Forry andr; suitably
bounded (see [25, 21]) all such double scalar products are distinct. Shamir’s trick can be used and
the result is that the number of doublings needed in cryptographic operations is roughly halved with
respect to generic elliptic and hyperelliptic curves. Further savings can be achieved by the use of
Algorithms 2.2 and 4.4, depending on the parameters.

All the usual cryptographic protocols can be adapted to this new setting, in particular those for
key exchange and electronic signatures.

The Frobenius operates @A and thus orGy, like the scalar multiple by a constasntvith s2 +
s+ 1 =0 mod ¢. For the verification of signatures, in place of the scalar produdd + u - £
one is temped to write = ro + r1s andu = ug + u1s mod ¢ and to consider thguadrupleproduct
ro-D+ri-0(D)+wu- E+wu-o(E). The problem is bounding, if possible, the coefficients by
kp? wherek is a small constant. In the example above we did not have this problem because we
started with a paifro, r1), however for the verification of digital signatures one needs to start with the
given valuer. To keep the coefficient reasonably bounded can be cumbersome, but we observe that the
results in [27 §2 and§5] actually apply to any automorphism of the group with given degma@imal
polynomial. In particular they apply i@ on the trace-zero variety with equatiefi + ¢ + 1 = 0 and
a boundO(p?) onr;, u; holds.

To perform the quadruple exponentiation we suggest the use of Algorithm 4.4 andi&fewith
d = 4. Since two of the base divisors are imagedoénd E undero, and the cost of the Frobenius
is on average approximately 1/25-th of the cost of an addition or of a doubling (this value is obtained
heuristically by considering the casgs= 1 and2), we first precompute the necessary multiples of
D and E, then we apply to the resulting sets. To determine the optimal value efe have thus to
minimize the number of operations, which is

n+2<1+215> vt —[1=w)) +

where[expr| evaluates td is expr is true, to0 otherwise. Fom = log,(pY) ~ 80 the minimum
148.97 is achieved forw = 4. If w = 3 the amount of operations i$1.32. For a minimal trade-off,
one can also store only the multiples Bfand E and apply the frobenius on-the-fly when multiples
of o(D) oro(E) are needed.

Let us consider signature verification using a trace zero variety arising from a geourye over

afinite field of abou2®?/9 elements (se = 80): It may be done with about50 group operations. For
comparison, using the ECDSA or hyperelliptic curve variants thereof of comparable security requires
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a minimum oR29 group operations (see Table 5 with= 160 andd = 2). Furthermore, one should
note that group operations on the trace zero variety are faster than on a elliptic or hyperelliptic curve
of comparable size.

53 XTR

The XTR cryptosystem was initially proposed by Lenstra and Verheul [32] and makes use of the
subgroupG of orderp? — p + 1 of the multiplicative group of the cyclotomic extensibps /IF,,. Letg

be an element dﬂr‘;6 of orderg > 6 dividing p?> — p+ 1. Sinceq does not dividg® — 1 for s = 1,2,3

the subgroup generated ycannot be embedded in the multiplicative group of any proper subfield
of 6. Hence it appears that solving the discrete logarithm proble(p)iiis at least as difficult as
solving it in the large field. In the XTR cryptosystem elements from the figldare replaced by

their traces oveF . and Lenstra et al. show how one can work only with these — actually with triples
of traces — instead of using the original elements from the bigger field. This leads to very efficient
arithmetic even though it is definitely not straightforward to port the usual exponentiation algorithms
to this new setting. Recently, Lenstra and Stam [31] observed that one can also compute directly in an
efficient manner in the field,s by using a suitable representation of the extension. This allows the
implementor to use all possible (multi-)exponentiation methods without change.

Independently, Frey suggested a similar idea which we sketch here (the following text is taken,
abridged, from [3]). Let be the Frobenius map — zP. One observes at once that forc G the
Frobenius satisfies’”~+1 = 1 and that( is the intersection of the two trace zero varieties relative
to bothintermediate extensions, so that the elements satisfy 1 = 0 and alsar? + 02 + 1 = 0.

The first relation immediately gives a simple inversion formula! = o3(z). The field[F,6 is then
constructed as the composite of two extensiori8,othe first isF » and the second > = F,,(v/6)
wheres € F, \ (F,)2. Ideally |§| should be small (for instance = —1: to allow this one needs
—1 € F,\ (F,)? and thereforg = 3 mod 4). Also§ = 2 is a good option.

Forz € G write z = x + yv/0 wherez, y € F,s. The mapo> generates the groupal(F 6 /F3)
of order2, hences3(v/0) = —v/d andz~! = z — y/¢ is essentially for free.

One can then apply the considerations made about trace zero varieties to XTR subgroups. In
particular, single and double exponentiations found in cryptographic protocols can be transformed
into double and quadruple exponentiations with exponents of halved bit length.
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