
ON MULTI -EXPONENTIATION IN CRYPTOGRAPHY

ROBERTOM. AVANZI ∗ (IEM ESSEN)
Email: mocenigo@exp-math.uni-essen.de

October 8, 2002. Revised: October 28, 2002.

Abstract

We describe and analyze new combinations of multi-exponentiation algorithms with represen-
tations of the exponents. We deal mainly but not exclusively with the case where the inversion
of group elements is fast: This is true for example for elliptic curves, groups of rational divisor
classes of hyperelliptic curves, trace zero varieties and XTR.

These methods are most attractive with exponents in the range from80 to256 bits, and can also
be used for computingsingleexponentiations in groups which admit an automorphism satisfying
a monic equation of small degree over the integers.

The choice of suitable exponent representations allows us to match or improve the running
time of the best multi-exponentiation techniques in the aforementioned range, while keeping the
memory requirements as small as possible. Hence some of the methods presented here are par-
ticularly attractive for deployment in memory constrained environments such as smart cards. By
construction, such methods provide good resistance against side channel attacks.

We also describe some applications of these algorithms.

Keywords and phrases: Cryptographic protocols, Exponentiation, Integer recoding, Scalar mul-
tiplication, Elliptic and Hyperelliptic curves, Trace zero varieties, XTR, Groups with automor-
phisms, Smart card applications

Contents

1 Introduction 2

2 The algorithm 3

3 Complexity analysis 5
3.1 Unsigned binary inputs . 6
3.2 Using the NAF . 6
3.3 Using the JSF . 10

∗The work described in this paper has been supported by the Commission of the European Communities through the IST
Programme under Contract IST-2001-32613 (seehttp://www.arehcc.com). The information in this document is provided
as is, and no guarantee or warranty is given or implied that the information is fit for any particular purpose. The user thereof
uses the information at its sole risk and liability. The views expressed are those of the author and do not represent an official
view or position of the AREHCC project (as a whole).

1

2 ROBERTOM. AVANZI

4 Comparisons 12
4.1 Algorithm 2.2: Optimal parameters ford= 2 and 3 . 12
4.2 Interleaved exponentiation and exponent representations . 13

4.2.1 Radix-r representation . 14
4.2.2 The generalized non-adjacent form . 14
4.2.3 Width-w left-to-right sliding windows . 15
4.2.4 The flexible window exponentiation algorithm and thewNAF 15

4.3 Comparing the two algorithms . 16

5 Applications 17
5.1 Elliptic and hyperelliptic curves . 17
5.2 Trace zero varieties . 19
5.3 XTR . 21

1 Introduction

Some public-key cryptographic protocols such as the verification of digital signatures require the
computation of the product of powers of two [1], three [12] or more elements of a group. Furthermore,
in some algebraic structures the computation of a single exponentiation can be reduced to such a
product: If a commutative groupG admits an automorphismσ satisfying a monic equation over the
integers of degreed thenge can be computed asge0 · σ(g)e1 · · ·σd−1(g)ed−1 for suitable integers
e0, . . . , ed−1 which in many practical instances have sizeO(e1/d) (see [15, 27]). In this context, too,
the casesd = 2 andd = 3 are of particular practical relevance because of trace zero varieties and
XTR (see Section 5).

Such computations can be performed by computing the various powers separately and then mul-
tiplying them together. If one of the bases is known in advance and one can afford to store a lot
of precomputed values, one can obtain very good performance from this idea [10]. However, if the
intermediate results are not needed elsewhere, one can do much better in the general case.

Shamir’s trick can be extended in a straightforward way by using sliding windows: To our knowl-
edge this was first reported in [33]. So far, this generalisation of Shamir’s trick has been applied only
to the usual binary representation of the exponents, and only in this basic form Möller has compared it
to other methods such asinterleaved exponentiation[23]. We combine the idea of [33] with different
exponent recodings and compare these variants with interleaved multiexponentiation, thus extending
Möller’s analysis. One of our main concerns is to keep the memory requirements as small as possible,
which is important for smart card implementations. Our results can be summarized as follows:

(1) We propose and analyze variants of the algorithm from [33] which are better suited to groups
where inversion is cheap. This is done by considering signed digit representations – first intro-
duced in [6] – of the exponents. In particular we consider thenon-adjacent form[26, 24] (see
Theorem 3.6 and Remark 3.7) and a new representation of pairs of integers due to Solinas [30]
(see Theorem 3.12).

Our best algorithms perform double exponentiations with similar performance as the best pre-
vious methods while having much smaller memory requirements: See Tables 5 and 6 (the num-
ber of operations there does not include the number of squarings, which is essentially the same
in all methods which we consider) and Remark 4.6 (2). For example for a bit lengthn with
124 < n ≤ 354 a double exponentiation is done by9 + 3n/8 multiplications on average and
aboutn squarings, using only12 precomputed values: the precomputations can be reduced fur-
ther paying only a minimal performance penalty.

2. THE ALGORITHM 3

(2) To our knowledge Theorem 3.6 complements existing literature on single exponentiations.

(3) We show in Section 5 how all these methods can be used to speed up current and proposed
cryptosystems.

Power analysis of cryptosystems has aroused a lot of attention in the last years. It attempts to guess
secret keys by monitoring power signals of cryptographic devices. Since distinct operations have
different power consumptions, the use of simple square-and-multiply exponentiation methods can
allow a potential attacker to recover the binary representation of the exponent. If, for example, digits
±1 are used like in the NAF, the attacker can gain less information. Window methods are even better
and the adoption of multi-exponentiation algorithms such as those presented in this paper hide the
secret information very efficiently.

In the next section we will introduce the general form of the algorithm from [33], which will
be analysed in detail in Section 3: this forms the main part of this paper. In Section 4 the optimal
parameters will be discussed and the resulting time and space complexities will be compared against
those of interleaved exponentiation. Next, some applications will be outlined.

Acknowledgements.This paper would not exist, at least not in its present form, without Professor Gerhard Frey’s steady
encouragement and support. The author is grateful to Tanja Lange who drew the author’s attention to Solinas’ work and
proofread the manuscript. Many thanks also to Arjen Lenstra for kindly providing a reprint of [33].

Some computations have been performed using themaple computer algebra system [8].

2 The algorithm

We now proceed with the derivation and the description of the algorithm from [33]. LetG be a com-
mutative group of orderq ≈ 2n andd a (small) integer. Suppose we are given elementsg1, . . . , gd ∈ G
and integerse1, . . . , ed and want to computex :=

∏d
i=1 gei

i . Write

ei =
n−1∑
j=0

ei,j 2j (1)

with ei,j ∈ {0,±1}. The coefficientsei,j are called bits (bit meansbinary digit): unsigned bitsif the
value−1 is not allowed,signed bitsotherwise. In this paper, as it is now customary,1̄ means−1 in
signed bit expansions of integers.

For the moment we assume that the chosen representation is the unsigned binary one.
The most obvious way of performing the desired computation, as already mentioned, consists in

computing the powers separately and multiplying them together. The second most obvious way is
perhaps the following one, which saves some squarings.

Algorithm 2.1 Simple multi-exponentiation

INPUT: Group elementsg1, . . . , gd and corresponding exponentse1, . . . , ed written as in (1) in
base2 (i.e.with ei,j ∈ {0, 1})
OUTPUT:

∏d
i=1 gei

i

4 ROBERTOM. AVANZI

Step 1. x← 1 ∈ G

Step 2. forj = n− 1 ... 0 do {

x← x2 [Skip at first iteration]

for i = 1 ... d do { if ei,j = 1 then x← x · gi } }

Step 3. return x

Shamir’s trick improves Algorithm 2.1 as follows: First precompute the2d values
∏d

i=1 g
{0,1}
i .

Then putx =
∏d

i=1 g
ei,n−1

i by one table look-up. Finally, forj = n − 2, . . . , 1, 0, replacex by
x2 ·

∏d
i=1 g

ei,j

i by one squaring, one table look-up and one multiplication. Shamir’s method requires
2d−d−1 multiplications to prepare the table,n squarings and on average(1−2−d)n multiplications,
2−d being the probability that for a fixedj, ei,j is 0 for all i = 1, 2, . . . , d. If the exponents are
written in a signed binary representation, the tableE can be formed from the products

∏d
i=1 gki

i with
ki ∈ {0,±1}. If the cost of an inversion in the groupG is negligible, which is usually the main reason
for adopting a signed binary representation, one only needs a half of those values,i.e. those where the
first nonzeroki equals1. Then some products are replaced by divisions. This method can be improved
by means of sliding windows [19] in the same way as the square-and-multiply method. We describe
the resulting algorithm.

Algorithm 2.2 Multi-exponentiation with parallel sliding windows

INPUT: A window sizew, integerse1, . . . , ed as in (1) and a setE of precomputed elements of
the groupG of the form

∏d
i=1 gki

i includingg1, . . . , gd (the setE depends onw and on the chosen
representation for the integersei: see Remarks 2.3 (3–4) for examples)
OUTPUT:

∏d
i=1 gei

i

Step 1. t← n andx← 1 ∈ G

Step 2. if (ei,t−1 = 0 for i = 1, 2, . . . , d) then {

(a) t← t− 1 andx← x2

} else{

(b) if t ≥ w then t← t− w else{ w ← t andt← 0 }

(c) for i = 1, 2, . . . , d do fi ←
∑w−1

j=0 ei,t+j2j

(d) Lets be the largest integers ≥ 0 such that2s|fi for all i

(e) for i = 1, 2, . . . , d do fi ← fi/2s

(f) (i) x← x2w−s

; (ii) x← x ·
∏d

i=1 gfi

i and (iii) x← x2s }

Step 3. if t = 0 then return x elsegoto Step 2

Remarks 2.3 (1) In the cased = 1 the above algorithm is the usual sliding window exponentiation
algorithm. Ifw = 1 then it is just Shamir’s trick.

(2) At the beginning of Step 2 (c)fi is the integer represented by a string ofw consecutive bits
from the exponentei. Nows is the largest non-negative integer such thatei,t+u = 0 for all i and allu
with 0 ≤ u ≤ s. ThenormalisationStep 2 (e) is performed such that at least one of the integersfi is

3. COMPLEXITY ANALYSIS 5

odd, in order to reduce the number of elements ofE without impacting the total number of operations
done in Step 2 (f).

(3) In Step 2 (f) the first time it isx = 1, so one multiplication can be saved and onlys squarings
are needed.

(4) If the exponents are written in base2, thenE consists of all elements of the form
∏d

i=1 gki
i such

that0 ≤ ki < 2w and at least one of theki is odd. Then Step 2 (f) is done with one table look-up, one
multiplication andw squarings.

(5) The changes to Algorithm 2.2 required to work with the NAF are straightforward. A detailed
discussion of this case is found in Subsection 3.2. One important consequence of the fact that inversion
is free is that the size ofE can be reduced: In fact in Step 2 (f,ii) one can compute eitherx ←
x ·

∏d
i=1 gfi

i or x← x/
∏d

i=1 g−fi
i so only a half of the full table is required.

3 Complexity analysis

In this section we are concerned only with Algorithm 2.2 and its complexity.

Definition 3.1 A column is defined as ad-tuple of digitse(t) = (e1,t, . . . , ed,t) of the representa-
tion of integers (1) and the ordered sequencee(n−1), e(n−2), . . . , e(0) of such columns is calledjoint
representationof thed exponentse1, . . . , ed.

If e(n−1) 6= 0 then the joint representation is said to beproperandn is its length.
The number of nonzero colums in the joint representation is called itsHamming weight, and its

densityis the ratio of the Hamming weight to the length.

For simplicity we require that the joint representation of the exponentse1, . . . , ed is proper. Thus
at the first iteration of Step (2), substeps (b)–(f) are always performed. To evaluate the number of
squarings one should not consider those which can be avoided in the first iteration, which arew minus
the expected first value ofs.

Algorithm 2.2 scans the joint representation of thed exponentse1, . . . , ed one column at a time,
starting with the column formed by the most significant digits in the chosen representation. Step 2 is
iterated until the joint representation has been scanned completely. At each iteration one column is
read and the algorithm enters in one of two possible distinct states:

S0. A zero column is found, so the scanning advances by one column (Step 2 (a)).

S1. A nonzero column is found and the scanning advances byw columns (Steps 2 (b)–(f)).

The number of multiplications (excluding squarings) performed by the algorithm equals the num-
ber of times we are in the second state. Letπ be the probability that the column read in Step 2 is zero.
After m iterations, the expected number of columns read by the scanning process is(π+w(1−π))m.
Suppose that for somem this number isn. The number of multiplications performed by Algorithm
2.2 in Step 2 (d) is then(1 − π)m − 1 (remember that the first multiplication can be replaced by an
assignment)i.e.

n · 1− π

π + w(1− π)
− 1. (2)

This is, with some adaptations, the approach followed in the next two subsections.

Definition 3.2 Let e =
∑n−1

j=0 ej 2j be an integer. We say that an algorithm scans (generates,
rewrites...) thebits ej right-to-left (resp. left-to-right) if it scans (generates, rewrites...) them from

6 ROBERTOM. AVANZI

the least significant ones to the most significant ones, i.e. firste0, thene1, e2, etc. (resp. from the most
significant ones to the least significant ones, i.e. firsten−1, thenen−2, and so on).

Similar definitions hold for algorithms which deal with the colums of a joint representation of
several integers.

Remark 3.3 Algorithm 2.2 processes the columns of the chosen joint representation of the exponents
left-to-right. However most recoding algorithms for producing signed binary representations, such
as Reitwiesner’s algorithm [26] and Solinas’ own algorithm for the Joint Sparse Form, rewrite the
exponents right-to-left. In such situations recoding and (multi-)exponentiation cannot be interleaved,
and the recoded representations must be stored explicitly. This is a general problem with window
methods.

3.1 Unsigned binary inputs

Here the exponents are written in base2, i.e. ei,j ∈ {0, 1}. The setE consists of all elements of the
form

∏d
i=1 gki

i such that0 ≤ ki < 2w and at least one of theki is odd. It has cardinality2wd−2(w−1)d.
Half of the powers of the base elementsgi can be computed by squarings and all other elements by
products.

The bits in each representation are assumed to be zero or one with equal probability and inde-
pendent from the adjacent bits, soπ = 2−d. To evaluate the number of squarings in the main loop
of the algorithm we must determine the expected value ofs at the first iteration. As all the bits are
independent from each other,s ≥ u with 1 ≤ u < w with probability2−ud. Hence the expected value
of s is

∑w−1
u=1 2−ud = 1−2−d(w−1)

2d−1
. We have thus the following result:

Theorem 3.4 Suppose that in Algorithm 2.2 the unsigned binary representation is used for the expo-
nents and that their joint representation has lengthn.

Then the setE has cardinality2wd − 2(w−1)d and requires2wd − 2(w−1)d − d operations to be
computed: of these at leastd(2w−1 − 1) can be assumed to be squarings.

The expected number of multiplications in the algorithm isn 1
w+(2d−1)−1 − 1 and that of the

squarings isn− w + 1−2−d(w−1)

2d−1
.

Remark 3.5 In the casew = d = 2, the setE consists of the valuesga
1gb

2 with 0 ≤ a, b ≤ 3 and at
least one ofa, b odd. To determine them one has to compute and storeg2

1 andg3
1, as well asg2

2 andg3
2.

This requires2 squarings and2 multiplications. Computing the remaining8 values requires8 further
multiplications.

3.2 Using the NAF

A non-adjacent form(abbreviated as NAF) is a signed binary representation of an integere =∑n−1
j=0 bj2j with bj ∈ {0,±1} and bjbj−1 = 0. Each integer admits a NAF, which is uniquely

determined. It is the signed binary representation of minimal Hamming weight and it has expected
density1/3 (see [24] and [2] for proofs).

Reading NAFs through non-sliding windows has been considered already but only for a single
NAF (i.e.d = 1) and not in the case of joint representations: See the paper [13], of which we use some
arguments in this subsection. We consider here sliding windows, which lead to lower complexity.
Hence, even in the cased = 1 our results will complement existing literature. This must not be
confused with thewNAF, cfr. §4.2.4.

3. COMPLEXITY ANALYSIS 7

Theorem 3.6 Suppose that in Algorithm 2.2 the exponents are input in NAF, and that their joint
representation isn bits long.

The setE has cardinality(Id
w − Id

w−1)/2 whereIw = 2w+2−(−1)w

3 .
The number of squarings in the main loop of the algorithm is betweenn − w andn − 1, with an

heuristically expected valuen − w +
(

4
3

)d 1−2−d(w−1)

2d−1
. In the casesd = 1, 2 and3 respectively, the

expected number of multiplications isn · 1−π(d)

w−(w−1)π(d) − 1 where

π(1) =
4 (2w − (−1)w)

7 · 2w − 4 · (−1)w
, π(2) =

16 (4w − 1)
43 · 4w + 24 · (−2)w − 16

and

π(3) =
64 (2w + (−1)w)(8w − (−1)w)

253 · 16w + 397 · (−8)w + 324 · 4w + 80 · (−2)w − 64
.

(3)

In particular for d = 1 the expected number of multiplications isn · 1
w+ 4

3(1−(− 1
2)

w) − 1.

Remark 3.7 In the casew = d = 2, the setE consists of the valuesga
1gb

2 with either0 < a ≤ 2
and−2 ≤ b ≤ 2 where at least one ofa, b odd, ora = 0 andb = 1. A chain for computingE by 6
multiplications or multiplications with the inverse is{

g1, g2, g1g2, g1g
−1
2 , g1g

2
2, g1g

−2
2 , g2

1g2, g2
1g

−1
2

}
.

The remainder of this subsection is devoted to the proof of Theorem 3.6.
First note that the largest integer representable by aw-bit number in NAF is(10 . . . 01)2 for oddw

and(10 . . . 10)2 for evenw: It is easy to see that this number isTw = (2w+2− 3− (−1)w)/6. Hence,
there areIw = (2w+2 − (−1)w)/3 integers in the interval[−Tw, . . . , Tw]. Now E consists ofall
elements of the form

∏d
i=1 gki

i such that|ki| ≤ Tw for i = 1, 2, . . . , d, at least one of theki is odd and
the first nonzero element in the sequencek1, k2, . . . , kp is positive.In this way, if in Step 2 (f,ii) the
first nonzerofi is positive we computex ← x ·

∏d
i=1 gfi

i otherwise we computex ← x/
∏d

i=1 g−fi
i .

Hence we need only(Id
w − Id

w−1)/2 elements inE .

Definition 3.8 A joint representation of integers in NAF will be called ajoint NAF.

Definition 3.9 Let e = (e1, . . . , ed) be ad-tuple ofn-bit integers so that (1) is proper. Thebit-
reversinĝe of e is thed-tuple formed by the numberŝei =

∑n−1
j=0 ei,(n−1)−j 2j .

To avoid ambiguity, we define bit-reversing only for proper joint representations. The mapping
which associates to a proper joint NAF its bit-reversing induces a bijection between the set of proper
joint NAF’s of d integers ofn bits and the set of joint NAF’s (not necessarily proper) ofd integers
of n bits, at least one of the integers being odd.Hence the expected number of windows made by
Algorithm 2.2 onn-bit proper joint NAF’s ofd integers equals the expected number of windows
formed by a sliding window algorithm which scans from right to left joint NAF’s ofd integers ofn
bits, at least one odd.The parity condition amounts to the fact that at the first iteration a nonzero
column is found, exactly as in the original algorithm.

Consequently we will consider an algorithm which forms sliding windows on joint NAF’s from
right to left, and we will model it as a Markov chain: At each iteration one column is read and the
algorithm enters in one ofd + 1 possible distinct states, defined by the number of nonzero entries in
the colums:

8 ROBERTOM. AVANZI

S ′0. A zero column is found, so the scanning advances by one column.

S ′k (for 1 ≤ k ≤ d). A column is found with exactlyk nonzero entries and
the scanning advances byw columns.

(∗)

To determine the transition probability from stateS ′` to stateS ′k we need a few preliminary results.
We begin with a review of Reitwiesner’s algorithm for recoding the unsigned binary representation

of a numbere =
∑n−1

j=0 bj2j into a NAF
∑n

j=0 ej2j . Forj = 0, 1, . . . , n− 1, the digitej of the NAF
is a function of the values ofbj+1, bj and of thej-th carrycj , which is equal to one if the NAF of
the truncated numbere =

∑j−1
i=0 bi2i is one bit longer than its unsigned binary representation. At

the beginningc0 = 0. The recoding is then done as shown in Table 1 – where we also write the
admissible following state according to the value ofei+2 and the corresponding output – and at the
enden = cn−1. If en 6= 0 then the NAF is longer than the original representation. Since in the

State Input Output Next State (andei+1)
(bi+1 bi)2 ci ei ci+1 if bi+2 = 0 if bi+2 = 1

s0 (0 0) 0 0 0 s0 (0) s4 (0)
s1 (0 0) 1 1 0 s0 (0) s4 (0)
s2 (0 1) 0 1 0 s0 (0) s4 (0)
s3 (0 1) 1 0 1 s1 (1) s5 (1̄)
s4 (1 0) 0 0 0 s2 (1) s6 (1̄)
s5 (1 0) 1 1̄ 1 s3 (0) s7 (0)
s6 (1 1) 0 1̄ 1 s3 (0) s7 (0)
s7 (1 1) 1 0 1 s3 (0) s7 (0)

Table 1: States of Reitwiesner’s Algorithm

unsigned binary representation each bit assumes a value of zero or one with equal probability and
there is no dependency between any two bits, it is clear that all admissible transitions from a states`

to a statesk occur with probability1
2 . It is straightforward to write down the corresponding transition

probability matrixP . The resulting limiting probabilities for the statess0, . . . , s7 are thus [13] given
by the vector

v =
[

1
6

,
1
12

,
1
12

,
1
6

,
1
6

,
1
12

,
1
12

,
1
6

]
whose components add up to1 and which satisfiesP · v⊥ = v⊥. (Here the symbol⊥ denotes matrix
transposition.) From this it is immediate, upon summing the probabilities for statess1, s2, s5 and
s6, to obtain the known result that the expected Hamming weight of a NAF is1

3 . The fact which
is more relevant to us here is that statess0, s3, s4 ands7, which all output a zero, occur with equal
probabilities, and that in two cases another zero will be output by the next state, whereas in the other
two a nonzero bit will be output. We have thus proved the following lemma.

Lemma 3.10 The probability that in a NAF the digit immediately to the left of a0 is another0 is 1
2

and that it is1 or −1 is in each case14 .

We now generalize this by determining the probabilities that a bitej,i+w which isw places to the left
of ej,i is zero or one, depending on the value ofej,i andw.

Lemma 3.11 If ej,i = 0, thenej,i+w = 0 with probabilityπw,0 andej,i+w 6= 0 with probabilityπw,∗,
where

πw,0 =
2w+1 + (−1)w

3 · 2w
and πw,∗ = 1− πw,0 =

1
2
πw−1,0 =

2w − (−1)w

3 · 2w
. (4)

3. COMPLEXITY ANALYSIS 9

Since a nonzero bit is always followed by a zero, we also have that ifej,i 6= 0, thenej,i+w = 0 with
probabilityπw−1,0 andej,i+w 6= 0 with probabilityπw−1,∗.

Proof. Clearlyπw,0 + πw,∗ = 1. By Lemma 3.10 we haveπ1,0 = π1,∗ = 1
2 and


πi+1,0 = πi,∗ +

1
2
πi,0 = 1− 1

2
πi,0

πi+1,∗ =
1
2
πi,0.

Now (4) follows easily by induction.

We are now in the position to model the right-to-left scanning process as a Markov chain with
statesS ′0, . . . ,S ′d defined in(∗). Denote byτ`,k the transition probability from stateS ′` to stateS ′k.

Suppose that a zero column is read. Then no window is being formed and at the next iteration
the scanning algorithm will read the next column to the left. The probabilityτ0,k that this column
contains exactlyk nonzero entries is

(
d
k

)
1
2k .

On the other hand suppose that a columnc with exactly` 6= 0 nonzero entries has been read. The
bit-reversing of the numbers represented by this column and the nextw− 1 columns at its left are the
exponentsf1, . . . , fd in Step 2 (c). The next column checked by the right-to-left scanning process,
sayc′, will be then that which is exactlyw places to the left ofc. Now τ`,k is the probability thatc′

has exactlyk nonzero entries (where0 ≤ k ≤ d). For some integerr, in exactlyr of the positions
occupied by thè nonzero digits inc there will be nonzero bits in the respective positions inc′, and
in the positions of the remaining̀− r nonzero bits inc there will be zeros inc′. Therefore, to exactly
k− r of the zero bits inc will correspond nonzero bits inc′, and to the otherd− `− (k− r) zeros of
c will correspond zeros inc′. Finally

τ`,k =
∑

r : 0≤r≤`
0≤k−r≤d−`

(
`

r

)(
d− `

k − r

)
π r

w−1,∗π
`−r
w−1,0π

k−r
w,∗ π

d−`−(k−r)
w,0

=
∑

r : 0≤r≤`
k+`−d≤r≤k

(
`

r

)(
d− `

k − r

) (
1− 2πw,∗

)r2`−rπ `−r
w,∗ π k−r

w,∗
(
1− πw,∗

)d−`−(k−r)

=
min{`,k}∑

r=max{0,k+`−d}

(
`

r

)(
d− `

k − r

)
2`−rπ `+k−2 r

w,∗
(
1− πw,∗

)(d−`−k)+r(1− 2πw,∗
)r

.

Put

Td = (τ`,k)d
`,k=0 =


1/2d τ1,0 τ2,0 · · · τd,0(
d
1

)
/2d τ1,1 τ2,1 · · · τd,1
...

...
...

...
...(

d
d−1

)
/2d τ1,d−1 τ2,d−1 · · · τd,d−1

1/2d τ1,d τ2,d · · · τd,d

 .

The limiting probabilitiesσ0, . . . , σd of the algorithm being in stateS ′0, . . . ,S ′d respectively satisfy

10 ROBERTOM. AVANZI

∑d
k=1 σk = 1 andTd · (σ0 · · · σd)′ = (σ0 · · · σd)′. Hence, upon putting

Ud =



1 1 1 · · · 1
d/2d τ1,1 − 1 τ2,1 · · · τd,1(
d
2

)
/2d τ1,2 τ2,2 − 1 · · · τd,2
...

...
...

...
...

d/2d τ1,d−1 τ2,d−1 · · · τd,d−1

1/2d τ1,d τ2,d · · · τd,d − 1


,

we haveUd · (σ0 · · · σd)⊥ = (1, 0, . . . , 0)⊥. Hence, provided thatUd is invertible,(σ0 · · · σd)⊥ =
U−1

d · (1, 0, . . . , 0)⊥ and in particularσ0 is the value in the top left corner ofU−1
d .

We are interested inUd only in the casesd = 1, 2 and3. Upon puttingα = 2w andβ = (−1)w

we obtain

U1 =
(

1 1
1
2

α+2β
3α − 1

)
, U2 =


1 1 1
1
2

4α2+αβ+4β2

9α2 − 1 4(α−β)(α+2β)
9α2

1
4

(α−β)(α+2β)
9α2

(α+2β)2

9α2 − 1

 and

U3 =


1 1 1 1
3
8

(2α+β)(2α2−αβ+2β2)
9α3 − 1 4(α3−β3)

9α3
4(α−β)2(α+2β)

9α3

3
8

2(α3−β3)
9α3

(α+2β)(2α2−αβ+2β2)
9α3 − 1 2(α−β)(α+2β)2

9α3

1
8

(α−β)2(α+2β)
27α3

(α−β)(α+2β)2

27α3
(α+2β)3

27α3 − 1

 .

The above matrices have been written down using simplemaple [8] code. With he same software it is
immediate to verify that ford = 1, 2 and3 the matrixUd is invertible and to computeσ0, i.e. the value
of π in the introductory part of this section. We thus obtain the valuesπ = π(d) given in equation (3),
Theorem 3.6.

To estimate the value ofs at the first iteration of the main loop, we proceed heuristically. [13,
Theorem 1] states that the probability that a lengthu bit section of a number in NAF is zero is43

(
1
2

)u
.

For u = 1, . . . , w − 1 we apply this result to theu least significant bits used to form each of the
integersf1, . . . , fd in Step 2 (c) at the first iteration of the loop of Algorithm 2.2. We then proceed as
in the proof of Theorem 3.4, the only difference consisting in the multiplicative factor

(
4
3

)d
.

3.3 Using the JSF

The Joint Sparse Form has been introduced by Solinas [30] to make Shamir’s trick more effective for
elliptic curves. It applies however to all groups where inversion is for free. It has been defined only
for pairs of integers: accordingly we will restrict ourselves to the cased = 2 here. We shall also
assume thatw = 2: this assumption fits naturally with the defining properties of the JSF, and by a
good stoke of luck this brings the highest improvement over the methods studied before for exponents
in the range in which we are interested. For more precise statements see Subsection 4.1, in particular
the row forw = 2 in Table 2 and Remark 4.1.

In this subsection we prove the following theorem.

Theorem 3.12 Suppose that in Algorithm 2.2 Solinas’ JSF is used for the exponents, andw = d = 2.
Assume further that the JSF of the exponents has lengthn.

3. COMPLEXITY ANALYSIS 11

The expected number of multiplications in the main loop of the algorithm is3
8n − 1, and the

heuristically expected number of squarings isn− 2 + 1
2 = n− 3

2 .
The setE consists of the10 elementsga

1gb
2 with: (i) a = 0 andb = 1; (ii) a = 1 and−2 ≤ b ≤ 2;

(iii) a = 2 and b ∈ {±1,±3} and (iv) a = 3 and b = ±2. A chain for precomputing all the10
required values other thang1 andg2 and requiring10 multiplications or divisions is{

g1, g2, g1g2, g1g
−1
2 , g1g

2
2, g1g

−2
2 ,

g2
1g2, g2

1g
−1
2 , g2

1g
3
2, g2

1g
−3
2 , g3

1g
2
2, g3

1g
−2
2 .

} (5)

We assume that the reader is acquainted with the results in Solinas’ cited technical report, from
which we recall however a few important facts. The joint Hamming weight of the JSF of two integers
is minimal among all (un)signed joint binary representations of the same pair of integers. Its average
density is1/2 – which gives the heuristical estimate of the squarings in the main loop – whereas that
of the joint unsigned binary representation and of the joint NAF is3/4 and5/9 respectively. It is
natural then to expect that using the JSF in Algorithm 2.2 would lead to an improvement over the
complexities of the other two cases even ifw > 1.

The JSF is uniquely determined by the following properties:

(JSF-1) Of any three consecutive columns, at least one is zero.

(JSF-2) Adjacent nonzero bits have the same sign. In other words,ei,j+1ei,j = 0 or 1.

(JSF-3) If ei,j+1ei,j 6= 0 thene3−i,j+1 6= 0 ande3−i,j = 0.

Solinas provides proofs for existence and uniqueness of the JSF, as well as an algorithm for de-
termining it. His algorithm generates the JSF right-to-left. Analysing it Solinas considers three states
which he simply callsA, B andC. In stateC this algorithm outputs a zero column. In statesA or B
it outputs nonzero columns. The transition probabilities between these states are explicitly given: we
return to this later.

Property(JSF-1) suggests that the representation is particularly suitable for an implementation
of Algorithm 2.2 with a window widthw = 2. As already announced we restrict ourselves to this
case in the sequel. Further, this choice also simplifies the complexity analysis, by the following
observation: Algorithm 2.2 scans a joint representation left-to-right in order to form windows, but
consecutive nonzero columns always belong to one window regardless of the direction in which we
are scanning the joint representation.This is easy to see, as by property(JSF-1)there can be at most
two consecutive nonzero columns, which must be preceded and followed by zero columns or by the
boundaries of the representation.

Therefore to estimate the number of nonzero windows (which corresponds to the number of multi-
plications performed by Algorithm 2.2 plus one) we scan our input right-to-left. In Solinas’ algorithm
StateA is always followed by StateB, StateB by StateC, and there are the following transition
probabilities:P(C 7→ A) = 1/4, P(C 7→ B) = 1/2 andP(C 7→ C) = 1/4. We thus consider a
Markov chain withthreestates, which correspond to those in Solinas’ algorithm, as follows:

S∗0 . A nonzero column is output by StateA of Solinas’ algorithm: this column will be the second
column in a “square” window when read left-to-right, as the next state in Solinas’ algorithm is
always StateB.

S∗1 . A nonzero column is output by StateB of Solinas’ algorithm: this column will be the first column
in a window when read left-to-right, whereas the second column is non-zero if we are coming
from stateA or zero if we come from StateC.

12 ROBERTOM. AVANZI

S∗2 . A zero column is output by StateC of Solinas’ algorithm.

The number of times we enter inS∗1 corresponds to the number of windows formed and thus to the
number of multiplications performed by our algorithm. The transition probability matrix is

T =
(
P(S∗i 7→ S∗j)

)2

i,j=0
=

 0 1 0
0 0 1

1/4 1/2 1/4


which yields limiting probabilitiesπ0 = 1

8 , π1 = 3
8 andπ2 = 1

2 . Hence the expected number of
multiplications performed by Algorithm 2.2 is38n− 1 with n-bit inputs.

According to the defining properties of the JSF, the admissible nonzero colums
(
e1,j
e2,j

)
and windows(e1,j e1,j−1

e2,j e2,j−1

)
with both columns non zero that, up to sign, can be found are[

0
1

]
,

[
1
0

]
,

[
1
±1

]
,

[
0 1
±1 0

]
,

[
1 0
0 ±1

]
,

[
1 0
ε ε

]
with ε = ±1, and

[
1 1
±1 0

]
,

thus proving the statements aboutE .

4 Comparisons

4.1 Algorithm 2.2: Optimal parameters for d= 2 and 3

First of all, it is important to know for which values of the parameterw the algorithms run fastest,
given the bit lengthn of the inputs and the numberd of the exponents. For simplicity we ignore the
number of squarings performed in the main loop and we consider it only ford = 2 and3.

Suppose firstd = 2: Table 2 contains the cardinality ofE and the sum of the number of operations
needed to build it with the expected number of multiplications in the main loop of the algorithm.
This performance parameter (similar to that used for instance in [23]) is a natural way of comparing
exponentiation algorithms. In fact, it is easy to adapt these values to the relative costs of squarings by
addingcs n, wherecs is the cost of a squaring relative to that of a multiplication. In the column for
the JSF there is of course no entry forw = 3.

Table 3 collects the analogous data ford = 3: Note that the JSF, being defined only ford = 2, is
not represented.

w Unsigned
#E and# Ops

NAF
#E and# Ops

JSF
#E and# Ops

1 3
3
4
n 4 1 +

5
9
n 4 1 +

1
2
n

2 12 9 +
3
7
n 8 5 +

11
27

n 12 9 +
3
8
n

3 48 45 +
3
10

n 48 45 +
32
117

n

Table 2: Cardinality ofE and number of operations ford = 2

4. COMPARISONS 13

w Unsigned
#E and# Ops

NAF
#E and# Ops

1 7 3 +
7
8
n 13 9 +

19
27

n

2 56 52 +
7
15

n 49 45 +
131
297

n

3 448 444 +
7
22

n 603 599 +
1082
3645

n

Table 3: Cardinality ofE and number of operations ford = 3

Remark 4.1 Assumed = 2 and consider Table 2. Using the unsigned binary representation, the
optimal choice ofw is w = 1 for n ≤ 28, andw = 2 for 28 ≤ n ≤ 280. In particular the parameter
w = 2 is optimal for the exponents sizes which interests us.

With the NAF the thresholds aren = 27 andn = 14040
47 = 298.72 respectively.

With the JSF the parameterw = 1 is optimal forn ≤ 64. Furthermore, using the JSF withw = 2
is better than using the NAF with eitherw = 2 or 3 when124 < n ≤ 354: in the range which concerns
us most however using the NAF can be marginally slower but requires fewer precomputations.

Remark 4.2 In the cased = 3 (see Table 3) the thresholds are higher, as intuition suggests. Using
the unsigned binary representation, the optimal choice ofw is w = 1 for n ≤ 120, andw = 2 for
121 ≤ n ≤ 2640. In the NAF case,w = 1 is optimal forn ≤ 137 andw = 2 for 138 ≤ n ≤ 3841.

If w = 1, the NAF leads to better performance as long asn > 35, if w = 2 the NAF will always
yield a better algorithm. However, ifw = 3, the much larger constant term in the complexity when
using the NAF has a price: forn ≤ 7264 it is better to use the unsigned binary representation.

Remark 4.3 As already mentioned, the algorithms of Reitwiesner and Solinas recode the exponents
right-to-left, so extra storage must be reserved for the recoded representations. There exists an alter-
native to the NAF with the same Hamming weight and which can be computed from left to right [17]
by a simple algorithm. However this representation dispenses with the non-adjacency property, which
has a very negative impact on memory usage. For instance forw = d = 2 the set of precomputations
E consists of the valuesga

1gb
2 with either0 < a ≤ 3 and−3 ≤ b ≤ 3, at least one ofa, b odd or

a = 0 andb = 1 or 3, a total of20 values instead of8 or 12. Therefore both the total memory usage
of Algorithm 2.2 combined with this recoding and its running time would be worse than the variants
we analysed. For this reason it should not be considered.

4.2 Interleaved exponentiation and exponent representations

A multi-exponentiation algorithm calledinterleaved exponentiationhas been described by M̈oller
[23]. It is better understood in terms of exponent recording, and it is nothing but Algorithm 2.1 applied
to a different representation of the exponents. Suppose that the exponentse1, . . . , ed are written as

ei =
n−1∑
j=0

ei,j 2j (6)

where the coefficientsei,j are allowed to vary in a set larger than{0,±1}. Then the following gener-
alization of the left-to-right exponentiation algorithm computesx :=

∏d
i=1 gei

i .

14 ROBERTOM. AVANZI

Algorithm 4.4 Left-to-right interleaved multi-exponentiation

INPUT: Group elementsg1, . . . , gd of which some powers have been precomputed and exponents
ei =

∑n−1
j=0 ei,j 2j

OUTPUT:
∏d

i=1 gei
i

Step 1. x← 1 ∈ G

Step 2. forj = n− 1 ... 0 do {

(a) x← x2 [Skip at first iteration]

for i = 1 ... d do {

(b) if ei,j 6= 0 then x← x · gei,j

i } }

Step 3. return x

This algorithm becomes efficient if a careful choice of the recoding of the exponents is done,
balancing a low density of the representations with the work done in the precomputation stage: this
should allow Step 2 (b) to be done always with a table access and a single multiplication (or multipli-
cation with the inverse). We see now four candidates for the representations.

4.2.1 Radix-r representation

A first possibility is offered by radix-r recoding wherer = 2w is a power of2. We embed this
representation into a redundant base2: If e =

∑n−1
i=0 bi2i we put

b′k =

{∑w−1
`=0 bwk+`2` if k ≡ 0 (mod w)

0 otherwise,

for 0 ≤ k ≤ n−1 and assumingbi = 0 for i ≥ n, then considere =
∑dn/we−1

k=0 b′kw2kw =
∑n−1

i=0 b′i2
i.

The last representation is that which is actually used to represent the exponents in Algorithm 4.4.
This is very easy to implement, for exponents are scanned onlinew bits at a time and all blocks of
multiplications are done only everyw squarings. The density of a radix-r representation isr−1

r and
so Algorithm 4.4 requires aboutdn

w
2w−1
2w multiplications andn squarings.

4.2.2 The generalized non-adjacent form

A better alternative, assuming free inversion, can be thegeneralized non-adjacent form, or GNAF,
which is asignedradix-r recoding. A radix-r GNAF of the integere is a representatione =

∑n−1
i=0 bir

i

with −r < bi < r and satisfying the following two properties

(GNAF-1) |bi + bi+1| < r for all i.

(GNAF-2) If bi bi+1 < 0 then|bi| < |bi+1|.

This form coincides with the definition of the NAF whenr = 2. Moreover, as for the NAF, it can be
proven that this form is unique and has minimal Hamming weight among signed radix-r representa-
tions [7]. Here we consider only the case thatr is a power of2 and we embed the representation into
a redundant base2 one as in the previous paragraph.

4. COMPARISONS 15

Using the GNAF the density of the nonzero digits decreases fromr−1
r of the radix-r representation

to r−1
r+1 , hence it leads to a multi-exponentiation algorithm requiringdn

w
2w−1
2w+1 multiplications and about

n squarings to compute the product ofd powers withn-bit exponents.
The GNAF is recoded right-to-left, and thus cannot be used online.
There exists a left-to-right recoding with the same weight as the GNAF [18].

4.2.3 Width-w left-to-right sliding windows

One can let a sliding window of sizew scan right-to-left the binary representation of an integer,
skipping zeros and reading the value contained in the window only if a bit equal to1 is found. This
gives a recodinge =

∑n−1
j=0 bj 2j where the coefficientsbj are either zero or odd, satisfy0 ≤ bj < 2w

and of anyw consecutive of them at most one is nonzero. It is very well known that this representation
has density1/(w + 1).

We want however aleft-to-right sliding window algorithm. In the most näıve way it produces a
recoding where the coefficientsbj are either zero or and satisfy2w−1 ≤ bj < 2w, except perhaps
for the least significant nonzero coefficient. Clearly this representation has the same expected density
1/(w+1). If however we do not include alwaysw bits in the window butonly as many bit as possible
as long as they are at mostw and not only the most significant one but also the least significant one is
1, we get a recoding where thebj are zero or odd and satisfy0 ≤ bj < 2w and with the same weight
as before. Note that two nonzero coefficients need no longer to be separated by at leastw − 1 zero
coefficients. We call this recoding thewidth w sliding window recoding, or wSWR for short. It can
be used online but some care is required in the implementation.

ThewSWR is better than radix-2w as long asw > 1 (and equal ifw = 1) and also better than the
GNAF if w ≥ 3. Moreover only about a half of the elements need to be precomputed compared to
those needed for the radix-2w and GNAF for the samew.

The result is that thewSWR is preferable over using the radix-2w form or the GNAF for the
optimal value ofw for a given exponent size (which is either4 or 5 for 160 ≤ n ≤ 256).

4.2.4 The flexible window exponentiation algorithm and thewNAF

Cohen’sflexible windowexponentiation algorithm [10, 9] which was also proposed independently by
Solinas [28, 29] consists in the application of Algorithm 4.4 withd = 1 to thewNAFof the exponent.
ThewNAF of the integere is a representatione =

∑n−1
j=0 bj 2j where the integer coefficientsbj satisfy

the following two conditions:

(wNAF-1) Eitherbj = 0 or bj is odd and|bj | ≤ 2w.

(wNAF-2) Of anyw + 1 consecutive coefficientsbj+w, . . . , bj at most one is nonzero.

It is also calledwidth-(w + 1) NAF and it must not be confused with the GNAF. The special case
w = 1 is the usual NAF. Every integer admits awNAF which is uniquely determined. In the cited
papers by Solinas and by Cohen et al. there are algorithms for computing it. The density of the
representation is1/(w + 2). This immediately leads to an exponentiation algorithm requiring about
n/(w + 2) multiplications for ann-bit exponent. ThewNAF recoding algorithm works right-to-left,
therefore it cannot be used online.

Remark 4.5 In general the recoding of choice for Algorithm 4.4 is thewSWR if inversion is expen-
sive, and thewNAF otherwise, because of their better densities and smaller precomputation tables

16 ROBERTOM. AVANZI

d = 2 d = 3

n
Algorithm 2.2

(base-2)
#E and# Ops (w)

Algorithm 4.4
(wSWR)

#E and# Ops (w)

Algorithm 2.2
(base-2)

#E and# Ops (w)

Algorithm 4.4
(wSWR)

#E and# Ops (w)

56 12 33 (w=2) 8 35 (w=3) 7 52 (w=1) 12 53 (w=3)

64 12 36.43(w=2) 8 39 (w=3) 7 59 (w=1) 12 59 (w=3)

80 12 42.43(w=2) 8 47 (w=3) 7 73 (w=1) 12 71 (w=3)

96 12 50.14(w=2) 16 53.40(w=3) 7 87 (w=1) 12 83 (w=3)

128 12 63.86(w=2) 16 66.20(w=3) 56 111.86(w=2) 12 107 (w=3)

160 12 77.57(w=2) 16 79 (w=3) 56 126.67(w=2) 12 131 (w=3)

192 12 91.28(w=2) 16 91.80(w=3) 56 141.60(w=2) 24 138.20(w=4)

240 12 111.86(w=2) 16 111 (w=4) 56 164 (w=2) 24 167 (w=4)

256 12 118.71(w=2) 16 117.40(w=4) 56 171.47(w=2) 24 176.60(w=4)

Table 4: Complexity of multi-exponentiation using unsigned representations

n
Algorithm 2.2

(NAF)
#E and# Ops (w)

Algorithm 2.2
(JSF)

#E and# Ops (w)

Algorithm 4.4
(wNAF)

#E and# Ops (w)

56 8 27.81(w=2) 4 29 (w=1) 8 29.40(w=3)

64 8 31.07(w=2) 4 33 (w=1) 8 32.60(w=3)

80 8 37.59(w=2) 12 39 (w=2) 8 39 (w=3)

96 8 44.11(w=2) 12 45 (w=2) 8 45.40(w=3)

128 8 57.15(w=2) 12 57 (w=2) 16 57.66(w=4)

160 8 70.19(w=2) 12 69 (w=2) 16 68.33(w=4)

192 8 83.22(w=2) 12 81 (w=2) 16 79 (w=4)

240 8 102.78(w=2) 12 99 (w=2) 16 95 (w=4)

256 8 109.30(w=2) 12 105 (w=2) 16 100.33(w=4)

Table 5: Complexity of multi-exponentiation using signed representations,d = 2

with respect to the simpler radix-r form and GNAF. ThewSWR can be a good backup choice for Al-
gorithm 4.4 even if inversion is free if memory usage is critical. For the corresponding penalty hit see
the tables in the next subsection.

4.3 Comparing the two algorithms

If inversion in the group is not for free, we recode online the exponents aswSWR’s in Algorithm 4.4.
One requires thend squarings andd(2w−1−1) multiplications in the precomputation stage anddn

w+1−1
multiplications and aboutn − 1 squarings in the main loop (note that the first multiplication is just a
variable assignment). In Table 4 we add the total number of operations in the precomputation stage
to the number of multiplications in the main loop of the algorithms. (This is the same performance
parameter used before.) In each case the value ofw which minimizes the running time is chosen.

If inversion in the group is cheap, we write the exponents aswNAF’s. Algorithm 4.4 needsd
squarings andd(2w−1 − 1) multiplications for the precomputations anddn

w+2 − 1 multiplications and
aboutn squarings in the main loop. Tables 5 and 6 collect the complexity data for these algorithms
which exploit signed representations in the casesd = 2 andd = 3 respectively.

5. APPLICATIONS 17

n
Algorithm 2.2

(NAF)
#E and# Ops (w)

Algorithm 4.4
(wNAF)

#E and# Ops (w)

56 13 48.40(w=1) 12 44.60(w=3)

64 13 54.03(w=1) 12 49.40(w=3)

80 13 65.29(w=1) 12 59 (w=3)

96 13 76.55(w=1) 12 68.60(w=3)

128 13 99.07(w=1) 24 87 (w=4)

160 49 115.57(w=2) 24 103 (w=4)

192 49 129.69(w=2) 24 119 (w=4)

240 49 150.86(w=2) 24 143 (w=4)

256 49 157.91(w=2) 24 151 (w=4)

Table 6: Complexity of multi-exponentiation using signed representations,d = 3

Remarks 4.6 (1) Only implementation can decide which of the algorithms is fastest for a particular
purpose if the number of operations is similar. In these cases memory usage can be the decisive
factor. In the case of double exponentiations with unsigned representations Algorithm 2.2 seems the
best choice, either yielding better performance than Algorithm 4.4 or yielding similar performance
while requiring less memory.

(2) Algorithm 2.2 with the NAF or with the JSF seems be preferable to Algorithm 4.4 for double
exponentiations with exponents from160 to 256 bits in memory constrained environments. In partic-
ular the use of the NAF reduces considerably the number of required precomputations, saving RAM
and, in the case of one fixed base, also ROM. The use of the NAF is undisputably preferable also
for smaller bit sizes, i.e.80 to 128 bits, and this gives the method of choice for implementing single
exponentiations in groups with an automorphism of degree2, such as trace zero varieties or XTR
subgroups as described in Section 5.

(3) For triple exponentiations Algorithm 4.4 seems always preferable with unsigned representa-
tions (using thewSWR) andn ≥ 128 or with signed representations (using thewNAF).

5 Applications

In this section we show a few applications of the above multi-exponentiation algorithms.

5.1 Elliptic and hyperelliptic curves

Here, as well as in the next subsection, we shall use additive terminology (and shall speak, for exam-
ple, of a scalar productr · P instead of an exponentiationP r).

The natural application of Algorithm 2.2 is to electronic signature schemes based on the discrete
logarithm problem in the rational point group of an elliptic curve (ecc) or of the Jacobian variety of
an hyperelliptic curve (hec) over a finite field. Henced = 2 and for the current applications (where
exponent sizes are between160 and256 bits) we have already seen that the optimal value of the
parameter isw = 2.

In the ecc case we observe that mixed coordinate systems can be used exactly as in [11], as we
have sequences of repeated doublings (always at least two of them) alternated with single additions of
points from a precomputed table. We compute directly the double scalar product, whereas Cohen et
al. compute the two scalar products separately and then they add the results: For the fixed base scalar

18 ROBERTOM. AVANZI

multiplication they use essentially a comb method and for the variable base scalar product the flexible
window algorithm (see§ 4.2.4). For brevity we call the resulting method the CMO method.

We work out the costs in the case of an elliptic curve defined over a prime field of about2n

elements, wheren = 160 and240. We shall denote byM , S andI the timings of a multiplication, of
a squaring and of an inversion respectively in the base field of our curve.

In [11] fivecoordinate systems for elliptic curves are described, namely affine (A) projective (P),
jacobian (J), Chudnovsky jacobian (J c) and modified jacobian (Jm) coordinates. Adding points in
coordinate systemsC1 andC2 yielding a result in systemC3 is denoted byC1 + C2 = C3, doubling
is notated as2C1 = C2. If the coordinate systems are the same one writes simplyC1 + C1 and2C1.
Timings are denoted byt(· · ·). The gist is that all these operations have different costs (explicitly
given in the cited paper), so a different system can be selected for each operation. Three coodinate
systems are employed: the first system (C1) is used for all the doublings but the final one before an
addition with a precomputed point, the second one (C2) for the result of a final doubling, and the
third one (C3) for the precomputed points. Therefore, if Algorithm 2.2 requiresN+ additions andN2

doublings, its total cost is

(N2 −N+)t(2C1) + N+

(
t(2C1 = C2) + t(C2 + C3 = C1)

)
+ tp

wheretp is the cost of the precomputations. Since doublings inC1 are the most frequent operation,C1
should be the system with fastest doubling,i.e.C1 = Jm with costt(2Jm) = 4M + 4S. The result
of a final doubling is done inC2 = J , andt(2Jm = J) = 3M + 4S.

Now we consider two possible choices forC: A andJ c.
If C3 = A, all additions with a precomputed point are as fast as possible:t(J + A = Jm) =

9M + 5S. The total running-time is

N2(4M + 4S) + N+(8M + 5S) + tp(A).

We proceed to estimatetp = tp(A). Sinceg1 is the fixed point of the system, we assume that it is
given inA, whereasg2, belonging to the signature to be verified, is inP. In the NAF (resp. JSF) case
we have4 (resp.6) additions of typeA + J = P, and2 (resp.4) of typeP + P. Then we convert
the results to affine coordinates, which can be done naı̈vely by inverting7 (resp.11) field elements
and performing14 (resp.22) multiplications. Using Montgomery’s trick, one can invertm numbers
by one inversion and3(m − 1) multiplications. So in the NAF case the total precomputation cost is
tp(A,NAF) = 4 t(A + P = P) + 2 t(P + P) + (14 + 3 · 6) M + I = 4 (8M + 2S) + 2 (12M +
2S) + 32M + I = 88M + 12S + I whereas in the JSF case it istp(A, JSF) = 148M + 20S + I.

If C3 = J c, we havet(J + J c = Jm) = 12M + 5S and the total running-time is

N2(4M + 4S) + N+(11M + 5S) + tp(J c).

To estimatetp(J c) we first have to convertg2 from P to J c, requiring1M + 1S. Then in the NAF
(resp. JSF) case we have4 (resp.6) additions of typeA+J c = J c, and2 (resp.4) of typeJ c +J c.
The total precomputation costs aretp(J c,NAF) = (1M + 1S) + 4 (8M + 3S) + 2 (11M + 3S) =
55M + 19S andtp(J c, JSF) = (1M + 1S) + 6 (8M + 3S) + 4 (11M + 3S) = 93M + 31S.

Algorithm 2.2 with the NAF hasN2 = n − 10
9 andN+ = 11

27n − 1 (cfr. Theorem 3.6). With the
JSFN2 = n− 3

2 andN+ = 3
8n− 1.

In what follows we shall assumeS ≈ 0.8M , which is confirmed by experience.
The scalar multiplication of the variable point in the CMO method forn = 160 andn = 240 has

costs1488.4M +4I and2228+4I if the coordinates(Jm,J ,A) are used, and1610.2M and2400M

5. APPLICATIONS 19

respectively with the coordinates(Jm,J ,J c). The cost of the scalar multiplication of the fixed point
is 454.4M and620.8M in the casesn = 160 and240 respectively. We have computed these values
by adapting their comb algorithm also ton = 240 (in which case it requires a precomputed table of93
elements), assuming that the precomputed table is inA, and computing the results inJ . Forn = 160
there are15 doublings (2J) and31 additions (J + A = J). If n = 240 the doublings remain15
and the additions increase to47. Note that our cost forn = 160 is better than the value (474) stated
in [10]. A further addition in jacobian coordinates yielding a projective result is needed, with cost
12M + 2S ≈ 13.6M .

Upon putting all pieces together, we get the results of Table 7.

n Coordinate
systems

Algorithm 2.2
(NAF)

Algorithm 2.2
(JSF)

CMO method

160 (Jm,J ,A) 2011.82M + I 2013.2M + I 1956.4M + 4I
(Jm,J ,J c) 2177.03M 2144M 2078.2M

240 (Jm,J ,A) 2978.93M + I 2949.2 + IM 2862.4M + 4I
(Jm,J ,J c) 3256.86M 3170M 3034.4M

Table 7: Comparison of double scalar multiplication methods onecc

Whereas on modern CPUsI ≈ 20M for n = 160 and I ≈ 40M for n = 240, on smart card
architectures these values are much worse, even50 for n = 160 and 100 for n = 240, or higher.
One sees at once that the different methods have comparable performance. One advantage of our
method is that it does not require a table of62 to 93 fixed precomputed points to be stored in ROM,
as in the CMO method, where the cost of computing those points hasnot been taken into account.
The size of such tables varies from2480 bytes forn = 160 to 5580 bytes forn = 240. In the CMO
method the fixed base scalar multiplication needs to be reengineered for each exponent range for
best performance. This is not necessary with our method. The conclusion is that our method can be
used much more efficiently in systems which do not assume a fixed point (this is optimal if fast system
configuration is an issue).

We note that mixed coordinate systems also exist for hyperelliptic curves of genus2 [22].

5.2 Trace zero varieties

Trace zero varieties are abelian varieties constructed essentially by Weil Descent from other varieties,
such as elliptic curves [25, 14] or Jacobians of hyperelliptic curves [20, 21].

Construction and security parameters. We start with an elliptic curve (resp. hyperelliptic curve of
genusg) defined over a prime fieldFp wherep2 (resp.p2g) has the order of magnitude of the desired
group size. We also assume that the characteristic polynomial of the Frobenius endomorphism is
known. Next, we consider the group of rational points of the elliptic curve (resp. ideal class group)
over the finite field extensionFp3 and consider the elements defined by the property that its elementsD
are of trace zero,i.e. they satisfy(σ2 +σ +1)(D) = 0. In general for a genusg curve considered over
Fpd the elements of trace zero form a subgroup as they are the kernel of a homomorphism. Therefore
they form an abelian subvariety of dimensiong(d − 1), which is called thetrace zero variety. We
shall denote it byG in the sequel and callG0 the subgroup of large prime order` in which we actually
implement the cryptographic primitives. As usual we want to choose it so that it has a cofactor inG
as small as possible,i.e. ` ≈ p2g.

20 ROBERTOM. AVANZI

It has been noted that forg(d− 1) ≤ 4 the best attacks known to work on trace zero varieties have
complexityO(

√
G0) [25, 21].

In what follows we consider only the case whered = 3 for simplicity.
As we require the same level of security offered by, say, elliptic curves over fields of160 bits, we

have` ≈ 2160 also for trace zero varieties and the fieldFp must satisfyp ≈ 280/g.

Performance advantages in cryptographic applications. The main performance advantages of
trace zero varieties come from the fast arithmetic in the extension field (where explicit closed formulae
can be given for multiplication and squaring: if furthermore the polynomial defining the extension
field is chosen carefully one can even use short convolutions [5, 4]), and by the presence of the
automorphismσ of small degree.

The latter fact enables one to speed-up evensingleexponentiations. Instead of using single scalars
to computer ·D for an ideal classD, one considers a pair(r0, r1) of scalars bounded by some quantity
which isO(pg), and computes the double scalar productr0 · D + r1 · σ(D). For r0 andr1 suitably
bounded (see [25, 21]) all such double scalar products are distinct. Shamir’s trick can be used and
the result is that the number of doublings needed in cryptographic operations is roughly halved with
respect to generic elliptic and hyperelliptic curves. Further savings can be achieved by the use of
Algorithms 2.2 and 4.4, depending on the parameters.

All the usual cryptographic protocols can be adapted to this new setting, in particular those for
key exchange and electronic signatures.

The Frobenius operates onG, and thus onG0, like the scalar multiple by a constants with s2 +
s + 1 ≡ 0 mod `. For the verification of signatures, in place of the scalar productr · D + u · E
one is temped to writer ≡ r0 + r1s andu ≡ u0 + u1s mod ` and to consider thequadrupleproduct
r0 · D + r1 · σ(D) + u0 · E + u1 · σ(E). The problem is bounding, if possible, the coefficients by
kpg wherek is a small constant. In the example above we did not have this problem because we
started with a pair(r0, r1), however for the verification of digital signatures one needs to start with the
given valuer. To keep the coefficient reasonably bounded can be cumbersome, but we observe that the
results in [27,§2 and§5] actually apply to any automorphism of the group with given degree2 minimal
polynomial. In particular they apply toσ on the trace-zero variety with equationσ2 + σ + 1 = 0 and
a boundO(pg) on ri, ui holds.

To perform the quadruple exponentiation we suggest the use of Algorithm 4.4 and thewNAF with
d = 4. Since two of the base divisors are images ofD andE underσ, and the cost of the Frobenius
is on average approximately 1/25-th of the cost of an addition or of a doubling (this value is obtained
heuristically by considering the casesg = 1 and2), we first precompute the necessary multiples of
D andE, then we applyσ to the resulting sets. To determine the optimal value ofw we have thus to
minimize the number of operations, which is

n + 2
(

1 +
1
25

)
(2w−1 − [1 = w]) +

4n

w + 2
− 1

where[expr] evaluates to1 is expr is true, to0 otherwise. Forn = log2(pg) ≈ 80 the minimum
148.97 is achieved forw = 4. If w = 3 the amount of operations is151.32. For a minimal trade-off,
one can also store only the multiples ofD andE and apply the frobenius on-the-fly when multiples
of σ(D) or σ(E) are needed.

Let us consider signature verification using a trace zero variety arising from a genusg curve over
a finite field of about280/g elements (son = 80): It may be done with about150 group operations. For
comparison, using the ECDSA or hyperelliptic curve variants thereof of comparable security requires

5. APPLICATIONS 21

a minimum of229 group operations (see Table 5 withn = 160 andd = 2). Furthermore, one should
note that group operations on the trace zero variety are faster than on a elliptic or hyperelliptic curve
of comparable size.

5.3 XTR

The XTR cryptosystem was initially proposed by Lenstra and Verheul [32] and makes use of the
subgroupG of orderp2− p+1 of the multiplicative group of the cyclotomic extensionFp6/Fp. Let g
be an element ofF×

p6 of orderq > 6 dividing p2− p+1. Sinceq does not divideps− 1 for s = 1, 2, 3
the subgroup generated byg cannot be embedded in the multiplicative group of any proper subfield
of Fp6 . Hence it appears that solving the discrete logarithm problem in〈g〉 is at least as difficult as
solving it in the large field. In the XTR cryptosystem elements from the fieldFp6 are replaced by
their traces overFp2 and Lenstra et al. show how one can work only with these – actually with triples
of traces – instead of using the original elements from the bigger field. This leads to very efficient
arithmetic even though it is definitely not straightforward to port the usual exponentiation algorithms
to this new setting. Recently, Lenstra and Stam [31] observed that one can also compute directly in an
efficient manner in the fieldFp6 by using a suitable representation of the extension. This allows the
implementor to use all possible (multi-)exponentiation methods without change.

Independently, Frey suggested a similar idea which we sketch here (the following text is taken,
abridged, from [3]). Letσ be the Frobenius mapx 7→ xp. One observes at once that forz ∈ G the
Frobenius satisfieszσ2−σ+1 = 1 and thatG is the intersection of the two trace zero varieties relative
to both intermediate extensions, so that the elements satisfyσ3 + 1 = 0 and alsoσ4 + σ2 + 1 = 0.
The first relation immediately gives a simple inversion formula:z−1 = σ3(z). The fieldFp6 is then
constructed as the composite of two extensions ofFp: the first isFp3 and the second isFp2 = Fp(

√
δ)

whereδ ∈ Fp \ (Fp)2. Ideally |δ| should be small (for instanceδ = −1: to allow this one needs
−1 ∈ Fp \ (Fp)2 and thereforep ≡ 3 mod 4). Also δ = 2 is a good option.

For z ∈ G write z = x + y
√

δ wherex, y ∈ Fp3 . The mapσ3 generates the groupGal(Fp6/Fp3)
of order2, henceσ3(

√
δ) = −

√
δ andz−1 = x− y

√
δ is essentially for free.

One can then apply the considerations made about trace zero varieties to XTR subgroups. In
particular, single and double exponentiations found in cryptographic protocols can be transformed
into double and quadruple exponentiations with exponents of halved bit length.

References
[1] ANSI X9.62, Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature

Algorithm (ECDSA). 1999.

[2] S. Arno and F.S. Wheeler,Signed digit representations of minimal Hamming weight. IEEE Transactions on Computers
42 (1993), 1007–1010.

[3] R. Avanzi and T. Lange,̈Uberlegungen zu XTR. Unpublished manuscript.

[4] R. Avanzi and P. Mih̆ailescu, Generic efficient arithmetic algorithms for Processor Adequate Finite Fields. A
manuscript.

[5] R.E. Blahut,Fast algorithms for digital signal processing. Addison-Wesley, Reading, MA, 1985.

[6] A.D. Booth,A signed binary multiplication technique. The Quarterly Journal of Mechanics and Applied Mathematics
4 (1951), 236–240.

[7] W.E. Clark and J.J. Liang,On arithmetic weight for a general radix representation of integers. IEEE Transactions on
Information TheoryIT-19 (1973), 823–826.

[8] B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan and S.M. Watt,Maple V Language Reference
Manual. Springer, 1991.

22 ROBERTOM. AVANZI

[9] H. Cohen,Analysis of the flexible window powering algorithm. Preprint.
Available from:http://www.math.u-bordeaux.fr/~cohen/

[10] H. Cohen, A. Miyaji and T. Ono,Efficient elliptic curve exponentiation. In Proceedings ICICS’97, Lecture Notes in
Computer Science, vol. 1334, Springer-Verlag, 1997, pp. 282–290.

[11] H. Cohen, A. Miyaji and T. Ono,Efficient elliptic curve exponentiation using mixed coordinates. In Advances in
Cryptology – ASIACRYPT ’98 (1998), K. Ohta and D. Pei, Eds., vol. 1514 of Lecture Notes in Computer Science, pp.
51–65.

[12] T. ElGamal,A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on
Information Theory IT-31 (1985), 469-472.

[13] Ö. Eǧeciǒglu and Ç. K. Koç.Exponentiation using canonical recoding.Theoretical Computer Science, 129(2):407–
417, 1994.

[14] G. Frey,Applications of arithmetical geometry to cryptographic constructions.In Finite fields and applications (Augs-
burg, 1999), pages 128–161. Springer, Berlin, 2001.

[15] R.P. Gallant, R.J. Lambert, S.A. Vanstone,Faster Point Multiplication on Elliptic Curves with Efficient Endomor-
phismsIn Advances in Cryptology – CRYPTO 2001 Proceedings, pp. 190–200, Springer Verlag, 2001.

[16] P. Gaudry,An algorithm for solving the discrete log problem on hyperelliptic curves. In Advances in Cryptology,
Eurocrypt ’2000, vol. 1807 of Lecture Notes in Computer Science, pp. 19–34. Springer-Verlag, 2000.

[17] M. Joye and S.-M. Yen,Optimal left-to-right binary signed-digit recoding. IEEE Transactions on Computers(49) 7,
740–748 (2000).

[18] M. Joye and S.-M. Yen,New Minimal Modified Radix-r RepresentationIn Public Key Cryptography – 5th Interna-
tional Workshop on Practice and Theory in Public Key Cryptosystems, PKC 2002, Paris, France, February 2002,
D. Naccache and P. Paillier Eds., Lecture Notes in Computer Science, vol 2274, pp. 375–384.

[19] D. E. Knuth,The art of computer programming. Vol. 2, Seminumerical algorithms, third ed.,Addison-Wesley Series in
Computer Science and Information Processing.Addison-Wesley, Reading, MA, 1997.

[20] T. Lange,Efficient Arithmetic on Hyperelliptic Curves. Ph.D. Thesis, Universität Essen, 2001.

[21] T. Lange,Trace-Zero Subvariety for Cryptosystems. Preprint.

[22] T. Lange,Weighted Coordinates on Genus 2 Hyperelliptic Curves. Preprint.
See:http://eprint.iacr.org/

[23] B. Möller, Algorithms for Multi-exponentiationin S. Vaudenay, A.M. Youssef (Eds.):Selected Areas in Cryptography
- SAC 2001. Springer-Verlag Lecture Notes in Computer Science vol. 2259, pp. 165-180.

[24] F. Morain and J. Olivos,Speeding up the computations on an elliptic curve using addition-subtraction chains. RAIRO
Inform. Theory24 (1990), 531–543.

[25] N. Naumann,Weil-Restriktion abelscher Varietäten. Master’s thesis, Universität Essen, 1999.

[26] G. W. Reitwiesner.Binary arithmetic.Advances in Computers1, 231–308, 1960.

[27] F. Sica, M. Ciet and J.-J. Quisquater,Analysis of the Gallant-Lambert-Vanstone Method based on Efficient Endomor-
phisms: Elliptic and Hyperelliptic Curves.In Proceedings of Selected Areas of Cryptography 2002 (SAC 2002), St.
John’s, Newfoundland (Canada), August 2002.To appear.

[28] J.A. Solinas,An improved algorithm for arithmetic on a family of elliptic curves.In Advances in Cryptology – CRYPTO
’97 (1997), B. S. Kaliski, Jr., Ed., Lecture Notes in Computer Science vol. 1294, pp. 357–371.

[29] J.A. Solinas,Efficient arithmetic on Koblitz curves. Designs, Codes and Cryptography19 (2000), 195–249.

[30] J.A. Solinas,Low-Weight Binary Representations for Pairs of Integers. Centre for Applied Cryptographic Research,
University of Waterloo, Combinatorics and Optimization Research ReportCORR 2001-41, 2001. Available from:
http://www.cacr.math.uwaterloo.ca/techreports/2001/corr2001-41.ps

[31] M. Stam and A.K. Lenstra,Efficient subgroup exponentiation in quadratic and sixth degree extensions. In Proceedings
of Workshop on Cryptographic Hardware and Embedded Systems CHES 2002, August 13 - 15, 2002, to be published
by Springer–Verlag.

[32] E.R. Verheul and A.K. Lenstra.The XTR public key system.In Advances in Cryptography – Crypto’00, M. Bellare,
ed., Lecture Notes in Computer Science vol. 1880, pages 1–19. Springer-Verlag, 2000.

[33] S.-M. Yen, C.-S. Laih and A.K. Lenstra,Multi-exponentiation. IEE proceedings: computers and digital techniques
vol. 141, No. 6, november 1994.

