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Group signature schemes enable unlinkably anonymous authentication, in the same fashion
that digital signatures provide the basis for strong authentication protocols. This paper introduces
the first group signature scheme with constant-size parameters that does not require any group
member, including group managers, to know trapdoor secrets. This novel type of group signature
scheme allows public parameters to be shared among organizations, and are useful when several
distinct groups must interact and exchange information about individuals while protecting their
privacy.

1 Introduction

Group signatures allow group members to anonymously sign arbitrary messages on behalf of the
group. In addition, signatures generated from the same signer are unlinkable, i.e., it is difficult to
determine whether two or more signatures were generated by the same group member. In case of
dispute, a group manager will be able to open a signature and incontestably show the identity of
the signer. At the same time, no one (including the group manager) will be able to falsely accuse
any other member of the group.

Group signatures were introduced by D. Chaum and E. van Heyst [CvH91] in 1991. That was
followed by several other works, but only relatively recent ones [ACJT00, CS98, CS97] have group
public keys and group signatures with sizes that do not depend on the number of group mem-
bers. (While in theory one always needs at least log n bits to uniquely identify n different users
in any system, in practice log n is orders of magnitude smaller than the bit length of keys used in
public key cryptography.) The scheme in [ACJTO00] is the most efficient and is the only one proven
secure against an adaptive adversary. However, all the existing group signature schemes provid-
ing constant-size parameters require the group manager to know the factors of an RSA modulus.
Sharing these factors among group managers of different organizations would compromise the
security and/or the trust assumptions of the entire scheme. This paper describes the first, affir-
mative answer to the question of whether it is possible to design trapdoor-free group signature
schemes with public parameters that do not increase linearly in size with the number of group
members. An informal proof of security for the scheme is provided (along the lines of the proof
in [ACJT00]), in section §6.

*This is a revised version of the paper that appeared in ASTACRYPT 2003. In particular, it corrects the proof of
security of the modified Nyberg-Rueppel signature and contains some changes in the writing and presentation of the
results.



1.1 Motivation

Credential transfer systems (CTS) [Cha85, CE87, Dam88, Che95, LRSW99, CL01] are exam-
ples of environments where distinct groups or organizations are able to exchange information
about individuals without compromising their privacy. CTS can be built via group signature
schemes [CLO1]. Real-world scenarios for the use of CTS include the health-care industry, elec-
tronic voting, and transportation systems. In such cases, the added manageability and improved
optimization opportunities permitted by the use of a single cryptographic domain for all partici-
pating organizations may outweigh other efficiency considerations. A CTS allows users to interact
anonymously with several organizations so that it is possible to prove possession of a credential
from one organization to another. Different transactions cannot be linked to real identities or even
pseudonyms. It is then impossible to create profiles of users even if the organizations collude and,
at the same time, users cannot falsely claim to possess credentials. Optionally, a privacy officer
is able to retrieve user identities in case of disputes or emergencies. Users can thus authenticate
themselves with anonymous credentials, protecting their privacy while exercising their right to
vote, obtaining health services or renting a GPS-tracked automobile. The efficiency of a single sig-
nature generation or verification is measured in the human time scale. Consequently, theoretical
computational advantages become less important, and instead the administrative complexity and
related costs are likely to be the overwhelming concern of implementers. In these situations, a
scheme with shareable parameters has a definite advantage since it eliminates the need for spe-
cialized techniques such as the ones employed in [CLO1].

Recently in [BMWO03], it has been shown that group signatures can be built based on the as-
sumption that trapdoor functions exist. In this paper the same constructions are provided, based
on the existence of one-way functions. The scheme is the first to be functionally trapdoor-free
as no group member, nor even the group manager, needs to know the trapdoor information. Al-
though a construction in the RSA ring is used that relies on the strong RSA assumption for security,
the operation of the scheme exploits only the one-wayness of the RSA function, not its trapdoor
properties.

2 Preliminaries

In the group authentication problem a holder U of a group certificate interacts with a verifier V to
prove his status as a group member without revealing his certificate. If the interactive protocol can
be made non-interactive through the Fiat-Shamir heuristic [FS87a], then the resulting algorithm
will be similar to the issuing of a group signature, except that U’s identity may be unrecover-
able from the signature alone. The issuing of a group signature requires, in addition to a proof
of membership, that U verifiably encrypts some information about his certificate under the group
manager’s public key. U must provide the verifier with an encrypted token and prove to V' that
the group manager is able to decrypt the token to reveal U’s authorship of the signature.

A group signature can be seen as a proof of knowledge of a group certificate which provides
evidence of membership. The group certificate can be generated only by the group manager GM
and should be difficult to forge. In other words, the group membership certificate has the effect
of a signature issued by the group manager. In addition, it has to contain some secret information
generated by the group member and unknown to GM to avoid framing attacks in which GM
signs on behalf of other members.



2.1 The Elgamal signature variants

In order to design the group certificate, it is helpful to start with a regular type of Elgamal signa-
ture for the group manager, and consider the necessary modifications to obtain a certificate form
that lends itself to efficient verifiable encryption. (Elgamal signatures are the most standard signa-
tures based on one-way functions, as opposed to trapdoor functions as in RSA-type signatures.)
Let p and g be primes, with p = 2¢+1 and g be an element of order ¢ in Z, i.e., a quadratic residue
generator modulo p. Assume moreover that the group manager has published the Elgamal public
key y = ¢® mod p, for signing messages. Let m be a message, in a so far unspecified message
space M, and h : M — Z; a pre-image resistant, collision-resistant hash function. The following
table describes some basic types of Elgamal signing equations. Elgamal signatures are probabilis-
tic functions, so they use an auxiliary random input k, which must be different for each execution
of the protocol. The signature consists of a pair (r,s), where 7 = g*¥ mod p (except in the DSA
case, where 7 = (¢* mod p) mod ¢) and s is computed according to the signature generation
equations below:

Table 1: Elgamal signature variants.

Variant Signing equation Verification equation
I s =k~ Y(h(m) —2r) mod q g"™ =y mod p
I s =x Y(h(m) — kr) mod ¢ g""™ = 45" mod p
1 s =ar + kh(m) mod ¢ g* =y "™ mod p
v s = xh(m) + kr mod ¢ g* = y""™r" mod p
\% s =ax Y(r —kh(m)) mod ¢ g" =y*r"™ mod p
VI s =k~ (r —xh(m)) mod ¢ g" =y"™r* mod p
DSA | s =k Y(h(m)+ar) modq | r=(¢° "™y mod p) mod g

DSA is essentially a variant-I Elgamal signature where the verification equation has been
rewritten so as to permit the signer to further reduce r modulo ¢. In the terminology of Gen-
eralized Elgamal signatures, DSA is a variant in short mode — notice that the value r is further
reduced modulo ¢, resulting in a signature of smaller length. The group signature scheme de-
scribed in this paper can be applied to any of the six variants above in normal (long) mode, but
not in short mode. However, for reasons of efficiency of the resulting scheme, only the appli-
cation of the scheme to variants of the Elgamal signatures called Nyberg-Rueppel signatures is
described. More concretely, the fact that Elgamal signatures involve hash function values as ex-
ponents makes it more difficult to prove (in zero-knowledge) the knowledge of a triple (m, r, s)
satisfying any of the equations in table 2.1. The Nyberg-Rueppel presented in the next section have
different verification equations where the redundancy function (the analogue of the hash function
in the Elgamal case) appears as a base, not an exponent. After we replace the redundancy func-
tion with a number-theoretic function (exponentiation), the modified verification equations lead
to more efficient knowledge proof constructions.



2.2 Modified Nyberg-Rueppel signatures

Nyberg-Rueppel signatures [NR94] are Elgamal-type signature variants originally designed to
provide message recovery. Instead of a one-way hash function, message-recovery schemes use a
redundancy function. The redundancy function R is an one-to-one mapping of messages into a
so-called message-signing space Myg. The image of R, denoted Mp, must be sparse within Mgy
i.e., given a random element of Mg, there is a negligible probability of it being in M. Otherwise,
the message-recovery scheme is vulnerable to existential forgery attacks, as redundancy functions
are, by definition, efficiently invertible. The NR signature, being probabilistic, calls for a random
input k, and the output s a pair (r, s), where r = R(m)g~* mod p, and s is computed as indicated
in table 2. (Notation in the table implies the assumption that Mg = Z7.)

Table 2: Nyberg-Rueppel signature variants.

Variant Signing equation Message recovery (verification)
I s=k Y1+ ar) modq R(m) = ry”719371 mod p
I s=ax"Y=1+kr) mod q R(m) = g"" modp
111 s=—xr+k mod q R(m) g mod p
v s=—x+kr modq R(m) = ¢*"" mod p
\Y% s=x"Y—r+k) modq R(m) y g" mod p
VI s=k Yz +r) mod q R(m) = ¢* " mod p

If in the equations above, the redundancy function R(-) is replaced by an one-way function
then the message-recovery property is lost. On the other hand, the requirement that the image
of the function be sparse in the signing space may also be dropped. Moreover, the form of the
modified verification equation — if the one-way function is suitably chosen — lends itself to the
construction of proofs of knowledge of signatures that are more efficient. (When compared to
similar proofs for unmodified Elgamal-type signature variants.)

Let G be a suitable group. (Not all groups G where Nyberg-Rueppel — or Elgamal — signatures
make sense have the characteristics needed by our scheme. See section §4 for examples of appro-
priate groups.) The order of G may be a known prime or unknown composite number. Let g and
g1 be fixed, public generators for G; it is assumed that the discrete logarithm of g with respect to g;
(and of g; w.r.t. g) is unknown to group members. Let y = ¢* be the public key of the signer GM,
with associated secret . (In the group signature scheme, y corresponds to the certificate issuing
key.) Finally, this signature scheme defines the message space M as the set of integers modulo ¢
in the case of known order, and the set of integers smaller than some upper bound otherwise. The
signing space is Mg = G, and let the one-way function A(-) : M — Mg be defined by h(m) = g7".
Clearly, h(-) satisfies the requirements of a secure one-way function: h(-) is pre-image resistant by
the hardness of computing discrete logarithms in G. In the case of known order, it is further one-
to-one, hence trivially collision-resistant. In the case of unknown order, finding a collision would
reveal the order of G, i.e., it is equivalent to factorization.

The signing and verification algorithms of the modified Nyberg-Rueppel are as follows:

Signing: r = g¢grg % (in G); (1)
s = —ar+k (mod q); (2)
Verification: ¢* = ry"¢® (in G). (3)
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The term “mod ¢” is placed within parenthesis as that reduction is only computed when the
order of G is a known prime. These signatures are issuable only by the signer GM, who is privy
to the secret key x associated to y.

2.3 High level description of the scheme

In this section a general overview of the construction is provided, to serve as an intuitive intro-
duction to the more technical details that follow. A prospective new member U who wishes to join
the group must have first secured a digital signature certificate with some certification authority.
U starts the join protocol by choosing a random, secret value u and computing the pseudonym
Iy = g¢}. More precisely, U and GM interact so that both contribute to the randomization of v,
while its value remains secret from the GM. Then U constructs a zero-knowledge proof (of knowl-
edge) of the discrete logarithm of I;; with respect to g;. U signs the pseudonym and the proof of
knowledge of the pseudonym secret, and sends it to the GM to request a group membership
certificate.

GM verifies the signature against U’s public certificate and the correctness of the zero-
knowledge proof. If both are well-formed, GM responds with the signature pair (r,s) on I,
which is technically GM’s signature on an message v known only to U. This is safe from the
GM'’s viewpoint because both GM and U contribute to the choice of the value w. It is imperative,
however, that only U knows the value u, as it is in effect the secret key allowing U to use the
membership certificate to issue signatures. GM generates (r, s) as follows:

r=Iyg* (in §); s=—azr+k (mod q), 4)

where k is a random parameter of GM’s choice, and the reduction modulo ¢ is applied only in the
case of known order. U verifies the signature, checking that:

Iy =ry’g" (in G). 5)

The scheme must permit U to prove knowledge of the pseudonym Iy and certificate pair
(r,s) without revealing any linkable function of r, s, or I;. It must also allow GM to open
the proof and show the identity of the group member. It would seem that both problems can
be solved by employing a verifiable encryption of digital signature schemes. However, existing
schemes [CD00, ASW98, KP98, Ate99] take the approach of revealing the value r of the signature
pair (r, s) and applying the actual protocol only to the second value s, thus reducing the problem
of verifiable encryption of a digital signature to the simpler problem of verifiably encrypting a
discrete logarithm. In the current context this approach is insufficient, as revealing r has the result
of linking different protocol executions, in contradiction with the unlinkability requirement.

To solve this issue, it is necessary to Elgamal encrypt the value r as well, and prove in zero-
knowledge that a Nyberg-Rueppel signature is known on a secret value u. More concretely, every
time the group member must use the certificate, she encrypts the inverse of the value r, to get the
Elgamal pair (R1, Rs) = (r~1y5, ). This encryption is under the second public key y» = g5 of the
group managet, used for opening group member signatures, with associated secret z.

The group member also encrypts his pseudonym: (Y1, Y2) = (Iyy5 , ¢ ). Notice that the prod-
uct cipher is:

(R1Y1, RoY3) = (IUr‘lyﬁJré'?gﬁ“’) = (y’"gsyﬁ”ﬂgﬁ“') (6)



In order to prove knowledge of a membership certificate, the member U releases the above
Elgamal encrypted pairs (R, Rz) and (Y7, Y>) and proves that the product cipher encrypts some
information which the signer can write in two ways, i.e., as the product Iy;r ! for pseudonym I/
(for which the signer knows the corresponding pseudonym secret) and value r, and also as 3" ¢°,
for the same value r and some s known to the signer. In other words, the signer shows that an
equation like (6) holds for the product cipher.

To proceed, one must overcome a difficulty with equation (6): The value in the exponent is
reduced modulo the order of the group G, while the encrypted value r is an element of G itself.
Note that the reduction function does not preserve group operations, and it is not multiplicative.
Therefore, the method for proving equality between an Elgamal-encrypted value and a logarithm,
due to Stadler [Sta96], cannot be directly applied. The solution is to employ a technique due to
Boudot [Bou00] that permits efficient comparison between logarithms in different groups. For
that, it is necessary to use an auxiliary group F of order compatible with the operations in G. First,
a commitment to the value r as an exponent of an element of F is computed. Next, it is shown
that this equals the exponent of y in the product cipher (R;Y7, R2Y>3). (That is, the exponent in
the representation, with respect to the basis {y, g}, of the value encrypted in the product cipher.)
Next, Stadler’s technique is used to prove the equality of the encrypted value r (in the pair Ry, R»
of G), with the value committed as an exponent in F.

To complete the sign protocol, the signer proves knowledge of the discrete logarithm to basis
g of the value I, which is Elgamal encrypted in the pair (Y7,Y2). This shows that the group
manager is able to open the signature with just an Elgamal decryption operation.

The construction of the group signature scheme requires several types of proofs of knowledge
about various relations between secrets. All these proofs of knowledge have been presented else-
where. In order to harmonize the notation, the definitions are presented in the following section.

3 Proofs of knowledge

All the proofs of knowledge listed in this section have been proved zero-knowledge in a statistical
or computational sense within the random oracle model, under the Decisional Diffie-Hellman
assumption, and the Strong RSA assumption, explained below.

Notation 1 (Groups and generators)

e J stands for an arithmetic group, such as an RSA ring with composite modulus n or the
group Z, of non-zero (multiplicative) residues modulo p.

e g stands for an element of 7 of unknown composite order or known prime order. Let ¢ be
the order of g.

e Let k be the smallest integer such that 2 is larger than ¢g. Assume that « is known, even if ¢
is not.

e g generates the subgroup G of J.

Let H stand for a secure hash function which maps arbitrarily long bit-strings into bit-strings
of fixed length 7. Let € denote a second security parameter.



Assumption 3.1 (Decisional Diffie-Hellman assumption (DDH)) Let J be a group and g an ele-
ment of known prime, or unknown composite, order q in J. Let G = (g) be the subgroup generated by g in
J. The DDH assumption for G is then there is no efficient (randomized, probabilistic) algorithm that can
distinguish between the two following distributions in G:

{(h,i,j), where h,i,jare independently randomly distributed (i.r.d.) in G}

and
{(W,i',7"), where h' = g",i' = ¢¥,j = g™ forir.d. z,ywith 0<z,y <q}

A triple of group elements such as (2,7, j') above is called a Diffie-Hellman triple. The DDH
assumption is thus the statement that there is no efficient algorithm to distinguish between Diffie-
Hellman triples and randomly generated triples.

Assumption 3.2 (Strong RSA assumption (SRSA)) Let n = pq be a composite modulus, where p and
q are two large primes. The strong RSA assumption states that there is no efficient (randomized, probabilis-
tic) algorithm that, given as input n and an integer y, but not the factorization of n, can produce two other
integers w and e, where e > 1 and u® = y mod n.

SRSA underlies the security of the proof of equality of logarithms in distinct groups (3.6).

Defn 3.1 (Proof of knowledge of a discrete logarithm) U can prove to a verifier V' his knowledge of
an integer x in {0,...,2% — 1}, such that h = g*, by releasing integers s and c, with s in {—2T+R)+1
o, 200 1Y and cin {0,...,27 — 1}, s.t. ¢ = H(g||h||g°he), where the symbol || denotes string
concatenation.

To compute the pair (s, c), U generates a random integer k in {—2¢7+%) . 2¢(7+%) _ 11 and sets
c = H(g||h||g¥), and s = k — cx (as integer). Denote it by (notation introduced in [CS97]): PK|[x :
h = g*].

This proof of knowledge can be transformed into a digital signature, with x being the secret
key associated with public key h. To sign an arbitrary bitstring m, instead compute c as: ¢ =
H(g||h||g®h¢||m). Denote this signature of knowledge ([CS97]) by: SPK [z : h = g*](m).

Returning to the notation in definition (3.1), if the order ¢ of the group G is known, then op-
erations on the exponents should be computed modulo ¢, and some statements about the size of
parameters can be simplified. In the above one would substitute:

rze{0,...,2¢8 =1} byz €{0,...,qg— 1},
s {—2ertr) 1 oert)Hl 11 by s € {0,...,q— 1}, and
s=k—czx(inZ)bys==Fk—cr modgq.

In the following definitions assume the group order ¢ is unknown; as above, it is straightfor-
ward to adapt them to the case of known order.

Defn 3.2 (Proof of knowledge of a common discrete logarithm) U can prove to a verifier V his

knowledge of an z (with 0 < x < 2%) s.t. two lists g1, 92, ...,g¢ and hy, ha, ..., hy (of elements of G)

satisfy h; = g%,i = 1...¢, by releasing s and ¢ (—2°TTA+1 < 5 < 26K+ gnd 0 < ¢ < 27) s.t.
¢=Hgll--llgellPall - - [[Pell(gr - - go)* (b1 - ... he)).-

U computes ¢ = H(gi]| ... ||ge||h1ll- - - ||Pe||(g1 - - - g¢)*) for a randomly chosen k ( —2¢7+%) < k <
2¢(7+)) ‘and sets s = k — cx. Denote it by: PK[x : hy = g7 A--- A hg = gf].
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Defn 3.3 (Proof of knowledge of a representation) U proves knowledge of values x1, ..., x; (with
0 < x; < 2%) s.t. a given element A satisfies A = gi*--- g7*, by releasing s; and ¢ (—2¢T+H9+ < 5, <
€T+ 0 < ¢ < 27) st e = Hgn|| - - ||gel| Allg5" - . - ot A°).

Again, U computes ¢ = H(g1]] ... HggHAHg'fl ...gfl) for randomly chosen k; ( —2+%) < k; <
26(T+“)), and sets s; = k; — cx;. Denote it by: PK[zy,...,2p : A=gj" - gf‘].

The next two proofs of knowledge assert that a committed value lies in an interval. The first
one was introduced in [CFT98b], and corrected in [CFT98a]. The second one, which uses the first
as building block, was introduced in [Bou00], and is used in our scheme.

Let g, h be two elements of G. Assume that g and h are constructed in a provably random way,
for instance as consecutive images of a secure pseudo-random generator. Generating g and A in
such a way ensures that no one knows the discrete logarithm of ¢ to basis &, or that of & to basis g.

Defn 3.4 (Commitment to a secret value) Let x be a secret value held by U. Let g and h be two provably
random generators of G. E = E(x,r) = g*h" is a commitment to the value = in G, where r is a randomly
generated value, 0 < r < q.

If ¢ is unknown, then one must choose 7 in a larger interval, say —2¢*7+1 < r < 2F+7F1 0 ensure
that all elements in the interval [0, ¢ — 1] are sampled nearly uniformly. The commitment reveals
nothing about r in a statistical sense.

Let £ be a distinct arithmetic group of unknown composite order n. For instance, £ can be
chosen as the subgroup of quadratic residues in an RSA ring. Let g = g1, g2, h = hy, and hy
be provably random generators of £. Assume that the smallest integer A s.t. 2* > n is known.
Assume U has published two commitments, E = E;(x,r) = ¢g{h;" in G, and a second commitment
Es(z,m2) = g3hy’.

Let §, 0 and o9 be other security parameters. Assume further that z < b.

Defn 3.5 (Proof of knowledge of a committed value) U can prove in ZK to a verifier V' knowledge
of a number x committed through E = E(x,r) = g*h", by sending V a triple (¢, D, Dy) satisfying:
c = H(g||h||E||gP hP* E~¢ mod n).

U generates random ¢ € [1,2°77/2b + 1] and s € [1,20%7/2+9p — 1]; computes W = g'h® mod n;
computes ¢ = H(g||h||E||W); and finally computes D = t + cx, D1 = s + cr (in Z).

Defn 3.6 (Proof of equality of two committed values) U can prove in ZK to a verifier V' that two
commitments £y = Ey(x,r1) and Ey = Eq(x,r2) hide the same exponent x, by sending V' a quadruple
(¢, D, Dy, D9) satisfying:

¢ = H(g[[hllgz|lha| | E1|| Eollgf b7 ET¢ mod nl|gy’hy? B3¢ mod n).
U generates the random values t € [1,20%7/2p + 1], sy € [1,2°77/2%7n — 1], and sy €
[1,2047/2+02p — 1]. Next, U computes W; = g¢ihs' mod n, Wy = gbh3> mod n; and sets

c = H(gl||h1||92||h2||E1||W1||W2). Finally, U Computes D =t+4+cx, Dy = s1+cri, Dy = s9 + cry
(in Z) Denote this by PK[:L’,T’l,T'Q B = El(ZE,T’l) NEy = EQ(QZ‘,TQ)].

Defn 3.7 (Proof that a committed number is a square) U can convince a verifier V' that the commit-
ment E = E(z2,71) = ¢° h" mod n (r, € [~2°n+1,27n — 1]) contains the square of a number known
to U, by sending V' the quintuple (F, ¢, D, D1, D3), where

c=H(g||h||E||F||FPhP*E=¢ mod n||gPhP2F~¢ mod n).



Indeed, U generates a random 73 in [-27n + 1,2°n — 1], and sets F' = ¢g”h". Notice now that
U can rewrite E in the basis {F,h} as E(z,r3) = F*h™ mod n, where r3 = r; — rox, and r3 €
[—27bn + 1, 27bn — 1]. Itis enough then for U to use the previous proof of equality of the exponent
x committed though Fy = F = E(x,rp) and Ey = E = E(xz,r3), i.e., execute PK|[x,rg,r3 : F =
g*h™ A E = F®h"3]. Denote this by PK[z,71 : E = E(2?,71)].

Defn 3.8 (Proof that a committed number lies in a larger interval) A prover U can convince a ver-
ifier V that a number x € [0,b] which is committed in E = E(x,r) = ¢g*h" modn (r € [-27n +
1,20n — 1)), lies in the much larger interval [—2°+7/2b,20%7/2p), by sending V the triple (C, Dy, Dy),
where Dy € [cb,2°77/2b — 1], and

C = H(g||h||E||gP* hP2E~¢);c = C mod 2772

U generates randoms s € [0,2017/2h — 1], t € [-20+7/2+op 4 1,2047/249 _ 1]; computes W = g°h'
mod n; computes C = H(g||h||E||W), and ¢ = C mod 27/%; and sets D; = s + cx, Dy = t +
cr, repeating the procedure from the beginning if D; ¢ [cb,2°T7/2b — 1]. Denote the above by
PKcprlz,r: E = E(z,r) Ax € [-2577/2p, 20+7/2p]].

Defn 3.9 (Proof that a committed number lies in a slightly larger interval) A prover U can con-
vince a verifier V that a number v € [a,b], committed in E = E(x,r) = ¢"h" modn (r €
[—29n + 1,27n — 1)) lies in the slightly larger interval [a — a,b + o], where a = 2°77/2+1\/b —a, by
releasing E1, Ey, and proving: PK[z,r : E = E(x,r)], PK[i1,71 : E, = E(z3,7)], PK[T1,71

El = E(:f%,fl)], PKCFT[:i'g,fQ By = E(:i'g,fQ) N Ty E [—Oé,OéH, where Ey = g“EE1 mod n,

PKCFT[:f'g,fg : EQ = E(ifQ,fg) NTo € [—Oé,OéH, where Eg = Eg—gl mod n.
U computes E = E/g® modn, E = ¢"/E modn;setsi =2 —aand Z = b — x; computes T =
|VZ —al, % =5-3%,71 = |Vb— |, T = T—7%; generates random 7 and 73 in [—27n+1,27n—1]
s.t. 71 + 72 = r, and similarly 7y, 7 s.t. 71 + 2 = —r; computes the commitments Ey = E(i%, 1),
Ey = E(&y,7), By = E(z},71), and Fy = E(Z9,72); and executes the proofs of knowledge listed
in the above definition. Denote the above proof of knowledge by PK[z,r : E = E(z,r) Nz €
[a —a,b+ al.

The last cryptographic building block needed in the scheme is the verifiable Elgamal encryp-
tion of an exponent.

Defn 3.10 (Verifiable Elgamal encryption of an exponent) Assume U holds a secret r, and has pub-
lished the value w = x". Here x is a generator of a group F of order n, where n may be prime or composite,
and 0 < r < n. We assume that the DDH assumption holds in F. It is possible for U to prove in zero-
knowledge that a pair (A = r='y% B = ¢g*) mod n, is an Elgamal encryption under public key y of the
exponent of w to basis x.

Denote it by: PK[r : w=x" A A =174 A B = g%]. The proof can be found in [Sta96], and it is
repeated here for convenience. For i in {1,...,v}, U generates random ¢;, and computes g; = g,
y; = y', and w; = x¥. Next, U computes

c=Hx[|wl[A[Bllgilfw]l -l gvllws). )

Next, U computes s; = t; — c;a, where ¢; stand for the ith-bit of ¢. The proof consists of ¢ and
si,1=1,...,v. Inorder to verify, V recomputes g; = g% B%, y, = y* A%, and w; = (w%x'~%)¥%, and



checks that (7) holds. The rationale for the proof is that, when ¢; = 0, the verifier checks that g; and
w; are correctly constructed; when ¢; = 1, the verifier checks that (A4, B) is the Elgamal Encryption
of the discrete logarithm of w to basis x, provided that g; and w; are constructed correctly. If the
statement were false, U could pass only one of the verification equations, for each . In the random
oracle model, the probability of U successfully proving a false statement is 2.

4 Construction

In this section, the scheme is described more concretely, starting with 7, the set of shared public
parameters. 7 specifies security parameters 6, €, o, 02, and 7, and a secure hash function H that
maps bit-strings of arbitrary length into bit-strings of fixed length 7. A typical set of choices would
be 6 = 40, 0 = 40, 09 = 552, 7 = 160, and H(-) = SHA-1(-). The parameter ¢ should be larger than
1 by a non-negligible amount. These security parameters impact the security and efficiency of the
various proofs of knowledge used in the scheme. (Notation as in section §3.) 7 also specifies an
arithmetic group G and three generators g, g; and g» of G.

4.1 Choice of shared parameters

In this section assume that G is the quadratic residues subgroup of the multiplicative residues
module p, where p is simultaneously a safe prime, i.e., and p = 2¢ + 1, with ¢ also prime, and a
Sophie Germain prime, i.e., the number p = 2p + 1 is prime. Primes p such that p = 2p + 1, and
p = 2q + 1, with p and ¢ also prime are called strong primes. (More generally, if p = mp + 1 and
p = ng + 1 with small m, and n, are also called strong primes, but m = n = 2 gives the most
efficient scheme.) See [CS00, JPV00] for efficient methods to generate such primes. In order to
choose g it is enough to pick a random element ¢’ in Z, and set g = g”? mod p, provided that
g #1 mod p. The same procedure should be used to obtain g; and gs.

Table 3: Shared parameters

Shared parameters
Security paraneters: 9, ¢ o, o9, T,
Secure hash function: H(:):{0,1}* — {0,1}7;
P, p, q, prines s.t. 2p+1 and p=2q+1;

mod p};

G={reZ

:EIaEZ;

f:{er;:EIaGZ;; .
E={xe€eZ::FacZ s. t.

ﬁ:
s.t. z=a?
S.t.

r=a

r=a

2 mod p};

2 mod n};

g, g1, and g», generators of .

The scheme also requires an auxiliary group F of order p, which in this section will be chosen
as the quadratic subgroup of the multiplicative residues modulo p. Furthermore, the scheme
requires a second auxiliary group £ of unknown composite order n. A trusted party generates a
composite modulus n, plus a proof P that n is the product of two safe primes. The group £ is
defined as the quadratic residue subgroup of the multiplicative residues modulo n. The order of
£ is the universally unknown number ¢(n)/4. Group managers of competing organizations may
all share the same modulus n, as the operation of the scheme does not require anybody to know
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the RSA trapdoor associated to n, and the trusted party may safely forget the factorization at its
discretion.

The above public parameters can be further certified if so desired: Proofs of primality for p
and ¢ can be provided. As for g, g1, and g¢», it is easy to test that each is not congruent to 0 or 1
modulo p, or to verify that each is a square, by computing the Legendre symbol! and checking if:

()= () = (%) =1

4.2 Setup

Table 4: Group parameters:

Group-specific parameters
S, a string including y and ye;
CA' s signature: CERTca(S).

In order to setup a group using the shared parameters above, the group manager GM chooses
z and z at random among the numbers [1, ¢ — 1] and set the public keys y = ¢*, and y2 = ¢5. The
group manager should proceed to register these group-specific parameters with some certifica-
tion authority. The GM would prepare a statement S containing (minimally) a description of the
group signature algorithms, a reference to the shared parameters, GM’s name, the group-specific
parameters y, y1, and y», and some timed information, such as start and expiration dates. The GM
should obtain a certificate CERT ¢ 4(S) from the C'A establishing the group-specific parameters.

4.3 Join

Let Sig,, () denote U’s signature algorithm. To join the group, a prospective member U chooses a
random secret m in the interval [1, ¢ — 1], computes Jy = ¢7", and sends this value to GM, who
responds with two values a, and b in [1,q — 1]. U computes his pseudonym as I;; = J&g%, and
its associated secret u = am + b mod g. Next, U constructs a non-interactive proof of knowledge
PK of the logarithm to basis g; of this pseudonym (see definition 3.1), and also his signature S =
Sig, (I, PK) on both the pseudonym and the proof-of-knowledge just constructed. U forwards
to the GM this signature S.

Table 5: The JO Nprotocol
U—GM: Jy=I" modp
GM —U: a, b modg
U— GM: Sig,(Iy = Jggb, PKu: Iy = g}])
GM —U: r=Iyg " modp, s=—ar+k modgq

The GM now verifies that the pseudonym incorporated his contribution, i.e., Iy = J§; gll’. This
step is important because v is unknown to GM, who must sign it. Since the GM contributed

The Legendre symbol of a non-zero residue a modulo p has value 1 if a is a quadratic residue and —1 if it is a
non-quadratic. It can be computed efficiently [BS96].

11



to u’s randomness, that does not constitute a threat to the GM'’s signature algorithm. The GM
also verifies the correctness of the proof-of-knowledge and U’s signature. If satisfied, the GM
generates a random k£ mod ¢, and computes r = IUg‘k mod p, checking that » < ¢, where ¢
equals:

c=p— 20+7’/2+2 \/]—)’ (8)

and repeating the process of computing other random k and r until such an r is found. Note that
r < c with overwhelming probability in a single attempt, because since the quadratic residues are

nearly uniformly distributed in the interval [1,p — 1], one has that r < ¢ with probability close to
1 o 2U+T/2+2

p has at least 768 significant bits. This very minor restriction on the possible values of r reflects
requirements of the proof of a logarithm lying a specified interval (defn. 3.9), as shall be seen later.
After a suitable r is found, U computes s = k —xr mod ¢, and sends the certificate (r, s) to U. The
GM also records the signature S, which ties U’s identity to the certificate’s pseudonym. U verifies
that the certificate (r, s) satisfies the verification equation, and if so, accepts it as valid.

> 1 — 27945 if the security parameters have the typical values § = 40, 7 = 160 and

4.4 Sign and verify

Now the protocol SI GNis described. One goal of this protocol is that U convince a verifier V' of
its knowledge of a membership certificate (7, s) as above.

As in section §2, the signer chooses random ¢, and ¢/, with 0 < ¢, ¢ < gq.

U releases the Elgamal encrypted pairs:

(Y1,Y2) = (Ivys , g5 );  (Ri, Re) = (r~'y5, g5);

Next, U demonstrates that the pseudonym Iy is encrypted by the pair (Y7, Y2), and proves
knowledge of the pseudonym secret u, by executing PK[u, ' : Y1 = gi'y5 A Y = g5] (proofs 3.3
and 3.2). This step is crucial to prevent framing attacks against U, as not even the group manager
can execute it without knowledge of w.

Continuing with the SI GN protocol, U generates a fresh, random generator x of the group F,
and computes a (computationally zero-knowledge) commitment to the value r as £} = Ey(r,0) =
X" (definition 3.4). In the language of section §3, this is a (degenerate) commitment to the value
r in the group F, with respect to the generator x. U also generates a commitment to r in the
auxiliary group £ of unknown order. For that, U uses two generators (3 and v of £, where 8 and
~ are provably randomly generated, so that U cannot know their relative discrete logarithm. For
instance, v and [ can be generated as the squares of two consecutive values of a secure pseudo-
random number generator SPRNG. The commitment (again definition 3.4) is computed as Ey =
Es(r,82) = v"3°2, where s, is a random parameter of U’s choice: sg € [—2F+7T1 25F7+1] where
2r—1 < |€] < 2%. Notice that the value R;Y; = IUr_lngrél = y’"gsngrél is also a commitment to the
value r in the group G, with generators y, g, and y>. Denote it by E3 = R,Y].

In the next step, U reveals the commitments E;, E», and the respective generators v, 3, and .
(In the case of v and 3, U must also reveal the seed of the SPRNG that leads to the computation of
~vand (3.) U then shows that E, Fs and Ej3 all are commitments to the same value r. U executes
two proofs of equality of two committed values (def. 3.6). In the first proof U sends V a triple
(¢, D', D) satisfying:

¢ = H(x|[7|BI|E1|| B2l [x” ET¢ mod p||v” 8”1 B3¢ mod n).
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In agreement with the notation in section §3, denote the above by PK|r, sy : Ey = E1(r,0) A Ey =
Es(r, s2)]. Then U sends V' a quintuple (¢, D, D1, Do, D3) satisfying:

¢ = HABlyl|glly2] | E2| | E3|[7v 87 E5 © mod n|lyP gP2ys® E5 “mod pl|gy* (Y2R2) ¢ mod p).

Denote that by PK|r, s, sa,t : Fs = Eo(r,s2) A Es3 = E3(r,s,t) A YaRs = gb].

If all of the commitments Ej, E», and E3 took place within the same group the above would be
a proof of equality of the committed exponent in each of the commitments. However, as the order
of the groups differ, we have only proved knowledge of an integer value r which satisfies

r=ry modp, and r =r3 mod g, 9)

where 71 and r3 are, respectively, the exponents committed in £; and Es5, while 7 is the exponent
committed in E,. (As U does not know the order of &, it cannot set up a modular equation that
the exponent of Fy should satisfy, and must use the full integer value r.) U could cheat and pass
the “proof” above for any two different values r; and r3, by setting r in E to equal the solution,
computed via the Chinese Remainder Theorem, to the pair of modular equations in (9). Thus,
a non-member U’ would be able to forge the proof of knowledge of a certificate, by choosing r3
and s arbitrarily, computing the value r; that would make the certificate equation work, and then
solving the pair of equations (9) for an r that reduces to r; mod p and r3 mod g, respectively. In
the cheating case, however, because r; # r3 mod ¢, U’ computes a value r > p as the solution of
9. Thus, if U’ is required to prove that the value 7, committed in E; is within an interval of width
at most p, this forgery attack is prevented; and the commitments must all hide the same value. So
to complete the “proof of equality of commitments in different groups,” U must construct a proof
that the value r is restricted to an interval of width at most p. For that, U uses the fact that r < ¢,
and constructs the proof of knowledge that a committed value lies in a slightly larger interval, def.
(3.9): PK|[r, sy : By = Ey(r,89) A1 € [-20F7/2H1 /¢ ¢+ 20F7/2+1 /c]]. To observe that the interval in
question has width smaller than p, notice that its width equals 42017242 o < 4 204T/2H2 VP=D,
by choice of ¢ (see equation 8).

Finally, U must show that the exponent committed in E; equals the value encrypted in the
pair (R1, R2), by executing (definition 3.10): PK[r,t : Fy = x" A Ry = r~ 1yl A Wy = gi]. The
actual protocol SI GN combines all the proofs of knowledge into a single signature of knowledge.
This is done by simultaneously committing to all the inputs of the proofs and using the resulting
challenge in all the verification equations (a la Fiat-Shamir). In addition, the message M to be
signed is used as an extra input of the hash function.

The protocol is summarized in table 6. Moreover, algorithm VERI FY can be derived immedi-
ately from the above formal description of SI GNas a proof of knowledge of a group certificate.

4.5 Open

As for OPEN, it is enough that the group manager decrypts the pair (Y7,Y2) to obtain the value
Iy and the corresponding group membership certificate. GM constructs a proof that Iy is indeed
the value encrypted in (Y7, Y2) without revealing the group secret z, by proving that the discrete
logarithm of the Y; /Iy with respect to y, equals the logarithm of Y5 with respect to go: PK|[z :
ViI;' = Y A yo = g5]. This constitutes the publicly verifiable proof of authorship of the signature.
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Table 6: The SI GN protocol

Proof arguments:
Yi, Y2, Ri, Ray, x, 7, B, Ei, and Es.
Si gnat ure of know edge:
SPKu,t' 0 r s, s2,t: Y = g%yé/ AN Yy = gg/
ANE =FE(r0)=x" AN Ri=r""W5ARy =g}
A By = Eo(r,89) =~"% A 1€ [=2017/241 /¢ ¢+ 20+7/2+1 /]
N Bz = Es(r,s,t) =YiRi =y g°y5 N YaRz = g5 (M)

5 An alternative construction in the RSA ring

In the previous construction, it was necessary to use an auxiliary group £ of unknown order for
the single purpose of utilizing the proof of knowledge of an exponent in a specified interval, defi-
nition 3.9. That further introduced the need for an extra proof of equality of committed logarithms
in groups of different orders 3.6 (between £ and F).

On the other hand, if one chooses the original group G to be a group of unknown order, then it
is not necessary to use the extra group £. In fact, the proof of equality of logarithms committed in
different groups (3.6) is sufficient to complete the “transfer” of the value r in the exponent of y to
the value r in the exponent of x. It is impossible for a malicious adversary to commit a different
value as the exponent of x and still pass the verification, as that would entail knowing another
value congruent to » modulo the order of y, which divides the unknown group order.

Therefore it is possible to eliminate two steps in the SI GN protocol (with corresponding sim-
plifications of the VERI FY protocol) if G is chosen to have unknown order, with considerable
efficiency gains. In this section a brief description is given of an alternative realization of the
scheme.

5.1 Alternative setup

Table 7: Shared parameters.

Shared parameters

Security parameters §, ¢ o1, o9, 7 (integers);
Secure hash function H(:):{0,1}* — {0,1};

n, conposite integer, the product of safe prines;

p, prime satisfying p=mn+1, where m is snall;
G={r€Z;:JacZ s.t. x=a%> modn};
F={z€Z;:3acZ;s.t. x=a" modp}

P, (optional) proof that n is a product of safe prines;
g9, g1, and g¢go, generators of g;
P, (optional) proof that g, ¢, g¢g» are quadratic residues.
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Much of the notation and procedures are the same as in section 4. The shared parameters are
chosen differently. We define G to be the group of quadratic residues in the RSA ring generated
by a composite modulus which is a product of safe primes. Namely, a trusted party generates two
safe primes p, ¢, and publishes n = pq. After constructing a proof that n is formed correctly, the
third party may forget its factorization, as it is not needed for the scheme. The group F is chosen
as a group of order n. For that, one searches for a prime p so that p = mn + 1, where m is a small
number. One then sets F to be the subgroup of m-powers in the group Z;. The group-specific
parameters are the same.

Table 8: Group-specific parameters.

Group-specific parameters

S, a string including y and yso;
CA' s signature CERTca(S).

5.2 Join

Table 9: The JO Nprotocol.

U—GM: Jy=1I™ modn
GM — U: a, be[-27/%tr 97/2+r _q]
U— GM: Sig,(Iy = J4&¢% mod n, PK[u: Iy = g¥])
GM — U: r=1Iyg~* modn,
§= —ar 4k € [~226+THL 92w+l _q)

The JO Nprotocol is unchanged, except that there are no restrictions on the value of r = I;;g~*

mod n, where k is chosen in the interval [—2T+2””, QT H2h _ 1], for there is no necessity to use the
proof 3.9. (As before, x stands for the bitlength of |G|.) The terms «, b, and s cannot be reduced
modulo the unknown order of G, which is unknown.

5.3 Sign, verify and open

As mentioned above, the SI GN protocol can be considerably simplified. There is no need for an
extra commitment in a group of unknown order, as the order of the group G is itself unknown.
Moreover, there is no need to prove that the » in the commitment E; is bounded in a certain
interval, as a cheating U could not find a value that reduces to different values 7; mod n and r;
mod ¢(n) while satisfying the signature equation, because ¢(n) is unknown.

Protocol OPEN is unchanged from the previous case — the encryption scheme is still Elgamal,
and the verifiable decryption protocol is formally the same, with the difference that all the proof
values are taken in the integers as opposed to reduced modulo the (now unknown) order.
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Table 10: The SI GN protocol.

Proof argunents:
Yi, Yo, Ry, Ra, x, FEi.
Si gnat ure of know edge:
SPK[u,l',0,r s,t:Y, =gtg" N Yo=g¥
AN Ey=FE(r,0)=x" A Ri=r"1y§ A Ry=g}
A Ey =Y1Ry = Es(r,5,t) = y"g°y5 N YaRg = g5](M)

6 Security analysis

The security of the modified Nyberg-Rueppel signature under active attacks is equivalent to the
statement that the group membership certificates are unforgeable under active attacks. Therefore
the security analysis of the scheme depends on the following assumption:

Assumption 6.1 (Modified Nyberg-Rueppel) The modified Nyberg-Rueppel signature scheme, as a
signature scheme on short messages, is existentially unforgeable under chosen message attacks.

In [AdMO04] we provide a proof of security for the modified Nyberg-Rueppel, in the generic
model of computation. The generic model is an idealized computational model (such as the ran-
dom oracle model) wherein an attacker may only access the group operations as black box function
calls, and may not operate meaningfully on encodings of group elements, except with negligible
probability. While this model cannot capture the most efficient attacks on the discrete logarithm
and other assumptions underlying the constructions in this paper, it does provide evidence that
the underlying computational problems are hard.

Correctness: The SI GN protocol was defined as a combination of various proofs of knowledge,
with the VERI FY algorithm simply performing the combined verification of each of the in-
dividual proofs. Correctness follows.

Unforgeability: As seen above, one may assume that the group membership certificates are un-
forgeable. This closes one avenue of attack, which would exploit a weakness of the JO N
protocol. Therefore the question of unforgeability reduces to whether it is possible to attack
the SI GN protocol.

First note that the zero-knowledge proof of knowledge of a representation implies that the
term (Y3, Ys) truly encrypts a public key: (Iyyy2, g5 ), for which the signer knows the corre-
sponding secret. This follows from the proof that definition 3.3 is indeed a proof a knowl-
edge. Similarly, the proof of knowledge of the a representation shows that the signer knows
how to write the product cipher (R;Y7, R2Y2) as a commitment to values r, s in the exponents
of yand g : (y"gy5™, g5t"). The proof of equality of logarithms in distinct groups shows
that the term E; = x" really commits to the same value r. Finally the proof of encryption of
a committed logarithm reveals that the value committed in E} is also encrypted in the pair
(R1, Ry) = (1'%, ¢%). Now returning to the product cipher, it follows that the signer knows
how to represent the encrypted value either as a product I;yr~! or as " g%, and consequently
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that the signer knows a certificate on a public key for which he knows the corresponding
secret. This implies that the signer indeed owns a valid certificate.

Anonymity/Unlinkability: The SI GN protocol releases the signer’s public key Iy in an Elgamal
encryption, and the value r in three separate commitments. These commitments are ei-
ther Elgamal encryptions, such as in the pair (R, R2), or under randomized bases, such as
E, = x". Within each group (£, F, G), correlating these values across multiple instances of
the protocol is equivalent to breaking the Decisional Diffie-Hellman assumption. As far as
we could determine, there are no known methods that allow for correlating exponents in
different groups, and it is reasonable to assume that this would be a harder task than Diffie-
Hellman decision problem itself. Therefore, under the assumption that the various proofs
of knowledge compose well —i.e., remain zero knowledge when executed in combination —
it follows that different executions of the protocol are non-correlatable, implicating both the
anonymity and unlinkability properties.

Exculpability: As seen in the discussion about the unforgeability property above, the signer
proves, during the execution of the SI GN protocol, knowledge of the secret key associated
to the public key bound to a group membership certificate. During the OPENing phase, the
group manager can only recover the same public key committed in SI G\, as the the former
protocol is a verifiable Elgamal decryption. Finally, the group manager cannot claim that the
recovered public key belongs to a different user: The owner of the public key is the unique
user who provided a publicly verifiable, signed request to JO Nthe group under that public
key.

Traceability/Coalition-resistance: As seen in the discussion of the unforgeability property, the
SI GN protocol is only successful if the signer proves knowledge of the secret key associated
to the public key encrypted in the pair (Y7,Y2). Therefore it is not possible for a coalition
to incriminate a user (unless the user key is compromised). Moreover, since certificates are
unforgeable and the SI GN protocol proves the signer’s knowledge of a certificate on the
same public key, it follows that the signer commits to a legitimate user identity and knows
the corresponding signing key.

7 Conclusions

In this paper describes the first group signature scheme with constant-size parameters that does
not require any group members, including group managers, to know trapdoor secrets. The scheme
is not bound to a specific setting but it can work in various groups where the Decision Diffie-
Hellman assumption holds.

This scheme is less efficient than the state-of-the-art scheme in [ACJT00]. However, the scheme
in [ACJT00] requires the group manager to know trapdoor information which cannot be shared
with other group managers, thus making it difficult to enable collaboration among distinct groups.
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