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Abstract

Extensive studies have been made of the public-key cryptosystems based on multivariate polynomials .
However most of the proposed public-key cryptosystems of rate 1.0 based on multivariate polynomials, are
proved not secure. In this paper, we propose several types of new constructions of public-key cryptosys-
tems based on two classes of randomly generated simultaneous equations, namely, a class based on bijective
transformation and another class based on random transformation. One of the features of the proposed
cryptosystems is that the sets of random simultaneous equations significantly improve the utilization factor
of the public-key space. We show an example of the proposed cryptosystem whose size is only 100 bits that
seems to be apparently secure in a sense that the utilization factor is significantly large compared with the
conventional public-key cryptosystems.

1 Introduction

Extensive studies have been made of the Public-Key Cryptosystem(PKC). The security of most PKCs depends
on the difficulty of discrete logarithm problem or factorization problem. Thus it is desired to investigate
another classes of PKC that do not rely on the difficulty of these two problems.

In this paper, we shall present a new class of PKC whose security seems to depend on the difficulty of the
problem of Solving Simultaneous Equations(SSE) of degree larger than or equal to 2. Hereinafter simultaneous
equation will be abbreviated by SE. Accordingly we shall refer to the conventional scheme, constructed based
on Simultaneous Equations(SE) of degree g will be referred to as SE(g)-PKC. The simultaneous equations
used in the proposed PKC are generated in a random manner, in a sharp contrast with the conventional
methods whose security also seem to be related to the difficulty of SSE[1][2]. Because our proposed PKCs are
constructed, based on the Random Simultaneous Equations(RSE) of degree g, we shall refer to our proposed
scheme as RSE(g)-PKC, for short.

It should be noted that all the proposed PKC in this paper has no redundancy, i.e., the message transmis-
sion rate of any proposed PKC in this paper is completely 100%. Thus our proposed schemes will be mainly
compared with PKC with no redundancy.

2 Construction of RSE(g)-PKC

Letting message vector over F, be denoted by
w=(x1,x2,---,xn), (1)

where z; €Fy (¢ =1,2,---,n).
The following relation implies that the message vector « takes on a certain message vector & :

m=w=(flaf25"'7x~n) (2)

where we assume that the variable z; € F, takes on the actual value Z;. In the followings, symbols §; and Z;
will be used in an exactly similar manner as Z;.

One of the simplest version of the RSE(g)-PKC can be constructed in the following manner where we let
qg=2and g=2:
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Step 1 : Letting the message vector over F» be given by @ = (x1, %2, -+, Zn), the @ is transformed to vector
y as follows:

TA=y, 3)
where A is an n X n non-singular matrix over F> and y will be denoted by
y=(y1,y2,---,yn), (4)

where y; € Fs.
Step 2 : The components of the vector y are partitioned into N sub vectors, yielding the following vector :

y:(YhY?:"'aYN): (5)
where Y'; is given by

Y; = (yjlayJZ:"'ayjt)' (6)

Definition 1 : The following transformation:
P(u) =v (7
is referred to as “non-singular”, if and only if the transformation has the following inverse-transformation:
¢~ (v) = u. (8)
|

Evidently, the transformation ¢ is bijective.

Step 3: Given Y; (j =1,2,---,N), the following transformation, ¢(y) = 2, is performed on the basis of
“randomness” :

2
zin = R Wi,y y5),
2
Zj2 R§2)(yjlayj2,"'7yjt),
' 2 9)
zi = RS2 (yin,vie, ey,
' 2
Zjt = R§t)(yjlay]'27"'7yjt)7
where zj; = Rl@)(yjl; yj2, -, Yj¢) is a quadratic equation in ¢ variables, y;1,y;2, -, y;j¢. We assume that the

coefficients of the equation is chosen in a random manner under the condition that the above transformation,
¢(y), is non-singular. In such case where SE is required to be non-singular, we shall refer to SE as first
class SE. Evidently Eq.(9) proves to be Simultaneous Equation(SE) of degree 2 in ¢ variables.

Step 4 : Given Y1, another transformation, not necessarily bijective, is performed, yielding the following
SE of degree 2 :

2
D (g1, yiz, - yue),

w11 =
wiz = 3y (Y1, Y12, -, Y1),
2 (10)
wii = (Y, Y12, -, Y1),
wie = (i, e, ye).

We assume here that the coefficients of the above SE given by Eq.(10) are generated in a totally random
manner in a sense that SE do not have to be non-singular. In such case we shall refer to SE as second class
SE.

Step 5 : Given Y1,Y5s, - -,Y;, the following second class SE are generated in a similar manner as in Step
4:
) e
Wj1 = Tjq (ylla y Y1ty Y21, > Y2t, y Yil, :yjt)a
wji2 = T;g)(ylla Y1, Y21, 0 Y2ttt YL, '7yjt)7
(11)

Wi = r](‘?)(yllv' YL, Y21, Y2, Y1, 7yjt)7

) 2
Wit =TJ(-t)(yu,'“,ylt,yzl,'",y2t,"',yjla"',yjt)-

We also assume that the above SE(second class) are random in a sense that the coefficients are chosen in
a random manner.



Step 6 : From wji,wj2, -, wj:, the followings are generated for j =0,1,---, N :
Vi1 = Zj1 + W11,
Yiz = Zj2 tw(-1)2,

: 12
Yii = %ji t W1 (12)

Vit = Zjt + W(-1)t-
where wo1, woz, - - -, wot are all zeros.

Step 7 : Letting I' = (I'1,I'»,--,T'n) where T'; = (v;1,7j2,-**,7;t), the following final transformation is
performed :

I‘B:(KliK?:"',Kn)a (13)

yielding the set of public-keys, K = (K1, Ko, -+, K,), where B is an n X n non-singular matrix over Fs.

The public-keys {K;} can be denoted as :

K, = f1(2)(.’l31,.’L‘2, o ',xn),
K> = f2(2)(.’l31,.’L‘2, v ',xn),

: 14
K; = fP(@1,22,- -, 2), (14)

K, = f7g2)($1:$2, e axn)a

where fi(z)(xl, T2, ,Tn) is a quadratic equation obtained through Steps 1 to 7.

3 Encryption and Decryption

3.1 Encryption

Encryption can be performed simply by substituting #; for z; in Eq.(14), yielding the cipher-text ¢ =
(c1,¢2,---,cpn) over Fa. In Fig.1l, we show an example of an encoder of RSE(2)-PKC where we assume that
t=3, N=3n=0.

| |

Linear Transformation

Random SEs
w1, W2, W3

I

Random SEs

W4, W5, We

D F,» Register
® Adder over Fy»

Fig. 1: An example of the principal part of the encoder of RSE(2)-PKC



3.2 Decryption
Decryption can be performed through the following Steps.

Step 1 : Cipher-text ¢ is transformed to I' as follows:

¢cB™'=T (15)

where T is partitioned into N sub-vectors each of which has same dimension of ¢.

f‘:(f‘lzf‘2:"'1I‘N) (16)

Step 2 : TheI'; is evidently (211, Z12,- - -, Z1¢). Thus (211, 212, - -, Z1¢). is inverse-transformed to Y, = (911,
Y12, - -, Y1¢) by a table look-up method. As the table look-up method is used in the decoding process, from
the practical point of view, t is recommended to satisfy

t < 10. (17)

Step 3 : Given Y1 = (§11, 12, - -, §1¢), the transformation of Eq(10) is performed on Y, yielding W1 =
(011, W12, -+, W1e).

Step 4 : Given W, the vector Z2 = (321,322, - -, Za¢) is decoded as follows :
Zy=Wi+T, (18)
Step 5 : The vector Z» is inverse-transformed to ¥Y'» = (21, §a2, - -« , ot ).
14 2.

Step 6 : From (Y1, ---,Y;), W; = (W1, Wiz, - - -, Wiz) is decoded. From W; and i1, Z; 41 is obtained.
From Z; 41, YJi+1 is finally decoded.
i+1+1

Step 7 : While ¢ < N, repeat Step 6

Step 8 : Through Steps 6 to 7, ¥ = (Y1,Y2,---,Yy) is decoded. The vector X is decoded by the
inverse-transformation of Eq.(3), yielding a message vector as follows :

JA T =& = (#1,%2, -+, &n). (19)

4 Efficiency of Public-Key Space
4.1 Size of Public-Key

Let us suppose that the transformation , y — z, can be performed as follows [1],[2]:
h L
Y! Y] =Z;, (20)

where we assume that Y; € Fy: and 0 < h <1<t —1 holds.
The set of t components of Z;, obviously, constitutes the non-singular SE(2)s.

Theorem 1 : The size of the public-key of SE(2)-PKC, Spx, is given by
Spr =n(pH2 +1) = n(n+1C2 + 1), (21)
where n is the block-length of the cipher-text. O

For example, when n = 100 , the size of Spk is given by 505,000 bits or 505 K bits.

4.2 Effective Size of Public-Key
Theorem 2 : The total number of the possible transformation of Eq.(20) is given by
1
Nsyst(t) = ?P(Zt —1)¢Cs, (22)

where p(z) is the Euler’s function of z. 0

Proof : The total number of the ;l)ossible different primitive polynomials that generate different Fy:s is
given by 1¢(2" —1). The exponent 2" + 2' in Eq.(20), assumes ;C> different values, yielding the proof. 7



Corollary to Theorem 2 : The total number of the possible different set of public-key, Npx , for
SE(2)-PKC is given by

Npk = {%ga(? - 1)t02}N (23)

O

Definition 2 : Effective size of the public-key based only on the transformation of Eq.(20), Spx (effec.) is
defined as

Spx (effec.) = logy Npx (in bits) (24)

|
For example, when n = 100, t = 4, the effective size of the public-key of the SE(2)-PKC is given by

Spx (effec.)

1 25
log, {Z¢(24 - 1)402}
= 89.6 (in bits). (25)

As an another example, when n = 100, ¢ = 100, Spx (effec.) is

Spi(effec.) = log, {igo@loo - 1)10002}
100
= 104.5 (in bits). (26)

We see that the effective size of the public-key of the conventional public-key SE(2)-PKC takes on a very
small value, although the size of the public-key space(in bits ) is given by 505000 bits or 505K bits.

We shall show, in the following, that our proposed RE(2)-PKC yields a very large effective size of public-
key, in a sharp contrast with the conventional SE(2)-PKC.

Let the set of non-singular SE(2)s be denoted by {SE(2)} and the order of {SE(2)}, by #{SE(2)} . When
the order of {y;}, t, is 4, #{SE(2)} is given by [3],

#{SE(2)} = 2016840. (27)

Besides the SE(2)s mentioned above, another class of SE(2)s, second class SEs that are not necessarily
non-singular are used in RSE(2)-PKC, for generating a set of public-keys. It should be noted that the using
of the second class of SEs significantly improves the effective size of public key.

Let the total number of different random SE(2)s in ¢ - ¢ variables be denoted by n.5nqom(t - 7). The total
number of random SE(2)s used in RSE(2)-PKC for ¢ and n, Nyyndom (7, t) is given by

N—1
Nrandom (1, t) = H Nrandom (t * 9)- (28)

i=1
For example, when n = 100, ¢ = 4, the total number of random SE(2)s used in RSE(2)-PKC is

24

Nrandom(100,t) = H Nrandom (4 " 1), (29)

i=1
where np,nq0m (4 - 7) is given by
Nrandom (4 - 1) = plaitlat D, (30)

For example, when ¢ = 1, the vector (w11, w12, wis,w14) in Eq.(10) is the (4H2 + 1)4 dimensional vector

over Fy. Thus {(w11, w12, w13, wia)} is the set of 21472+ different vectors over Fs.
Definition 3 : The effective size of the public-key of RSE(2)-PKC, for n and t, is given by

Spx (effec.) = Spx (effec.) + logy Nyandom (7 t)- (31)
O
For example, for n = 100, t = 4, Spx (effec.) is given by
24
Spic(effec.) = 523.6+» (sHz+1)4 (32)
i=4

= 159820 in bits



We see that the proposed RSE(2)-PKC of length 100 realizes a very large effective size of public-key.
Definition 4 : Utilization factor of the public-key space is defined as

S ffec.
(P Kspace) = % (33)

For example, for n = 100 and ¢t = 4, the utilization factor of the public-key space of the propose%
RSE(2)-PKC is

158878 .

PK, = = 0.316. 4
7(P Kspace) 505000 -0.316 (34)

On the other hand, for the same value of n and ¢, the utilization factor of the public-key space of SE(2)-PKC
achieves only
98.6
= = (.0001
1(P Kspace) = 505000 - 0.000177, (35)
yielding a very small value compared with the proposed scheme.
For n = 100 and ¢t = 100, the Spk(effec.) = Spx (effec.) for the conventional SE(2)-PKC, is given by
104.5 bits. Thus even in this case, (P Kspace ) is
104.5
PK, = —— =0.000207.
n(P Kspace) = 505000 =0.000207 (36)
In Fig.2, we show the effective size of public-keys, Spx (effec.) for several classes of SE(2)-PKC and
RSE(2)-PKC. Semi-RSE(2)-PKC is the RSE(2)-PKC where only the first class of transformation, (9), is

used.
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Fig. 2: Effective size of public-key for SE(2)-PKC and RSE(2)-PKC

5 Construction of RSE(g)-PKC over Fom

We also present here a construction of RSE(g)-PKC over Fy: (m > 1) [5]. We shall show in the following two
examples.
Remark : The number of variables in Example 1 is 6. Thus the PKC in Example 1 cannot be secure
enough as it might be broken with the attack based on Grobner basis. It should be also noted that in these
examples first class SE has not be found yet, thus we shall show only the lower bound of Spxk (effec.).
Example 1 : RSE(5)-PKC over Fy17 where n =6 and t = 2.

The size of the public-key of RSE(5)-PKC, Spxk, is given by

5 5
Spx =1TnYy  6H; =102 ¢H; = 47124 (bits). (37)

i=0 i=0

We see that the size of the public-key becomes very small compared with the Spx, 535908 (bits) for the
RSE(2)-PKC over F, where n = 102. For this example, the exact value of Spx(effec.) has not beren found



yet, at the moment, we shall use here the lower bound of Spx (effec.). The lower bound of the effective size
of the public-key, Spk (effec.) in this case is given by

5
Spi(effec.) > 17-2) " (2H; +4 Hi) = 4998  (bits). (38)
=0

The lower bound of the utilization factor n(P Kspace) is given by
(P Kspace) = 0.106. (39)

Example 2 : RSE(5)-PKC over Fy13 where n =10, t = 2.
The size of the public-key of RSE(5)-PKC, Spk, is given by

5 5
Spk =13n) | 10H; =130 ) | 10H; = 390390 (bits). (40)
=0 i=0
We see that the size of the public-key becomes shorter compared with the Spx, 1107080 (bits) for the

RSE(2)-PKC over F, where n = 130.
The lower bound of the effective size of the public-key, Spx (effec.) in this case is given by

5
Sei(effec.) > 132" (3H; +a Hy +6 H; +s H;)
i=0
= 49296. (41)
The lower bound of the utilization factor n(PKspace) is given by

1(P Kspace) = 0.126. (42)

6 Open Problem

We shall upload the open problems in WWW site “http://www.osaka-gu.ac.jp/php/kasahara/publickey.htm”.
The parameters are set as follows:

n = 100
t = 4dorbd
N = 25o0r20

The public-keys Ko, K1, -+, Kgg are represented by the following orders.
). 1 4.0 1 1 1
K; = (k((),%k((),)l n 'k((),zyg T kffkffﬂ T kg,g)g T ks()s),ggks(ag),gg)2

where kflj) is a coefficient of z;z; of the public-key Kj.

7 Implementation

In this chapter, we shall discuss on the software implementation of the proposed RSE(g)-PKC. We shall use
the word-based bit by bit exclusive OR. operations for the software implementation, using the 32 bits word
Processor.

When the parameter n is equal to 80, the total costs of the computation of our implementation(see the
Appendix) of the encryption is on an average 2 x 80 x 80/2 = 80% = 6400 times word-based bit by bit EXOR
operlations, under the assumption that the average value of the Hamming weight of the message is equal to
40.

We have examined the performance of the enciphering of our public-key cryptosystem, RSE(2)-PKC,
under the following environments.

Table 1 Computation environment

CPU Pentium III or Pentium IV
0OS Linux
Compiler gee-3.2

Table 2 Computation time for encryption
Block size : n 80 100

Pentium IIT 700MHz | 0.036ms | 0.08ms

Pentium IV 2.4GHz | 0.005ms | 0.009ms

In case of Pentium3, each EXOR needs 3.9 clocks and in case of Pentium4, each EXOR needs 1.9 clocks.

1 Tt should be noted that the number of word-based bit by bit EXOR operations for the encryption can be reduced to 4080 =g¢
H - 80/32/2(see the Appendix).




8 Conclusion

‘We have presented a new class of public-key cryptosystem referred to as RSE(g)-PKC. Although the details of
doing so are omitted, we can show that the digital signature scheme can be easily realized with our proposed
PKC.

In this paper, we have discussed primarily on RSE(2)-PKC over F». However the proposed RSE(g)-PKC
can be generalized in various ways. For example, we can construct RSE(g)-PKC over Fom or Fym . In order to
speed-up the encoding and decoding procedure, semi-RSE(g)-PKC could be used, under the condition that
the effective size of public-keys is sufficiently large. Various interesting studies have been left for the future.
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Appendix

The public key is represented as an n quadratic equations each of which has n variables. We shall denote the
coefficient of the term z;x; by k;; where ¢ < j.

In the following, we shall explain the example of n = 8 for simplicity. For the fast computation of the
software implementation, the i-th quadratic equations of the public key, Kj, is divided into 8 parts as follows:

K; = Kijo + Ki1 + Ki2 + Ki3 + Kis + Kis + Kie + K7,

Kio = zo(ko,ozo + ko1z1 + ko222 + ko,3x3 + ko,4z4),
Ki1 = zi(k1121 + k1,222 + k1,323 + k1,424 + k1,525),
Ky = xza(k22x2 + ka3xs + k2 axsa + ko525 + k26%6),
Kz = wx3(ksszs+ ksaxa+ ksses + ks exe + k3 rar),
Ky = z4(ksaxs+ kaszs + kaexe + ka,r27),
Kis = xs5(ksses + ksexe + ks,7zr + ko,520),
Kis = zo(keoxe+ ko727 + ko,62e + k1,621),
Kiv = zr(krrzr + korzo + k1 rx1 + ko,7x2).

The binary representation of the above 8 equations is given by

K[i][0] (Ko,0ko,1ko,2k0,3k0,4),
K[i[1] = (ki,1k1,2k1,3k1,4k1,5),
K[i|[2] = (ko,2k2,3k2,4k25k26),
K[i[3] = (ksz3ksaks skseks),
K[i[4 = (ka,akaskseka ),
K[i][5] = (ks5ks,6ks,7k0,5),
K[i][6] = (kee6ke,7ko06k16),
KIi][7] (kr,7ko,7k1,7k2,7),
where K[i][j] is the binary representation of K;;. The message m = (mg, my,---,m7) is then arranged as
follows :
M[U] (m0m1 m2m3m4),
M[1] = (mimamzmams),
M[2] = (mamsmamsms),
M[3] = (mamamsmems),
M[4] (mamsmems),



M[5] = (msmemrmo),
MI6]

M[7] = (mrmomimsz).

(memrmoma),

The cipher-text of the i-th bit, c[i], is computed in the following manner :

val=0;
for(j=0;j<8;j++)
if(m[jl== 1)

val=val~ (K[i] [jI1"M[j1);
c[i]=hamming_weight(val) & 1;

where the function of hamming weight(val) implies the Hamming weight of the binary representation of val.
It should be noted that, the n bits of the cipher-text are computed on simultaneously as follows :

for(i=0;i<8;i++)

val[i]=0;
for(j=0;j<8;j++)

if (m[jl== 1)
for(i=0;i<8;i++)
val[i]=val[i]1~(K[i] [j1"M[j1);

for(i=0;i<8;i++)

c[il=hamming_weight(vall[il) & 1;

In this case, the average times of the word-based bit by bit exclusive OR operation equal 8 for i-th bit
encryption and equal 64 = 82 for the all of 8 bits encryption.

In general, when the n is smaller than 64, the average times of the word-based bit by bit exclusive OR
operations equal n for the i-th bit encryption and equal n? for all of the n bits encryption. When the n is larger
than 63, the number of bits of K[i][j] and M][é] is larger than 32. However rearranging the representations of
KTi][§] and M[], the average times of the word-based bit by bit exclusive OR operations equal n X541 C2/32
for the encryption. For example, if the word length equal 4 bits, the public key K; is divided into 9 words so
that

K[i][0] = (ko,oko,1ko,2k0,3),
K[)[0] = (koko,skocko,),
K[[1] = (ki,1k1,2k1,3k1,4),
K[i[2] = (k2,2k2,3ko,ak2;5),
K[i|[3] = (ksz3ks,aks sk36),
K[i|[4 = (kaakasksekar),
K[[5] = (ks skseks rkis),
K[i[6] = (kesckerki,6k2),
K[[7] = (kr7k1,7ke,7ks,7),

are satisfied.

When n = 80 and 100, the average times of the word-based bit by bit exclusive OR operations equal 102
and 158 respectively. The computational times described in 5. are the average times of the word-based bit
by bit exclusive OR operations which are equal to 160 and 200 for n = 80 and 100 respectively. Therefore,
the computational times can be reduced to 20% ~ 30% when the above rearrangement is used.



