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Abstract

In [3] SFLASHv3 is presented, which supersedes SFLASHv2, one of the
digital signature schemes in the NESSIE Portfolio of recommended
cryptographic primitives [2]. We show that a known attack against
the affine parts of SFLASHv1 and SFLASHv2 carries over immediately
to the new version SFLASHv3: The 861 bit representing the affine
parts of the secret key can easily be derived from the public key alone.

1 Introduction

SFLASHv2 is one of the asymmetric signature algorithms that is part of the
NESSIE Portfolio of recommended cryptographic primitives [2]. It emerged
from an earlier version which is now referred to as SFLASHv1 and that has
been cryptanalyzed successfully by Gilbert and Minier in [8]. Recently, a
new version of SFLASH, called SFLASHv3, has been proposed [3], and its
authors “do no longer recommend SFLASHv2.”

As shown in [5, 7, 6], parts of the secret key of SFLASHv1 and SFLASHv2

can be revealed easily by means of a linear algebra based attack. Subse-
quently we show that the same holds for SFLASHv3: The 861 bit represent-
ing the “affine part” of the secret key can be derived immediately from the
public key, and thus do not really contribute to the security of the scheme.

2 Public and secret parameters of SFLASHv3

For a complete description of SFLASHv3 we refer to [3]. Here we recall
only the public and secret parameters of the algorithm, as the details of the
signing and verification procedure are not relevant for the discussed attack.
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SFLASHv3 makes use of two fields along with corresponding bijections:

• K := F2[X]/(X7 +X + 1) along with the bijection

π : {0, 1}7 −→ K

(b0, . . . , b6) 7−→
∑6

i=0 biX
i (mod X7 +X + 1)

• L := K[X]/(X67 +X5 +X2 +X + 1) along with the bijection

ϕ : K67 −→ L

(b0, . . . , b66) 7−→
∑66

i=0 biX
i (mod X67 +X5 +X2 +X + 1)

2.1 Secret key

The secret key is comprised of three parts:

• ∆ ∈ {0, 1}80: a secret 80-bit string

• s = (SL, SC): an affine bijection K67 −→ K67 given by a 67 × 67
matrix SL ∈ K67×67 and a column vector SC ∈ K67

• t = (TL, TC): an affine bijection K67 −→ K67 given by a 67 × 67
matrix TL ∈ K67×67 and a column vector TC ∈ K67

For deriving the corresponding public key also the function

F : L −→ L

α 7−→ α12833+1

is needed.

2.2 Public key

The public key is the function G : K67 −→ K56 defined by

G(X) = [(t ◦ ϕ−1 ◦ F ◦ ϕ ◦ s)(X)]0→55.

Here the notation [·]0→55 means that only the first 56 (out of 67) rows are
published, and ◦ denotes functional composition, i. e., (f ◦ g)(x) := f(g(x)).
By construction, (Y0, . . . , Y55) = G(X0, . . . , X66) can be expressed in the
form

Y0 = P0(X0, . . . , X66)
...

Y55 = P55(X0, . . . , X66)
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where each Pi is a polynomial of total degree ≤ 2 with coefficients in K.

It is worth noting that the public key of SFLASHv3 is independent of
the secret 80-bit string ∆. Consequently, the verification procedure does not
ensure that the correct value of ∆ has been used for computing a signature.
However, ∆ is used for signing and the question of side channel attacks on
∆ arises naturally (cf. [4]). The attack described in the sequel does not
concern ∆ and aims exclusively at the “affine parts” of s and t.

3 Attacking the affine parts

As the last 11 “rows” of t are not reflected in the public key (in particular
they are not needed for computing a valid signature), we cannot hope to
recover the last 11 entries TC from the public data. However, finding the
remaining 67 · 7 + (67− 11) · 7 = 861 bit of the secret key that represent the
affine parts of s and t turns out to be rather simple.

3.1 Deriving the first 56 entries of TC from S−1
L SC

By definition the bijection s has the form

s : K67 −→ K67

(b0, . . . , b66) 7−→ SL · (b0, . . . , b66)T + SC
.

Equivalently, we can express s as

s : K67 −→ K67

(b0, . . . , b66) 7−→ SL · ((b0, . . . , b66)T + S−1
L SC)

.

In the first part of our attack we will recover (v0, . . . , v66)T := S−1
L SC . Once

this vector is known, we see with the argument from [6] that the first 56
entries of TC are obtained by evaluating the public key at (v0, . . . , v66):

G(v0, . . . , v66) = [(t ◦ ϕ−1 ◦ F ◦ ϕ ◦ s)(v0, . . . , v66)]0→55

char(K)=2
= [(t ◦ ϕ−1 ◦ F ◦ ϕ)(0, . . . , 0)]0→55

= [t(0, . . . , 0)]0→55

= [TC ]0→55

3.2 Finding S−1
L SC

Exactly as in [6] for SFLASHv2, one makes the following
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Observation 1 The vector (v0, . . . , v66)T := S−1
L SC is a solution of the

homogeneous system of linear equations obtained by equating the linear part
(i. e., the sum of the monomials of total degree 1) of the public key to 0.

Proof: By construction, the map

G̃ : K67 −→ K56

X 7−→ G(X − S−1
L SC) = [(t ◦ ϕ−1 ◦ F ◦ ϕ(SL ·X))]0→55

can be expressed in the form

G̃(x0, . . . , x66) =


∑

0≤j,k≤66 g0jkxjxk
...∑

0≤j,k≤66 g55jkxjxk

+ TC

with gijk ∈ K. In other words, G̃(x0, . . . , x66) involves no linear terms, and
we see that the linear part of the public key G(X) = G̃(X+S−1

L SC) has the
form 

∑
0≤j,k≤66 g0jk(xjvk + vjxk)

...∑
0≤j,k≤66 g55jk(xjvk + vjxk)


where (v0, . . . , v66)T := S−1

L SC . Finally, from char(K) = 2 we conclude
that all expressions of the form (xjvk + vjxk) vanish when we specialize
(x0, . . . , x66) 7→ (v0, . . . , v66). �

If the linear parts of the 56 components of the public key are linearly
independent (which was always the case in our experiments) equating them
simultaneously to 0 yields an 11-dimensional K-vector space U ⊆ K67. From
Observation 1 we know that S−1

L SC ∈ U holds, and to eliminate the incorrect
candidates in U , we do the same as in [6] when dealing with SFLASHv2.
Namely, we exploit

Observation 2 Let v := S−1
L SC ∈ K67, and denote by z the canonical

generator of the K-algebra K[z]/(z128− z). In particular, we have z128 = z.
Then for all w ∈ K67 the vector s(z ·w−v) = SL · (z ·w) ∈ K67 contains

entries from K ·z only, i. e., there are no non-zero constant terms. Moreover,
owing to the definition of F , the vector (F ◦ϕ◦s)(z ·w−v) has entries from
K · z2 only, i. e., it contains no linear or constant terms.
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Let {b0, . . . , b10} be a basis of the K-vector space U , and consider the linear
combination

∑10
i=0 αi · bi where the αi are indeterminates. Then according

to Observation 2 all the terms linear in z of

(t ◦ ϕ−1 ◦ F ◦ ϕ ◦ s)

(
z · w −

10∑
i=0

αi · bi

)

= TL · (ϕ−1 ◦ F ◦ ϕ ◦ s)

(
z · w −

10∑
i=0

αi · bi

)
+ TC

vanish when specializing the αi so that the sum
∑10

i=0 αi · bi evaluates to
S−1
L SC .

This yields 56 linear equations in the 11 indeterminates α0, . . . , α10, and
S−1
L SC ∈ K67 is a solution of this system. In several hundred examples we

did with the computer algebra system Magma [1], S−1
L SC was always the

only solution, and it could always be found within a few seconds. From
S−1
L SC we can derive [TC ]0→55 as described in the previous section, so that

we are in the position where for forging signatures it is sufficient to reveal
the secret linear parts SL and (the first 56 rows of) TL.

4 Conclusion

The above discussion shows that the affine parts of SFLASHv3 succumb to
basically the same attack as the affine parts of its predecessors SFLASHv1

and SFLASHv2. Although this attack does not “break” SFLASHv3, it may
raise some questions on its design.
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