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Abstract

A practical key substitution attack on SFLASHv3 is described: Given
a valid (message, signature) pair (m,σ) for some public key v0, one can
derive another public key v1 (along with matching secret data) such
that (m,σ) is also valid for v1. The computational effort needed for
finding such a ‘duplicate’ key is comparable to the effort needed for
ordinary key generation.

1 Introduction

SFLASHv2 is one of the asymmetric signature algorithms that are part of
the NESSIE Portfolio of recommended cryptographic primitives [4]. The
successor SFLASHv3 introduces several changes in the algorithm: E. g., the
way of using SHA-1 [8] during signing has been modified and—reflecting a
comment [7] on an earlier version of the specification [5]—the at the time of
writing latest specification [6] also makes use of a so-called semi-public key.

This contribution shows that SFLASHv3 is vulnerable to a so-called key
substitution attack, which can be of interest in multi-user settings (see [1, 2]):
Given a valid (message, signature) pair (m,σ) for a verification key v0, one
can efficiently derive another verification key v1 (along with a matching
secret key) such that (m,σ) is valid for v1, too. After recalling the basic
set-up of SFLASHv3 in the next section, we show that for this scheme the
computational effort needed for deriving such a ‘duplicate’ key is comparable
to the effort needed for creating an ‘ordinary’ key.
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2 Signing and verifying in SFLASHv3

For our purposes, it is not necessary to recall the detailed structure of
SFLASHv3, and we therefore give only a rough summary of the scheme;
a complete specification can be found in [6].

SFLASHv3 makes use of two fields along with corresponding bijections

• K := F2[X]/(X7 +X + 1) along with the bijection

π : {0, 1}7 −→ K

(b0, . . . , b6) 7−→
∑6

i=0 biX
i (mod X7 +X + 1)

• L := K[X]/(X67 +X5 +X2 +X + 1) along with the bijection

ϕ : K67 −→ L

(b0, . . . , b66) 7−→
∑66

i=0 biX
i (mod X67 +X5 +X2 +X + 1)

2.1 Secret and semi-public key

The non-public part of the key is comprised of three parts:

• ∆ ∈ {0, 1}80: a secret 80-bit string

• s = (SL, SC): an affine bijection K67 −→ K67 given by a secret 67×67
matrix SL ∈ K67×67 and a semi-public column vector SC ∈ K67

• t = (TL, TC): an affine bijection K67 −→ K67 given by a secret 67×67
matrix TL ∈ K67×67 and a semi-public column vector TC ∈ K67

For deriving the corresponding public key, the function

F : L −→ L

α 7−→ α12833+1

is used.

2.2 Public verification key

The public verification key is the function

G(x) = [(t ◦ ϕ−1 ◦ F ◦ ϕ ◦ s)(x)]0→7·56−1.

Here the notation [·]0→7·56−1 means that only the first 56 (out of 67) rows are
published,1 and ◦ denotes functional composition, i. e., (f ◦g)(x) := f(g(x)).

1As one K-element corresponds to 7 bits, [·]0→7·56−1 translates into selecting the first
56 K-elements.
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By construction, (Y0, . . . , Y55) = G(X0, . . . , X66) can be expressed in the
form

Y0 = P0(X0, . . . , X66)
...

Y55 = P55(X0, . . . , X66)

where each Pi is a polynomial of total degree ≤ 2 with coefficients in K.

2.3 Computing and verifying signatures

Essentially, to sign a bitstring m, the following steps are performed:

1. Without involving any secret or semi-public data, a 392-bit string V
is derived from m by means of SHA-1.

2. Via Y := (π([V ]0→6), π([V ]7→13), . . . , π([V ]385→391)) the bitstring V is
translated into a vector Y ∈ K56, where the notation [·]a→b is to be
understood as selecting the bits no. a–b.

3. Applying SHA-1 to the concatenation of V and ∆ followed by read-
ing off the first 77 bits of the hash value yields a bitstring W =
SHA-1(V ||∆). Via R := (π([V ]0→6), π([V ]7→13), . . . , π([V ]70→76)) this
bitstring is translated into an element R ∈ K11.

4. By means of the secret and semi-public data now the value

X := (s−1 ◦ ϕ−1 ◦ F−1 ◦ ϕ ◦ t−1)(Y ||R)

is computed, where (Y ||R) ∈ K67 denotes the concatenation of Y and
R. Translating the 67 entries of X into a bitstring by means of π−1

yields the final (469-bit) signature σ of m.

To verify a signature σ′ (of the correct length) of a bitstring m, one
uses π to translate σ′ into an element X ′ ∈ K67. Evaluating the 56 public
verification polynomials at X ′ yields an element Y ′ ∈ K56. If Y ′ coincides
with the value Y , that is derived from the bitstring m in the same manner
as in the first two steps of the signing procedure, then the signature σ is
accepted. Otherwise, σ is rejected.
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3 A key substitution attack

Let (m,σ) be an arbitrary valid (message, signature) pair computed with
some SFLASHv3 key. Then we can apply the following simple attack to
derive another key which also yields the signature σ for m—knowing the
‘original’ verification key is not necessary:

• First generate an arbitrary private key (SL, TL,∆) and an arbitrary
semi-public SC ∈ K67. Let s be the affine bijection defined through
SL and SC .

• Making use of ∆, now apply Step 1–3 of the signing procedure to the
message m. Let (Y ||R) ∈ K67 be the concatenation of the resulting
vectors Y and R.

• Next, as in the verification procedure, use π to translate the signature
σ ∈ {0, 1}469 into a vector X ∈ K67, and define

TC := (Y ||R)− TL · ((ϕ−1 ◦ F ◦ ϕ ◦ s)(X)) ∈ K67.

Denoting the affine bijection defined through TL and TC by t, by construction
we now have

(t ◦ ϕ−1 ◦ F ◦ ϕ ◦ s)(X) = (Y ||R).

In particular, (m,σ) is a valid (message, signature) pair for the public verifi-
cation key corresponding to the secret/semi-public data (s, t,∆). To derive
this public verification key from (s, t,∆) we can proceed as in the usual key
generation.

4 Conclusion

The above discussion shows that the current specification of SFLASHv3 does
not rule out a (practical) key substitution attack. Consequently, in multi-
user settings where such attacks are of concern SFLASHv3 should not be
used in the proposed form.
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