
Compressed Pairings

Michael Scott1? and Paulo S. L. M. Barreto2??

1 School of Computing
Dublin City University

Ballymun, Dublin 9, Ireland.
mike@computing.dcu.ie

2 Universidade de São Paulo, Escola Politécnica.
Av. Prof. Luciano Gualberto, tr. 3, 158.
BR 05508-900, São Paulo(SP), Brazil.

pbarreto@larc.usp.br

Abstract. Pairing-based cryptosystems rely on bilinear non-degenerate
maps called pairings, such as the Tate and Weil pairings defined over
certain elliptic curve groups. In this paper we show how to compress
pairing values, how to couple this technique with that of point compres-
sion, and how to benefit from the compressed representation to speed
up exponentiations involving pairing values, as required in many pairing
based protocols.
Keywords: pairing-based cryptosystem, efficient implementation.

1 Introduction

With the discovery of a viable identity-based encryption scheme based on the
Weil pairing [4], pairing-based cryptography has become of great interest to
cryptographers. Since then, pairing-based protocols – many with novel properties
– have been proposed for key exchange [25], digital signature [5], encryption [4],
and signcryption [23]. Although the Weil pairing was initially proposed as a
suitable construct for the realisation of such protocols, it is now accepted that
the Tate pairing is preferable for its greater efficiency. Supersingular elliptic
curves were originally proposed as a suitable setting for pairing-based schemes;
recent work has shown that certain ordinary curves are equally suitable, and
offer greater flexibility in the choice of security parameters [3, 21]. Fast computer
algorithms for the computation of the Tate pairing on both supersingular and
ordinary curves have been suggested in [1, 3, 9].

The Tate pairing calculation involves an application of Miller’s algorithm [19]
coupled to a final exponentiation to get a unique value. A typical protocol step
requires the calculation of a pairing value followed by a further exponentiation
of the result.

In this paper we explore the concept of compressed pairings, their efficient
computation, and the subsequent processing (typically exponentiation) of pairing
? Supported in part by Enterprise Ireland RIF grant IF/2002/0312/N

?? Co-sponsored by Scopus Tecnologia S. A.



values. Our main contribution is to show that one can effectively reduce the
bandwidth occupied by pairing values without impairing security nor processing
time; in some cases, one even obtains a 30%–40% speed enhancement. As a by-
product, our work gives further motivation for the approach Galbraith et al. [10],
who propose taking the trace of the pairing value to avoid loss of security.

This paper is organized as follows. Section 2 introduces basic mathemati-
cal concepts. Section 3 discusses laddering exponentiation of pairing values, and
introduces a laddering variant of the BKLS [1] algorithm to compute pairings.
Section 4 describes how to compress pairing values to half length, and establishes
a connection with the techniques of point compression and point reduction. Sec-
tion 5 defines a ternary exponentiation ladder for finite fields in characteristic 3.
Section 6 describes how to compress pairing values to one third of their length,
presents a more efficient and slightly simpler version of the Duursma-Lee algo-
rithm [8] that enables pairing computation in compressed form, and discusses
improved variants of point compression and point reduction in characteristic 3.
We summarise our work in section 7.

2 Mathematical Preliminaries

The theory behind elliptic curve cryptography is well documented in standard
texts. The reader is referred to [18] for more background.

Let p be a prime number, m a positive integer and Fpm the finite field with
pm − 1 elements; p is said to be the characteristic of Fp, and m is its extension
degree. Unless otherwise stated, we assume p 6= 2 throughout this paper.

Let q = pm. An elliptic curve E(Fq) is the set of solutions (x, y) over Fq to
an equation of form E : y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6, where ai ∈ Fq,
together with an additional point at infinity, denoted O. The same equation
defines curves over Fqk for k > 0 (although note that the ai remain in Fq). The
number of points of an elliptic curve E(Fqk), denoted #E(Fqk), is called the
order of the curve over the field Fqk .

An (additive) Abelian group structure is defined on E by the well known
secant-and-tangent method [24]. Let n = #E(Fqk). The order of a point P ∈ E
is the least nonzero integer r such that rP = O, where rP is the sum of r terms
equal to P . The order of a point divides the curve order. For a given integer r,
the set of all points P ∈ E such that rP = O is denoted E[r]. Commonly this
set forms a single cyclic group. However, multiple subgroups of prime order r
(where r2 - n) will exist with embedding degree k for some k > 0 if r | qk − 1
and r - qs − 1 for any 0 < s < k. It is in fact not difficult to find suitable curves
with this property for relatively small values of k as described in [2, 6, 7]. We are
interested here in curves where k is even, as this case facilitates fast calculation
of the Tate pairing [3].

For our purposes, a divisor is a formal sum A =
∑

P aP (P ) of points on
the curve E(Fqk). An Abelian group structure is defined on the set of divisors
by the addition of corresponding coefficients in their formal sums; in particular,
nA =

∑
P (n aP )(P ). The degree of a divisor A is the sum deg(A) =

∑
P aP .

2



Let f : E(Fqk)→ Fqk be a function on the curve and let deg(A) = 0. We define
f(A) ≡

∏
P f(P )aP . The divisor of a function f is (f) ≡

∑
P ordP (f)(P ). A

divisor A is called principal if A = (f) for some function (f). A divisor A is
principal if and only if deg(A) = 0 and

∑
P aP P = O [18, theorem 2.25]. Two

divisors A and B are equivalent, A ∼ B, if their difference A − B is a principal
divisor. Let P ∈ E(Fq)[r] where r is coprime to q, and let AP be a divisor
equivalent to (P )− (O); under these circumstances the divisor rAP is principal,
and hence there is a function fP such that (fP ) = rAP = r(P ) − r(O). The
(reduced) Tate pairing of order r is the map er : E(Fq)[r]×E(Fqk)→ F∗qk given

by er(P,Q) = fP (D)(q
k−1)/r for some divisor D ∼ (Q)− (O). The Tate pairing

is bilinear, and will be non-degenerate if Q is chosen from a coset containing
a point of order r which is linearly independent from P . The computation of
fP (D) is achieved by an application of Miller’s algorithm [19], whose output is
only defined up to an r-th power in F∗qk . The final exponentiation to the power of
(qk − 1)/r is needed to produce a unique result, and it also makes it possible to
compute fP (Q) rather than fP (D) [1]. Sometimes we will drop the r subscript
of the Tate pairing, writing simply e(P,Q).

2.1 Lucas sequences

Lucas sequences provide a relatively cheap way of implementing Fq2 exponentia-
tion in a subgroup whose order divides q+1. They have been extensively studied
in the literature, and a fast “laddering” algorithm for their computation has been
developed [14, 15, 28], using ideas originally develop by Montgomery to speed up
scalar multiplication on elliptic curves [22]. Lucas sequences have been suggested
as a suitable vehicle for certain public-key schemes [26]. The laddering algorithm
can in fact be used as an alternative to the standard square-and-multiply ap-
proach to exponentiation in any Abelian group, but it is particularly well-suited
for Lucas sequences and certain parameterisations of elliptic curves [15]. The
authors of [15] go on to emphasise that the laddering algorithm requires very
little memory, facilitates parallel computing, and has a natural resistance to
side-channel attacks when used in a cryptographic context.

The Lucas sequence consists of a pair of functions Uk(P,Q) and Vk(P,Q),
evaluating as elements of Fq. Commonly Q = 1, in which case we write simply
Uk(P ) and Vk(P ) or omit the arguments altogether. For this distinguished case
the sequences are defined as

U0 = 0, U1 = 1, Uk+1 = PUk − Uk−1

V0 = 2, V1 = P, Vk+1 = PVk − Vk−1

Only the Vk sequence needs to be explicitly evaluated, as we also have the
relationship

Uk = (PVk − 2Vk−1)/(P 2 − 4)

The fast laddering algorithm is described in Appendix A.

3



3 Exponentiating pairing values

We consider first the case of embedding degree k = 2 (although the following
discussion also covers the case k = 2d with the substitution q → qd).

We represent an element of the field Fq2 as x + iy, where x, y ∈ Fq, and
i2 = δ for some quadratic non-residue δ ∈ Fq. Assume in what follows that all
arithmetic is in the field Fq.

The final exponentiation in this case consists of a raising to the power of
(q − 1)(q + 1)/r. This can be considered in two parts – exponentiation to the
power of q − 1 followed by exponentiation to the power of (q + 1)/r. Now if the
output of Miller’s algorithm is x + iy ∈ Fq2 , then

(x + iy)q−1 = (x + iy)q/(x + iy) = (x− iy)/(x + iy)

which is obviously much quicker than the standard square-and-multiply algo-
rithm. The element a + ib ≡ (x + iy)q−1 calculated in this fashion has the
property:

a2 − δb2 = 1 (1)

where a2−δb2 is called the norm of a+ib; this property, easily verified by simple
substitution, is maintained under any subsequent exponentiation. An element of
this form in Fq2 is called unitary [12]. Also observe that (a + ib)−1 = (a − ib)
for a unitary element. In fact, any element of Fq2 whose order divides q + 1 will
have this property.

A unitary element can obviously be determined up to the sign of b from a
alone, using equation 1. And this is our first observation - the output of the Tate
algorithm contains some considerable redundancy. It could be represented by a
single element of Fq and a single bit to represent the sign of b, rather than as a
full element of Fq2 .

One can efficiently raise a unitary element of Fq2 to a power m by means of
Lucas sequences. This is a consequence of the observation that

(a + bi)m = Vm(2a)/2 + Um(2a)bi,

as one can verify by induction. As pointed out above, only Vm(2a) needs to be
explicitly calculated.

If M is a multiplication and S a squaring in Fq, then the computational cost
of this method to compute (a+ bi)m is therefore 1M +1S per step, where a step
involves the processing associated with a single bit of m. The conventional binary
exponentiation algorithm for non-special numbers in Fq2 takes 1 squaring and
about 1/2 multiplication in Fq2 for an overall cost of 2S+1M and roughly 3M/2
multiplications in Fq per step. If δ = −1, then this can be reduced to 2M plus
3M/2 multiplications in Fq per step3. Thus the improved algorithm costs about
60% as much as the basic binary square-and-multiply method. When memory
is not an issue the binary algorithm can be implemented by using windowing
3 If a+bi is unitary and δ = −1, one can compute (a+bi)2 as (2a2−1)+[(a+b)2−1]i,

and (a+ bi)(c+di) as (u−v)+(w−u−v)i where u = ac, v = bd, w = (a+ b)(c+d).

4



techniques, as described in [11]. However the laddering algorithm proposed here
for unitary elements will always be faster than a conventional binary algorithm
for a general element in Fq2 .

Note that this improvement is relevant not only for the second part of the
final exponentiation of the Tate pairing, but for any exponentiation directly
involving pairing values, as happens in many pairing-based protocols [4, 13, 23].

3.1 A laddering pairing algorithm

For U, V ∈ E(Fq), define gU,V to the line through U and V . For all a, b ∈ Z, the
line function satisfies (gaP,bP ) = (aP ) + (bP ) + (−[a + b]P )− 3(O).

Let P ∈ E(Fq), and for c ∈ Z let fc be a function with divisor (fc) =
c(P ) − (cP ) − (c − 1)(O). One can show that fa+b(D) = fa(D) · fb(D) ·
gaP,bP (D)/g[a+b]P,−[a+b]P (D) up to a constant nonzero factor. This is called
Miller’s formula. In the computation of the Tate pairing er(P,Q), this formula
can be simplified to fa+b(Q) = fa(Q) · fb(Q) · gaP,bP (Q).

Let (rt, . . . , r0)2 be the binary representation of r. By coupling Miller’s simpli-
fied formula with Montgomery’s scalar multiplication ladder, we get a laddering
version of the BKLS algorithm [1] to compute er(P,Q):

Laddering BKLS algorithm to compute er(P,Q):

v0 ← 1, v1 ← 1
R0 ← O, R1 ← P
for i← t− 1 downto 0 do

if ri = 0 then
v0 ← v2

0 · gR0,R0(Q), R1 ← R0 + R1

R0 ← 2R0, v1 ← v0 · gR0,P (Q)
else

v1 ← v2
1 · gR1,R1(Q), R0 ← R0 + R1

R1 ← 2R1, v0 ← v1 · gR1,−P (Q)
end if

end for

return v
(qk−1)/r
0

4 Compressing pairings to half length

Instead of keeping the full a+bi value of the Tate Pairing, it may be possible for
cryptographic purposes to discard b altogether, leaving the values defined only
up to complex conjugation, which means one of the pairing arguments will only
be defined up to a sign:

e(P,Q) = a + bi⇒ a− bi = (a + bi)−1 = e(P,Q)−1 = e(P,−Q).

This is similar to the point reduction technique, whereby instead of keeping
Q = (x, y) one only keeps the abscissa x.

5



Definition 1. The Fq-trace of an element u ∈ Fq2 is the sum of the conjugates
of u, tr(u) = u + uq.

Notice that tr(a + ib) = (a + ib) + (a − ib) = 2a, in effect discarding the
imaginary part. We define the compressed Tate pairing ε(P,Q) as tr(e(P,Q)).

4.1 Point reduction

Point reduction is an optimization technique introduced by V. Miller in 1985 [20].
It consists of basing cryptographic protocols solely on the x coordinate of the
points involved rather than using both coordinates. This setting is possible be-
cause the x coordinate of any multiple of a given point P depends only on the x
coordinate of P . A related but less efficient technique is that of point compres-
sion, which consists of keeping not only the x coordinate but also a single bit β
from the y coordinate to choose between the two roots y± = ±

√
x3 + ax + b.

Some pairing-based cryptosystems have been originally defined to take profit
from point reduction. An example is the BLS signature scheme [5], where the
signature of a message represented by a curve point M under the signing key s is
the x coordinate σ of the point S = sM . This means that, implicitly, the actual
signature is ±S rather than S alone. To verify a BLS signature, the verifier checks
whether e(M,V ) = e(±S, Q), where the verification key is V = sQ. Incidentally,
the verification key itself can be reduced to its x coordinate (say, ξ), even though
this possibility does not seem to have been considered by the authors of BLS.

4.2 Coupling point reduction with compressed pairings

Verifying a BLS signature involves computing a point V ∈ {V,−V } from ξ,
a point S′ ∈ {S,−S} from σ and checking whether er(M,V ′) = e(S′, Q) or
e(M,V ′) = e(S′, Q)−1. Using the property that any pairing value z is unitary
(and hence z−1 = z), one can simply check whether tr(e(M,V ′)) = tr(e(S′, Q)).
This is especially interesting, since a compressed pairing ε(P,Q) is precisely
tr(e(±P,±Q)).

An important aside is that exponentiation of compressed pairings must take
into account the fact that they are actually traces of full pairings. This means
one cannot exponentiate a pairing as if it were a simple Fqk/2 value; rather, one
must always handle it as a Lucas sequence element.

5 A ternary exponentiation ladder

Supersingular curves in characteristic 3 are a popular choice of underlying al-
gebraic structure for pairing-based cryptosystems, since many optimisations are
possible in such a setting [1, 8, 9]. Pairing compression is possible for those sys-
tems, and we now propose a ternary ladder for Lucas sequences in characteristic 3
that keeps the exponentiation cost in Fqk within about 33% of the exponentiation
cost in Fqk/2 .

6



Assume the sequence element index is written in signed ternary notation,
K = (dt−1, . . . , d0)3̄, with dt−1 = 1. At step j (counting downwards from t − 1
to 0), we want to compute VKj

where Kj =
∑t−1

i=j di3i. Thus, by definition,
Kj = 3Kj+1 + di.

For dj = −1, we write down the formulas to compute V3Kj+1−2, V3Kj+1−1,
and V3Kj+1 :

V3Kj+1 = V 3
Kj+1

V3Kj+1−1 = PV3Kj+1−2 − V 3
Kj+1−1

V3Kj+1−2 = PV3Kj+1−1 − V 3
Kj+1

Similarly, for dj = 1 we write down the formulas to compute V3Kj+1 ,
V3Kj+1+1, and V3Kj+1+2:

V3Kj+1 = V 3
Kj+1

V3Kj+1+1 = PV3Kj+1+2 − V 3
Kj+1+1

V3Kj+1+2 = PV3Kj+1+1 − V 3
Kj+1

In each case, the second and third relations constitute a simple linear system.
Solving them, we get these expressions for V3Kj+1−1, V3Kj+1 , and V3Kj+1+1:

V3Kj+1−1 = (P 2 − 1)−1(PV 3
Kj+1

+ V 3
Kj+1−1)

= (P 2 − 1)−1[PV 3
Kj+1

+ (PVKj+1 − VKj+1+1)3]

= (P 2 − 1)−1[(P + P 3)V 3
Kj+1

− V 3
Kj+1+1]

V3Kj+1 = V 3
Kj+1

V3Kj+1+1 = (P 2 − 1)−1(PV 3
Kj+1

+ V 3
Kj+1+1)

= (P 2 − 1)−1[PV 3
Kj+1

+ (PVKj+1 − VKj+1−1)3]

= (P 2 − 1)−1[(P + P 3)V 3
Kj+1

− V 3
Kj+1−1]

If (P 2 − 1)−1 and P + P 3 are precomputed, computing V3Kj+1 and one of
V3Kj+1−1 or V3Kj+1+1 involves two products and two cubes, and the computation
can be carried out using only VKj+1 and one of VKj+1−1 or VKj+1+1. We can
therefore keep track of which value between these two actually accompanies
VKj+1 , and compute VKj

and VKj+1 at the cost of only 2 products and two
cubes per step. Besides, since we are working in characteristic 3, the cost of
cubing is negligible compared to the cost of multiplying.

The binary ladder computes VKj and VKj+1 at the cost of one square and one
product, or about 1.8 product, per step. However, the step count of the ternary
ladder is only about 1/ lg(3) of its binary counterpart, and hence its total cost
is about 70% of the binary ladder. We point out that the ternary ladder can be
used for plain exponentiation in characteristic 3 as an independent technique,
even in contexts where compressed pairings are not desired or not an option.

A detailed ternary ladder algorithm is described in Appendix A.

7



6 Compressing pairings to a third of their length

Definition 2. The Fq2-trace of an element f ∈ Fq6 is the value tr(f) = f +
fq2

+ fq4 ∈ Fq2 .

When the elliptic curve has an embedding degree k = 6, the Tate pairing
algorithm outputs an element of Fq6 of order r, where r divides q6 − 1, but not
qi − 1 for 0 < i < 6. Now q6 − 1 = Φ1(q)Φ2(q)Φ3(q)Φ6(q). Therefore the output
of the Tate pairing is an element of order r which divides Φ6(q) = q2 − q + 1.
For q ≡ 2 (mod 3), these are precisely the type of points considered in the
XTR public key scheme [16], and all of the time/space optimizations that have
been developed for this scheme [16, 27] apply here as well. In particular, we
note that laddering algorithms again appear to be optimal [27], and the Tate
pairing output can be represented by its Fq2-trace, and hence compressed by a
factor of 3. Observe that the compressed value, being a trace, must be implicitly
exponentiated using the Lenstra-Verheul algorithm [16, Algorithm 2.3.7] – the
trace value per se is not even a point of order r.

For supersingular curves in characteristic 3 we can do better than merely
take the trace – rather, it is possible to do all computations without resorting to
arithmetic any more complex than that on Fq2 and implicit trace exponentiation.

6.1 Simpler arithmetic for pairing computation in characteristic 3

Let q = 3m for some odd m, let b = ±1, and let σ, ρ ∈ Fq6 be elements satisfying
σ2 + 1 = 0 and ρ3 − ρ − b = 0. The modified Tate pairing on the supersingular
curve E(F3m) : y2 = x3 − x + b is the mapping fP (φ(Q))(q

6−1)/r where φ :
E(Fq)→ E(Fq6) is the distortion map φ(x, y) = (ρ− x, σy).

Duursma and Lee showed [8, Theorem 5] that the modified Tate pairing for
points P = (α, β) and Q = (x, y) can be written as a product of factors of form
g = βyσ̄− (α +x− ρ+ b)2. This expression can be rewritten as g = λ−µρ− ρ2,
where µ ≡ α+x+b ∈ Fq and λ ≡ βyσ̄−µ2 ∈ Fq2 . Specifically, the Duursma-Lee
algorithm to compute fP (φ(Q)) is as follows (cf. [8, Algorithm 4]):

Duursma-Lee algorithm to compute fP (φ(Q)):

f ← 1
for i← 1 to m do

α← α3, β ← β3

µ← α + x + b, λ← βyσ̄ − µ2

g ← λ− µρ− ρ2, f ← f · g
x← x1/3, y ← y1/3

end for
return f

The output is an element f ∈ Fq6 . We now show that this algorithm can
be modified to compute tr(f) instead, by maintaining a ladder of three values

8



[tr(f), tr(fρ), tr(fρ2)]. Since f is initialized to 1, the initial ladder can be com-
puted from ρ alone, namely, [tr(1), tr(ρ), tr(ρ2)] = [0, 0, (2m2) mod 3], as one
readily deduces from the definition of ρ:

Theorem 1. Let q = 3m for some m, and let ρ ∈ Fq6 satisfy ρ3 − ρ − b = 0.
Then tr(ρ) = 0 and tr(ρ2) = (2m2) mod 3.

Proof. From ρ3 = ρ + b it follows by induction that ρ3n

= ρ + (n mod 3)b, and
hence ρq2

= ρ32m

= ρ+(2m mod 3)b and ρq4
= ρ34m

= ρ+(4m mod 3)b, so that
tr(ρ) = ρ+ρq2

+ρq4
= ρ+ρ+(2m mod 3)b+ρ+(4m mod 3)b = (6m mod 3)b = 0.

Moreover, (ρ2)3
n

= (ρ3n

)2 = (ρ+(n mod 3)b)2 = ρ2−(n mod 3)bρ+(n mod 3)2,
so that tr(ρ2) = ρ2+(ρ2)q2

+(ρ2)q4
= ρ2+ρ2−(2m mod 3)bρ+(2m mod 3)2+ρ2−

(4m mod 3)bρ+(4m mod 3)2 = −(6m mod 3)bρ+(2m mod 3)2+(4m mod 3)2 =
(2m mod 3)2 + (4m mod 3)2 = (2m2) mod 3. ut

Notice that, if 3 - m (which happens most of the time, since m is usually prime),
this simplifies to [tr(1), tr(ρ), tr(ρ2)] = [0, 0, 2].

At each step of the loop, we compute [tr(fg), tr(fgρ), tr(fgρ2)] according to
the following theorem:

Theorem 2. tr(fg)
tr(fgρ)
tr(fgρ2)

 = A ·

 tr(f)
tr(fρ)
tr(fρ2)

 , where A ≡

 λ −µ −1
−b (λ− 1) −µ
−bµ −(µ + b) (λ− 1)

 ·
Proof. Using the Fq2-linearity of the trace and the defining property ρ3 = ρ + b,
we have fg = f(λ−µρ−ρ2) =⇒ tr(fg) = λ tr(f)−µ tr(fρ)−tr(fρ2). Similarly,
fgρ = f(λ − µρ − ρ2)ρ = λfρ − µfρ2 − fρ − bf =⇒ tr(fgρ) = −b tr(f) +
(λ− 1) tr(fρ)− µ tr(fρ2). Finally, fgρ2 = −bfρ + (λ− 1)fρ2 − µfρ− µbf =⇒
tr(fgρ2) = −µb tr(f)− (µ + b) tr(fρ) + (λ− 1) tr(fρ2). ut

Therefore, defining L ≡ [L0, L1, L2]T = [tr(f), tr(fρ), tr(fρ2)]T and using
the matrix A defined above, the modified algorithm to compute implicit pairings
reads:

A laddering algorithm to compute tr(fP (φ(Q))):

L← [0, 0, (2m2) mod 3] // this is simply [tr(1), tr(ρ), tr(ρ2)]
for i← 1 to m do

α← α3, β ← β3

µ← α + x + b, λ← βyσ̄ − µ2

L← A · L
x← x1/3, y ← y1/3

end for
return L0

Each step of this algorithm takes 17 Fq multiplications. This compares well
with the original Duursma-Lee algorithm where each step takes 20 Fq multipli-
cations, and completely avoids Fq6 arithmetic.

9



6.2 Implicit exponentiation in characteristic 3

To obtain a unique pairing value from the output of the implicit pairing algo-
rithm, we must replace the final exponentiation fP (φ(Q))(q

6−1)/r by an implicit
exponentiation tr(fP (φ(Q))(q

6−1)/r). It is also quite commonplace that the pair-
ing value undergoes further exponentiation as dictated by the underlying cryp-
tographic protocol. We are thus confronted with the task of computing tr(gm)
given the value of tr(g). The Lenstra-Verheul algorithm [16, Algorithm 2.3.7]
performs this task, but demands that the characteristic be p ≡ 2 (mod 3). We
now describe a variant that works in characteristic 3.

Let c ∈ Fq2 , and let F (c,X) ≡ X3 − cX2 + cqX − 1 ∈ Fq2 [X] with roots
h0, h1, h2 ∈ Fq6 . One can show4 [16, Lemma 2.2.1] that, if g ∈ Fq6 is an element
of order dividing Φ6(q) = q2 − q + 1, then the roots of F (tr(g), X) are the
Fq2-conjugates of g.

Defining cn ≡ hn
0 +hn

1 +hn
2 , one can further show [16, Lemmas 2.3.2 and 2.3.4]

that c−n = cq
n and cu+v = cucv − cq

vcu−v + cu−2v. From these properties, one
easily deduces the following relations in characteristic 3:

c2n = c2
n + cq

n

c3n = c3
n

c3n−1 = c2n · cn−1 − cq
n−1 · cn+1 + c2

c3n−2 = c−q · (cn−1 − cn)3 + c1−q · c3n−1

c3n+1 = c2n · cn+1 − cq
n+1 · cn−1 + cq

2

c3n+2 = c−1 · (cn+1 − cn)3 + cq−1 · c3n+1

Computing c2n takes two Fq multiplications, c3n±1 takes four Fq multiplications,
and c3n±2 takes six Fq multiplications.

Define Ln(c) ≡ 〈c3n, c3n+1, c3n+2, c3n+3〉 ∈ (Fq2)3. Using the above formulas,
one can compute any one of L3n(c), L3n+1(c), or L3n+2(c) from Ln(c) at the
cost of 12 Fq multiplications:

L3n = 〈c9n, c9n+1, c9n+2, c9n+3〉 = 〈c3(3n), c3(3n+1)−2, c3(3n+1)−1, c3(3n+1)〉
L3n+1 = 〈c9n+3, c9n+4, c9n+5, c9n+6〉 = 〈c3(3n+1), c3(3n+1)+1, c3(3n+2)−1, c3(3n+2)〉
L3n+2 = 〈c9n+6, c9n+7, c9n+8, c9n+9〉 = 〈c3(3n+2), c3(3n+2)+1, c3(3n+2)+2, c3(3n+3)〉

From the definition of cn, it is clear that cn = tr(gn) if c = tr(g). Hence,
if Lbn/3c(tr(g)) = 〈S0, S1, S2, S3〉, then tr(gn) = Sn mod 3. The total cost of
this algorithm, about 7.6 lg n Fq multiplications, matches the complexity of the
ternary ladder introduced in section 5 for Fq3-trace exponentiation. Appendix B
lists this algorithm in detail. We point out that this ternary ladder can also be
the basis of a characteristic 3 variant of the XTR cryptosystem.

4 The proofs of [16, lemmas 2.2.1, 2.3.2, and 2.3.4] are independent of the field char-
acteristic.

10



6.3 Coupling pairing compression with point reduction

A nice feature of this algorithm is that it is compatible with a variant of the
point reduction technique.

The conventional approach to compress a point R = (u, v) is to keep only u
and a single bit of v; point reduction discards v altogether. In characteristic 3, it
is more advantageous to discard u instead, keeping v and a trit of u to distinguish
among the solutions of the curve equation u3 − u + (b − v2) = 0; alternatively,
one can reduce R by keeping only v and modifying the cryptographic protocols
to allow for any of the three points R0, R1, and R2 that share the same v. Thus,
we will show that the input to the laddering algorithm of section 6.1 can be only
y (or β); the corresponding x (or α) can be easily recovered except for a trit,
and the actual choice of this trit does not affect the compressed pairing value.

Let z ∈ Fq6 where q = 3m for odd m, and assume the order r of z divides
Φ6(q), i.e. r | q2 − q + 1. The conjugates of z are z, zq2

, and zq4
, or equivalently

z, zq−1, and z−q, since q2 ≡ q − 1 (mod r) and q4 ≡ −q (mod r). The trace
of z is the sum of the conjugates, tr(z) = z + zq−1 + z−q [16]. Consider the
supersingular elliptic curve E : y2 = x3 − x + b, b ∈ {−1, 1}, whose order is [18,
section 5.2.2] n = q + 1 − t = 3m + 1 ± 3(m+1)/2, where t = ±3(m+1)/2 is the
trace of the Frobenius.

Let P = (x, y) ∈ E(Fq), and let Q ∈ E(Fq6) be a linearly independent
point. The conjugates of e(P,Q) are e(P,Q), e(P,Q)q−1 = e([q − 1]P,Q), and
e(P,Q)−q = e(−qP,Q). The following property holds:

Lemma 1. If P ∈ E[r], points P , [q − 1]P , and −qP share precisely the same
y coordinate.

Proof. Let P = (x, y). A simple inspection of the group law for characteristic 3 [1]
reveals that 3P = (x9− b, −y9), and hence 3jP = (x9j − (j mod 3)b, (−1)jy9j

),
where we take the (j mod 3) factor to be an element of F3. Thus [q−1]P = q2P =
32mP = (x92m − (2m mod 3)b, (−1)2my92m

) = (x34m

+ (m mod 3)b, y34m

) =
(x + (m mod 3)b, y), where we used the fact that u3m

= u for any u ∈ F3m .
Similarly, −qP = q2(q2P ) = q2(x + (m mod 3)b, y) = (x− (m mod 3)b, y). ut

We see that, for m 6≡ 0 (mod 3), the x coordinates of P , [q − 1]P , and −qP
are the three solutions to x3−x+(1−y2) = 0, which are exactly {x, x+1, x+2}.
Obviously, the traces of the pairings computed from the conjugates of P are all
equal, since tr(e(P,Q)) is simply the sum of the conjugates of e(P,Q). Thus,
the actual solution x to the curve equation above used to compute tr(e(P,Q)) is
irrelevant. Also, computing x from y is very efficient, since it amounts to solving
a linear system (see appendix C).

7 Conclusions

We have introduced the notion of compressed pairings, and suggested how they
can be realised as traces of ordinary Tate pairings. We also described how com-
pressed pairings can be computed and implicitly exponentiated by means of

11



laddering algorithms, with a compression ratio of 1/2 in characteristic p > 3
and 1/3 in characteristic 3; our algorithms thus reduce bandwidth requirements
without impairing performance. Finally, we showed how to couple compressed
pairings with the technique of point compression or point reduction. As a side
result, we proposed an efficient laddering algorithm for plain exponentitation in
characteristic 3, which can be used even in contexts where compressed pairings
are not desired.

Our work constitutes evidence that the security of pairing-based cryptosys-
tems is linked to the security of the Lucas/XTR schemes, and gives further
motivation for the approach of Galbraith et al. regarding the use of traces to
prevent security losses.

We leave it as an open problem to find a method to compute pairings directly
in compressed form when the compression ratio is 1/3 or better on ordinary
(non-supersingular) curves in characteristic p > 3.

8 Acknowledgements

We are grateful to Steven Galbraith and Waldyr Benits Jr. for their valuable
comments during the preparation of this work.

12



References

1. P. S. L. M. Barreto, H.Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for
pairing-based cryptosystems. In Advances in Cryptology – Crypto’2002, volume
2442 of Lecture Notes in Computer Science, pages 354–368. Springer-Verlag, 2002.

2. P. S. L. M. Barreto, B. Lynn, and M. Scott. Constructing elliptic curves with pre-
scribed embedding degrees. In Security in Communication Networks – SCN’2002,
volume 2576 of Lecture Notes in Computer Science, pages 263–273. Springer-
Verlag, 2002.

3. P. S. L. M. Barreto, B. Lynn, and M. Scott. On the selection of pairing-friendly
groups. In Selected Areas in Cryptography – SAC 2003, 2003. to appear.

4. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM
Journal of Computing, 32(3):586–615, 2003.

5. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In
Advances in Cryptology – Asiacrypt’2001, volume 2248 of Lecture Notes in Com-
puter Science, pages 514–532. Springer-Verlag, 2002.

6. F. Brezing and A. Weng. Elliptic curves suitable for pairing based cryptog-
raphy. Cryptology ePrint Archive, Report 2003/143, 2003. Available from
http://eprint.iacr.org/2003/143.

7. R. Dupont, A. Enge, and F. Morain. Building curves with arbitrary small MOV
degree over finite prime fields. Cryptology ePrint Archive, Report 2002/094, 2002.
Available from http://eprint.iacr.org/2002/094.

8. I. Duursma and H.-S. Lee. Tate pairing implementation for hyperelliptic curves
y2 = xp − x + d. In Advances in Cryptology – Asiacrypt’2003, volume 2894 of
Lecture Notes in Computer Science, pages 111–123. Springer-Verlag, 2003.

9. S. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing. In
Algorithm Number Theory Symposium – ANTS V, volume 2369 of Lecture Notes
in Computer Science, pages 324–337. Springer-Verlag, 2002.

10. S. Galbraith, H. Hopkins, and I. Shparlinski. Secure bilinear diffie-hellman
bits. Cryptology ePrint Archive, Report 2002/155, 2002. Available from http:

//eprint.iacr.org/2002/155.

11. D. Gordon. A survey of fast exponentiation methods. Journal of Algorithms,
27:129–146, 2002.

12. K. Hoffman and R. Kunze. Linear Algebra. Prentice Hall, New Jersey, USA, 2nd
edition, 1971.

13. A. Joux. A one-round protocol for tripartite Diffie-Hellman. In Algorithm Num-
ber Theory Symposium – ANTS IV, volume 1838 of Lecture Notes in Computer
Science, pages 385–394, Berlin, Germany, 2000. Springer-Verlag.

14. M. Joye and J. J. Quisquater. Efficient computation of full Lucas sequences. Elec-
tronics Letters, 32(6):537–538, 1996.

15. M. Joye and S. Yen. The montgomery powering ladder. In Cryptographic Hardware
and Embedded Systems - CHES’2002, volume 2523 of Lecture Notes in Computer
Science, pages 291–302, Berlin, Germany, 2003. Springer-Verlag.

16. A. K. Lenstra and E. R. Verheul. The xtr public key system. In Advances in
Cryptology – Crypto’2000, volume 1880 of Lecture Notes in Computer Science,
pages 1–19. Springer-Verlag, 2000.

17. R. Lidl and H. Niederreiter. Finite Fields. Number 20 in Encyclopedia of Math-
ematics and its Applications. Cambridge University Press, Cambridge, UK, 2nd
edition, 1997.

13



18. A. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publish-
ers, 1993.

19. V. S. Miller. Short programs for functions on curves. Unpublished manuscript,
1986. Available from http://crypto.stanford.edu/miller/miller.pdf.

20. V. S. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology
– Crypto’85, volume 218 of Lecture Notes in Computer Science, pages 417–426,
Santa Barbara, USA, 1986. Springer-Verlag.

21. A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of elliptic curve
traces for FR-reduction. IEICE Transactions on Fundamentals, E84-A(5):1234–
1243, 2001.

22. P. L. Montgomery. Speeding the pollard and elliptic curve methods of factorization.
Mathematics of Computation, 48(177):243–264, 1987.

23. D. Nalla and K. C. Reddy. Signcryption scheme for identity-based cryptosys-
tems. Cryptology ePrint Archive, Report 2003/066, 2002. Available from http:

//eprint.iacr.org/2003/066.
24. J.H. Silverman. The Arithmetic of Elliptic Curves. Number 106 in Graduate Texts

in Mathematics. Springer-Verlag, Berlin, 1986.
25. N. P. Smart. An identity based authenticated key agreement protocol based on

the weil pairing. Electronics Letters, 38:630–632, 2002.
26. P. J. Smith. LUC public-key encryption: A secure alternative to RSA. Dr. Dobbs

Journal, 18(1):44–49,90–92, 1993.
27. M. Stam and A. K. Lenstra. Speeding up XTR. In Advances in Cryptology –

Asiacrypt’2001, volume 2248 of Lecture Notes in Computer Science, pages 125–
143. Springer-Verlag, 2001.

28. S. M. Yen and C. S. Laih. Fast algorithms for LUC digital signature computation.
IEE Proceedings on Computers and Digital Techniques, 142(2):165–169, 1995.

14



A Computation of Lucas sequence elements

The Lucas sequence Vn(P, 1) is defined by the following recurrence relations:

V0 = 2, V1 = P, Vn+1 = PVn − Vn−1.

Let n = (nt . . . n0)2 be an integer in binary representation, with nt = 1. The
Lucas sequence element Vn(P, 1) can be computed as:

v0 ← 2, v1 ← P
for j ← t downto 0 do

if nj = 1 then
v0 ← v0v1 − P , v1 ← v2

1 − 2
else

v1 ← v0v1 − P , v0 ← v2
0 − 2

end if
end for
return v0

Let n = (nt . . . n0)3̄ be the signed ternary representation of n > 0. The
Lucas sequence element Vn(P, 1) in characteristic 3 (as needed for the implicit
exponentiation of Fq3-traces of Fq6 values) can be computed using the following
algorithm:

µ← (P 2 − 1)−1, T ← P + P 3

v0 ← 2, v1 ← P , up ← true
for j ← t downto 0 do

w ← v3
0

if nj = −1 then
v0 ← if up then µ(Tw − v3

1) else µ(Pw + v3
1)

v1 ← w
up ← true

else if nj = 1 then
v0 ← if up then µ(Pw + v3

1) else µ(Tw − v3
1)

v1 ← w
up ← false

else /* nj = 0 */
v1 ← if up then µ(Pw + v3

1) else µ(Tw − v3
1)

v0 ← w
up ← true

end if
end for
return v0

15



B Implicit exponentiation of Fqk/3-traces

Let n = (nt . . . n0)3 be the plain ternary representation of n > 0. The following
algorithm computes the Fq2-trace cn ≡ tr(gn) of an element g ∈ Fq6 from its
Fq2-trace c ≡ tr(g).

c−1 ← cq · (cq · c)−1 // N.B. (cq · c) ∈ Fq

cq−1 ← cq · c−1, c−q ← (c−1)q, c1−q ← (cq−1)q, c2 ← c2 + cq

S0 ← 0, S1 ← c, S2 ← c2, S3 ← c3

for j ← t downto 0 do
if nj = 0 then

S′
3 ← S3

1

S′
2 ← (S2

1 + Sq
1) · S0 − Sq

0 · S2 + c2

S′
1 ← c−q · (S0 − S1)3 + c1−q · S′

2

S′
0 ← S3

0

else if nj = 1 then
s1 ← S1

s2 ← S2

S′
1 ← (s2

1 + sq
1) · s2 − sq

2 · S0 + cq
2

S′
0 ← s3

1

S′
2 ← (s2

2 + sq
2) · s1 − sq

1 · S3 + c2

S′
3 ← s3

2

else /* nj = 2 */
S′

0 ← S3
2

S′
1 ← (S2

2 + Sq
2) · S3 − Sq

3 · S1 + cq
2

S′
2 ← c−1 · (S3 − S2)3 + c1−q · S′

1

S′
3 ← S3

3

end if
end for
return Sn mod 3

C Solving the curve equation in characteristic 3

Definition 3. The absolute trace of a field element a ∈ F3m is the linear form:

tr(a) = a + a3 + a9 + · · ·+ a3m−1
.

The absolute trace will always be in F3 as one can easily check by noticing
from the above definition that tr(a)3 = tr(a), for all a ∈ F3m . Being surjective
and linear over F3, it can always be represented as a (usually sparse) dual vector
T ∈ F3m in a given basis, so that one can compute tr(u) = T ·u in no more than
O(m) time. In a normal basis {θ3i} with tr(θ) = 1, computing tr(u) amounts to
summing up all coefficients of u.

The coordinates of a curve point P = (x, y) are constrained by the curve
equation to satisfy y2 = x3+ax+b. Thus one can represent a point as either (x, β)

16



where β ∈ F2 indicates which of the two roots correspond to y = ±
√

x3 + ax + b,
or else by (τ, y) where τ ∈ F3 indicates which of the three solutions one has to
take of the equation x3 +ax+(b− y2) = 0. In characteristic 3, cubing is a linear
operation, which makes the second possibility more advantageous.

Consider the special equation x3 − x − u = 0 for a given u ∈ F3m , which is
relevant for supersingular curves in characteristic 3. This equation has a solution
if, and only if, tr(u) = 0 [17, theorem 2.25]. This is the case for 1/3 of the elements
in F3m , since the trace function is linear and surjective. The complexity of solving
the cubic equation is only O(m2), as we show now.

Let C : F3m → F3m be defined by C(x) = x3 − x. The kernel of C is F3 [17,
chapter 2,section 1], hence the rank of C is m− 1 [12, section 3.1, theorem 2].

Theorem 3. The equation x3 − x − u = 0 over F3m can be solved in O(m2)
steps.

Proof. If F3m is represented in standard polynomial basis, the cubic equation
reduces to a system of linear equations with coefficients in F3, and can be solved
in no more than O(m2) steps. This is achieved by first checking whether the
system has solutions, i.e. whether tr(u) = 0. If so, since the rank of C is m − 1
one obtains an invertible (m− 1)× (m− 1) matrix A by leaving out the one row
and correspondingly one column of the matrix representation of C on the given
basis. A solution of the cubic equation is then given by an arbitrary element
x0 ∈ F3 and by the solution of system Ax̃ = ũ, which is obtained as x̃ = A−1ũ
in O(m2) time.

Using a normal basis to represent field elements, it is not difficult to see
that the cubic equation can be efficiently solved in O(m) time by the following
algorithm (the proof is straightforward and left as an exercise):

Cubic equation solving in normal basis:

x0 ← root selector (an arbitrary element from F3)
for i← 1 to m− 1 do {

xi ← xi−1 − ui

}
x is a solution if, and only if, xm−1 = x0 + u0.

ut

17


