
On the Composition of Authenticated Byzantine Agreement∗

Yehuda Lindell† Anna Lysyanskaya‡ Tal Rabin§

July 28, 2004

Abstract

A fundamental problem of distributed computing is that of simulating a secure broadcast
channel, within the setting of a point-to-point network. This problem is known as Byzantine
Agreement (or Generals) and has been the focus of much research. Lamport et al. showed
that in order to achieve Byzantine Agreement in the standard model, more than 2/3 of the
participating parties must be honest. They further showed that by augmenting the network
with a public-key infrastructure for digital signatures, it is possible to obtain protocols that are
secure for any number of corrupted parties. The problem in this augmented model is called
“authenticated Byzantine Agreement”.

In this paper we consider the question of concurrent, parallel and sequential composition
of authenticated Byzantine Agreement protocols. We present surprising impossibility results
showing that:

1. If an authenticated Byzantine Agreement protocol remains secure under parallel or con-
current composition (even for just two executions), then more than 2/3 of the participating
parties must be honest.

2. Deterministic authenticated Byzantine Agreement protocols that run for r rounds and
tolerate 1/3 or more corrupted parties, can remain secure for at most 2r−1 sequential
executions.

In contrast, we present randomized protocols for authenticated Byzantine Agreement that re-
main secure under sequential composition, for any polynomial number of executions. We exhibit
two such protocols. In the first protocol, the number of corrupted parties may be any number
less than 1/2 (i.e., an honest majority is required). In the second protocol, any number of parties
may be corrupted; however, the overall number of parties must be limited to O(log k/ log log k),
where k is the security parameter (and so all parties run in time that is polynomial in k). Fi-
nally, we show that when the model is further augmented so that unique and common session
identifiers are assigned to each concurrent session, then any polynomial number of authenticated
Byzantine agreement protocols can be concurrently executed, while tolerating any number of
corrupted parties.

Keywords: Authenticated Byzantine Agreement, protocol composition, lower bounds, random-
ized protocols.

∗A preliminary version of this paper appeared in [22].
†IBM T.J.Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA. email: lindell@us.ibm.com.
‡Brown University, Box 1910, Providence, RI 02912. email: anna@cs.brown.edu. This work was carried out while

the author was visiting IBM T.J.Watson.
§IBM T.J.Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA. email: talr@watson.ibm.com.



1 Introduction

The Byzantine Agreement and Generals problems are amongst the most researched questions in
distributed computing. Numerous variations of the problems have been considered under different
communication models, and both positive results (i.e., protocols) and negative results (i.e., lower
bounds on efficiency and fault tolerance) have been established. The reason for this vast interest
is the fact that the Byzantine Generals problem is the algorithmic implementation of a broadcast
channel within a point-to-point network. In addition to its importance as a primitive in its own
right, broadcast is a key tool in the design of secure protocols for multi-party computation.

The problem of Byzantine Generals is (informally) defined as follows. The setting is that of
n parties connected via a point-to-point network, where one party is designated as the General
(or dealer) who holds an input message x ∈ {0, 1} that it wishes to broadcast to all the other
parties. In addition, there is an adversary who controls up to t of the parties and can arbitrarily
deviate from the designated protocol specification. The aim of the protocol is to securely simulate
a broadcast channel. Thus, first and foremost, all (honest) parties must receive the same message.
Furthermore, if the General is honest, then the message received by the honest parties must be x
(i.e., the adversary is unable to prevent an honest General from successfully broadcasting its given
input message). In the Byzantine Agreement problem, all parties begin with an input and the aim
is for all parties to “agree” on the same value, with a validity requirement that if all honest parties
have the same input value, then this value must be the agreed-upon output. We note that in the
case of an honest majority, these problems are essentially equivalent, in that a solution to one
implies a solution to the other. For the case when no such honest majority exists see the discussion
in Section 2.2.

Pease et al. [24, 21] provided a solution to the Byzantine Agreement and Generals problems
in the standard model, i.e. the information-theoretic model with point-to-point communication
lines (and no setup assumptions). For their solution, the number of corrupted parties, t, must be
less than n/3. Furthermore, they complemented this result by showing that the requirement for
t < n/3 is in fact inherent. That is, no protocol that solves the Byzantine Agreement or Generals
problem in the standard model can tolerate a third or more corrupted parties.

The above bound on the number of corrupted parties in the standard model is a severe limitation.
It is therefore of great importance to find a different (and realistic) model in which it is possible
to achieve higher fault tolerance. One possibility involves augmenting the standard model in a
way that enables the authentication of messages that are sent by the parties. By authentication,
we mean the ability to ascertain that a message was in fact sent by a specific party, even when
not directly received from that party. This can be achieved using a trusted preprocessing phase in
which a public-key infrastructure for digital signatures (e.g. [27, 19]) is set up. (We note that this
requires that the adversary be computationally bounded. However, there exist preprocessing phases
which do not require any computational assumptions; see [25].) Indeed, Pease et al. [24, 21] use
such an augmentation and obtain a protocol for the Byzantine Agreement and Generals problems
that can tolerate any number of corrupted parties (this is very dramatic considering the limitation
to 1/3 corruptions in the standard model). In this model, the problems are called authenticated
Byzantine Agreement and Generals. We often informally refer to this model as the “authenticated
model”.

A common use of Byzantine Generals is to substitute a broadcast channel in multi-party pro-
tocols. As such, it is likely to be executed many times. The question of whether these protocols
remain secure when executed sequentially, in parallel or concurrently is thus an important one.1

1In sequential composition, each execution begins strictly after the prior executions have terminated. In parallel

1



However, existing work on this problem (in both the standard and authenticated models) focused
on the security and correctness of protocols in the stand-alone model only.

It is not difficult to show that the “unauthenticated” protocol of Pease et al. [24], and in fact all
protocols in the standard model, do compose concurrently (and hence in parallel and sequentially).
However, this is not the case with respect to authenticated Byzantine Agreement and Generals.
The first to notice that composition in this model is problematic were Gong et al. [20], who also
suggest methods for overcoming the problem.

Our work shows that these suggestions and any others are in fact futile because composition
in this model is impossible (as long as 1/3 or more of the parties are corrupt). We note that by
composition, we actually refer to stateless composition. This means that beyond using the same
public-key infrastructure, the honest parties run each execution obliviously of the others. Stateless
composition is clearly desirable, and may sometimes be essential; see Section 2.3.

Our Results. Our first result is a proof that authenticated Byzantine General/Agreement proto-
cols, both deterministic and randomized, cannot be composed in parallel (and thus concurrently)
unless more than 2/3 of the parties are honest. This is a powerful statement with respect to the
value of enhancing the standard model by the addition of authentication. Indeed, it shows that de-
spite popular belief, this enhancement does not provide the ability to improve fault tolerance when
composition is required. That is, if there is a need for parallel or concurrent composition, then the
number of corrupted players cannot be n/3 or more, and hence the authenticated model provides
no advantage over the standard model. This result is summarized in the following theorem:

Theorem 1 There does not exist a protocol for authenticated Byzantine General/Agreement that
remains secure under parallel composition (even for just two executions) and can tolerate n/3 or
more corrupted parties.

Theorem 1 relates to the feasibility of parallel (and therefore concurrent) composition. However,
sequential composition is also an important concern. Sequential composition is usually taken for
granted. This is partly due to the fact that security under the standard definitions for secure multi-
party computation implies security under sequential composition [4]. However, this “sequential
composition theorem” for secure computation only holds when no joint state between protocols
is used. The theorem therefore does not necessarily hold for authenticated Byzantine Agreement,
where the parties use the same public-key infrastructure in all executions. Interestingly, the ex-
istence of the public-key infrastructure is what enables higher fault tolerance in the stand-alone
setting. However, it is also the source of difficulty under composition. Indeed, it turns out that
the known protocols for authenticated Byzantine Agreement [24, 21] do not remain secure under
sequential composition, and can easily be “broken” in this setting.

We show that this is not a particular problem with the protocols of [24, 21]. Rather, lower
bounds actually hold for all deterministic protocols. In particular, any deterministic protocol for
authenticated Byzantine Agreement that runs for r rounds and tolerates t ≥ n/3 corrupted parties,
can remain secure for at most 2r−1 sequential executions. That is,

Theorem 2 Let Π be a deterministic protocol for authenticated Byzantine Agreement that termi-
nates within r rounds of communication and remains secure under sequential composition for 2r
or more executions. Then Π can tolerate at most t < n/3 corrupted parties.

composition, all executions begin at the same time and proceed at the same rate. Finally, in concurrent composition,
the adversary has full control over when executions begin and at what rate they proceed.

2



In contrast, using randomization we obtain a protocol for authenticated Byzantine Generals that
remains secure for any polynomial number of sequential executions, and tolerates t < n/2 corrupted
parties. Our protocol uses the (unauthenticated) Byzantine Agreement protocol of Fitzi and Mau-
rer [13] who considered a model where the parties have access to an ideal three-party broadcast
primitive. In this model, [13] present a Byzantine Generals protocol that tolerates t < n/2 cor-
rupted parties. Our protocol works by replacing the three-party broadcast primitive of [13] with a
randomized authenticated Byzantine Generals protocol for three parties that remains secure under
sequential composition. The result is an authenticated protocol that tolerates t < n/2 corrupted
parties and remains secure under sequential composition. Thus, we prove:

Theorem 3 Assume that there exists a signature scheme that is existentially secure against chosen-
message attacks. Then, there exists a randomized protocol for authenticated Byzantine Generals,
that tolerates t < n/2 corrupted parties and remains secure under sequential composition for any
polynomial number of executions.

We also present a randomized Byzantine Generals protocol that tolerates any number of corrupted
parties, and remains secure under sequential composition for any polynomial number of executions.
However, the number of messages sent in this protocol is exponential in the number of parties.
Therefore, it can only be used when the overall number of parties is logarithmic in the security
parameter of the signature scheme (actually, the number of parties must be O(log k/ log log k),
where k is the security parameter).

Authenticated Byzantine Generals Using Unique Identifiers. As will be apparent from
the proof of Theorem 1, the obstacle to achieving a secure solution in the setting of composition is
the fact that honest parties cannot tell in which execution of the protocol a given message was sent,
i.e. there is no binding between the message and a specific execution of the protocol. This allows
the adversary to “borrow” messages from one execution to another, and in that way attack the
system. In Section 6, we show that if we further augment the authenticated model so that unique
and common indices are assigned to each execution, then security under concurrent composition
can be achieved for any number of corrupted parties.

Thus, on the one hand, our results strengthen the common belief that session identifiers are
necessary for achieving authenticated Byzantine Generals. Specifically, when unique session identi-
fiers are available, then they must be incorporated into the authenticated Byzantine Agreement, as
we show in Section 6. On the other hand, our results also demonstrate that such identifiers cannot
be generated within the system. Typical suggestions for generating session identifiers in practice
include having the General choose one, or having the parties exchange random strings and then set
the identifier to be the concatenation of all these strings. However, Theorem 1 rules out all such
solutions. Rather, one must assume the existence of some trusted external means for coming up
with unique and common indices. In many settings such an assumption may be very difficult, if
not impossible, to realize.

A natural question to ask here relates to the fact that unique and common session identifiers
seem to be necessary for carrying out any form of concurrent composition. This is because parties
need to be able to allocate messages to protocol executions, and this requires a way of distinguishing
executions from each other. This question was addressed in [2], who show that parties interacting
in a decentralized network without any trusted authority, can jointly and securely generate unique
session identifiers as required for concurrent composition. However, in the solution provided by [2],
successful termination is not guaranteed (this is in contrast to Byzantine Agreement and Generals
where successful termination is a central requirement). Our result is therefore also a proof that

3



the result of [2] cannot be improved so as to also guarantee successful termination (because this
would then imply a protocol for authenticated Byzantine Agreement that remains secure under
concurrent composition).

Stand-Alone versus Composition – Discussion. Our result demonstrates that achieving
security under composition (even a relatively weak type of composition such as two-execution
parallel composition) can be strictly harder than achieving security in the stand-alone model. We
note that such a “separation” between stand-alone security and security under composition can
be made on many levels. One type of separation would state that protocols that are stand-alone
secure are not necessarily secure under composition (this is the type of separation demonstrated
regarding the parallel composition of zero-knowledge protocols [17]). A stronger separation may
state that more computational resources are needed for achieving security under composition than
in the stand-alone setting (the black-box lower bounds for concurrent zero-knowledge are actually
separations of this kind; e.g., see [6]). However, the separation proven here is far stronger. It
states that in the setting of composition, a certain problem (i.e., secure broadcast with 1/3 or more
corruptions) cannot be solved by any protocol, whereas solutions do exist for the stand-alone case.
Thus, the additional difficulty of obtaining security under composition is not only with respect to
protocol design, but also with respect to what problems can and cannot be solved.

Implications for Secure Multi-Party Computation. As we have stated above, one important
use for Byzantine Generals protocols is to substitute a broadcast channel that may be assumed in the
design of multi-party protocols. In fact, until recently, all known solutions for general secure multi-
party computation assumed a broadcast channel. The implicit claim in all these works was that this
broadcast channel can be substituted by a Byzantine Generals protocol without any complications.
However, Theorem 1 shows that the use of authenticated Byzantine Generals in such a way prevents
the composition of the larger protocol (even if this protocol is secure under composition when using
a physical broadcast channel). Motivated by this work, [18] show how a minor relaxation of the
requirements on secure computation can be used in order to replace a broadcast channel by a
simple two-round echo-broadcast protocol that remains secure under composition. In similar work,
it was shown how to construct (randomized) protocols for weak Byzantine Generals that tolerate
any number of corrupted parties and do not require any setup assumptions [11, 12]. Furthermore,
it was shown how to use these protocols to obtain secure computation (without the relaxation
required by [18]).

Another important implication of Theorem 1 is due to the fact that the definition of general
secure multi-party computation in the case of an honest majority, implies a solution to the Byzantine
Generals problem. Therefore, any secure protocol for solving general multi-party tasks can be used
to solve the Byzantine Generals problem. This means that none of these protocols can be secure
under parallel or concurrent composition, unless more than 2/3 of the parties are honest or a
physical broadcast channel is available.

Related Work. The topic of protocol composition has received much attention. However, until
recently, most of these works have focused on the problem of zero-knowledge and concurrent zero-
knowledge, see [17, 8, 26, 6, 1] for just a few examples. It is instructive to compare our results to
the work of Goldreich and Krawczyk [17] on zero-knowledge. They show that there exist protocols
that are zero-knowledge when executed stand-alone, and yet do not remain zero-knowledge when
composed in parallel (even twice). Thus, they show that zero-knowledge does not necessarily
compose in parallel. However, zero-knowledge protocols that compose in parallel do exist (for

4



example, see [16, 15]). In contrast, we show that it is impossible to obtain any protocol for Byzantine
Agreement that will compose in parallel (even twice).

For other work on the topic of protocol composition, mainly related to general secure multi-party
computation, we refer the reader to [3, 23, 4, 7, 14, 5].

2 Definitions

2.1 Computational Model

We consider a setting involving n parties, P1, . . . , Pn, that interact in a synchronous point-to-point
network. In such a network, each pair of parties is directly connected, and it is assumed that the
adversary cannot modify messages sent between honest parties. Each party is formally modeled by
an interactive Turing machine with n−1 pairs of incoming and outgoing communication tapes (one
pair for each party). The communication of the network proceeds in synchronized rounds, where
each round consists of a send phase followed by a receive phase. In the send phase of each round,
the parties write messages onto their outgoing communication tapes, and in the receive phase, the
parties read the contents of their incoming communication tapes.

This paper refers to the authenticated model, where some type of trusted preprocessing phase
is assumed. This is modeled by all parties also having an additional setup-tape that is generated
during the preprocessing phase. Typically, in such a preprocessing phase, a public-key infrastructure
of signature keys is generated. That is, each party receives its own secret signing key, and in
addition, public verification keys associated with all other parties. This enables parties to use a
signature scheme to authenticate messages that they receive, and is thus the source of the name
“authenticated”. However, we stress that our lower bound holds for all preprocessing phases, even
those that cannot be efficiently generated. See Definition 3 for a formal definition of this model.

The adversarial model that we consider is one where the adversary controls up to t ≤ n of
the parties P1, . . . , Pn for some threshold t (these parties are said to be corrupted). The adversary
receives the corrupted parties’ views and determines the messages that they send. These messages
need not be according to the protocol execution, but rather can be computed by the adversary
as an arbitrary function of its view. In this work, we consider two different models of corruption:
adaptive corruptions and static (non-adaptive) corruptions. In the adaptive adversarial model,
the adversary can choose to corrupt parties at any point during the computation, with the only
limitation being that at most t parties may be corrupted. Furthermore, the choice of which parties
to corrupt (if any) can be made adaptively, as a function of its view. In contrast, in the static
adversarial model, the set of at most t corrupted parties is fixed before the computation begins.
We prove our protocols for adaptive adversaries and our lower bounds for static adversaries (thereby
strengthening the results).

Another issue which must be considered relates to the computational power of the adversary.
Our protocols for authenticated Byzantine Agreement that remain secure under sequential compo-
sition rely on the security of signature schemes, and thus assume that adversaries (and, of course,
honest parties) are limited to probabilistic polynomial-time. In contrast, our impossibility results
hold for adversaries (and honest parties) whose running time is of any complexity. In fact, the
adversary that we construct to prove our lower bounds is of the same complexity as the honest
parties. Therefore, our lower bounds hold also for (inefficient) protocols where the honest parties
do an exponential amount of work.

5



2.2 Byzantine Generals and Byzantine Agreement

The existing literature defines two related problems: Byzantine Generals and Byzantine Agreement.
In the Byzantine Generals problem, there is one designated party, the General or dealer, who wishes
to broadcast its value to all the other parties. The requirements on such protocols are agreement
(meaning that all honest parties must output the same value) and validity (meaning that if the
dealer is honest, then all honest parties output its value correctly). Thus, stated differently, the
Byzantine Generals problem is that of achieving secure broadcast. In the Byzantine Agreement
problem, each party has an input and the parties wish to agree on a value. Here too the requirements
are agreement (meaning the same as above) and validity. However, in the Byzantine Agreement
problem, the validity condition states that if a majority of the parties are honest and begin with
the same value, then they must terminate with that value.

Byzantine Generals versus Byzantine Agreement. The Byzantine Generals and Agreement
problems are closely related. First, any protocol for Byzantine Generals (or secure broadcast)
can be used to solve the Byzantine Agreement problem. Furthermore, when assuming an honest
majority (in which case the Byzantine Agreement validity condition applies), the other direction
also holds. However, in the general case, where any number of parties may be corrupted, it is
not known whether or not a Byzantine Agreement protocol can be used to solve the Byzantine
Generals problem. This disparity is due to the fact that the validity condition of the Byzantine
Agreement problem only has meaning when a majority of the parties are honest, whereas the
validity requirement for the Byzantine Generals problem is also applicable when a majority of
the parties are corrupted. Therefore, when there is no honest majority, Byzantine Agreement is
“weaker” than Byzantine Generals.

In this paper, we prove our impossibility results and protocols for the Byzantine Generals prob-
lem. This provides the most generality as our protocols yield protocols also for Byzantine Agreement
(recall that Byzantine Generals implies Byzantine Agreement for any number of corrupted parties).
Furthermore, our impossibility results for Byzantine Generals also apply to Byzantine Agreement
for the case of an honest majority (recall that in this case, Byzantine Agreement implies Byzantine
Generals).2

In the definitions below, we relax the standard requirements on protocols for the above Byzan-
tine problems in that we allow a protocol to fail with probability that is negligible in some security
parameter. This relaxation is needed for the case of authenticated Byzantine protocols where sig-
nature schemes are used (and can always be forged with some negligible probability). Formally,
the Byzantine Generals problem is defined as follows:

Definition 1 (Byzantine Generals): Let P1, . . . , Pn−1 and G = Pn be n parties, let G be a desig-
nated party with input x ∈ {0, 1} and let A be an (adaptive or static) adversary who can control
up to t of the parties, including G. Then, a protocol solves the Byzantine Generals problem, tolerat-
ing t corruptions, if for any adversary A the following three properties hold (except with negligible
probability):

1. Agreement: All honest parties output the same value.

2. Validity: If G is honest and has input x, then all honest parties output x.

3. Termination: All honest parties eventually output some value.
2This leaves “open” the question of feasibility when there is only an honest minority. However, in this case, there

is no validity requirement and so trivial protocols exist (i.e., take the protocol where all parties always output 0).

6



We denote a protocol for n parties that tolerates t corruptions by BGn,t.

In the setting of Byzantine Agreement, the validity property states that if “enough” honest (i.e.,
uncorrupted) parties begin with the same input value then they must output that value.

Definition 2 (Byzantine Agreement): Let P1, . . . , Pn be n parties with associated inputs x1, . . . , xn

and let A be an (adaptive or static) adversary who can control up to t of the parties. Then, a
protocol solves the Byzantine Agreement problem, tolerating t corruptions, if for any adversary A
the following two properties hold (except with negligible probability):

1. Agreement: All honest parties output the same value.

2. Validity: If more than n/2 parties are honest and have the same input value x, then all honest
parties output x.

3. Termination: All honest parties eventually output some value.

We note that the validity requirement is sometimes stated so that it must hold only when all of
the honest parties have the same input value. Our impossibility results hold in this case as well.

Authenticated Byzantine protocols: In the model for authenticated Byzantine Generals and
Agreement, some trusted preprocessing phase is run before any executions begin. In this phase, a
trusted party distributes keys to every participating party. Formally,

Definition 3 (Authenticated Byzantine Generals and Agreement): A protocol for authenticated
Byzantine Generals/Agreement is a Byzantine Generals/Agreement protocol with the following aug-
mentation:
• Each party has an additional setup-tape.

• Prior to any protocol execution, a trusted party chooses a series of strings s1, . . . , sn according
to some distribution, and sets party Pi’s setup-tape to equal si (for every i = 1, . . . , n).

Following the above preprocessing stage, the protocol is run in the standard communication model for
Byzantine Generals/Agreement protocols. We denote an authenticated Byzantine Generals protocol
for n parties that tolerates t corruptions by ABGn,t.

As we have mentioned, a natural example of such a preprocessing phase is one where the strings
s1, . . . , sn constitute a public-key infrastructure. That is, the trusted party chooses verification and
signing key-pairs (vk1, sk1), . . . , (vkn, skn) from a secure signature scheme, and sets the contents
of party Pi’s tape to equal si = (vk1, . . . , vki−1, ski, vki+1, . . . , vkn). In other words, all parties are
given their own signing key and the verification keys of all the other parties. We note that this
preprocessing phase can also be used to choose a common reference string to be accessed by all
parties (in this case, all the si’s are set to the same reference string).

We remark that the above-defined preprocessing phase is very strong. First, it is assumed that
it is run completely by a trusted party. Furthermore, there is no computational bound on the power
of the trusted party generating the keys. Nevertheless, our impossibility results hold even for such
a preprocessing phase.

7



2.3 Composition of Protocols

This paper deals with the security of authenticated Byzantine Generals/Agreement protocols un-
der composition. In general, the notion of “protocol composition” refers to a setting where the
participating parties are involved in many protocol executions. Furthermore, the honest parties
participate in each execution as if it is running in isolation (and therefore obliviously of the other
executions taking place). In particular, this means that honest parties are not required to coordi-
nate between different executions or remember the history of past executions. Requiring parties to
coordinate between executions is highly undesirable and sometimes may even be impossible (e.g.,
it is hard to imagine successful coordination between protocols that are designed independently
of each other). In contrast to the honest parties, we assume that the adversary may coordinate
its actions between the protocol executions. This asymmetry is due to the fact that some level of
coordination is clearly possible. Thus, although it is undesirable to rely on it in the construction of
protocols, it would be careless to assume that the adversary cannot utilize it to some extent. This
notion of protocol composition is called stateless composition. We note that in stateless composi-
tion, the parties run identical copies of the protocol in each execution. This implies, for example,
that there is no information that is externally provided to the parties and is unique for every exe-
cution, like a common session identifier. (See the Introduction for a discussion on session identifiers
and their role.) Formally, composition is captured by the following process:

Definition 4 (Composition): Let P1, . . . , Pn be parties for an authenticated Byzantine Gener-
als/Agreement protocol Π. Then, Π remains secure under sequential (resp., parallel or concurrent)
composition if for every polynomial-time (adaptive or static) adversary A, the requirements for
Byzantine Generals/Agreement hold for Π for every execution within the following process:
• Run the preprocessing phase associated with Π and obtain the strings s1, . . . , sn. Then, for every

i, set the setup-tape of Pi to equal si.

• Repeat the following process sequentially (resp., in parallel or concurrently) until the adversary
halts:

1. The adversary A chooses inputs x1, . . . , xn for parties P1, . . . , Pn.

2. For every honest party Pi, the value xi is written on its input tape, and a uniformly (and
independently) chosen random string is written on its random-tape.

3. All parties are invoked for an execution of Π (using the strings generated in the prepro-
cessing phase above). As in a stand-alone execution, the messages sent by the corrupted
parties are determined by the adversary A, whereas all other parties follow the instructions
of Π.

We stress that the preprocessing phase is executed only once, and that all executions use the strings
distributed in this phase.3 Furthermore, we note that Definition 4 implies that all honest parties
are oblivious of the other executions that have taken place (or that are taking place in parallel).
This is implicit in the fact that in each execution the parties are invoked with no additional state
information, beyond the contents of their input, random and setup tapes (i.e., the composition is
stateless). In contrast, the adversary A can coordinate between the executions, and its view at
any given time includes all the messages received in all the executions. Finally, notice that the

3The analogous definition for the composition of unauthenticated Byzantine Generals/Agreement is derived from
Definition 4 by removing the reference to the preprocessing stage and setup-tapes.

8



adversary is given the power to adaptively choose the inputs in each execution. We remark that
our impossibility results hold even if all the inputs are fixed ahead of time.

Before continuing, we show that any Byzantine Generals (or Agreement) protocol in the standard
model composes concurrently. Intuitively, this holds because the parties have no secret information
and so all but one execution can be internally simulated, thereby reducing the setting of com-
position to the stand-alone setting. (Notice that there is no privacy requirement whatsoever for
these problems; therefore, even the parties’ inputs are not secret. Indeed, by our formulation, the
adversary explicitly chooses them.)

Proposition 2.1 Let Π be a protocol that solves the Byzantine Generals (resp. Agreement) problem
in the standard model and tolerates t corruptions. Then, Π solves the Byzantine Generals (resp.,
Agreement) problem under concurrent composition, and tolerates t corruptions.

Proof (sketch): We reduce the security of Π under concurrent composition to its security for a
single execution. Assume by contradiction that there exists an adversary A who runs N concurrent
executions of Π, such that with non-negligible probability, in one of the executions the outputs
of the parties do not meet the requirement on a Byzantine Generals (resp., Agreement) protocol.
Then, we construct an adversary A′ who internally incorporates A and attacks a single execution
of Π. Intuitively, A′ simulates all executions apart from the one in which A succeeds in its attack.
Formally, A′ begins by choosing an index i ∈R {1, . . . , N}. Then, for all but the ith execution of
the protocol, A′ plays the roles of the honest parties in an interaction with A (this simulation is
internal to A′). However, for the ith execution, A′ externally interacts with the honest parties and
passes messages between them and A. The key point to notice is that the honest parties hold no
secret information and run each execution independently of the others. Therefore, the simulation
of the concurrent setting by A′ for A is perfect. Thus, with probability 1/N , the ith execution is
the one in which A succeeds. However, this means that A′ succeeds in breaking the protocol for a
single execution with success probability that equals 1/N times the success probability of A. This
contradicts the stand-alone security of Π.

2.4 Signature Schemes

Our protocols for authenticated Byzantine Agreement use secure signature schemes. Formally,
a signature scheme is a triplet of algorithms (Gen, S, V ), where Gen is a probabilistic generator
that outputs a pair of verification and signing keys (vk, sk), S is a signing algorithm and V is
a verification algorithm. The validity requirement for signature schemes states that except with
negligible probability, for every message m, V (vk,m, S(sk, m)) = 1, where (vk, sk) ← Gen(1n);
i.e., honestly generated signatures are almost always accepted. We sometimes denote V (vk, ·) by
Vvk(·) and likewise for S.

The security requirement of a signature scheme states that the probability that an efficient
forging algorithm A can succeed in generating a valid forgery is negligible. This should hold even
when A is given oracle access to a signing oracle (this oracle represents valid signatures that A
may obtain in a real attack). In order for A to succeed, it must generate a valid signature on
a message that was not queried to the signing oracle. More formally, the following experiment
is defined: The generator Gen is run, outputting a key-pair (vk, sk). Then, A is given vk and
oracle access to the signing oracle S(sk, ·). At the conclusion of the experiment, A outputs a pair
(m∗, σ∗). Let Qm be the set of oracle queries made by A. Then, we say that A has succeeded,
denoted succeedA(vk, sk) = 1, if V (vk, m∗, σ∗) = 1 and m∗ 6∈ Qm. That is, A outputs a message

9



along with a valid signature, and A did not query its oracle with this message. We are now ready
to present the formal definition of security for signature schemes:

Definition 5 A signature scheme (Gen, S, V ) is existentially secure against chosen-message attacks
if for every probabilistic polynomial-time adversary A, every polynomial p(·) and all sufficiently
large k’s

Pr(vk,sk)←Gen(1k)[succeedA(vk, sk) = 1] <
1

p(k)

3 Impossibility for Parallel Composition

In this section we show that it is impossible to construct an authenticated Byzantine Generals
protocol that remains secure under parallel or concurrent composition, and tolerates n/3 or more
corruptions. This result is analogous to the lower bounds for Byzantine Generals and Agreement in
the plain model, without authentication [24, 21]. We stress that our result does not merely show that
authenticated Byzantine Generals protocols do not necessarily remains secure under composition;
rather, we show that one cannot construct protocols that will be secure in this setting. The results
below are stated for static adversaries and therefore also apply to adaptive adversaries.

Intuition. Let us first provide some intuition into why the added power of the preprocessing step
in authenticated Byzantine Generals does not help when composition is required. An instructive
step is to first see how authenticated Byzantine Generals protocols typically utilize authentication
(i.e., digital signatures) in order to increase fault tolerance. Consider three parties G, A and B
participating in a standard (unauthenticated) Byzantine Generals protocol. Furthermore, assume
that during the execution A claims to B that G sent it some message x. Then, B cannot differentiate
between the case that G actually sent x to A, and the case that G did not send this value and A
is lying. Thus, B cannot be sure that A really received x from G. Indeed, the standard model has
been called the “oral message” model, in contrast to the “signed message” model of authenticated
Byzantine Agreement [21]. The use of signature schemes helps to overcome this exact problem: If
G had signed the message x and sent this signature to A, then A could forward the signature to
B. Since A cannot forge G’s signature, this would then constitute a proof that G had indeed sent
x to A. Utilizing the unforgeability property of signatures, it is thus possible to achieve Byzantine
Generals for any number of corrupted parties.

However, the above intuition holds only in a setting where a single execution of the agreement
protocol takes place. Specifically, if a number of executions were to take place, then A may send
B a value x along with G’s signature on x, yet B would still not know whether G signed x in this
execution, or in a different (concurrent or parallel) execution. Thus, the mere fact that A produces
G’s signature on a value does not provide proof that G signed this value in this execution. As we
will see in the proof, this is enough to render the public-key infrastructure “useless” under parallel
composition.

Theorem 1 There does not exist a protocol for authenticated Byzantine Generals that remains
secure under parallel composition (even for only two executions), and can tolerate n/3 or more
statically corrupted parties.

Proof: Our proof of Theorem 1 uses ideas from the proof by Fischer et al. [10] that no unauthen-
ticated Byzantine Agreement protocol can tolerate n/3 or more corrupted parties. We begin by
proving the following lemma:

10



Lemma 3.1 There does not exist a protocol for authenticated Byzantine Generals for three parties
that remains secure under parallel composition (even for only two executions), and can tolerate one
statically corrupted party.

Proof: Assume, by contradiction, that there exists a protocol Π that solves the Byzantine Generals
problem for three parties G, A and B, where one may be corrupt. Furthermore, Π remains secure
even when composed in parallel twice. Exactly as in the proof of Fischer et al. [10], we define a
hexagonal system S that intertwines two independent copies of Π. That is, let G0, A0, B0 and G1,
A1 and B1 be independent copies of the three parties participating in Π. By independent copies,
we mean that G0 and G1 are the same party G with the same key tape, that runs in two different
parallel executions of Π, as defined in Definition 4. The system S is defined by connecting party
A0 to B1 (rather than to B0) and party B0 to A1 (rather than to A0), as detailed in Figure 1.

G

B

A

B

G

A

0

SΠ

G

A B

1

0

0

1

1

1

0

Figure 1: Combining two copies of Π in a hexagonal system S.

In the system S, party G0 has input 0 and party G1 has input 1. Note that within S, all
parties follow the instructions of Π exactly. We stress that S is not a Byzantine Generals setting
(where the parties are joined in a complete graph on three nodes), and therefore the definitions of
Byzantine Generals tell us nothing directly of what the parties’ outputs should be. However, S is
a well-defined system and this implies that the parties have well-defined output distributions. The
proof proceeds by showing that if Π is a correct Byzantine Agreement protocol, then we arrive at a
contradiction regarding the output distribution in S. We begin by showing that G0 and A0 always
output 0 in S. We denote by rounds(Π) the upper bound on the number of rounds of Π (when run
in a Byzantine Generals setting). By the termination requirement on Byzantine Generals protocols,
rounds(Π) is well-defined (and finite).

Claim 3.2 Except with negligible probability, parties G0 and A0 halt within rounds(Π) steps and
output 0 in the system S.

Proof: We prove this claim by showing that there exists an adversary B controlling B0 and B1

who participates in two parallel copies of Π and simulates the system S, with respect to G0 and
A0’s view. The adversary B (and the other honest parties participating in the parallel executions)
work within a Byzantine Generals setting where there are well-defined requirements on their output

11



distribution. Therefore, by analyzing their output in this parallel execution setting, we are able to
make claims regarding their output in the system S.

Before formally proving the above, we introduce some terminology and notation. A system X
is defined by a set of parties along with protocol instructions for these parties, an adversary along
with a set of corrupted parties, and a set of inputs for all parties. In addition, part of the system
definition includes the network structure by which the parties are connected. Let X be a system
and let P be a party in X. Then, viewX(P ) denotes the view of party P in an execution of X; this
view contains the contents of P ’s input tape and random tape, along with the series of messages
that it received during the execution. If the parties within the system are deterministic (including
the adversary), then viewX(P ) is a single value (since all messages are predetermined by the parties’
strategies and their inputs). If the parties are probabilistic, then viewX(P ) is a random variable
assuming values over P ’s view, when all parties’ random tapes are chosen uniformly at random.

We define two different systems and prove some properties of these systems. First, let S be
the above-defined hexagonal system involving parties G0, G1, A0, A1, B0, and B1. As described G0

has input 0 and G1 has input 1. The parties instructions are to all honestly follow the protocol
instructions of Π and the network structure is as shown in Figure 1. (In this system, there is no
adversary; formally, the set of corrupted inputs is empty.)

Next, we define a system 2BA which is made up of two parallel executions of Π (thus defining
the network structure); denote these two executions by Π0 and Π1. In the first execution (i.e., in
Π0), party G0 has input 0 and interacts with A0 and B0; in the second execution (i.e., in Π1), party
G1 has input 1 and interacts with A1 and B1. Recall that B0 and B1 are independent copies of the
party B with the same key tape (as in Definition 4); likewise for G0, G1 and A0, A1. Uncorrupted
parties in the system all honestly follow the instructions of Π.

In order to complete the description of system 2BA, it remains to describe the adversary and
the set of corrupted parties. Let B be an adversary and let the set of corrupted parties be B0 and
B1. Intuitively, party B’s strategy is to maliciously generate an execution in which G0’s and A0’s
view in 2BA is identical to their view in S. That is, we will construct B such that view2BA(G0) is
distributed exactly according to viewS(G0); likewise, view2BA(A0) will have the same distribution as
viewS(A0). (We remark that if Π is deterministic, then we will have that view2BA(G0) = viewS(G0)
and view2BA(A0) = viewS(A0).) We now describe how B achieves this: B works by redirecting edges
in the two parallel triangles (representing two parallel executions), so that the overall system has
the same behavior as S; see Figure 2.

AG

B

0

A

B

G

0

B

1

G

S
B

A
A

1

2BA

G

Π

Π

0

1

0

1

1

1

0

1

1

0

0

1

0

0

Figure 2: Redirecting edges of Π0 and Π1 to make a hexagon.

12



Specifically, in 2BA the (A0, B0) and (A1, B1) edges of Π0 and Π1 respectively are removed, and the
(A0, B1) and (A1, B0) edges of S are added in their place. B is able to make such a modification
because it only involves redirecting messages to and from parties that it controls (i.e., B0 and B1).
Recall that the corrupted party can coordinate between the different executions. We now formally
describe how B works (in the description below, msgi(Pj , P`) denotes the message sent from party
Pj to party P` in the ith round of the 2BA execution):

B invokes parties B0 and B1. We stress that B0 and B1 follow the instructions of protocol Π
exactly. However, B provides them with their incoming messages and sends their outgoing messages
for them. The only malicious behavior of B is in the redirection of messages to and from B0 and
B1. A full description of B’s code is as follows (we recommend the reader to refer to Figure 2 in
order to clarify the following):

1. Send outgoing messages of round i: B obtains messages msgi(B0, G0) and msgi(B0, A0) from
B0 in execution Π0, and messages msgi(B1, G1) and msgi(B1, A1) from B1 in Π1 (these are the
round i messages sent by B0 and B1 to the other parties in system 2BA; as we have mentioned,
B0 and B1 compute these messages according to the protocol definition and based on their
view).

• In Π0, B sends G0 the message msgi(B0, G0) (this message was indeed intended for G0),
and sends A0 the message msgi(B1, A1); notice that this message was actually intended
for A1.

• In Π1, B sends G1 the message msgi(B1, G1) and sends A1 the message msgi(B0, A0).

2. Obtain incoming messages from round i: B receives messages msgi(G0, B0) and msgi(A0, B0)
from G0 and B0 in round i of Π0, and messages msgi(G1, B1) and msgi(A1, B1) from G1 and
A1 in round i of Π1.

• B passes B0 in Π0 the message msgi(G0, B0), i.e. the message which was originally intended
for it, and the message msgi(A1, B1) which was intended for B1.

• B passes B1 in Π1 the messages msgi(G1, B1) and msgi(A0, B0).

This completes the description of B, and thus the definition of the system 2BA.
We now claim that view2BA(G0) and view2BA(A0) are distributed exactly like viewS(G0) and

viewS(A0).4 This holds because in 2BA, all parties follow the protocol definition (including B0 and
B1). The same is true in the system S, except that party B0 is connected to G0 and A1 instead
of to G0 and A0. Likewise, B1 is connected to G1 and A0 instead of to G1 and A1. However, by
the definition of B, the messages received by all the parties in 2BA are exactly the same as the
messages received by the parties in S (e.g., the messages seen by A0 in 2BA are those sent by G0

and B1, exactly as in S). Therefore, the views of G0 and A0 in the parallel execution maliciously
controlled by B, are identically distributed to their views in S.5

By the assumption that Π is a correct Byzantine General protocol that remains secure under
parallel composition (even if for only two executions), we have that in execution Π0 of 2BA, both

4In fact, the views of all the honest parties in 2BA with B are identical to their views in the system S. However,
in order to obtain Claim 3.2, we need only analyze the views of G0 and A0.

5We note a crucial difference between this proof and that of Fischer et al. [10]. In [10], the corrupted party B is
able to simulate the entire B0–G0–A0–B1 segment of the hexagon system S by itself. Thus, in a single execution of
Π with G0 and A0, party B can simulate the hexagon. Here, due to the fact that the parties G0 and A0 may have
secret information that B does not have access to, B is unable to simulate their behavior itself. Rather, B needs to
redirect messages from the parallel execution of Π1 in order to complete the hexagon.

13



G0 and A0 halt within rounds(Π) steps and output 0 (except with negligible probability). The fact
that they both output 0 is derived from the fact that G0 is honest and has input 0. Therefore, they
must output 0 in the face of any adversary B controlling B0; in particular this holds with respect
to the specific adversary B described above. Since the views of G0 and A0 in S are identically
distributed to their views in Π0, we conclude that in the system S they also halt within rounds(Π)
steps and output 0 (except with negligible probability). This completes the proof of the claim.

Using analogous arguments, we obtain the following two claims:

Claim 3.3 Except with negligible probability, parties G1 and B1 halt within rounds(Π) steps and
output 1 in the system S.

In order to prove this claim, the adversary is A who controls A0 and A1 and works in a similar
way to B in the proof of Claim 3.2 above. (The only difference is regarding the edges that are
redirected.)

Claim 3.4 Except with negligible probability, parties A0 and B1 halt within rounds(Π) steps and
output the same value in the system S.

Similarly, this claim is proven by defining an adversary G who controls G0 and G1 and follows a
similar strategy to B in the proof of Claim 3.2 above.

Combining Claims 3.2, 3.3 and 3.4 we obtain a contradiction. This is because, on the one hand
A0 must output 0 in S (Claim 3.2), and B1 must output 1 in S (Claim 3.3). On the other hand,
by Claim 3.4, parties A0 and B1 must output the same value. We conclude that there does not
exist a 3-party protocol for Byzantine Generals that tolerates one corruption and composes twice
in parallel. This concludes the proof of the lemma.

Theorem 1 is derived from Lemma 3.1 in the standard way [24, 21] by showing that if there exists a
protocol that is correct for any n ≥ 3 and n/3 corrupted parties, then one can construct a protocol
for 3 parties that can tolerate one corrupted party. This is in contradiction to Lemma 3.1, and
thus Theorem 1 is implied.

The following corollary, referring to concurrent composition, is immediately derived from the fact
that parallel composition (where the scheduling of the messages is fixed and synchronized) is merely
a special case of concurrent composition (where the adversary controls the scheduling).

Corollary 4 There does not exist a protocol for authenticated Byzantine Generals that remains
secure under concurrent composition and can tolerate n/3 or more statically corrupted parties.

4 Sequential Composition of Deterministic Protocols

Theorem 1 states that it is impossible to obtain an authenticated Byzantine Generals protocol
that remains secure under parallel composition. The impossibility result holds even if only two
parallel executions take place and even for randomized protocols. In this section, we consider a
much more limited type of composition and a limited class of protocols. That is, we study the
feasibility of obtaining deterministic protocols for authenticated Byzantine Generals that remain
secure under sequential composition. We show that any protocol that terminates within r rounds
of communication can only remain secure for at most 2r−1 sequential executions. Thus, efficient

14



deterministic protocols that remain secure for any polynomial number of executions do not exist.
Furthermore, since the number of rounds in the protocol must be at least linear in the number of
times it is to compose, we rule out the possibility of obtaining practical deterministic protocols that
are secure for a (large) polynomial number of sequential executions. We remark that the currently
known protocols for (stand-alone) authenticated Byzantine Agreement are deterministic [24, 21].
Furthermore, these protocols can actually be completely broken in the second execution.

The lower bound here is derived by showing that for any deterministic protocol Π, r rounds
of the hexagonal system S (see Figure 1) can be simulated in 2r sequential executions of Π. As
we have seen in the proof of Theorem 1, the ability to simulate S results in a contradiction to
the correctness of the Byzantine Generals protocol Π. However, a contradiction is only derived if
the system S halts. Since Π terminates within r rounds, the system S also halts within r rounds.
Therefore, a contradiction is reached if Π is run 2r or more times. We conclude that the protocol
Π can remain secure for at most 2r−1 sequential executions.

We remark that in actuality, one can prove a more general statement that says that for any
deterministic protocol, r rounds of 2 parallel executions of the protocol can be perfectly simulated
in 2r sequential executions of the same protocol. More generally, r rounds of k parallel executions
of a protocol can be simulated in k · r sequential executions. Thus, essentially, the deterministic
sequential lower bound is derived by reducing it to the parallel composition case of Theorem 1.
That is,

Theorem 2 Let Π be a deterministic protocol for authenticated Byzantine Generals that terminates
within r rounds of communication and remains secure under sequential composition for 2r or more
executions. Then Π can tolerate at most t < n/3 statically corrupted parties.

Proof: As we have mentioned, we prove this theorem by showing that a corrupted party in a
deterministic authenticated Byzantine Generals protocol Π for three parties, can perfectly simulate
r rounds of the hexagonal system S using 2r sequential executions. Thus the proof here is very
similar to the proof of Theorem 1.

Assume by contradiction that there exists a deterministic protocol for authenticated Byzantine
Generals Π for three parties with the following properties: Π tolerates one corrupted party, always
halts after at most r rounds, and is secure for 2r sequential executions. We show that the existence
of such a Π results in a contradiction. Exactly as in the proof of Theorem 1, we combine two copies
of Π into a hexagonal system S with parties G0, A0 and B0 (where G0 has input 0), and G1, A1 and
B1 (where G1 has input 1). We begin by proving the following claim (which implies an analogue
to Claim 3.2).

Claim 4.1 There exists an adversary B controlling party B such that in the 2rth sequential execu-
tion of Π, the views of G and A (upon input 0 into that execution) are identical to the respective
views of G0 and A0 after r rounds of the system S.

Proof: Adversary B works by simulating the hexagonal system S. Essentially, this consists of
simulating two parallel executions of Π (with the edges “redirected” to make up S); recall that
this involves intertwining two different copies of Π (one in which G inputs 0, and one in which it
inputs 1). However, in our setting, Π can only be run sequentially and thus only one copy of Π
can be running at any given time. This problem is solved by simulating one round of the hexagon
over two sequential executions. That is, in the 2i−1th and 2ith executions of Π, the ith round of S
is simulated. We now show how this simulation is achieved.

Let G0 and G1 be identical copies of G, except that G0 has input 0 and G1 has input 1;
likewise define A0, A1, B0 and B1 to be identical copies of A and B, respectively. The sequential

15



executions are such that G0, A0 and B0 run in the 2ith execution; and G1, A1 and B1 run in
the 2i−1th execution, for 1 ≤ i ≤ r. The adversarial party B controls B0 and B1, but as in the
proof of Theorem 1, B’s malicious behavior consists merely of redirecting messages. We denote by
msg`(Pa, Pb) the `th message sent by party Pa to party Pb in an execution of Π. Furthermore, i
denotes the index of the round taking place in the system S, and j is the index of the execution in
the series of sequential executions. Adversary B works as follows:

1. i = 1 (simulation of the 1st round of S):

(a) j = 2i− 1 = 1: B invokes B1 who runs with G1 and A1. Party B records the messages
output by B1: msgi=1(B1, G1) and msgi=1(B1, A1) (we stress that B1 is run internally
by B and therefore these messages are obtained internally). Furthermore, B receives and
records the incoming messages: msgi=1(G1, B1) and msgi=1(A1, B1) (these messages
are received by B through external interaction with G1 and A1). Finally, B runs the
execution until it concludes, ignoring the continuation.

(b) j = 2i = 2: B invokes B0 who runs with G0 and A0. Party B records the messages
output by B0: msgi=1(B0, G0) and msgi=1(B0, A0). Next, B receives and records the
incoming messages: msgi=1(G0, B0) and msgi=1(A0, B0). Finally, B runs the execution
until it concludes, ignoring the continuation.

2. i = 2 (simulation of the 2nd round of S):

(a) j = 2i− 1: B invokes B1 who runs with G1 and A1. Party B works as follows (we note
that all the messages sent in this round were obtained in the first step of executions 1
and 2):

• B passes B1 the messages msgi=1(G1, B1) and msgi=1(A0, B0) (informally speaking,
this second message is redirected).

• B sends G1 the message msgi=1(B1, G1).

• B sends A1 the message msgi=1(B0, A0) (this message is redirected).

In addition B receives and records the following messages from the second round of this
execution:

msgi=2(B1, G1), msgi=2(B1, A1), msgi=2(G1, B1) and msgi=2(A1, B1)

Finally, B runs the execution until it concludes, ignoring the continuation. We denote
all the messages sent up to this point by Πj .

(b) j = 2i: B invokes B0 who runs with G0 and A0. Party B works as follows:

• B passes B0 the messages msgi=1(G0, B0) and msgi=1(A1, B1).

• B sends G0 the message msgi=1(B0, G0).

• B sends A0 the message msgi=1(B1, A1).

In addition B receives and records the following messages from the second round of this
execution:

msgi=2(B0, G0), msgi=2(B0, A0), msgi=2(G0, B0) and msgi=2(A0, B0)

Finally, B runs the execution until it concludes, ignoring the continuation. We denote
all the messages sent up to this point by Πj .

16



3. 3 ≤ i ≤ r (simulation of the ith round of S):

(a) j = 2i− 1: B invokes B1 who runs with G1 and A1. Party B works as follows:

• B runs Πj−2

• B passes B1 the messages msgi−1(G1, B1) and msgi−1(A0, B0).

• B sends G1 the message msgi−1(B1, G1).

• B sends A1 the message msgi−1(B0, A0).

In addition B receives and records the following messages:

msgi(B1, G1), msgi(B1, A1), msgi(G1, B1) and msgi(A1, B1)

Finally, B runs the execution until it concludes, ignoring the continuation.

(b) j = 2i: B invokes B0 who runs with G0 and A0. Party B works as follows:

• B runs Πj−2

• B passes B0 the messages msgi−1(G0, B0) and msg1(A1, B1).

• B sends G0 the message msgi−1(B0, G0).

• B sends A0 the message msgi−1(B1, A1).

In addition B receives and records the following messages:

msgi(B0, G0), msgi(B0, A0), msgi(G0, B0) and msgi(A0, B0)

Finally, B runs the execution until it concludes, ignoring the continuation.

First, note that at the conclusion of round 2 of the 4th execution (j = 4), the views of parties G0

and A0 are identical to their views at the conclusion of round 2 of S (in particular, G0 sees messages
from A0 and B0, and A0 sees messages from G0 and B1). Then, in the sixth sequential execution,
B begins by sending G0 and A0 the same round 2 messages. Since Π is a deterministic protocol,
G0 and A0 reply with the same messages as in the fourth execution (likewise, the messages they
send to each other are the same as in the fourth execution). Thus, the round 3 messages that they
receive (that are computed based on the messages sent in previous executions) are consistent with
their views in S. Using the same argument, we have that for every i, after i rounds of the 2ith

sequential execution, the views of G0 and A0 are identical to their views after i rounds of S. This
concludes the proof of the claim.

Recall that by the contradicting assumption, Π is a protocol for Byzantine Generals that always
halts within r rounds and is secure for 2r sequential executions. Thus, in the 2rth sequential
execution of Π, we have that G and A both halt within r rounds and output 0 (their output must
equal 0 as G’s input is 0). By Claim 4.1, it follows that in S, parties G0 and A0 also halt within
r rounds and both output 0. Thus, we obtain the following analogue to Claim 3.2:

Claim 4.2 Except with negligible probability, parties G0 and A0 halt within r rounds and output 0
in the system S.

The following two claims (analogous to Claims 3.3 and 3.4) can be shown in a similar fashion:

Claim 4.3 Except with negligible probability, parties G1 and B1 halt within r rounds and output 1
in the system S.

17



Claim 4.4 Except with negligible probability, parties A0 and B1 halt within r rounds and output
the same value in the system S.

Combining Claims 4.2, 4.3 and 4.4, we reach a contradiction. We thus conclude that there does not
exist a deterministic protocol for authenticated Byzantine Generals for three parties that tolerates
one corrupted party, runs for at most r rounds and is secure for 2r sequential executions. As in the
proof of Theorem 1, the general case of n parties (for any n) is obtained in a standard way. This
completes the proof of the theorem.

5 Sequentially Composable Randomized Protocols

In this section we present two results. The first one is a protocol that tolerates any t < n/2 corrupted
parties and has polynomial complexity. The second one is a protocol that can tolerate any number of
corrupted parties, but its communication complexity is exponential in the number of participating
parties. Both protocols are proven secure against adaptive, polynomial-time adversaries.

The building block for both of the above-mentioned protocols is a randomized protocol for
authenticated Byzantine Generals between 3 parties that tolerates any number of corrupted parties
and remains secure under sequential composition; such a protocol is denoted ABG3,3. (Recall that
ABGn,t denotes an authenticated Byzantine Generals protocol for n parties that tolerates up to
t corruptions.) We first present a protocol for ABG3,3 in Section 5.1 and prove that it composes
sequentially. Then show how it can be used to obtain protocols for general n in Sections 5.2 and 5.3.

5.1 Sequentially Composable ABG3;3

We construct a protocol ABG3,3 for three parties that remains secure under sequential composition;
denote the parties by G (the General) and P1, P2 (the recipients), and denote the General’s input
value by x. According to Definition 1, parties P1 and P2 need to output the same value x′ (this
is the agreement requirement), and furthermore, if G is not corrupt then it must hold that x′ = x
(this is the validity requirement). Termination is also required; however, this is trivially fulfilled
by all our protocols and we therefore ignore it from here on. As is evident from the proof of
the lower bound in Section 4, the central problem in obtaining security in the sequential case is
that corrupted parties can import signed messages from previous executions, and it is impossible
to distinguish between these “old” messages and the current signatures. Thus, if some freshness
associated with the current execution could be introduced into the signatures, this would foil the
adversary’s actions. This seems to place us in a circular argument, because agreeing on such
freshness requires “agreement”. Nevertheless, the case of three parties is different: here there are
only two parties who need to receive each signature. Furthermore, it turns out that it suffices if
only the parties who are receiving the signature jointly agree on a fresh string. Fortunately, two
parties can easily agree on a new fresh value: they simply exchange random messages and set the
fresh string to equal the concatenation of the exchanged values. Now, in the protocol which follows
for three parties, we require that whenever a party signs a message, it uses freshness generated
by the two remaining parties. We note that in the protocol, only the General G signs messages,
and therefore only it needs a public key. The protocol is described in Figure 3. For simplicity, we
assume that the signature scheme is defined such that a signature σ = Ssk(m) on m also contains
the value m.

We now prove that Protocol 3 (in Figure 3) constitutes a secure protocol for ABG3,3 that remains
secure under sequential composition. Actually, since Protocol 3 will be used later in a setting with n

18



Protocol 3: Authenticated Byzantine Generals for Three Parties

Public input: Security parameter 1k

Public verification key vk associated with G

Private input of G: Secret signing key sk corresponding to vk
A value x to be broadcast

The protocol:

1. P1 and P2 agree on a random label `, as follows:
(a) P1 and P2 choose random k-bit strings u1 and u2, respectively, and send them to

each other.
(b) Each party sets ` = u1 ◦ u2, where ◦ denotes concatenation.

2. P1 and P2 both send ` to G.

3. Let `i denote the message that G received from Pi in the previous round. G computes
a signature σ = Ssk(x, `1, `2) and sends σ to P1 and P2.

4. P1 and P2 send each other the signatures σ that they received in the previous round.

Output: Let σ and σ′ denote the signatures that party Pi received above (i.e., one from G and
one from Pj). Then, a value x is said to be valid if σ or σ′ constitutes a valid signature on
(x, `1, `2) and ` ∈ {`1, `2} (i.e., Vvk((x, `1, `2), σ) = 1 and at least one of `1, `2 equals the label
` generated in Step 1). Output is computed as follows:

1. If a recipient Pi received exactly one valid value x, then it outputs x. Otherwise, it
outputs a default value, say 0.

2. The General G always outputs x.

Figure 3: ABG3,3

parties, we state a broader claim regarding its security under composition, rather than just proving
security under sequential composition in the three party setting. Specifically, we consider a network
with n parties, where any subset of 3 parties may run any given protocol execution.

Lemma 5.1 Assume that the signature scheme (Gen, S, V ) is existentially secure against adaptive
chosen-message attacks. Then, Protocol 3 is a secure protocol for ABG3,3 that remains secure under
sequential composition within a system of n parties, in which any t ≤ n may be adaptively corrupted.

Proof: We prove the theorem by contradiction. Assume that there exists an adaptive polynomial-
time adversary A who invokes many sequential executions of Protocol 3 and succeeds in “breaking”
at least one of the executions with non-negligible probability. Given this adversary A, we will
construct a forger F who succeeds in breaking the signature scheme (i.e., generating a forgery)
with non-negligible probability. This therefore contradicts the security of the signature scheme.
Our proof refers to the agreement and validity requirements, as stated in Definition 1 (termination
follows immediately from the protocol description).

In our setting, there are n parties, any number of which may be corrupted by the adversary.
Therefore, any individual execution of Protocol 3 may involve 0, 1, 2 or 3 corrupted parties. First,
if all parties are honest, then the agreement and validity requirements clearly hold. On the other

19



extreme, if all the parties are corrupted, then there are no requirements on the protocol and therefore
security holds by default. Similarly, if two parties are corrupted and so only a single party is honest,
then security holds trivially. Specifically, agreement holds vacuously no matter what the honest
party outputs. Regarding the validity requirement: If the General G is the (single) honest party,
then by Protocol 3, it always outputs x and so validity holds. On the other hand, if G is corrupted,
then there is no validity requirement. The above arguments hold irrespective of the number of
executions of the protocol. We therefore conclude that the agreement and validity requirements
hold for all executions of Protocol 3 where 0, 2 or 3 parties are corrupted.

It follows that the only case in which either the agreement or validity requirements can be foiled
is where exactly one party is corrupted (and the other two are honest). We first prove that when
the General G is corrupted, then agreement holds (recall that there is no validity requirement in
this case). In this case both, P1 and P2 are honest, thus they both hold the same label ` and both
see the same signatures σ and σ′ (recall that they send each other these signatures in Step 4).
Therefore, a value x is valid for P1 if and only if it is valid for P2. This implies that they both
either output the same x or the default value 0. As above, this argument holds irrespective of the
number of executions (and is also not dependent on the security of the signature scheme).

It remains to prove that the agreement and validity properties hold when the General G and
one of the recipients P1 or P2 is honest. In this case, agreement implies validity because G always
outputs its input value x. Therefore, if agreement is fulfilled, then the honest recipient must also
output x, thereby fulfilling the validity requirement. Thus, it suffices to prove that the agreement
requirement holds. That is, we show that if an adversary A can foil the agreement in an execution
where the General is honest, then we can construct a forger F for the signature scheme (Gen, S, V ).
The forger F receives a public verification-key vk as input, and is given access to a signing oracle
Ssk(·) associated with this key. F begins by choosing one of the parties at random, say Pj , and
associates the verification-key vk with this party. Intuitively, with probability 1/n, this is the party
which plays the General when A foils the agreement. For all other parties, the forger F chooses
a key pair, for which it knows both the signing and verification keys. F gives the adversary A all
of the public verification keys and, in addition, the secret signing keys of all the initially corrupted
parties. Then, F internally invokes A and simulates the roles of the honest parties in the sequential
executions of Protocol 3, with A as the adversary. In particular, F works as follows:

• In all executions where the recipient/s P1 and/or P2 are not corrupted, F plays their role,
following the protocol exactly as specified. This is straightforward as the recipients do not
use signing keys during such an execution.

• In all executions where the General is some uncorrupted party Pl 6= Pj , the forger F plays
the role of Pl, following the protocol and using the signing-key which it initially associated
with Pl.

• In all executions where the General is the uncorrupted Pj , the forger F plays the role of
Pj following the protocol. However, in this case, F does not have the associated signing-
key. Nevertheless, it does have access to the signing oracle associated with vk (which is Pj ’s
public verification-key). Therefore, F computes these signatures by accessing its oracle. In
particular, for labels `1, `2 that it receives during the simulation, it queries the signature
oracle for σ = Ssk(x, `1, `2).

• Corruptions: If at any point, A corrupts a party Pl 6= Pj , then F hands A the signing-key
that is associated with Pl (this is the only secret information that Pl has). On the other hand,
if at any point A corrupts Pj , then F aborts (and does not succeed in forging).

20



Throughout the above-described simulation, F monitors each execution and waits for an execution
in which exactly one party is corrupt and the agreement is foiled. If no such execution occurs, then
F aborts. Otherwise, in the first foiled execution, F checks if the uncorrupted Pj is the General in
this execution. If not, then F aborts (without succeeding in generating a forgery). Otherwise, we
have an execution in which Pj is the General and agreement is foiled. In such a case, F succeeds
in generating a forgery as follows.

As we have mentioned, agreement can only be foiled in an execution where exactly one party is
corrupted. Since by assumption Pj = G is not corrupted, we have that one of the recipients Pi or
Pi′ is corrupted. For the sake of clarity, below we will refer to the parties as G, P1 and P2 where,
without loss of generality, P1 is the corrupted party. We note that F plays the roles of both honest
parties G and P2 in the simulation. Now, since the agreement was foiled, we know that P2 does
not output G’s input value x, which means that it outputted some value x′ 6= x. However, since
G is honest, x is clearly a valid value for P2. Therefore, it must be that the value x′ outputted by
P2 is the default value, and P2 received two valid values x and x′. This implies that P2 received
two different correct signatures that include the label ` generated in this execution. However, F
only accessed its signing oracle once in this execution (for signing on the value x, including the
labels). Therefore, F has obtained a valid signature on a value that was not queried to its oracle in
this execution. It remains to show that this value was also not queried in any previous execution.
However, this follows from the fact that the label ` is included in this “forgery”, and this label
includes random k-bit strings that were generated in the current execution. Therefore, except with
negligible probability, the label ` did not appear in any previous execution. We conclude that F
obtained a valid signature on a value that was not queried to the signing oracle at any stage. This
signature therefore constitutes a successful forgery, as required.

It remains to analyze the probability that F succeeds in this forgery. First, it is easy to see
that when F does not abort, the simulation of the sequential executions is perfect, and A’s view
in this simulation is identical to a real execution. Furthermore, the probability that Pj is the
identity of the (uncorrupted) General in the first foiled agreement equals 1/n exactly. We note that
the fact that Pj is chosen ahead of time makes no difference because the simulation is perfect (in
particular, using the signing oracle Ssk(·) is exactly the same as generating the signatures using sk).
Therefore, the choice of Pj by F does not make any difference to the behavior of A. We conclude
that F succeeds in forging with probability 1/n times the probability that A succeeds in foiling the
agreement, which is non-negligible. This contradicts the security of the signature scheme.

5.2 Sequentially Composable ABGn;n=2

In this section, we use Protocol 3 in order to obtain a protocol that remains secure under sequential
composition, and tolerates t < n/2 corruptions. Fitzi and Maurer [13] present a protocol for the
Byzantine Generals problem that tolerates any t < n/2 corrupted parties. Their protocol is in
the standard (unauthenticated) model and makes no complexity assumptions (i.e., it is in the
information-theoretic model). However, they do make an additional assumption on the network
(this is what enables them to bypass the lower bound of t < n/3 [24, 21]). Specifically, they assume
that in addition to a standard point-to-point network, every triplet of parties is connected with
an ideal (3-party) broadcast channel. However, as we have shown in Section 5.1, given a public-
key infrastructure for signature schemes, it is possible to implement secure broadcast among three
parties that remains secure under sequential composition. Thus, a protocol for ABGn,n/2 is derived
by substituting the ideal 3-party broadcast primitive in the protocol of Fitzi and Maurer [13] with
Protocol 3. Since Protocol 3 and the protocol of Fitzi and Maurer [13] both remain secure under

21



sequential composition, the same is true of the resulting protocol.

Theorem 3 Assume that there exists a signature scheme that is existentially secure against chosen-
message attacks. Then, there exists a randomized protocol for authenticated Byzantine Generals that
tolerates t < n/2 adaptive corruptions and remains secure under sequential composition.

Proof: As described above, a protocol ABGn,n/2 that remains secure under sequential composition
can be constructed by combining the BGn,n/2 protocol of [13] with Protocol 3 for ABG3,3 (recall
that by Lemma 5.1, Protocol 3 remains secure under sequential composition). Specifically, every
time that parties communicate using the ideal 3-party broadcast channel in the protocol of [13],
this communication is replaced by an execution of Protocol 3. All the executions of ABG3,3 can
be made sequential by setting a fixed schedule for these executions in the protocol specification.
We call this the combined protocol. Intuitively, since the Protocol 3 is secure under sequential
composition, it simulates the ideal 3-party broadcast channel, except with negligible probability.
Now, by Proposition 2.1, the protocol of [13] remains secure under concurrent (and thus sequential)
composition, when using an ideal 3-party broadcast. Therefore, the combined protocol using only
a standard point-to-point network must also remain secure under sequential composition.

Formally, we show that if the combined protocol for ABGn,n/2 can be broken, then this yields
an adversary that can break either the protocol of [13] under sequential composition, or Protocol 3
under sequential composition. That is, assume by contradiction that there exists an adversary
A running many sequential executions of the combined protocol, such that with non-negligible
probability, A causes either the validity or agreement requirements to not hold in at least one
execution of the protocol. Then, there are two possibilities:

1. All of the executions of Protocol 3 terminate successfully, except with negligible probability:
In this case, we construct an adversary A′ for the protocol of [13] that uses an ideal 3-
party broadcast between all triples of parties. The adversary A′ internally simulates for A
the messages sent by the honest parties in the executions of Protocol 3. Specifically, if an
honest party broadcasts a message x on the 3-party broadcast channel in the execution of the
protocol of [13], then A′ simulates that party broadcasting x using Protocol 3. Likewise, when
A broadcasts a value using Protocol 3 in the internal simulation of the combined protocol,
then A′ plays the honest recipients in this execution. At the conclusion of the simulation of
this execution of Protocol 3, adversary A′ playing the honest recipients receives a value x′.
(Note that both recipients are guaranteed to receive the same x′.) A′ then broadcasts x′ to
the appropriate recipients on the ideal 3-party broadcast channel. We note that A′ can deal
with adaptive corruptions during the simulation, because the honest parties in Protocol 3
have no secret information.

Notice first that every execution of Protocol 3 that terminates “successfully” (i.e., where
validity and agreement hold) perfectly simulates an ideal 3-party broadcast. Therefore, since
Protocol 3 is correct except with negligible probability, the above simulation by A′ is perfect
except with negligible probability. This implies that the probability that A′ causes either the
validity or agreement requirements to not hold in at least one execution of the protocol of [13]
is at most negligibly far from the probability that A causes either the validity or agreement
requirements to not hold in at least one execution of the combined protocol. Thus, by the
contradicting assumption, A′ “breaks” the protocol of [13] with non-negligible probability,
within the setting of sequential composition. This contradicts the security of [13] (recall
that by Proposition 2.1, stand-alone security of unauthenticated Byzantine Generals implies
security under concurrent, and thus sequential, composition).

22



2. With non-negligible probability, at least one of the executions of Protocol 3 terminates such
that validity or agreement does not hold: This does not immediately yield a contradiction
because A “breaks” one of the executions of Protocol 3, when being run as a subprotocol
within the protocol of [13]. In contrast, the security of Protocol 3 has only been proven
within the context of sequential composition, where it is the only protocol being run by the
parties. Nevertheless, an adversary A′ can be constructed for the sequential composition of
Protocol 3 in a straightforward way, as follows. A′ internally invokes A and simulates all
of the honest parties for the messages of the protocol of [13]. Furthermore, when a party is
supposed to broadcast a value x in this simulation, then A′ sets the appropriate party’s input
for Protocol 3 to x. (Recall that in the setting of sequential composition, the adversary can
set the parties’ inputs for every execution; see Definition 4). Then, A′ forwards the messages
in this execution of Protocol 3 between A and the honest participating parties. This perfectly
simulates an execution of the combined protocol for A. Furthermore, the honest parties run
the sequential executions of Protocol 3 in the same way here as in a real execution of the
combined protocol. Therefore, A′ breaks one of the executions of Protocol 3 in this setting of
sequential composition with the same probability that A breaks an execution of Protocol 3
within the combined protocol. That is, A′ breaks Protocol 3 with non-negligible probability,
in contradiction to Lemma 5.1.

Both above possibilities results in a contradiction. We therefore conclude that the combined pro-
tocol is a protocol for ABGn,n/2 that remains secure under sequential composition.

Round complexity. The protocol described in the proof of Theorem 3 has a much higher round
complexity than the original protocol of [13]. This is due to the fact that the executions of Protocol 3
must be run sequentially, whereas the 3-party ideal broadcast channel of [13] can be used in parallel.
Nevertheless, using the methodology of Section 6, it is possible to reduce the round complexity to
be of the same order as the original protocol of [13]. The idea is that the protocol specification
can number each execution, thus providing unique identifiers. Then, as shown in Section 6, this
enables the executions to be run securely in parallel or even concurrently, thus reducing the round
complexity. Of course, the same identifiers will be reused in different executions of the overall
protocol. Nevertheless, the protocol still remains secure under sequential composition because the
addition of the identifiers changes nothing to the proof of Lemma 5.1.

5.3 Sequentially Composable ABGn;n

In this section we describe a protocol for the Byzantine Generals problem for n parties, that
can tolerate any number of corrupted parties. However, the protocol complexity (specifically, the
number of messages sent) is exponential in the number of participating parties (actually, for n
parties it is in the order of 2nn!). Therefore, in our setting, the protocol can only be efficiently
carried out for n = log k/ log log k parties (where k is the security parameter). We stress that this
limitation on the number of parties is due to two reasons. First, we wish the protocol to run in
time that is polynomial in the security parameter k. Second, we use a signature scheme and this is
only secure for polynomial-time adversaries and a polynomial number of signatures.

Our protocol is constructed by presenting a transformation that takes a protocol ABGn−1,n−1

for n−1 parties that tolerates any number of corrupted parties and remains secure under sequential
composition, and produces a protocol ABGn,n that remains secure under sequential composition.
This transformation can then be iteratively applied to Protocol 3 for ABG3,3 in order to obtain a
protocol ABGn,n, for any n.

23



The idea for the transformation is closely related to the ideas behind the protocol for Byzantine
Generals for three parties. The solution for the three-party broadcast assumes two-party broadcast
(which is trivial). Using two-party broadcast, agreement on a fresh label can be reached. Having
agreed on this label, the two point communications with the General are sufficient. Each party
sends its claimed fresh label to the General, and the General includes the two received labels inside
any signature that it produces. Our general transformation will work in the same manner. We
use the ABGn−1,n−1 protocol to have all parties (apart from the General) agree on a random label.
Then, each party privately sends this label to the General, who then includes all labels in its
signatures. Thus, we prove:

Theorem 5 Assume that there exists a signature scheme that is existentially secure against chosen-
message attacks, for adversaries running in time poly(k). Then, there exists an authenticated
Byzantine Generals protocol for O(log k/ log log k) parties, that tolerates any number of corrupted
parties and remains secure under sequential composition.

Proof: As described above, Theorem 5 is proven by providing a transformation of any protocol
for ABGn−1,n−1 that remains secure under sequential composition into a protocol for ABGn,n that
remains secure under sequential composition. The transformation is then applied to Protocol 3 for
ABG3,3, yielding the desired result. The reason that security is obtained for only O(log k/ log log k)
parties is due to the complexity of the final protocol, as will be shown later. We begin by presenting
the transformation in Figure 4.

Proposition 5.2 Assume that ABGn−1,n−1 is a Byzantine Generals protocol for n− 1 parties that
tolerates any number of corrupted parties and remains secure under sequential composition. Then,
Protocol 4 is an authenticated Byzantine Generals protocol for n parties that tolerates any number
of corrupted parties and remains secure under sequential composition.

Proof (sketch): The proof of this theorem is very similar to the proof of Lemma 5.1; we therefore
present only a sketch. We distinguish between executions where the General G is corrupt and
executions where it is honest:

G is corrupt: In this case we need to prove that all honest parties will output the same value. This
follows directly from the correctness of the ABGn−1,n−1 protocol. Specifically, it is guaranteed
that all honest parties receive the same ui values and therefore set the same label `. In
addition, all honest parties will obtain the same set of signatures σ1, . . . , σn−1. Therefore, if
a value x is valid for one honest party, then it is also valid for every other honest party. This
implies that all honest parties either output the same value x or the default value. We note
that this holds irrespective of how many executions have passed, and therefore also in the
setting of sequential composition.

G is honest: In this case, we need to show that all honest parties output G’s input value x. As in
the previous case, all honest parties set the same label ` and all honest parties receive the same
signature σ that begins with x and includes the label `. By the security of ABGn−1,n−1, it
follows that x is a valid value for all honest parties. However, this does not suffice for proving
that the honest parties output x, because it is possible that a corrupted party broadcasts a
valid signature σ′ that begins with some x′ 6= x and includes the label `. This is not possible,

6These executions can actually be run in parallel using the methodology described in Section 6, in a similar way
to that described at the end of Section 5.2.

24



Protocol 4: Authenticated Byzantine Generals for n Parties

Public input: Security parameter 1k

Public keys vk1, . . . , vkn associated with parties P1, . . . , Pn

Private input of Pi: Secret key ski corresponding to vki

The General G = Pn also has a value x to be broadcast

The protocol:

1. P1, ..., Pn−1 agree on a random label `, as follows:

(a) For every i (1 ≤ i ≤ n − 1), Pi chooses a random k-bit string ui and plays the
General in an execution of ABGn−1,n−1 in order to broadcast ui to the rest of the
recipients (i.e., to all Pj 6= Pn). All these executions are run sequentially.6

(b) Each party sets ` = ◦n−1
i=1 ui, where ◦ denotes concatenation.

2. Each Pi (1 ≤ i ≤ n− 1) sends ` to G.

3. Let `i denote the message that G received from Pi in the previous round. G computes
a signature σ = SskG(x, `1, ..., `n−1) and sends σ to all parties P1, . . . , Pn−1.

4. Let σi denote the message that Pi received from G. Then, for every i (1 ≤ i ≤ n − 1),
Pi plays the General in an execution of ABGn−1,n−1 in order to broadcast σi to the rest
of the recipients (i.e., to all Pj 6= Pn). All these executions are run sequentially.6

Output: Let σ1, . . . , σn−1 denote the signatures that party Pi received above (i.e., σi from G and
all other signatures σj from parties Pj). Then, a value x is said to be valid if there exists a
j ∈ {1, . . . , n−1} such that the signature σj constitutes a valid signature on a string beginning
with x and including the label `, as generated above in Step 1). Output is computed as follows:

1. If a recipient Pi received exactly one valid value x, then it outputs x. Otherwise, it
outputs a default value, say 0.

2. The General G always outputs x.

Figure 4: Transformation from ABGn−1,n−1 to ABGn,n

except with negligible probability, because it involves forging a signature. Specifically, since
the label ` includes the random strings ui sent by the honest parties, it is different from the
label used in all previous executions (except with negligible probability). Therefore, any valid
signature on x′ and ` must have been generated by the adversary. The actual reduction to
the security of the signature scheme follows the same lines as in the proof of Lemma 5.1.

This completes the proof of Proposition 5.2.

It remains to analyze the complexity of Protocol 4 for n parties. This can be computed recursively as
follows. A single execution of Protocol 4 requires 2(n−1) executions of ABGn−1,n−1 for broadcasting
all the ui and σi values, plus a fixed amount of work that is polynomial in n and k (we denote this
by poly(n, k)). This yields the following formula, where T (n) denotes the complexity of ABGn,n:

T (n) = 2(n− 1) · T (n− 1) + poly(n, k)

(Recall that T (3) is a fixed polynomial in k, as shown in Protocol 3.) Solving this recursion, we

25



obtain that T (n) = O(2n ·n! ·poly(n, k)), which is polynomial in k as long as n = O(log k/ log log k).
This completes the proof of Theorem 5.

6 Authenticated Byzantine Agreement using Unique Identifiers

In this section we consider an augmentation to the authenticated model in which each execution is
assigned a unique and common identifier. We show that in such a model, it is possible to achieve
Byzantine Agreement that composes concurrently, for any number of corrupted parties. We stress
that in the authenticated model itself, it is not possible for the parties to agree on unique and
common identifiers, without some external help. This is because by the results of this section,
agreeing on a common identifier amounts to solving the Byzantine Agreement problem, and we
have proven that this cannot be achieved for t ≥ n/3 when composition is required. Therefore,
these identifiers must come from outside the system (and as such, assuming their existence is an
augmentation to the authenticated model).

Intuitively, the existence of unique identifiers helps in the authenticated model for the following
reason. Recall that our impossibility result is based on the ability of the adversary to borrow
signed messages from one execution to another. Now, if each signature also includes the session
identifier, then the honest parties can easily distinguish between messages signed in this execution
and messages signed in a different execution. It turns out that this is enough. That is, we give
a transformation of protocols for authenticated Byzantine Agreement to protocols that compose
concurrently in a setting where unique identifiers exist. Loosely speaking, our transformation
holds for protocols that utilize the signature scheme for signing and verifying only (as is natural).
Actually, in order to prove this transformation, we need a generalized notion of secure signature
schemes. We present this before proceeding further.

Generalizing the Security of Signature Schemes. The focus of the definition of security
for signature schemes (see Section 2.4) is on the fact that the adversary A should not succeed
in generating any forgery (except with negligible probability). However, according to the specific
formulation, the adversaryA receives oracle access to a signing oracle S(sk, ·) only. For our purposes
below, we wish to consider what happens when A is given oracle access to another oracle Aux(sk, ·)
that does not generate valid signatures, but rather computes some other function of sk and the
query. That is, A can receive information connected to sk that is not necessarily limited to valid
signatures. Of course, if this additional information consists of fully revealing sk, then A could
easily forge signatures. However, other information may be revealed that does not enable A to forge
signatures. More formally, consider a setting where the adversary is given access to two oracles:
S(sk, ·) and Aux(sk, ·), where Aux is an auxiliary information oracle. Security is defined in the
same way as in Section 2.4; however, the only limitation on the message m∗ output by A at the
conclusion of the experiment is that it was not queried to the S(sk, ·) oracle. In particular, A may
have queried the Aux oracle with m∗ and this does not affect the validity of the forgery.7 Formally,
we define an identical experiment as in Definition 5, except that A is given oracle access to both
S and Aux. We stress that the set of queries Qm consists only of A’s queries to S(sk, ·). We say
that 〈(Gen, S, V ), Aux〉 is existentially secure against generalized chosen-message attacks if for every
probabilistic polynomial-time A, the probability that A succeeds in outputting a forgery not in Qm

7Clearly, it must be infeasible to derive a valid signature σ = S(sk, m) from the oracle-response Aux(sk, m).
Otherwise, the adversary A can always succeed in generating a forgery: It simply obtains Aux(sk, m) and derives the
signature σ.

26



is negligible. Notice that Aux must be specified along with S and V in order to determine whether
or not the scheme is secure.

We will now define a specific signature scheme and show that it is existentially secure against
generalized chosen-message attacks. Let (Gen, S, V ) be any signature scheme that is existentially
secure against chosen-message attacks and let id be a string (of any length). Define (Gen, Sid, Vid)
as follows: Sid(sk, m) = S(sk, id ◦ m) and Vid(vk, m, σ) = V (vk, id ◦ m,σ), where ◦ denotes
concatenation. That is, (Gen, Sid, Vid) are the same as (Gen, S, V ) except that the message m
is always prefixed by the string id. Next, define the oracle Aux(sk, ·) = S¬id(sk, ·) as follows:
S¬id(sk, m) = S(sk,m) if the prefix of m does not equal id. Otherwise, S¬id(sk, m) = ⊥. In
other words, the oracle Aux(sk, ·) = S¬id(sk, ·) signs any message that does not have id as a prefix.
We now claim that 〈(Gen, Sid, Vid), S¬id〉 is existentially secure against generalized chosen-message
attacks. This can be seen as follows. Intuitively, the oracle queries to S¬id cannot be of any help
to an adversary A because a successful forgery must be prefixed by id and all oracle queries to
S¬id must be prefixed by some id′ 6= id. More formally, assume that there exists an adversary A
that successfully generates a forgery in the setting of a generalized chosen-message attack against
〈(Gen, Sid, Vid), S¬id〉. Then, we construct an adversary A′ who successfully generates a forgery in
a standard chosen-message attack against (Gen, S, V ). A′ invokes A and answers all of its oracle
queries for it. A′ can do this because it has access to the S(sk, ·) oracle. By the contradicting as-
sumption, with non-negligible probability A outputs a pair (m∗, σ∗) such that V (vk, id◦m∗, σ∗) = 1
and m∗ was not queried to the Sid(sk, ·) oracle. However, this implies that in the simulation, A′
did not query its oracle with id ◦m∗. This holds because all queries of A to the S¬id oracle have
a different prefix. Therefore, A′ halts, outputting the successfully forged pair (id ◦m∗, σ∗). This
contradicts the security of (Gen, S, V ).

We are now ready to present the transformation itself:

The transformation. Let Π be a protocol for authenticated Byzantine Agreement that uses a
secure signature scheme (Gen, S, V ). We define a modified protocol Π(id) that is exactly the same
as Π except that the parties use the signature scheme (Gen, Sid, Vid) as defined above. We note
that the common value id is given to each party as auxiliary input.

In the following theorem we show that the above simple transformation suffices for achieving security
in a setting where many concurrent executions take place, as long as each execution has a unique
identifier.

Theorem 6 Let Π be a protocol for authenticated Byzantine Agreement that is secure for a single
execution when using a signature scheme that is existentially secure against generalized chosen-
message attacks. Furthermore, the (honest) parties use their secret keys for signing only.8 Let Π(id)
be obtained from Π as in the above transformation, and let id1, . . . , id` be a series of ` distinct equal-
length strings.9 Then the protocols Π(id1), . . . ,Π(id`) all solve the Byzantine Agreement problem,
even when run concurrently.

Proof: Intuitively, the security of the protocols Π(id1), . . . , Π(id`) is due to the fact that signatures
from Π(idi) cannot be of any help to the adversary in Π(idj). This is because in Π(idj), the
honest parties reject any signature on a message that begins with an identifier that is not idj .

8Formally, this means that party Pi’s instructions can be formulated with access to an oracle S(sk, ·) instead of
the key sk itself.

9More generally, any set of ` prefix-free strings suffice.

27



Since idi 6= idj , we have that signatures sent in Π(idi) are of no help in Π(idj). Our formal
proof of this intuition proceeds by showing how an adversary for a single execution of Π(id) can
internally simulate the concurrent executions of Π(id1), . . . , Π(id`), thereby reducing the security
of the concurrent setting to the stand-alone setting. However, in order to enable the adversary
to simulate other executions, it must be able to simulate the signatures generated by the honest
parties in these executions. By supplying the adversary with the oracle S¬id as described above,
this becomes possible.

First, we remark that Π(id) constitutes a secure Byzantine Agreement protocol even when an
adversary Aid is given access to all of the oracles S¬id(sk1, ·), . . . , S¬id(skn, ·). This is the case
because Π is secure when using a signature scheme that is existentially secure against generalized
chosen-message attacks, and 〈(Gen, Sid, Vid), S¬id〉 is such a scheme. Recall that Π(id) is identical
to Π except that the signature scheme used is (Gen, Sid, Vid). We also note that the stand-alone
security of Π(id) trivially holds even when Aid is able to choose id.

Next, we show that an adversary A who successfully attacks the concurrent executions of
Π(id1), . . . ,Π(id`) can be used by Aid to successfully attack a single execution of Π(id) for some
string id. This then contradicts the security of the underlying protocol Π. Now, assume by contra-
diction that A succeeds in “breaking” one of the Π(idi) executions with non-negligible probability.
The adversary Aid internally incorporates A and attacks a single execution of Π(id). Intuitively,
Aid internally simulates all executions for A, except for the one in which A succeeds in its attack.
Formally, Aid first randomly selects an execution i ∈R {1, . . . , `} and sets id = idi. Next, Aid

invokes A and emulates the concurrent executions of Π(id1), . . . ,Π(id`) for A. Adversary Aid does
this by playing the roles of the honest parties in all but the ith execution Π(idi). In contrast,
in Π(idi) adversary Aid externally interacts with the honest parties and passes messages between
them and A. Since Aid is given access to the signing oracles S¬id(sk1, ·), . . . , S¬id(skn, ·) and the
honest parties use their signing keys to generate signatures only, Aid is able to generate the honest
parties’ messages in all the executions Π(idj) for j 6= i. (Recall that in these executions, the prefix
of every signed message is idj 6= idi and thus these oracles suffice.) Therefore, the emulation by Aid

of the concurrent executions for A is perfect. This implies that Aid succeeds in “breaking” Π(id)
with success probability that equals 1/` times A’s success probability in the concurrent setting.
Thus, Aid succeeds with non-negligible probability and this contradicts the stand-alone security of
Π(id).

It is easy to verify that the protocols of [24, 21, 9] for authenticated Byzantine Agreement all fulfill
the requirements in the assumption of Theorem 6. We therefore obtain the following corollary:

Corollary 7 Assume that there exists a signature scheme that is existentially secure against adap-
tive chosen message attacks. Then, in a model where global unique identifiers are allocated to
each execution, there exist protocols for authenticated Byzantine Agreement that tolerate any t < n
corruptions and remain secure under concurrent composition.

We conclude by noting that it is not at all clear how it is possible to augment the authenticated
model with unique identifiers. In particular, requiring the on-line participation of a trusted party
who assigns identifiers to every execution is clearly impractical. (Furthermore, such a party could
just be used to directly implement broadcast.) However, we do note one important scenario where
Theorem 6 can be applied. As we have mentioned, secure protocols often use many invocations of
a broadcast primitive. Furthermore, in order to improve round efficiency, in any given round many
broadcasts may be simultaneously executed. The key point here is that within the secure protocol,
unique identifiers can be allocated to each broadcast in the protocol specification. Therefore,

28



authenticated Byzantine Agreement can be used. Of course, this does not change the fact that the
secure protocol itself will not remain secure under parallel or concurrent composition. However,
it does mean that its security is guaranteed in the stand-alone setting, and a physical broadcast
channel is not necessary.

7 Open Problems

Our work leaves open a number of natural questions. First, an unresolved question is whether or not
it is possible to construct randomized protocols for authenticated Byzantine Generals that remain
secure under sequential composition, for any n and any number of corrupted parties. Second, it
is unknown whether or not it is possible to construct a deterministic protocol that terminates in r
rounds and remains secure for ` sequential executions, for some 2 ≤ ` ≤ 2r−1. Another question
that arises from this work is to find a realistic computational model for Byzantine Agreement that
does allow parallel and concurrent composition for n/3 or more corrupted parties.

Acknowledgments

We would like to thank Oded Goldreich for pointing out a simpler proof of Theorem 6, and Matthias
Fitzi for discussions about [13].

References

[1] B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In 42nd FOCS, pages 106–115,
2001.

[2] B. Barak, Y. Lindell and T. Rabin. A Note on Secure Protocol Initialization and Setup in
Concurrent Settings. Cryptology ePrint Archive, Report 2004/006, 2004.

[3] D. Beaver. Secure Multi-party Protocols and Zero-Knowledge Proof Systems Tolerating a
Faulty Minority. Journal of Cryptology, 4(2):75–122, 1991.

[4] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of
Cryptology, 13(1):143–202, 2000.

[5] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols.
In 42st FOCS, pages 136–145. 2001.

[6] R. Canetti, J. Kilian, E. Petrank, and A. Rosen. Black-Box Concurrent Zero-Knowledge
Requires Ω̃(log n) Rounds. In 33th STOC, pages 570–579. 2001.

[7] Y. Dodis and S. Micali. Parallel Reducibility for Information-Theoretically Secure Computa-
tion. In CRYPTO’00, Springer-Verlag (LNCS 1880), pages 74–92, 2000.

[8] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th STOC, pages 409–418.
1998.

[9] D. Dolev and H.R. Strong. Authenticated Algorithms for Byzantine Agreement. SIAM Journal
of Computing, 12(4):656–665, 1983.

29



[10] M. Fischer, N. Lynch, and M. Merritt. Easy Impossibility Proofs for Distributed Consensus
Problems. Distributed Computing, 1(1):26–39, 1986.

[11] M. Fitzi, N. Gisin, U. Maurer and O. Von Rotz. Unconditional Byzantine Agreement and
Multi-Party Computation Secure Against Dishonest Minorities from Scratch. In EUROCRYPT
2002, Springer-Verlag (LNCS 2332), pages 482–501, 2002.

[12] M. Fitzi, D. Gottesman, M. Hirt, T. Holenstein and A. Smith. Byzantine Agreement Secure
Against Faulty Majorities From Scratch. In 21st PODC, pages 118–126, 2002.

[13] M. Fitzi and U. Maurer. From Partial Consistency to Global Broadcast. In 32th STOC, pages
494–503. 2000.

[14] J. Garay and P. Mackenzie. Concurrent Oblivious Transfer. In 41st FOCS, pages 314–324,
2000.

[15] O. Goldreich. Concurrent Zero-Knowledge With Timing Revisited. In 34th STOC, pages
332–340, 2002.

[16] O. Goldreich and A. Kahan. How To Construct Constant-Round Zero-Knowledge Proof Sys-
tems for NP. Journal of Cryptology, 9(3):167–190, 1996.

[17] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems. SIAM
Journal on Computing, 25(1):169–192, 1996.

[18] S. Goldwasser and Y. Lindell. Secure Computation Without Agreement. In 16th DISC,
Springer-Verlag (LNCS 2508), pages 17–32 2002.

[19] S. Goldwasser, S. Micali, and R. L. Rivest. A Digital Signature Scheme Secure Against Adap-
tive Chosen-Message Attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

[20] L. Gong, P. Lincoln, and J. Rushby. Byzantine Agreement with Authentication: Observations
and Applications in Tolerating Hybrid and Link Faults. In Dependable Computing for Critical
Applications, pages 139–157, 1995.

[21] L. Lamport, R. Shostack, and M. Pease. The Byzantine Generals Problem. ACM Transactions
on Programming Languages and Systems, 4(3):382–401, 1982.

[22] Y. Lindell, A. Lysyanskya, and T. Rabin. On the Composition of Authenticated Byzantine
Agreement. In 34th STOC, pages 514–523, 2002.

[23] S. Micali and P. Rogaway. Secure computation. Unpublished manuscript, 1992. Preliminary
version in CRYPTO’91, Springer-Verlag (LNCS 576), pages 392–404, 1991.

[24] M. Pease, R. Shostak, and L. Lamport. Reaching Agreement in the Presence of Faults. Journal
of the ACM, 27(2):228–234, 1980.

[25] B. Pfitzmann and M. Waidner. Information-Theoretic Pseudosignatures and Byzantine Agree-
ment for t >= n/3. Technical Report RZ 2882 (#90830), IBM Research, 1996.

[26] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs. In
EUROCRYPT’99, Springer-Verlag (LNCS 1592), pages 415–431, 1999.

[27] R.L. Rivest, A. Shamir, and L.M. Adleman. A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

30


