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Abstract

A publicly verifiable secret sharing scheme is more applicable than a verifiable secret
sharing because of the property that the validity of the shares distributed by the dealer can
be verified by any party. In this paper, we construct a non-interactive and information-
theoretic publicly verifiable secret sharing by a computationally binding and unconditionally
hiding commitment scheme and zero-knowledge proof of knowledge.
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1 Introduction

Secret sharing, which is a network of n + 1 players consisting of n participants with identities
1, 2, ..., n and a dealer(in some cases, the dealer is also a participant), is an important primitive
in cryptology. It usually consists of two basic protocols: (i) a distribution protocol in which
the secret is distributed by the dealer among participants, and (ii) a reconstruction protocol
in which the secret is recovered by pooling the shares of a qualified subset of the participants.
Basic schemes(threshold secret sharing) solve the problem for the case that all players in the
scheme are honest[1, 2].
However, if a player or some players are dishonest, basic secret sharing schemes will not be

in practice because of the following reasons: (i) all participants can not verify validity of their
shares from the dealer in the distribution protocol, and (ii) participant can not check validity of
their shares from other participants in the reconstruction protocol. In order to resist malicious
players, Feldman[8] and Pedersen[9] constructed a new type secret sharing scheme respectively.
They are called verifiable secret sharing(VSS) schemes in which the following cases are ture
(i)the dealer cannot send invalid shares to some or all of the participants during the distribution
protocol, and (ii)participants cannot submit invalid shares during the reconstruction protocol.
Pedersen’s VSS scheme is more applicable than Feldman’s, because the former is information-

theoretic secure, however, the latter is only computationally secure.
For all VSS schemes, they are two drawbacks in some cases(such as, electronic voting): (i) the

participants can only verify their own share, but anybody can not verify that the participants
received correct shares. (ii) the participants simply release their shares in the reconstruction
protocol, subsequently the released shares may be verified by anybody against the output of
the distribution protocol. In order to deal with them, publicly verifiable secret sharing(PVSS)
schemes were proposed by Stadler[7] and Schoenmakers[3] respectively. Stadler’s PVSS schemes
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can only conquer the first drawback, that is, the participants can not only verify their own share,
but also anybody can verify that the participants received correct shares. However, anybody
else is not able to verify the validity of the participant’s share if the participant does not provide
a proof of correctness for share released by himself in Schoenmakers’ PVSS scheme(in fact, the
proof is the proof of knowledge which two discrete logarithm is equal), so his scheme can avoid
two drawbacks.
In whole paper, Let Gq denote a group of prime order q, such that computing discrete

logarithms in this group is infeasible. Let g, g1, g2, h, h1, h2, G,H denote independently selected
generators of Gq, hence no party knows the discrete logarithm of any two generators. In addition,
we denote a secure hash function by H(·).
In Schoenmakers’ scheme, the following commitment scheme is used: ca := ga where a ∈R Zq,

subsequently his scheme is only computationally secure[3, 8]. In this paper, we will construct
an information-theoretic secure PVSS scheme by Pedersen’s commitment scheme[9] and proof
of knowledge that expressions of X and Y to base g1, g2 and h1, h2 respectively are equal,
furthermore, our PVSS scheme can also avoid two above drawbacks.
The structure of this paper is following, we introduce Pedersen’s commitment scheme and

PVSS model in section 2 and in section 3 respectively. In section 4, we construct several zero-
knowledge proof of knowledge. In section 5, we propose a PVSS scheme and prove its security.

2 Commitment Scheme

Pederson[9] proposed a computationally binding and unconditionally hiding scheme based on
the discrete logarithm problem. A value α ∈ Zq is committed to as Cα := gαhr, where r is
randomly chosen from Zq. We will use this commitment scheme for our construction and hence
they will be statistical zero-knowledge proof of knowledge.

3 Model for Non-interactive PVSS

We note that a distinctive feature of PVSS is that no private channels between the dealer and
the participants are assumed.
In a PVSS scheme, a dealer D wishes to distribute shares of a secret value s ∈ Σ among

n participants P1, ..., Pn. A monotone access structure describes which subsets of participants
are qualified to recover the secret. For example, the access structure may be a (t, n)-threshold
schemes, 1 ≤ t ≤ n, which means that any subset of t or more participants will able to recover
the secret, unless commitment is broken.
As a common structure for PVSS schemes we consider the following protocols. Note that

initialization is done without any interaction between the dealer and the participants. In fact,
participants may enter or leaver the system dynamically; the only requirement is that a partic-
ipant holds a registered public key.
Initialization All system parameters are generated as part of the initialization. Furthermore,
each participant Pi registers a public key key to be used with a public key encryption method
Ei. The actual set of participants taking part in a run of the PVSS scheme must be a subset of
the registered participants. We assume w.l.o.g that participants P1, ..., Pn are the actual partic-
ipants in the run described below.
Distribution The protocol consists of two steps:

1. Distribution of the shares. The distribution of a secret s ∈ Σ is performed by the dealer
D. The dealer first generates the respective shares si for participant Pi, for i = 1, ..., n.
For each participant Pi the dealer publishes the encrypted share Ei(si). The dealer also
publishes a string PROOFD to show that each Ei encrypts a share si. Furthermore, the
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string PROOFD commits the dealer to the value of secret s, and it guarantees that the
reconstruction protocol will result in the same value s.

2. Verification of the shares. Any party knowing the public keys for the encryption methods
Ei may verify the shares. For each participant Pi a non-interactive verification algorithm
can be run on PROOFD to verify that Ei(si) is a correct encryption of a share for Pi.
Since anyone may verify a share, it may be ruled out that a participant complains while
it received a correct share. In case one or more verifications fail, we therefore say that the
dealer fails, and the protocol is aborted. (If some level of fault-tolerance is desired one
may continue and think of it as a (t, n − c)-threshold scheme, where c is the number of
verifications that failed.)

Reconstruction The protocol consists of two steps:

1. Decryption of the shares. The participants decrypt their shares si from Ei(si). It is not
required that all participants succeed in doing so, as long as a qualified set of participants
is successful. These participants release si plus a string PROOFPi

that shows that the
released share is correct.

2. Pooling the shares. The strings PROOFPi
are used to exclude the participants which are

dishonest or fail to reproduce their share si correctly. Reconstruction of the secret s can
be done from the shares of any qualified set of participants.

Compared to [7], we have added the requirement for the reconstruction protocol that the
participants must provide a proof of correct decryption of their shares. The proof is also non-
interactive so that any party is able to sort out the correct shares and pool then together.
We have limited the description to non-interactive PVSS schemes by requiring that all

PROOF s can be verified non-interactively. In fact, it is natural to reduce the amount of interac-
tion between the players even more than for V SS schemes. Non-interactive VSS schemes, such
as [8, 9], still include a stage in which participants file complaints if they received an incorrect
share. Subsequently these complaints must be resolved to decide whether the distribution of
the secret was successful. In non-interactive PVSS we have eliminated even this round of inter-
action: since any party can verify the output of the dealer, there is no need for the individual
participants to check their own shares!

4 Proof of Knowledge

Chaum and Pedersen have ever proposed a protocol for proving that logg1h1 = logg2h2. We
denote this protocol by DLEQ(g1, h1, g2, h2), and it consists of the following steps, where the
prover knows x such that h1 = gx1 and h2 = gx2 :

1. The prover chooses a random r ∈ Z
∗
q , and sends α1 = gr1 and α2 = gr2 to the verifier.

2. The verifier sends a random challenge c ∈R Zq to the prover.

3. The prover responds with s := r − cx(mod q).

4. The verifier checks α1 = gs1h
c
1 and α2 = gs2h

c
2.

Now, we will generalize Chaum and Pedersen’s result and present a protocol for proving that
X = gx1

1 gx2

2 and Y = hx1

1 hx2

2 . This protocol is denoted byDLEQ(X,Y, g1, g2, h1, h2) and consists
of the following steps, where the prover knows x1, x2 such that X = gx1

1 gx2

2 and Y = hx1

1 hx2

2 .

1. The prover chooses a random r1, r2 ∈ Z
∗
q , and sends t1 = gr11 gr22 and t2 = hr11 h

r2
2 to the

verifier.
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2. The verifier sends a random challenge c ∈R Zq to the prover.

3. The prover responds with si := ri − cxi(mod q), where i=1,2.

4. The verifier checks t1 = Xcgs11 gs22 and t2 = Y chs11 h
s2
2 .

In [5], Chaum and Pedersen have proven their protocol DLEQ(g1, h1, g2, h2) satisfying zero-
knowledge, and in [4], Chaum, Evertse and Graaf proposed a zero-knowledge protocol for y =∏l

i=1 g
xi

i . So, Protocol DLEQ(X,Y, g1, g2, h1, h2) is a zero-knowledge protocol also.
ProtocolsDLEQ(g1, h1, g2, h2) andDLEQ(X,Y, g1, g2, h1, h2) are interactive, so they cannot

be directly used in our non-interactive secret sharing scheme. However, If the random challenge
c in above two protocols is replaced by a secure hash function value with message m as input,
a signature of non-interactive zero-knowledge proof of knowledge can be constructed, and this
signature will be used in our non-interactive and information-theoretic publicly verifiable secret
sharing scheme.
In [6], Fiat and Shamir constructed a signature of non-interactive zero-knowledge proof of

knowledge for DLEQ(g1, h1, g2, h2). We denote the signature by Sign(g1, h1, g2, h2).

1. The prover chooses a random s ∈ Zq, computes h
′
1 := gs1, h

′
2 := gs2, c = H(m||g1||g2||h1||h2||h

′
1||h

′
2),

r = cx+ s(mod q), then sends h′1, h
′
2, r to the verifier.

2. The verifier computes c := H(m||g1||g2||h1||h2||h
′
1||h

′
2), and check g

r
1 := hc1h

′
1, g

r
2 = hc2h

′
2.

The following signature is a signature of non-interactive zero-knowledge proof of knowledge
for DLEQ(X,Y, g1, g2, h1, h2), and it is denoted by Sign(X,Y, g1, g2, h1, h2).

1. The prover chooses two random s, t ∈ Zq, computes X
′ := gs1g

t
2, Y

′ := hs1h
t
2, c =

H(m||g1||g2||h1||h2||X||X
′||Y ||Y ′), r1 = cx1 + s(mod q), r2 = cx2 + t(mod q), then sends

X ′, Y ′, r1, r2 to the verifier.

2. The verifier computes c := H(m||g1||g2||h1||h2||X||X
′||Y ||Y ′), and check gr11 gr22 := XcX ′,

hr11 h
r2
2 = Y cY ′.

5 Special PVSS Scheme

Basing on signature Sign(g1, h1, g2, h2), Schoenmakers proposed a simple PVSS which it has
some distinguishing features, however, his scheme is only computational secure[3]. In this section,
we will propose an information-theoretic secure PVSS basing on Sign(X,Y, g1, g2, h1, h2).

5.1 Protocols

Just like Schoenmakers, we also solve the problem of efficiently sharing a random value from Gq.
The dealer will achieve this by first selecting s1, s2 ∈R Zq and then distributing shares of the
secret S = Gs1Hs2 . This approach allows us to keep the required proofs simple and efficient.
Initialization The group Gq and the generators g, h,G,H are selected using an appropriate
public procedure. Participant Pi generates a private key xi ∈R Z

∗
q and registers yi1 = Gxi ,

yi2 = Hxi as its public key.
Distribution The protocol consists of two steps:

1. Distribution of the shares. The dealer picks two random polynomials f(x) and g(x) of
degree at most t− 1 with coefficients in Zq:

f(x) =
t−1∑

j=0

αjx
j ,
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g(x) =
t−1∑

j=0

βjx
j

and sets s1 = α0, s2 = β0. The dealer keeps these polynomials secret but publishes the
related commitments Cj = gαjhβj , for 0 ≤ j < t. The dealer also publishes the encrypted

shares Yi = y
f(i)
i1 y

g(i)
i2 , for 0 ≤ j ≤ n, using the public keys of the participants. Finally, let

Xi =
∏t−1

j=0 C
ij
j . The dealer shows that the encrypted shares are consistent by producing

a proof of knowledge of the unique f(i), g(i), 1 ≤ i ≤ n, satisfying:

Xi = gf(i)hg(i), Yi = y
f(i)
i1 y

g(i)
i2 .

The non-interactive proof is the n-fold parallel composition of the protocols forDLEQ(Xi, Yi,

g, h, yi1, yi2). Applying Sign(Xi, Yi, g, h, yi1, yi2), the challenge c of non-interactive proof
is computed as a cryptographic hash of g, h,G,H, yi1, yi2, Xi, Yi, a1i, a2i, 1 ≤ i ≤ n. The
proof consists of the common challenge c and 2n responses ri1, ri2, 1 ≤ i ≤ n.

2. Verification of the shares. The verifier computes Xi =
∏t−1

j=0 C
ij
j from the Cj values. Using

yi1, yi2, Xi, Yi, ri1, ri2, 1 ≤ i ≤ n and c as input, the verifier computes a1i, a2i as

a1i = gri1hri2Xc
i , a2i = yri1

i1 y
ri2

i2 Y
c
i ,

and checks that the hash of g, h,G,H, yi1, yi2, Xi, Yi, a1i, a2i, 1 ≤ i ≤ n, matches c.

Reconstruction The protocol consists of two steps:

1. Decryption of the shares. Using its private key xi, each participant finds the share Si =

Gf(i)Hg(i) from Yi by computing Si = Y
1/xi

i . They publish Si plus a proof that the value
Si is a correct decryption of Yi. To this end it suffices to prove knowledge of an α such that
yi = yi1yi2 = (GH)

α and Yi = Sαi , which is accomplished by the non-interactive version of
the protocol DELQ(GH, yi, Si, Yi).

2. Pooling the shares. Suppose w.l.o.g that participants Pi produce correct values for Si, for
i = 1, ..., t. The secret Gs1Hs2 is obtained by Language interpolation:

t∏

i=1

Sλi

i =
t∏

i=1

(Gf(i)Hg(i))λi = G
∑t

i=1
f(i)λiH

∑t
i=1

g(i)λi = Gf(0)Hg(0) = Gs1Hs2 ,

where λi =
∏

j 6=i
j
j−i is a Lagrange coefficient.

Note that the participants do not need nor learn the values of the exponents f(i), g(i). Only
the related values Si = Gf(i)Hg(i) are required to complete the reconstruction of the secret values
S = Gs1Hs2 . Also, note that participant Pi does not expose its private key xi; consequently
participant Pi can use its key pair in several runs of the PVSS schemes.

5.2 Efficiency Analysis

The dealer only needs to post t+n elements of Gq(the numbers Cj and Yi) plus 2n+1 number of
size |q|(the responses ri1, ri2 and the challenge c). The number of exponentiations throughout the
protocol is correspondingly low, and all of these exponentiations are relatively small exponents
from Zq(|q| = 160 bits in pratice.
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5.3 Security Analysis

We first recall Diffie-Hellman problem and Diffie-Hellman assumption.

Definition 1 It is recalled Diffie-Hellman problem to find gab given ga and gb in group Gq,
where a, b ∈R Zq.

If the inputs to algorithm A are ga and gb which are randomly generated, and the output of it
is gab with non-negligible success probability, we think that algorithm A solves Diffie-Hellman
problem about g.

Assumption 1 (Diffie-Hellman assumption) For any positive polynomial p(·) and proba-
bilistic polynomial-time algorithm A, it exists an integer k0 such that the following inequality
holds for any k > k0:

Prob[A(Gq, g, g
a, gb) = gab|a, b ∈ Zq] <

1

p(k)

i.e., it does not exist polynomial-time algorithm A which can successfully resolve Diffie-Hellman
problem with non-negligible probability.

It is necessary to simplify our scheme in order to evaluate security of our PVSS scheme. In
the following proof, we will assume in our PVSS scheme that 1) g = h; 2) G = H; 3)f(x) = g(x)
hold. If our simplified PVSS scheme is secure, our original PVSS scheme will also be secure.
Now, we consider the security of the share-encryptions. We observe that directly break-

ing the encryptions used in our PVSS scheme implies breaking Assumption 1. This can be
seen as follows. Breaking the encryption of the shares amounts to finding Gf(i)Hg(i) given
g, h,G,H,Xi, yi1, yi2, Yi, for the group Gq. In the simplified model, Breaking the encryption
of the shares amounts to finding G2f(i) given g,G,Xi, yi1 or yi2, Yi, for the group Gq. Writing
G = gα, Xi = g2β , yi = gλ, breaking the encryption of the shares is equivalent to computing
g2αβ , given gα, g2β , gλ, and g2βλ, for α, β, λ ∈R Zq. Recalling that Assumption 1 states that it
is infeasible to compute g2αβ , given gα and g2β , we have the following lemma.

Lemma 1 Under the Diffie-Hellman assumption, it is infeasible to break the encryption of the
shares in our simplified PVSS model.

Proof: Given x = gα and y = gβ , we want to obtain z = gαβ by using an algorithm A that
breaks the encryption of the shares. Pick random α′, β′, γ, and feed xα

′

, y2β′ , gγ , g2β′γ to A.
Since the input to A is uniformly distributed, we then obtain Z ′ = g2αα′ββ′ with some success
probability ε. By taking z′1/(2α

′β′) = gαβ , we are thus able to compute z with same success
probability ε.
A stronger result is that the secret is protected unless t or more participants cooperate. This

is expressed by the following lemma.

Lemma 2 Suppose that t−1 participants pool their shares and obtain the secret in our simplified
PVSS model. Then we can break the Diffie-Hellman assumption.

Proof: Let gα and gβ be given, so we want to obtain gαβ . We assume that α and β are
random; if not, it is trivial to adapt the proof, as in the previous lemma. Suppose w.l.o.g. that
participants P1, ..., Pt−1 are able to break the scheme. We will show how to set up the system
such that this fact enables us to compute gαβ .
We put G = gα and C0 = g2β , which implicitly defines f(0) as it is required that C0 = g2f(0).

The points f(1), ..., f(t − 1) are chosen at random from Zq, which fixes polynomial f(x). This

6



allows us to directly compute Xi = g2f(i) and Yi = y
2p(i)
i1 , for i = 1, ..., t− 1. Since f(0) is only

given implicitly, we cannot compute the points f(t), ..., f(n). It suffices, however, that we can
compute Xi = g2f(i) by Lagrange interpolation, which also yields the remaining Cj ’s. We now
deviate from the protocol by computing the public keys yi1 or yi2 of participants Pi, i = t, ..., n,

as yi = gwi for random wi ∈ Zq, and we set Yi = Xwi

i such that Yi = y
2f(i)
i , as required.

The complete view for the system is now defined. It is consistent with the private view of
participants P1, ..., Pt−1, and comes from the right distribution. Now, suppose that they are able
to compute the secret G2f(0). Since G = gα and f(0) = β, we are thus able to compute g2αβ .
This contradicts the Diffie-Hellman assumption.
Note that we are assuming a static adversary. The above argument may be extended to

the case where the static adversary is allowed to take part in the PVSS protocols K times,
i.e., before breaking it. In that case we follow the protocol for the first K runs except that for
participants Pt, ..., Pn we will set Si = G2f(i) directly instead of decrypting Yi.
So far we have ignored the proofs that are required at several points in the protocol. However,

in the random oracle model these proofs can easily be simulated. This leads to the following
summary.

Theorem 1 Under the Diffie-Hellman assumption, our simplified PVSS scheme is secure in
the random oracle model. That is, (i) the reconstruction protocol results in the secret distributed
by the dealer for any qualified set of participants, (ii) any non-qualified set of participants is not
able to recover the secret.

Proof: It follows from the soundness of the Chaum-Pedersen[?] proof and the fact that the Xi’s
are obtained from the Cj ’s as Xi =

∏t−1
j=0 C

ij
j that the shares of the participants are consistent

with the secret. It follows from Lemma 2 and the fact that the Chaum-Pedersen proof is honest-
verifier zero-knowledge that no set of less that t participants can recover the secret.
Theorem 1 does not claim that the participants cannot get any partial information on the

secret G2s. This stronger result holds under the assumption that ELGamal encryption is se-
mantically secure, which is known to be equivalent to the Decision DH assumption. The lat-
ter assumption states that it is infeasible to determine whether a given triple is of the form
(gα, gβ , gαβ) or (gα, gβ , gδ) for random α, β, δ.
The above results are easily adapted to this case. For the equivalent of Lemma 1 we reason

as follows. Suppose that an adversary is able to determine whether an encrypted share is equal
to a given value gδ or not. We then obtain a contradiction with the Decision DH assumption,
closely following Lemma 1, by setting G = gα, Xi = g2β , and for random γ, setting yi = gγ

and Yi = (Xi)
γ = g2βγ . Since the share is equal to G2β = g2αβ it follows that we are able

to distinguish g2αβ from gδ, if the adversary is able to distinguish the share from gdelta. The
equivalent of Lemma 2 can proved in a similar way. This leads to the following conclusion.

Theorem 2 Under the DDH assumption and the random oracle assumption, our simplified
PVSS scheme is secure. That is, (i) the reconstruction protocol results in the secret distributed
by the dealer for any qualified set of participants, (ii) any non-qualified set of participants is not
able to recover any(partial) information on the secret.

The simplified PVSS scheme is a special model of protocols constructed in § 5.1. Lemma 1,
Lemma 2, Theorem 1 and Theorem 2 hold in the simplified model, then, they also hold in the
model § 5.1, i.e., the following theorem holds:

Theorem 3 Under the DDH assumption and the random oracle assumption, the PVSS scheme
in § 5.1 is secure. That is, (i) the reconstruction protocol results in the secret distributed by the
dealer for any qualified set of participants, (ii) any non-qualified set of participants is not able
to recover any(partial) information on the secret.
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Remark 1: In fact, proof of our scheme’s security is just like to that of Schoenmakers
scheme’s security, where Lemma 1, Lemma 2, Theorem 1 and Theorem 2 also hold in Schoen-
makers scheme.

5.4 Our PVSS vs. Schoenmakers’ PVSS

In our PVSS scheme, the dealer publishes related commitments Cj = gαjhβj and Yj = y
f(i)
i1 y

g(i)
i2 ,

however, the dealer publishes Cj = gαj and Yj = y
f(i)
i in Schoenmakers’ scheme. We find that

the comparision between them is like to that between Feldman’s VSS scheme and Pedersen’s
VSS scheme. So Schonmakers PVSS is only computationally secure, however, our scheme is
information-theoretic secure.
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