
Parallel Montgomery Multiplication in GF(2k) using

Trinomial Residue Arithmetic

Jean-Claude Bajard1, Laurent Imbert1,2, and Graham A. Jullien2

1 LIRMM, CNRS UMR 5506

161 rue Ada, 34392 Montpellier cedex 5, France

2 ATIPS, CISaC, University of Calgary

2500 University drive NW, Calgary, AB, T2N 1N4, Canada

Research Report LIRMM-04040

October 2004

Abstract

We propose the first general multiplication algorithm in GF(2k) with a subquadratic area

complexity of O(k8/5) = O(k1.6). Using the Chinese Remainder Theorem, we represent the

elements of GF(2k); i.e. the polynomials in GF(2)[X] of degree at most k − 1, by their

remainder modulo a set of n pairwise prime trinomials, T1, . . . , Tn, of degree d and such that

nd ≥ k. Our algorithm is based on Montgomery’s multiplication applied to the ring formed

by the direct product of the trinomials.

Keywords: Finite field arithmetic, Montgomery multiplication, Polynomial residue arith-

metic, Trinomial, Pentanomial, Elliptic curve cryptography

1



1 Introduction

Finite fields [10], and especially the extensions of GF(2), are fundamental in coding theory [6, 18],

and cryptography [13, 7]. Developing efficient arithmetic operators in GF(2k) is a real issue

for elliptic curve cryptosystems [9, 14], where the degree, k, of the extension must be large

(160 ≤ k ≤ 600).

The solutions proposed in the literature, can be classified into two classes of methods: the

generic and specific algorithms. Generic algorithms work for any extension fields, and for any

reduction polynomials. The most known general methods are an adaptation of Montgomery’s

multiplication [15] to binary fields [2], and the approach described by E. Mastrovito [12], where

the multiplication is expressed as a matrix-vector product. However, the most efficient imple-

mentations are specific algorithms which use features of the extension fields, such as the type of

the base [16, 4, 21, 8], or the form of the irreducible polynomial defining the field. In his Ph.D.

thesis [12], E. Mastrovito, proved that some kind of trinomials lead to very efficient implemen-

tations; this work was further extended to all trinomials [20]. In [17], F. Rodriguez-Henriquez

and Ç. K. Koç propose parallel multipliers based on special irreducible pentanomials.

A common characteristic of all those methods is their quadratic area-complexity; the number

of gates is in O(k2). Implementations using lookup-tables have been proposed in order to reduce

the number of gates. In [5], A. Halbutogullari and Ç. K. Koç, present an original method using

a polynomial residue arithmetic with lookup-tables. More recently, B. Sunar [19] proposed a

general subquadratic algorithm, whose best asymptotic bound, O(klog2 3), is reached when k is

a power of 2, 3, or 5, and when the reduction polynomial has a low Hamming weight, such as a

trinomial or a pentanomial. This approach is based on the Chinese Remainder Theorem (CRT)

for polynomials, and Winograd’s convolution algorithm.

In this paper, we consider a polynomial residue representation, using n, degree-d trinomials,

such that nd ≥ k. Our approach is based on Montgomery’s algorithm, where all computations

are performed on the residues, and where large lookup tables are not needed. We prove that, for

any degree k, and for any reduction polynomial, the asymptotic area-complexity is O(k8/5) =

O(k1.6). Experimental results are presented, which confirm the efficiency of our algorithm for

extensions of cryptographic interest.

We consider the finite field, GF(2k), defined by an irreducible polynomial P . We also define

2



a set of 2n, relatively prime trinomials, (T1, . . . , T2n), with deg Tj = d, for j = 1, . . . , 2n, and

such that nd ≥ k. We denote tj the degree of the intermediate term of each trinomial Tj , such

that Tj(X) = Xd+Xtj +1. As we shall see further, we also need tj < d/2 (cf. Section 3). Using

the Chinese Remainder Theorem, an element A ∈ GF (2k) can be represented by its residues

modulo (T1, . . . , T2n). We shall denote (A1, . . . , A2n), the residue representation of A. We give

more details in Section 2.2.

2 Montgomery Multiplication in Polynomial Residue Arithmetic

In this section we briefly recall Montgomery’s multiplication for integers and polynomials. We

then present in more details its generalization to polynomial residue arithmetic.

2.1 Montgomery Multiplication for Integers and Polynomials

Let us start with Montgomery’s multiplication over integers [15]. Montgomery’s algorithm

returns a b r−1 mod n, where r satisfies gcd(r, n) = 1. (In practice n is almost always an odd

number; thus r can be chosen as a power of 2). In this paper, we shall refer to r as the

Montgomery factor. The idea is to replace the costly division by n, by a very cheap division

by r. The computation is accomplished in two steps: we first define q = −a b n−1 mod r, such

that a b+ q n is a multiple of r; a division by r, which reduces to right-shifts, then gives a value

congruent to abr−1 mod n and less than 2n. If it is larger than n, a subtraction by n gives the

final result. A vast amount of research have been dedicated to Montgomery’s algorithms. E.g.,

the interested reader can find more details in [3] and [13], chapter 14.

The same idea applies for any finite extension field, GF(pk) ∼= GF(p)[X]/(f), where f is

a monic irreducible polynomial of degree k in GF(p)[X]. In other words, this means that

the elements of GF(pk) can be represented as the polynomials of degree at most k − 1, with

coefficients in {0, . . . , p − 1}. See, e.g. [5] in the case of GF(2k), and [1] for general extension

fields, GF(pk), with p > 2. The polynomial, R = Xk, is commonly chosen as the Montgomery

factor, because the reduction modulo Xk, and the division by Xk are simple operations. Indeed,

they consist in ignoring the terms of order larger than k for the remainder operation, and shifting

the polynomial to the right by k places for the division. In order to compute ABR−1 mod P ,

we first define Q = −ABP−1 mod R, and compute (AB + QP )/R, where the division by R

3



is performed using k right-shifts. The only difference with the integer case is that the final

correction is not necessary at the end because the result is already a polynomial of degree at

most k − 1.

2.2 Montgomery Multiplication over Polynomial Residues

Let (T1, . . . , Tn) be a set of n relatively prime trinomials. We define Γ of degree n× d ≥ k as

Γ =
n∏
i=1

Ti. (1)

The Chinese Remainder Theorem (CRT), which uses the following ring isomorphism,

GF(2)[X]/(Γ) −→ GF(2)[X]/(T1)× · · · ×GF(2)[X]/(Tn)
U 7−→ (U mod T1, . . . , U mod Tn) ,

(2)

tells us that every polynomial, U ∈ GF(2)[X], of degree less than k ≤ nd, is uniquely represented

by its remainders modulo T1, . . . , Tn.

In the following, for every A ∈ GF(2k) (remember that A can be represented as a polyno-

mial in GF(2)[X], of degree at most k − 1), we denote (A1, . . . , An) its residue representation

modulo (T1, . . . , Tn), or equivalently modulo Γ. In Algorithm 1 below, we shall also need its

residue representation modulo Γ′ =
∏n
i=1 Tn+i, for an extra set of n relativelt prime trinomials

(Tn+1, . . . , T2n), that we shall refer to as (An+1, . . . , A2n).

We apply Montgomery’s scheme to the polynomials A,B, and P given in their residue

representation, i.e., by their remainders modulo (T1, . . . , Tn). Note that although P is of degree

k, in Algorithm 1 we only need its value modulo Γ′.

In our residue version, Γ also plays the role of the Montgomery factor; i.e., we compute

AB Γ−1 mod P . However, unlike the integer and polynomial cases mentioned above, it is impor-

tant to note that in the residue representation, (AB+QP )/Γ can not be evaluated directly (that

is modulo Γ), simply because the inverse of Γ does not exist modulo Γ. We address this problem

by using n extra trinomials (Tn+1, . . . , T2n), such that gcd(Ti, Tj) = 1 for 1 ≤ i, j ≤ 2n, i 6= j;

and by computing (AB + QP ) modulo these n extra trinomials. Algorithm 1, below, returns

R = AB Γ−1 mod P in the residue representation; i.e. we obtain (R1, . . . , R2n), the remainders

of R modulo (T1, . . . , T2n), or equivalently modulo Γ× Γ′.

As in the polynomial case, the final subtraction is not necessary. This can be proven by

showing that the polynomial R is fully reduced, i.e., its degree is always less than k− 1. Indeen,

4



Algorithm 1 [MMTR: Montgomery Multiplication over Trinomial Residues]

Precomputed: 3n constant matrices d× d for the multiplications by P−1
i mod Ti (in Step 2),

by Pn+i mod Tn+i (Step 4), and by Γ−1
n+i mod Tn+i (Step 5), for i = 1, . . . , n; (Note that with

Mastrovito’s algorithm for trinomials [20], we only need to store 2d coefficients per matrix.)

Input: 5n polynomials of degree at most d−1: Ai, Bi, for i = 1, . . . , 2n, and Pn+i for i = 1, . . . , n

Output: 2n polynomials of degree at most d− 1: Ri = AiBi Γ−1 mod Pi, for i = 1, . . . , 2n

1: (C1, . . . , C2n)← (A1, . . . , A2n)× (B1, . . . , B2n)

2: (Q1, . . . , Qn)← (C1, . . . , Cn)× (P−1
1 , . . . , P−1

n )

3: Newton’s interpolation: (Q1, . . . , Qn) (Qn+1, . . . , Q2n)

4: (Rn+1, . . . , R2n)← (Cn+1, . . . , C2n) + (Qn+1, . . . , Q2n)× (Pn+1, . . . , P2n)

5: (Rn+1, . . . , R2n)← (Rn+1, . . . , R2n)× (Γ−1
n+1, . . . ,Γ

−1
2n )

6: Newton’s interpolation: (Rn+1, . . . , R2n) (R1, . . . , Rn)

given A,B, of degree at most k−1, we first compute C = A×B (Step 1) of degree degC ≤ 2k−2.

Then in Step 2, we compute Q = C ×P−1 mod Γ, of degree less than the degree of Γ, that is at

most nd− 1. Since degP = k, we deduce degQP ≤ nd− 1 + k; and since 2k − 2 < nd− 1 + k,

we get R = (C +QP )Γ−1 of degree at most (nd− 1 + k)− (nd) = k − 1.

In steps 3 and 6, we remark that two base extensions (implemented using Newton’s inter-

polation technique) are required. Since all the other steps can be performed in parallel, the

complexity of Algorithm 1 mainly depends on these two steps. We analyze them in details in

the next section.

3 Base Extensions using Trinomial Residue Arithmetic

In this section, we focus on the residue extensions in Steps 3 and 6 of Algorithm 1. We shall

only consider the extension of Q, from its residues representation (Q1, . . . , Qn) modulo Γ, to its

representation (Qn+1, . . . , Q2n), modulo Γ′.1 Note that this operation is nothing else than an

interpolation. We begin this section with a brief recall of an algorithm based on the Chinese

Remainder Theorem (CRT), previously used in [19, 5]. Then we focus on the complexity of

Newton’s interpolation method with trinomials, which, as we shall see further, has a lower

complexity.
1The same analysis applies for the reverse operation in step 6.

5



For the CRT-based interpolation algorithm, with Γ defined in (1), we denote γi,j = (Γ/Ti) mod

Tj , and Γi = (Γ/Ti)
−1 mod Ti, for i, j = 1, . . . , n. Given (Q1, . . . , Qn), we obtain (Qn+1, . . . , Q2n)

using the Chinese Remainder Theorem for polynomials. We compute βi = Qi Γi mod Ti, for

i = 1, . . . , n, and we evaluate

Qn+j =
n∑
i=1

βi γi,n+j mod Tn+j , ∀j = 1, . . . , n. (3)

The evaluation of the βis is equivalent to n polynomial multiplications modulo Ti. Each term,

βi γi,n+j , in (3) can be expressed as a matrix-vector product, Q = Zβ, where Z is a precomputed

n × n matrix. Thus, the CRT-based interpolation requires (n2 + n) modular multiplications

modulo a trinomial of degree d, and the precomputation of (n2 + n) matrices d × d. When we

do not have any clue about the coefficients of the matrices, an upper-bound for the cost of one

such matrix-vector product, is d2 AND, and d(d−1) XOR, with a latency of TA+ dlog2(d)e TX ,

where TA, and TX , represent the delay for one AND gate, and one XOR gate respectively.

A second method, that we shall discuss more deeply here, uses Newton’s interpolation algo-

rithm. In this approach we first construct an intermediate vector, (ζ1, . . . , ζn) – equivalent to

the mixed radix representation for integers – where the ζi’s are polynomials of degree less than

d. The vector (ζ1, . . . , ζn) is obtained by the following computations:2

ζ1 = Q1

ζ2 = (Q2 + ζ1) T−1
1 mod T2

ζ3 =
(
(Q3 + ζ1) T−1

1 + ζ2
)
T−1

2 mod T3

...

ζn =
(
. . .

(
(Qn + ζ1) T−1

1 + ζ2
)
T−1

2 + · · ·+ ζn−1

)
T−1
n−1 mod Tn.

(4)

We then evaluate the polynomials, Qn+i, for i = 1, . . . , n, with Horner’s rule, as

Qn+i = (. . . ((ζn Tn−1 + ζn−1) Tn−2 + · · ·+ ζ3) T2 + ζ2) T1 + ζ1 mod Tn+i. (5)

Algorithm 2, below, summarizes the computations.
2In (4), the additions must be replaced by subtractions if the characteristic of the field is 6= 2.

6



Algorithm 2 [Newton Interpolation]
Input: (Q1, . . . , Qn), the residue representation of Q modulo Γ

Output: (Qn+1, . . . , Q2n), the residue representation of Q modulo Γ′

1: ζ1 ← Q1

2: for i = 2, . . . , n, in parallel, do

3: ζi ← Qi

4: for j = 1 to i− 1 do

5: ζi ←
(
(ζi + ζj)× T−1

j

)
mod Ti

6: for i = 1, . . . , n, in parallel, do

7: Qn+i ← ζn mod Tn+i

8: for j = n− 1 to 1 do

9: Qn+i ← (Qn+i × Tj + ζj) mod Tn+i

In the following, we analyze very thoroughly the Steps 2 to 5 for the computation of the ζi’s

in section 3.1, and Steps 6 to 9 in Section 3.2 for the evaluation of Qn+i using Horner’s rule.

3.1 Computation of the ζi’s

We remark that the main operation involved in the first half of Algorithm 2 (Steps 2 to 5),

consists in a modular multiplication of a polynomial of the form U = (ζi + ζj) by the inverse of

Tj , modulo Ti. Since gcd(Ti, Tj) = 1, we can use Montgomery multiplication, with Tj playing

the role of the Montgomery factor (cf. Section 2.1) to compute

V = U × T−1
j mod Ti. (6)

Let us define Bj,i = Tj mod Ti, such that Bj,i(X) = Xti +Xtj . (Note that Bj,i = Bi,j). Clearly,

we have T−1
j ≡ B−1

j,i (mod Ti). Thus, (6) is equivalent to

V = U ×B−1
j,i mod Ti. (7)

We evaluate (7) as follows: We first compute µ = U × T−1
i mod Bj,i, such that U + µTi is a

multiple of Bj,i. Thus, V = (U + µTi)/Bj,i, is obtained with a division by Bj,i.

By looking more closely at the polynomials involved in the computations, we remark that

Bj,i(X) = Xtj (Xti−tj +1), if tj < ti. (If ti < tj , we shall consider Bj,i(X) = Xti(Xtj−ti +1)). In

7



order to evaluate (7), we thus have to compute an expression of the form U×
(
Xa

(
Xb + 1

))−1 mod

Ti, which can be decomposed into

V =
(
U × (Xa)−1 mod Ti

)
×

(
Xb + 1

)−1
mod Ti. (8)

Let us first compute φ =
(
U × (Xa)−1 mod Ti

)
. Again, using Montgomery’s reduction,

with Xa playing the role of the Montgomery factor,3 we evaluate W in two steps:

ρ = U × T−1
i mod Xa (9)

φ = (U + ρ Ti) /Xa (10)

Since a = min(ti, tj), we have a ≤ ti, and thus Ti mod Xa = T−1
i mod Xa = 1. Hence, (9)

rewrites ρ = U mod Xa, which reduces to the truncation of the coefficients of U of order greater

than a − 1. For (10), we first deduce ρ Ti = ρXd + ρXti + ρ. Since deg ρ < a ≤ ti <
d
2 , there

is no overlap between the three parts of ρ Ti, and thus, no operation is required to define ρ Ti.

In Figure 1, the grey areas represent the a coefficients of ρ, whereas the white areas represent

zeros.

ρ Ti

(a = tj)

ρ Ti

(a = ti)

ρ

ρXd

ti

ρXd ρXti

ρXti ρ

tj

tid

d

Figure 1: The structure of ρ Ti in both cases a = ti, and a = tj , with the a coefficients to add

with U in dark grey

Since the a coefficients of (U + ρ Ti), of order less than a, are thrown away in the division

by Xa, we only need to perform the addition with U for the a coefficients which correspond to

ρXti (in dark grey in Figure 1). Thus, the operation U + ρ Ti reduces to at most a XOR, with

a latency TX of one XOR. The final division by Xa is a truncation, performed at no cost.

Let us now consider the second half of equation (8), i.e., the evaluation of the expression

V = φ× (Xb+1)−1 mod Ti, where φ = U × (Xa)−1 mod Ti is the polynomial computed in (10).
3It is easy to see that gcd(Xa, Ti) = 1 always.

8



Note that deg φ ≤ d− 1. Let us consider four steps:

φ = φ mod (Xb + 1) (11)

ψ = φ× T−1
i mod (Xb + 1) (12)

ω = φ+ ψ Ti (13)

V = ω/(Xb + 1) (14)

For (11), we consider the representation of φ in radix Xb; i.e., φ =
b d−1

b c∑
i=0

φi (Xb)
i
. Thus,

using the congruence Xb ≡ 1 (mod Xb + 1), we compute

φ mod (Xb + 1) =
b d−1

b c∑
i=0

φi,

with (d− b) XOR and a latency of dlog2((d− 1)/b)eTX .4

The second step, in (12), is a multiplication of two polynomials of degree b − 1, modulo

Xb + 1. We first perform the polynomial product φ× T−1
i , where T−1

i is precomputed, and we

reduce the result using the congruence Xb ≡ 1 mod (Xb + 1). The cost is thus b2 AND, and

(b − 1)2 XOR for the polynomial product, plus b − 1 XOR for the reduction modulo (Xb + 1);

a total of b(b− 1) XOR.5 The latency is equal to TA + dlog2(b)eTX .

For (13), we recall that b is equal to the positive difference between the ti and tj . Thus, we

do not know whether b ≤ ti or b > ti. In the first case, there is no overlapping between the parts

of ψ Ti = ψXd + ψXti + ψ; and ψ Ti is deduced without any operation (cf. Figure 2). Thus,

ω = φ + ψ Ti, only requires 2b XOR. If b > ti, however, ψ and ψXti have b − ti coefficients in

common, as shown in Figure 2. The expression ω = φ + ψ Ti is thus computed with ti + 2(b −

ti) + (b + ti − b) = 2b XOR. Thus, in both cases, (13) is evaluated with 2b XOR, and with a

latency of at most 2TX . (TX only, if b ≤ ti.)

For the last step, the evaluation of V in (14), is an exact division; ω, which is a multiple of

Xb + 1, has to be divided by Xb + 1. This is equivalent to defining α such that ω = αXb + α.

As previously, we express ω and α in radix Xb. We have

ω =
b d−1

b c+1∑
i=0

ωi (Xb)
i
, α =

b d−1
b c∑
i=0

αi (Xb)
i
.

4For d− 1 > b, we have dlog2 d(d− 1)/bee = dlog2((d− 1)/b)e.
5The cost is equivalent to a matrix-vector product using Mastrovito’s algorithm, because the construction of

the folded matrix is free for Xb + 1.

9



ψ Ti

(b > ti)

ψ Ti

(b ≤ ti)

ψXd

ψ

d

d

b + ti b ti

bti

ψXd ψXti

ψXti

ψ

Figure 2: The structure of ψ Ti in both cases b ≤ ti, and b > ti, and the 2b coefficients to add

with φ in dark grey

We remark that defining the coefficients of α, of order less than b, and greater or equal to(⌊
d−1
b

⌋)
b, shown in grey in Figure 3, is accomplished without operation. We have α0 = ω0, and

αb d−1
b c = ωb d−1

b c+1. For the middle coefficients, (i.e., for i from 1 to
⌊
d−1
b

⌋
− 1), we use the

recurrence αi = ωi + αi−1.

αα1

ω1ω2

α1

α2

2b b

. . .

. . .. . .

. . .

“j
d−1

b

k”
b

“j
d−1

b

k
+ 1

”
b

ω0

α0α2

ω

αXb

α0

Figure 3: The representations of ω and α in radix Xb

Evaluating (14) thus required (d − 2b) XOR, and a latency of d(d− 1)/2beTX , taking into

account that we start the recurrence, αi = ωi + αi−1, from the two extrema simultaneously.

In Table 1, we recapitulate the computation of V = U×T−1
j mod Ti in (6), and its complexity

in both the number of binary operations, and time. The total time complexity is equal to

T = TA + (4 + dlog2((d− 1)/b)e+ dlog2(b)e+ d(d− 1)/2be)TX . (15)

So far, the quantities given in Table 1, depend on a and b. In order to evaluate the global

complexity for the evaluation of all the ζi’s, me must make assumptions on the tj ’s, to define

more precisely the parameters a, b. In Section 4, we shall give the total cost of (4) when the tj ’s

are equally spaced, consecutive integers.

10



Equation # AND # XOR Time

(9) - - -
(10) - a TX

(11) - d− b dlog2((d− 1)/b)eTX
(12) b2 b2 − b+ 1 TA + dlog2(b)eTX
(13) - 2b 2TX
(14) - d− 2b d(d− 1)/2beTX
Total b2 a+ 2d+ (b− 1)2 cf. (15)

Table 1: Number of binary operations, and time complexity for V = U × T−1
j mod Ti

3.2 Computation of the Qn+i’s using Horner’s rule

When the evaluation of (ζ1, . . . , ζn) is completed, we compute the Qn+i’s with the Horner’s rule.

For i = 1, . . . , n, we have

Qn+i = (. . . ((ζn Tn−1 + ζn−1) Tn−2 + · · ·+ ζ3) T2 + ζ2) T1 + ζ1 mod Tn+i. (16)

In (16), we remark that the main operation is a multiplication of the form U ×Tj mod Tn+i,

where U is of degree d−1, and both Tj , and Tn+i are trinomials of degree d. This operation can be

expressed as a matrix-vector product, M ×U , where M is a (2d+ 1)× (d+ 1) matrix composed

of the coefficients of Tj . In GF(2k), a straightforward way to accomplish the multiplication

operation is to perform a polynomial multiplication, followed by and modular reduction. The

polynomial product can be expressed as a matrix-vector product MF , where M is a (2d+ 1)×

(d+ 1) matrix composed of the coefficients, τ , of Tj as follows:

τ0 0 0 . . . 0 0
τ1 τ0 0 . . . 0 0
τ2 τ1 τ0 . . . 0 0
...

...
...

. . .
...

...
τd−1 τd−2 τd−3 . . . τ0 0
τd τd−1 τd−2 . . . τ1 τ0

0 τd τd−1 . . . τ2 τ1

0 0 τd . . . τ3 τ2

0 0 0
. . .

...
...

0 0 0 . . . τd τd−1

0 0 0 . . . 0 τd



. (17)

A multiplier architecture was proposed by E. Mastrovito [11], which reduces this matrix M to

11



a d × d matrix, Z, using the congruence Xd ≡ Xtn+i +X. The resulting matrix, Z, is usually

called the folded matrix, because the d+ 1 last rows of M fall back on the d first ones.

According to our notation, we have, Tj mod Tn+i = Xtj +Xtn+i = Bj,n+i, for all i, j. Thus,

we have to fold a matrix composed of only two non-null coefficients per column, as shown on

the left in Figure 4. We remark that the folded matrix, Z (on the right in Figure 4), is very

Z in unfolded form Z in folded form

tn+i + tj − 1

tj

tn+i

d + tj − 1

d + tn+i − 1

tj − 1

tn+i − 1

2tn+1 − 1

d

Figure 4: The structures of the unfolded and folded multiplication matrices, for Bj,n+i mod Tn+i

sparse. By looking more closely, the congruences

Xd+tj−1 ≡ Xtn+i+tj−1 +Xtj−1 (mod Tn+i),

Xd+tn+i−1 ≡ X2tn+i−1 +Xtn+i−1 (mod Tn+i),

tell us that, choosing ti < d/2, for i = 1, . . . , 2n, yields tj + tn+i− 1 < d, and 2tn+i− 1 < d; and

thus every coefficients only need to be reduced once. Moreover, we also notice that the matrix,

Z, has two non-null coefficients from column 0 to column d−tn+i−1; three from column d−tn+i

to column d−tj−1; and four from column d−tj to d−1. Thus, it has exactly 2d+tj+tn+i non-

null coefficients. Since tj , tn+i < d/2, we can consider that the number of non-zero coefficients

is less than 3d. We study the global complexity of (16), in Section 4.

4 Analysis of the Algorithms

In order to evaluate precisely the cost of Algorithm 1, we consider equally spaced, consecutive

ti’s, with ti+1 − ti = r. Hence, if j < i (as in Steps 2 to 5 of Algorithm 1), then tj < ti, and we

12



have

a = t1 + (j − 1)r, b = (i− j)r. (18)

Note that a randomly chosen set of trinomials having this equally spaced property do not

necessarily lead to a valid residue base. We recall that the trinomials, T1, . . . , T2n have to be

pairwise prime. In Section 5 we give examples of such bases, whose size correspond to extensions

of cryptographic interest.

4.1 Complexity analysis for the computation of the ζi’s

For the first part of the algorithm, i.e., the evaluation of the ζi’s, we remark (cf. Algorithm 2)

that, for all i, j, we perform one addition, (ζi + ζj) with polynomials of degree < d, followed

by one multiplication by T−1
j modulo Ti, which complexity is given in Table 1. Using (18), the

following formulas hold:

#AND :
n∑
i=2

i−1∑
j=1

((i− j) r)2 ,

#XOR :
n∑
i=2

i−1∑
j=1

(
d+ (t1 + (j − 1)r) + 2d+ ((i− j)r − 1)2

)
,

which, after simplifications, gives

#AND :
r2n2(n− 1)(n+ 1)

12
, (19)

#XOR :
n(n− 1)(r2n2 + r2n− 2rn− 8r + 18d+ 6t1 + 6)

12
. (20)

For the latency, we remark that the polynomials ζi’s, can be computed in parallel, for

i = 1, . . . , n, but, that the sum for j = 1, . . . , n− 1 (evaluated in Steps 4 and 5 of Algorithm 2),

is sequential. We also notice that, for a given i, the evaluation of ζi can not be completed

before we know the previous polynomial ζi−1. The delay is thus equal to the time required for

the addition of ζi−1, plus the time for the computation of U × T−1
i−1 mod Ti, i.e., when b = r.

(Remember that r is the difference between two consecutive ti’s.) We conclude that the total

time complexity for (4) is equal to

(n− 1)TA + (n− 1)
(
5 + dlog2((d− 1)/r))e+ dlog2(r)e+ d(d− 1)/2re

)
TX . (21)

For the second Newton’s interpolation (Step 6 of Algorithm 1), we observe that defining

tn+i = tn+1 + (i − 1)r, yields the same complexities. E.g., we can choose t1 = 1, r = 2, and

13



tn+1 = 2. 6

In terms of memory requirements, we have to store polynomials of the form T−1
j (X) mod

(Xb + 1), used to compute (12). How many of them do we need? For a given i, the evaluation

of ζi, involves i − 1 polynomials T−1
j (X) mod (Xb + 1), of degree at most b − 1, i.e., with b

coefficients each. Since b goes from r to (i−1)r, we have exactly one polynomial of each degree,

ranging from (r − 1) to (i − 1)r − 1. The total memory cost, for i = 2, . . . , n, is equal to∑n
i=2

∑i−1
j=1 j r =

1
6
rn(n2 − 1) bits.

4.2 Complexity Analysis for the Computation of the Qn+i’s using Horner’s

rule

Let us first count the exact number of non-zero coefficients in the folded matrices, Z, given

in Section 3.2. With tj = t1 + (j − 1)r, and tn+i = tn+1 + (i − 1)r, defined as above, we

get 2d + ti + tn+j = 2d + t1 + tn+1(i + j − 2)r non-zero values for each matrix. Thus, the

matrix-vector product used to compute the expressions of the form U × Tj mod Tn+i requires

2d+ t1 + tn+1(i+ j − 2)r AND, and d+ t1 + tn+1 + (i+ j − 2)r XOR.7 Because all the products

are performed in parallel, and because each inner-product involves at most 4 values, the latency

is equal to TA + 2TX .

The computation of Qn+i in (16) is sequential. Each iteration performs one matrix-vector

product, followed by one addition with a polynomial, ζj , (cf. Step 9 of Algorithm 2) of degree

at most d− 1. We thus get

#AND :
n∑
j=1

n−1∑
i=1

(2d+ t1 + tn + (i+ j − 2)r) ,

#XOR :
n∑
j=1

n−1∑
i=1

(d+ t1 + tn + (i+ j − 2)r + d) ,

or equivalently (noticing that the two sums, above, are equal),

#AND, #XOR :
1
2
n(n− 1)(4d+ 2rn− 3r + 2t1 + 2tn+1). (22)

The total delay for (16) is thus: (n− 1)(TA + 3TX).
6It is also possible to choose t1 = 0. In this case, T1 is a binomial and we obtain a slightly lower complexity.

Also, the condition 2n < d/2 becomes 2n− 1 < d/2.
7We have (d− tn+i) + 2(tn+i − tj) + 3(tj) = d+ tj + tn+i; hence the result.

14



4.3 Complexity Analysis for Newton’s Interpolation

The total complexity for Newton’s interpolation is the sum of the complexities obtained for the

computation of the ζi’s in Section 4.1, and for evaluation of the Qn+i’s with Horner’s rule in

Section 4.2. We have

#AND =
1
12
n(n− 1)(r2n2 + 12rn+ r2n+ 12t1 − 18r + 24d+ 12tn+1), (23)

#XOR =
1
12
n(n− 1)(r2n2 + 10rn+ r2n+ 18t1 − 26r + 42d+ 12tn+1 + 6), (24)

with a latency of

2(n− 1)TA + (n− 1)
(
8 + dlog2((d− 1)/r)e+ dlog2(r)e+ d(d− 1)/2re

)
TX , (25)

or equivalently

2(n− 1)TA +O
(
n+

nd

r

)
TX .

4.4 Complexity Analysis of MMTR

In Algorithm 1, we note that Steps 1, 2, 4, and 5 are accomplished in parallel. In Step 1,

we perform 2n multiplications of the form, Ai × Bi mod Ti. Using Mastrovito’s algorithm for

trinomials [20], it requires d2 AND, and d2 − 1 XOR; thus the cost of Step 1 is 2nd2 AND,

and 2n(d2 − 1) XOR. In Steps 2, 4, and 5, we perform 3n constant multiplications, expressed

as 3n matrix-vector products of the form Z U , where Z is a d × d precomputed matrix8; the

complexity is 3nd2 AND, and 3nd(d − 1) XOR. Not forgetting to consider the n additions in

step 4, the complexity for steps 1, 2, 4, and 5 is: 5nd2 AND, and 5nd2 − 2nd− 2n XOR, with a

latency of 4TA + (1 + 4 dlog2(d)e)TX .

We obtain the total complexity of Algorithm 1 by adding the complexity formulas for Steps

1, 2, 4, and 5, plus the cost of two Newton’s interpolation. The gate count is:

#AND :
1
6
n
(
r2n3 + 12rn2 + 12 (t1 + tn+1 + 2d) (n− 1)

− 30rn− r2n+ 30d2 + 18r
)
,

(26)

#XOR :
1
6
n
(
r2n3 + 10rn2 + 6n+ 6 (2tn+1 + 3t1) (n− 1)

+ 42dn− 36rn− r2n+ 30d2 − 54d− 18 + 26r
)
;

(27)

8We only need to store 2d values per matrix.

15



and the delay is equal to

4nTA +
(

(n− 1)
(
8 + dlog2(d− 1)/r)e+ dlog2(r)e+ d(d− 1)/2re

)
+ 4 dlog2(d)e+ 1

)
TX , (28)

that we express, for simplicity, as

4nTA +O
(
n+

nd

r

)
TX . (29)

5 Discussions and Comparisons

The parameters n, d, and t that appear in the complexity formulae above, make the comparison

of our algorithm with previous implementations a difficult task. To simplify, let us assume that

n = kx, and d = k1−x, (which satisfies nd = k). Since we need 2n trinomials of degree less than

d, having their intermediate coefficient of order less then d/2 (see Section 3), the parameters

k, x must satisfy k1−2x > 4, which, for large values of k, is equivalent to x < 1
2 .9 Thus, in the

next AND and XOR counts, we only take into account the terms in k2−x, k1+x, and k4x, and

we also consider t1 = 0, tn+1 = n, and r = 1, which seems to be optimal.10 For the latency, we

remark from Table 1, that the time complexity is mostly influenced by the term in (d− 1)/2b.

The complexity of Newton’s interpolation becomes

#AND : 2k1+x +
r2

12
k4x +O(k3x), (30)

and

#XOR :
7
2
k1+x +

r2

12
k4x +O(k3x); (31)

with a latency of

2(kx − 1)TA +O (kx + k)TX . (32)

Hence, the total complexity for Montgomery multiplication over residues (MMTR) is:

#AND : 5k2−x + 4k1+x +
r2

6
k4x +O(k3x), (33)

#AND : 5k2−x + 4k1+x +
r2

6
k4x + (2r + 2)k3x −

(
r2

6
+ 5r + 2

)
k2x + 3rkx − 4k, (34)

and

#XOR : 5k2−x + 7k1+x +
r2

6
k4x +O(k3x), (35)

9We have x < (1− logk(4)) /2, and lim
k→+∞

logk(4) = 0.

10We recall that the trinomials have to be relatively prime.

16



#XOR : 5k2−x + 7k1+x +
r2

6
k4x +

(
5r
3

+ 2
)
k3x −

(
r2

6
+ 6r + 1

)
k2x +

(
13r
3
− 3

)
kx − 9k

(36)

for a latency of

4kx TA +O (k)TX . (37)

In the literature, the area complexity is usually given according to the number of XOR

gates. Most of the studies are dedicated to specific cases, where the reduction polynomial is a

trinomial [20], or a pentanomial. E.g., in [17], algorithms for special pentanomials of the form

Xk +Xt+1 +Xt+Xt−1 +1 are proposed. Our algorithm is a general algorithm, which does not

require any special form for the reduction polynomial. The best known general methods have

an area complexity of O(k2). The best asymptotic area complexity of our algorithm, reached

for x = 2/5, is in O(k1.6). For completeness, we give the exact complexity formula:

31
6
k8/5 + 7k7/5 +

11
3
k6/5 − 9k − 43

6
k4/5 +

4
3
k2/5. (38)

In table 2 below, we count the number of XOR gates for the MMTR algorithm proposed in

this paper, and the Montgomery’s algorithm proposed in [2]. For all the values of k in Table 2,

k = n × d MMTR Montgomery [2]

168 = 4 × 42 38,664 56,616
180 = 5 × 36 37,520 64,980
192 = 4 × 48 49,920 73,920
234 = 6 × 39 54,200 109,746
252 = 6 × 42 62,084 127,260
360 = 5 × 72 139,400 259,560
486 = 6 × 81 213,716 472,878
567 = 9 × 63 212,745 643,345

Table 2: XOR counts for our MMTR and Montgomery’s algorithms.

we are able to define a set of 2n relatively prime trinomials satisfying r = 1, and tj < d/2, for

j = 1, . . . , 2n. If we allow r to be greater than 1 in some (very few) cases, then many other

interesting decompositions of the extension, k, are possible. We remark that for extensions

of cryptographic interest (for ECC), our solution requires fewer XOR gates than Montgomery’s

algorithm. Note that, in some cases (especially for large values of k), our algorithm also performs

better than the pentanomial and even trinomial approaches.

17



6 Conclusions

We proposed the first general modular multiplication algorithm over finite extension fields,

GF(2k), with subquadratic area complexity of O(k1.6). Our experimental results confirm its

efficiency for extensions of large degree, of great interest for elliptic curve cryptography. For

such applications, a major advantage of our solution, is that it allows the use of extension fields

for which an irreducible trinomial or special pentanomial [17], does not exist.

References

[1] J.-C. Bajard, L. Imbert, C. Nègre, and T. Plantard. Multiplication in GF (pk) for ellip-

tic curve cryptography. In Proceedings 16th IEEE symposium on Computer Arithmetic –

ARITH 16, pages 181–187, 2003.

[2] Ç. K. Koç and T. Acar. Montgomery multiplication in GF (2k). Designs, Codes and

Cryptography, 14(1):57–69, April 1998.

[3] Ç. K. Koç, T. Acar, and B. S. Kaliski Jr. Analyzing and comparing montgomery multipli-

cation algorithms. IEEE Micro, 16(3):26–33, June 1996.

[4] S. T. J. Fenn, M. Benaissa, and D. Taylor. GF (2m) multiplication and division over dual

basis. IEEE Transactions on Computers, 45(3):319–327, March 1996.

[5] A. Halbutoǧullari and Ç. K. Koç. Parallel multiplication inGF (2k) using polynomial residue

arithmetic. Designs, Codes and Cryptography, 20(2):155–173, June 2000.

[6] R. W. Hamming. Coding and information theory. Prentice-Hall, Englewood Cliffs, N.J.,

1980.

[7] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography.

Springer-Verlag, 2004.

[8] M. A. Hasan, M. Z. Wang, and V. K. Bhargava. A modified Massey-Omura parallel multi-

plier for a class of finite field. IEEE Transactions on Computers, 42(10):1278–1280, October

1993.

18



[9] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–209,

January 1987.

[10] R. Lidl and H. Niederreiter. Introduction to finite fields and their applications. Cambridge

University Press, Cambridge, England, revised edition, 1994.

[11] E. D. Mastrovito. VLSI designs for multiplication over finite fields GF (2m). In T. Mora,

editor, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes – AAECC-6,

volume 357 of LNCS, pages 297–309. Springer-Verlag, 1989.

[12] E. D. Mastrovito. VLSI Architectures for Computations in Galois Fields. PhD thesis,

Linköping University, Linköping, Sweden, 1991.

[13] A. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of applied cryptography.

CRC Press, 1997.

[14] V. S. Miller. Uses of elliptic curves in cryptography. In H. C. Williams, editor, Advances

in Cryptology – CRYPTO ’85, volume 218 of LNCS, pages 417–428. Springer-Verlag, 1986.

[15] P. L. Montgomery. Modular multiplication without trial division. Mathematics of Compu-

tation, 44(170):519–521, April 1985.

[16] R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone, and R. M. Wilson. Optimal normal bases

in GF (pn). Discrete Applied Mathematics, 22(2):149–161, 1988–1989.

[17] F. Rodriguez-Henriquez and Ç. K. Koç. Parallel multipliers based on special irreducible

pentanomials. IEEE Transactions on Computers, 52(12):1535–1542, December 2003.

[18] M. Sudan. Coding theory: Tutorial and survey. In Proceedings of the 42th Annual Sym-

posium on Fundations of Computer Science – FOCS 2001, pages 36–53. IEEE Computer

Society, 2001.

[19] B. Sunar. A generalized method for constructing subquadratic complexity GF (2k) multi-

pliers. IEEE Transactions on Computers, 53(9):1097–1105, September 2004.

[20] B. Sunar and Ç. K. Koç. Mastrovito multiplier for all trinomials. IEEE Transactions on

Computers, 48(5):522–527, May 1999.

19



[21] H. Wu, M. A. Hasan, and I. F. Blake. New low-complexity bit-parallel finite field multipliers

using weakly dual bases. IEEE Transactions on Computers, 47(11):1223–1234, November

1998.

20


