
A Proactive Threshold RSA Signature Scheme for Asynchronous Networks 
Abstract: 

To distribute the signing power and make the system more secure and robust, threshold 
signature is employed. To tolerate a more powerful, mobile adversary, proactive secret sharing 
should be adopted to enhance the security of threshold signature. Compared to synchronous 
networks, asynchronous networks better model practical distributed systems, such as Internet or 
mobile ad hoc networks. The purpose of this paper is to study proactive secret sharing in 
asynchronous networks. 

So far, to our knowledge, two asynchronous proactive secret sharing schemes have been 
proposed. Despite their original and seminal works, there are still some drawbacks.  

In this paper, we present a complete provably secure asynchronous proactive RSA scheme. 
Our paper has four contributions. Firstly, we present a provably secure asynchronous verifiable 
secret sharing for RSA schemes. Secondly, we propose an asynchronous threshold RSA signature 
scheme. Thirdly, we present a provably secure threshold coin-tossing scheme. Fourthly, we 
propose an asynchronous proactive secret sharing scheme. Finally, combining the proactive secret 
sharing scheme with the threshold RSA scheme, we achieve a complete provably secure 
asynchronous proactive RSA scheme. 
Keywords: Asynchronous networks, Threshold RSA signature, Provably secure, Asynchronous 
verifiable secret sharing, Asynchronous proactive secret sharing scheme, Threshold coin-tossing 
scheme  

1 Introduction 

The idea of threshold signature is to distribute the power of the signing operation of a single 
party to a group of n parties. Each party has one share of the whole secret key; and no a single 
party holds the whole secret key. Only a part of parties together can carry out the signing 
operation successfully. For example, instead only one party, multiple parties jointly act as 
Certification Authority (CA) to issue certificates. Threshold signature eliminates the use of a 
single Trusted Third Party (TTP); an adversary who corrupts up to ዊ� parties in the whole system 
lifetime can not break the whole system. However, if a threshold cryptosystem operates over a 
longer time period, the assumption that an adversary can just corrupted up to t parties may not 
hold. In such cases, we need to tolerate a more powerful, mobile adversary [1]. To describe a 
mobile adversary, we divide the whole lifetime of the system into different phases. A mobile 
adversary can move from party to party and eventually corrupt every party in the system during 
the entire lifetime of the system, but in every phase it can only corrupt up to t parties. To tolerate 
a mobile adversary, a natural approach is to refresh the shares of parties at the beginning of the 
each phase. This method relies on the assumption that parties may erase data and on a special 
reboot procedure to remove the adversary from a corrupted party. In this way, the shares in the 
existing phase are independent of those in the next phase. Thus the shares obtained by the mobile 
adversary in this phase become useless in the next phase. Such a method is called proactive secret 
sharing. Proactive secret sharing schemes operate in phases, and can tolerate the corruption of up 
to ዊ� different parties during every phase [2]. 

Proactive secret sharing is not just a topic of theoretic research, but has great significance in 
practical applications.  The most basic application is that multiple parties jointly act as the role of 
online CA. Since the lifetime of online CA is long, proactive secret sharing is required. As is well 
known, certificate issuing is the fundamental function and CA is the most basic component of 
Public Key Infrastructure (PKI). Such an application in PKI is general, not only in the wired 
Internet network, but in mobile ad hoc network and Peer to Peer (P2P) networks. 



Despite its importance, most previous research in proactive secret sharing mainly focus on 
synchronous networks, meaning bounds on message delivery delays and processor execution 
speed are known. This assumption may lead to some vulnerability in practice. For example, when 
deployed in a distributed system over a wide-area network, denial of service attacks, in particular, 
might delay messages and/or consume processor cycles, hereby invalidating the defining 
assumption for a synchronous system.   

Recently, researchers begin to consider constructing distributed cryptographic schemes in 
asynchronous networks, in which message delivery delays and processor execution speeds do not 
have fixed bounds. Canneti performed a lot of original works in secure asynchronous secure 
computation, asynchronous Byzantine agreement and asynchronous verifiable secret sharing [3].   
A long term research project Malicious-and Accidental-Fault Tolerance for Internet Applications 
(MAFTIA) of the IBM Zurich research lab assumes an asynchronous network model, and 
researchers there proposed many seminal asynchronous schemes, such as non-interactive 
threshold signature [4], asynchronous Byzantine agreement [5][6], asynchronous secret sharing 
and proactive secret sharing scheme [7],  asynchronous protocol for distributed computation of 
RSA inverses[8], etc. Meanwhile, other researchers also do a lot works in this field.  In 2000, 
Castro proposed an asynchronous replication algorithm for the Internet network based on 
asynchronous Byzantine agreement [9]. In 2001, Zhou proposed and implemented the first 
asynchronous online certification authority scheme for the Internet, which is modeled as 
asynchronous networks [10][11]. In addition, Zhou regards mobile ad hoc networks as 
asynchronous networks too [12] and present some ideas for constructing proactive secret sharing 
for ad hoc networks. 

The purpose of this paper is to study proactive threshold signature scheme in asynchronous 
networks. A proactive signature scheme should consist of two parts: a threshold signature scheme 
and a proactive secret sharing scheme for shares in the threshold signature scheme. In this paper, 
we present a complete provably secure asynchronous proactive threshold RSA signature scheme. 
1.1 Related work 

Let’s have an overview of synchronous proactive threshold RSA signature schemes first. 
While many synchronous proactive signature schemes for discrete-log schemes were presented 
and well studied [13][14][15], the work on secure proactive RSA schemes progressed more 
slowly. The difficulty appeared because the parties need to be able to keep re-sharing the private 
key d, even if no single party is allowed to know the secret modulus )(Nφ (recall that )(Nφ
enables computation of the private key d from the public key e). Firstly, Frankel et al. proposed 
two proactive RSA schemes [13][14]. Then, Rabin proposed a simplified protocol using similar 
ideas [15]. Recently, Jarecki presented a more efficient proactive RSA scheme [23] based on 
Rabin’s scheme. The above schemes have similarities in two aspects. They all employ secret 
sharing “in two levels” to make the shares in the top level backed-up in the secondary level. For 
example, party ip has a share id such that∑ = ddi . Meanwhile, each id is a verifiable secret 
shared among the parties. In addition, all these schemes require some form of additive rather than 
polynomial secret-sharing.  From these synchronous proactive RSA schemes, we know that the 
additive secret sharing and backing up shares are very important in constructing proactive RSA 
schemes. We adopt these ideas and use these two techniques in constructing our asynchronous 
proactive RSA scheme. 
 In addition to the above proactive RSA scheme, Luo et al also proposed a proactive RSA 
scheme for ad hoc networks, which built on polynomial secret sharing [16][17][18]. 
Unfortunately, due to lack of a formal proof, though it has been studied for several years, the 
scheme has been proved faulty in two recent papers [19][20]. It seems that provable security is 
necessary and important to proactive secret sharing schemes when proving its security. In 
addition, how to design a proactive RSA scheme using polynomial secret sharing is still a great 
challenge. 



Now, let’s see the related works in asynchronous networks. In 1999, Shoup proposed an 
efficient, non-interactive, asynchronous threshold RSA signature [4]. However, no asynchronous 
threshold discrete-log signature scheme is known now.  

So far, to our knowledge, only two asynchronous proactive secret sharing schemes are 
presented. One is for RSA schemes, based on Rabin’s RSA signature scheme, proposed by Zhou 
in 2001 [10]. The other scheme is for discrete-log based schemes, proposed by Cachin et al. in 
2002 [7]. Despite their originality and seminal ideas, there are still several drawbacks in both 
schemes. In Zhou’s scheme, the formal security proof of this scheme is missing (Zhou does gives 
a security proof, but he doesn’t follow the approach of provable security.). In addition, Zhou 
avoids the use of Byzantine agreement in his scheme. However, due to lack of Byzantine 
agreement, Zhou’s scheme needs the participation of the administrator in the presence of 
Byzantine errors (p71-72) [10]. In this case, the administrator acts as a trusted third party to 
implement the agreement to make sure the correctness of the scheme, which, to some extent, 
violates the property of the threshold signature and proactive secret sharing. In Cachin et al.’s 
proactive secret sharing schemes [7], one building block is Byzantine agreement, which builds on 
Shoup’s non-interactive threshold RSA scheme and a random-access coin-tossing scheme. 
However, how to proactivize Shoup’s scheme is missing. In addition, although this scheme is for 
discrete-log signature schemes, no corresponding asynchronous threshold discrete-log signature 
scheme is known so far. Considering the above both aspects, this scheme is not a complete 
proactive threshold signature scheme now.     
1.2  Our contributions 

 In this paper, we present a complete provably secure asynchronous proactive RSA scheme. Our 
paper has four contributions. Firstly, we present a provably secure asynchronous verifiable secret 
sharing for RSA schemes, which is based on a verifiable additive secret sharing over the integers. 
Secondly, we propose an asynchronous threshold RSA signature scheme that is based on the 
above asynchronous RSA scheme and the random oracle model; in this model, one treats a 
cryptographic hash function as if it were a black box containing a random function. Thirdly, we 
present a provably secure threshold coin-tossing scheme on the basis of the above threshold RSA 
scheme. Fourthly, we propose an asynchronous proactive secret sharing based on the threshold 
RSA scheme and the coin-tossing scheme. Finally, taken together, we achieve a complete 
provably secure asynchronous proactive threshold RSA scheme. 
 1.3 Outline 

The paper is organized as follows. In section 2, we present the system model and the 
cryptographic assumptions used. Next we give an overview of our scheme in Section 3. Then an 
asynchronous verifiable secret sharing scheme, an asynchronous threshold RSA scheme, a 
threshold coin-tossing scheme and an asynchronous proactive secret sharing scheme are 
presented in Section 4,5,6,7, respectively. Then, in section 8, we give some discussions on our 
scheme. In Appendix A, B, C, the proof of security of the asynchronous verifiable secret sharing 
scheme, the asynchronous RSA scheme and the asynchronous refresh scheme are described, 
respectively. 

2 System model and cryptographic assumptions 

We adopt the basic system model from [7], which describes a proactive asynchronous network 
of parties with a computationally bounded adversary.  

The computational model is parameterized by a security parameter k; a function )(kε is called 

negligible if for all ዊ� ዊ�ዊ�ዊ�0 there exists a 0k such that fk
k 1)( <ε for all 0kk > .



We say that two probability distributions XP and YP are statistically indistinguishable if 

their distance ∑ −= x YXYX xPxPPPd |)()(|
2
1),( is negligible. The distance of two random 

variables is defined as the distance between the associated probability distributions. 
 
Furthermore, The notation SRa ← denotes the uniformly random choice of an element 

a from a set S, and [.,.] denotes an interval of Z .
2.1 Asynchronous proactive system model   

We only give a brief overview here; for the details, refer to [7].   
 The network consists of ዊ� parties npp ,...,1 , which are Probabilistic Interactive Turing 
Machine (PITM)  that runs in polynomial time in k. There is an adversary, which is a PITM that 
runs in polynomial time in k. There is also a trusted dealer and an initialization algorithm, which 
is run by the trusted dealer before the system starts. The trusted dealer generates the initial state 
for all ዊ� parties. The adversary obtains the initial state of the corrupted parties, but obtains no 
information about the initial state given to the honest parties. 
 Every pair of parties is linked by a proactive secure asynchronous channel that provides 
privacy and authenticity. The delivery of messages is scheduled by the adversary. All 
communication is driven by the adversary. Furthermore, the adversary may modify or insert 
message as he wishes, herein the network is merely absorbed into the adversary in the formal 
model. 
 In proactive asynchronous networks, we divide the entire lifetime of the system into various 
phases. However, in asynchronous networks, there are no common clock, how to define a 
common phase. It turns out that a single time signal or clock tick, which defines the start of every 
phase locally, is enough. Every party operates in a sequence of local phases, which are defined 
with respect to a trivial protocol timer. Every honest party continuously runs one instance of this 
protocol, which starts when the party is initialized. Upon initialization, the protocol sends a timer 
message called a clock tick to itself. Whenever the party receives a clock tick, the party resends 
the message to itself over the network. The local phase of an uncorrupted party ip is defined as 
the number of clock ticks that it has received so far. In our formal model, we leave the scheduling 
of this signal up to the network, i.e., the adversary. 
 A party in the proactive asynchronous networks has the ability to erase its internal state 
information; and there is a special reboot procedure to remove the adversary from a corrupted 
party. If the adversary corrupts a party during some phase τ , we define the corrupted party to 
remain in local phase τ until it is rebooted and the adversary is removed. We assume that after a 
reboot, a party is automatically activated on a clock tick and continues to operate in the 
subsequent phase. Hence every party is honest at the point in time when it enters the next local 
phase. However, the adversary can cause a party to appear corrupted during multiple subsequent 
phases (and across the phase changes) by corrupting it again immediately after the phase change.   
Given only locally defined phases and purely asynchronous scheduling, we assume that secure 
channels in the proactive model guarantee that messages are delivered in the same local phase in 
which they are sent, or else, they are invariably lost. Notice in asynchronous networks, things are 
a little different. In an asynchronous network model, messages sent on a channel can be 
arbitrarily delayed and each message ever sent is eventually received.  
 The adversary can control or corrupt parties. Those parties are controlled by the adversary and 
called corrupted; the remaining parties are called honest. We assume that the adversary corrupt at 
most t parties who are in the same local phase, which is called a ዊ�-limited adversary. We assume 
the adversary is a static adversary; the adversary's choice of who to corrupt is independent of the 



network traffic and is decided at the beginning of the phase. The adversary gains complete control 
over the corrupted parties, and obtains the entire view of the corrupted parties. The view of a 
party consists of its internal state information and publicly known information. Simply speaking, 
the view of the party is what she “see”. Note, since a party has the ability to erase data, the 
internal state information in the party is only related to the current phase; the state information 
related to previous phases is erased. The view of the adversary consists of the views of all 
corrupted parties and publicly known information. 

 In computational setting, the notion of the termination of an asynchronous scheme or 
protocol is a little different. Traditionally, we say the termination of a scheme or a protocol to be 
that all honest parties “eventually" decide (with probability 1), which means infinite runs of a 
scheme or protocol. However, in the computationally bounded setting, this simply does not work. 
So in computational setting, the notion of termination is to be defined to the undecided 
probability of honest parties is negligible in k. Note, although the presentation of ours here is a 
little different that in [5], the basic idea is similar. For more discussion, see [5].  

The message and communication complexities of a protocol are defined as the number and as 
the bit length, respectively, of all associated messages, generated by honest parties. They are 
random variables that depend on the adversary and on k.

Since the adversary runs in time polynomial in k, the parameter ዊ� should be bounded by a fixed 
polynomial in k, and that the same should hold for all messages in the protocol. (In our model, to 
facilitate our analysis, we assume )kn ≤ .

For a particular scheme or protocol, a scheme or protocol statistic X is a family of real-valued, 
non-negative random variables )}({ kX A , parameterized by adversary A and security parameter k,
where each )}({ kX A is a random variable induced by running the system with A. (Message 
complexity is an example of such a statistic.) For our discussion, a statistics should be bounded 
by a polynomial in k.

A statistic X is called uniformly bounded if there exists a fixed polynomial )(kp such that for 
all adversaries A, there is a negligible function Aε , such that for all 0≥k ,

)()]()(Pr[ kkpkX AA ε≤>
A statistic X is called probabilistically uniformly bounded if there exists a fixed polynomial 

)(kp and a fixed negligible function δ such that for all adversaries A, there is a negligible 
function Aε , such that for all 0≥l and 0≥k ,

)()()]()(Pr[ klklpkX AA ε+δ≤>

2.2 Cryptographic assumptions 
The RSA modulus is pqN = , where p and q are two random large primes of equal length 

(512 bit, say), and 1'2 += pp , 1'2 += qq ,with 'p , 'q themselves prime. Let '' qpM = . The 
public key is ),( eNPK = , and the private key is )(NZd Φ∈ . Denote by NQ the subgroup of 

squares in *
NΖ . Clearly, NQ is cyclic of order M. Choose NQv ∈ at random, which generates  

NQ since this happens with all but negligible probability. 
We also assume a trusted dealer who initializes the distributed scheme (picks the RSA key 

and shares the private key among the parties) before the adversary can corrupt any of the parties. 



3 Overview of the scheme 

Our scheme mainly builds on the basic of Cachin et al’s scheme and Zhou’s scheme. We adopt 
the framework of Cachin’s proactive secret sharing and some similar ideas with Zhou’s threshold 
signature method. In Cachin et al’s scheme, discrete-log based primitives are often employed. For 
example, discrete-log based primitives are used to construct threshold coin-tossing scheme and 
proactive secret sharing. In our scheme, we must replace these discrete-log based primitives with 
RSA-based primitives. In addition, although we adopt some ideas form Zhou’s threshold RSA 
signature, our asynchronous threshold signature scheme and asynchronous verifiable secret 
sharing scheme are still different and new. 

 Our scheme is complex and involves many layers. For better clarity and convenience, we give 
an overview of the whole scheme here. The whole layered architecture of the whole scheme is 
depicted in Figure 1. A complete proactive threshold signature scheme should contain two parts: 
a threshold signature scheme and a proactive secret sharing scheme for the threshold signature 
scheme.  

 An asynchronous threshold RSA signature scheme builds on the Bracha’s asynchronous 
broadcast primitive [21] and an asynchronous verifiable secret sharing scheme. So an 
asynchronous verifiable secret sharing and an asynchronous threshold RSA signature scheme are 
basic building blocks for our whole scheme. The asynchronous verifiable secret sharing scheme 
has two-levels, and is based on the additive secret sharing over the integers. The asynchronous 
verifiable secret sharing scheme back up an additive secret shares at several parties in a redundant 
way. 

 The basic idea of the proactive secret sharing scheme is simple. On a high level, it consists of 
three steps. In the beginning, multiple new asynchronous verifiable secret sharings are generated; 
then an agreement needed to be reached on a set of sharings chosen to update the current shares. 
Finally, the chosen sharings are used to refresh the existing shares.  

Notice that the asynchronous proactive secret sharing scheme and the asynchronous threshold 
signature scheme are related. Our proactive secret scheme is just for our asynchronous threshold 
signature scheme. In addition, not all asynchronous threshold signature schemes can be 
proactivized.      

In our scheme, the validated Byzantine agreement, a variant of standard Byzantine agreement 
is utilized to reach the agreement mentioned above. The standard notion of a Byzantine 
agreement implements only a 0 or 1 binary decision in asynchronous networks. A validated 
Byzantine agreement [6] scheme extends this to arbitrary domains by means of a so-called 
external validity condition. It is based on a global, polynomial-time computable predicate IDQ
known to all parties, which is determined by an external application. Each party may propose a 
value that perhaps contains validation information. The agreement ensures that the decision value 
satisfies IDQ , and that it has been proposed by at least one party. In [6], Cachin et al implemented 
a validated Byzantine agreement scheme, on the basis of the standard Byzantine agreement. So in 
our scheme, we just adopt their validated Byzantine agreement scheme. However, we replace the 
Byzantine agreement scheme in Cachin et al’s scheme with ours. The reason is as follows. 

A validated Byzantine agreement builds on standard Byzantine agreement. In [5], Cachin et al 
implemented a standard Byzantine agreement scheme, which is used as a building block to 
construct the validated Byzantine agreement scheme in [6].The Byzantine agreement scheme in 
[5] are based on the threshold coin scheme and Shoup’s non-interactive threshold RSA signature 
scheme; and threshold coin scheme is implemented based on discrete-log based primitives. 
However, how to proactivize Shoup’s scheme is unknown. Furthermore, we need to proactivize 
discrete-log based threshold signature, if discrete-log based primitives used. Considering the 



above two aspects, we use Toueg’s Byzantine agreement [22] to replace Cachin et al’ scheme. In 
addition, in Toueg’s scheme, common coins are generated by a Rabin dealer, which is ideal and 
not practical in practice. So we replace Rabin dealer in his scheme with our threshold coin 
scheme, which is implemented on the basis of our threshold RSA signature scheme.   
 Taken together, we obtain a complete asynchronous proactive secret sharing scheme and 
asynchronous proactive RSA scheme. Our whole asynchronous proactive RSA scheme either 
employ other schemes directly (e.g. validated Byzantine agreement), or construct new similar 
schemes based on other schemes (e.g. the asynchronous verifiable secret sharing scheme and the 
asynchronous proactive scheme).     

Asynchronous proactive secret sharing 

Validated Byzantine 
agreement 

Byzantine agreement 

Threshold coin-tossing  
Asynchronous threshold 

RSA 

Asynchronous verifiable secret sharing 

Asynchronous broadcast 

Figure 1 The whole layered architecture of the asynchronous proactive RSA scheme 
 

4 An asynchronous verifiable secret sharing scheme 

In this section, we propose an asynchronous verifiable secret sharing (AVSS) scheme, which is 
employed to build the asynchronous RSA scheme in Section 5. 

4.1 Definition of the AVSS scheme 
A scheme to share a secret ዊ� consists of a sharing stage and a reconstruction stage, in which the 
secret is shared or reconstructed, respectively.  

The definition of our AVSS is mainly adopted from [7], with some modifications.  
Definition 1.  A scheme for asynchronous verifiable secret sharing satisfies the following 
conditions for any ዊ�-limited adversary: 
Liveness: If the adversary initializes all honest parties on a sharing, delivers all associated 
messages, and the dealer dp is honest throughout the sharing stage, then all honest parties 
complete the sharing, except with negligible probability. 
Agreement: Provided the adversary initializes all honest parties on a sharing and delivers all 
associated messages, the following holds: If some honest party completes the sharing, then all 
honest parties complete the sharing and if all honest parties subsequently start the reconstruction, 
then every honest party ip reconstructs some iz , except with negligible probability. 

Correctness: Once ዊ� ዊ� ዊ� honest parties have completed the sharing, there exists a fixed value ዊ�
such that the following holds except with negligible probability: 
1. If the dealer has shared d and is honest throughout the sharing stage, then ዊ� = ዊ�.
2. If an honest party ip reconstructs iz , then zzi = .



Privacy:  We define privacy using the usual simulation approach. That is, we say that the scheme 
is private if for the adversary there exists a simulator that runs an execution of the scheme 
together with the adversary and produces for it a view that is indistinguishable from the real one.  
Efficiency:  the communication complexity of the scheme is uniformly bounded. Since our 
scheme runs in computational setting and the adversary is a PTIM, the communication 
complexity of the scheme should be restricted to uniformly bounded or probabilistically 
uniformly bounded. Here we use “uniformly bounded”; and in proactive secret sharing, we use 
“probabilistically uniformly bounded”. 
4.2 Implementation of the AVASS scheme 

Now we describe our asynchronous verifiable secret sharing scheme (asynchronous verifiable 
additive secret sharing, AVASS) with computational security. The AVASS scheme adopts the 
similar ideas of Rabin’s scheme and Zhou’s scheme. There are two levels in the AVASS scheme. 
The lower level is an additive secret sharing (ASS) over the integers, and the top level is the 
AVASS scheme. We sketch the whole scheme first.  

Let’s see the ASS scheme, which is a ),( ll scheme, where )(n
tl = . The shared secret is d. The 

dealer chooses and hands ip value ],[ 22 lNlNd Ri −∈ for li ≤≤1 . Then the dealer sets 

∑ =
−= l

i ipublic ddd 1 and computes a commitment array C with publicdC =0 ,

NvC id
i mod= for li ≤≤1 and d

l vC =+1 .
Next, we construct the AVASS scheme on the basis of the ASS scheme. In order that up to t

corrupted parties cannot reconstruct the secret, we need to consider all kinds of combination of t
parties of n, which constitutes a set of },...,{ 1 lPP , such that  each element iP contains exactly t
parties.  Include secret share id in pS , the share set for a party p, if and only if p is not in 

corresponding iP . That is, for any party p, share set pS equals }1|{ ii Pplid ∉∧≤≤ . Notice 

that, by not assigning id to any party in iP , we ensure that parties in iP do not together have all l
shares to reconstruct the secret. Also, for any party p, construct an index 
set }1|{ ip PpliiI ∉∧≤≤= . Clearly, we have }|{ pip SdiI ∈= and }|{ pip IidS ∈= .
The index sets provide a sharing-independent description of the share-set construction. 
Figure 2 illustrates a )2,4( (i.e., n = 4 and t = 1) AVASS example based on a 

( )4,4
1
4

,
1
4

=






















 ASS{ }4321 ,,, dddd . The share set for each party ip consists of all 

shares except id . The index sets are also shown. 
 

party(p) Share set )( pS Index set )( pI

1p },,{ 432 ddd {2,3,4} 

2p },,{ 431 ddd {1,3,4} 

3p },,{ 421 ddd {1,2,4} 

4p },,{ 321 ddd {1,2,3} 

Figure 2 An Example of the AVASS scheme. 
In the ASS scheme, the secret d is shared among l shares, and shares are single values. 

However, in the AVASS scheme, shares are sets of values, called shares sets, which are kept by 



parties. Shares in 1+t share sets implement an additive secret sharing. In the AVASS scheme, 
there is l shares and a size )(|| tlS p −= of shares for party p.

The AVASS scheme uses exactly the same communication pattern as the asynchronous 
broadcast primitive proposed by Bracha [].There are four steps in the AVASS scheme, and the 
details of these steps are describes as follows.  
1. The dealer computes an ),( ll ASS by choosing a sharing }...,,{ ,21 lddd with  

∑ =
−= l

i ipublic ddd 1 for li ≤≤1 and ],[ 22 lNlNd Ri −∈ . The corresponding witness is C

such that NC id
i modv= . Then the dealer computes the commitment array C with 

publicdC =0 , NvC id
i mod= for li ≤≤1 and NvC d

l mod1 =+ .

Then the dealer sends to every party p share set pS and the commitment array C,
respectively, in the send messages. 
2. When they receive the send message from the dealer, the parties use verify-share ( id , C) to 
check if the share id is valid, where pi Sd ∈ . Notice here C means the received commitment 

array. If all shares of pS are valid, then the parties send the share set in which their share set 

overlap to each other in an echo message. For example, ip sends an echo message containing C,
share set 

jiji ppp SSS I∈
,

to every party jp .

3. Upon receiving 



 ++

2
1tn

echo messages that agree on C and contain valid shares 

checked by using verify-share ( id , C), every party computes its share set from the received 
share sets. (Notice that “agree on C ” means received Cs are the same.) For example, jp

computes its shares set 
jpS = U

k

i
p ji

S
,

where 



 ++

=
2

1tnk and
jipS

,
is share set sent by ip .

(In case the dealer is honest, the resulting share set is the same as that in the send message.) 
Then jp sends a ready message containing C, share set 

mjmj ppp SSS I∈
,

to every party jp .

It is also possible that a party receives 



 ++

2
1tn

valid ready messages that agree on C and 

contain valid shares, but has not yet received 



 ++

2
1tn

valid echo messages. In this case, the 

party computes its share set from the ready messages and sends its own ready message to all 
parties as above. 
4. Once a party receives a total of 12 +t ready messages that agree on C and contain valid 
shares, it completes the sharing. 

The reconstruction stage is straightforward. Every party ip reveals its share set 
ipS to every 

other party, and waits for 1+t such share sets from parties such that for shares contained in these 
share sets verify-share should hold. Then it computes the secret d from these share sets. 

In the scheme description, the following predicate is used: 
verify-share ( id , C), where id is a share and  C is the commitment array, verifies that id is  



consistent with C; it is true if and only if following three conditions hold: ∏
=

+ =
l

j
jl CvC publicd

1
1

( d
l vC =+1 ), ],[ 22 lNlNd Ri −∈ and NvC id

i mod= .
Theorem 1. In the random oracle model, the AVASS scheme is secure assuming the standard 

RSA signature scheme is secure for tn 3> .
Due to lack of space, the proof of the security of the AVASS scheme appears at appendix A. 

5 An asynchronous threshold RSA signature scheme 

 In this section, we propose an asynchronous threshold RSA scheme and give a formal proof of 
security. Our asynchronous RSA scheme builds on the AVASS scheme. After the dealer shared 
the secret key d using the AVASS scheme, parties can begin to generate their signature shares.   
5.1 Implementation of the asynchronous RSA scheme 
Given a message m, its signature under the public key (N, e) is NmH d mod)( , where H is a 

hash function. In our setting this signature needs to be generated by the parties in a distributed 
manner where each individual   party uses shares of its share set. As the secret key d is shared 

using a sum, i.e, ∑
=

∈+=
l

i
ipublic Zddd

1
, we have that  

∏
=

××
×+×

× =
∑

= =
l

i

dd
dd

d NmHmHmHmH ipublic

l

i
ipublic

1

22
22

2 mod)()()()( 1 .

We now describe how a signature share on a message m is generated. Let )(mHx = . Every 

ip has ||
ipS signature shares, and every signature share consists of   N

d
i Qxx i ∈= ×2 , along 

with a “proof of correctness,” where 
ii pSd ∈ . The proof of correctness is basically just a proof 

that the discrete logarithm of ix to the base of 2x is the same as the discrete logarithm of iv to 
the base v. 

Now let’s see the details.  Let )( 2lNL be the bit-length of 2lN  and 'H be a hash function, 
whose output is an 1L -bit integer, where 1L is another security parameter ( 1L =128, say). To 

construct the proof of correctness, party ip chooses a random number ]12,0[ 1
2 2)( −∈ + LlNL

Rr ,
and computes  

rcdzxvxvxvHxxvv iii
rr +=== × ),',',,,,(',',' 22 The proof of correctness is (z, c). 

 To verify this proof of correctness, one checks that ),,,,,( 2' c
i

zc
i

z
ii xxvvxvxvHc −×−= .

We next describe how signature shares are combined. Suppose we have valid shares from a 
set S of parties, where },...,{ 11 += tppS , and all l shares of the secret are contained in 1+t share 
sets of S. 

Assume that id
i xx ×= 2 for )1( li ≤≤ . Then to combine shares, we 



compute ∏
=

×=
l

i
i

d xxy public

1

2' such that Nxy e mod' 2= . Since e is an odd number, 

1)2,gcd( =e . Apply the extended Euclidean algorithm on e and 2 to compute a and b, such that 

12 =×+× bea .Thus we achieve the signature ba xyy '= of the message m such 

that Nxye mod= .
5.2 Security analysis of the asynchronous RSA scheme 

Theorem 2. In the random oracle model for 'H , the asynchronous RSA scheme is a secure 
threshold signature scheme (robust and non-forgeable) assuming the standard RSA signature 
scheme is secure. 

Due to lack of space, the proof is given at appendix B. 

6 A threshold coin-tossing scheme 

The purpose of the threshold coin-tossing scheme is to replace Rabin dealer in Toueg’s 
Byzantine agreement scheme. Next, modified Toueg’s scheme is used to replace the Byzantine 
agreement scheme in Cachin et al’s validated Byzantine agreement. In Section 3, an overview of 
the relationship between the validated Byzantine agreement and the threshold coin-tossing 
scheme is given. In this section, we then propose a threshold coin-tossing scheme. 

6.1 Definition of threshold coin-tossing scheme   
First, we define the notion of a )1,( +tn threshold coin-tossing scheme. The basic idea is that 

there are n parties, up to t of which may be corrupted. The parties hold shares of an unpredictable 
function F mapping the name C (which is an arbitrary bit string) of a coin to its 
value }1,0{)( ∈CF . The parties may generate shares of a coin—l coin shares are both necessary 
and sufficient to construct the value of the particular coin.  

Definition  2. Our definition of a threshold coin-tossing scheme is adopted from [5]. A
threshold coin-tossing scheme satisfies the following conditions for any ዊ�-limited adversary: 

Robustness. There is only negligible probability for an adversary to produce a name C and l
valid shares of C such that the output of the share combining algorithm is not F(C).

Unpredictability. An adversary’s advantage in the following game is negligible. The 
adversary interacts with the honest parties as above, and at the end of this interaction, he outputs a 
name C that has not been submitted as a reveal request, and a bit }1,0{∈b . The adversary’s 
advantage in this game is defined to be the distance from 1/2 of the probability that bCF =)( .

6.2 Implementation of the threshold coin-tossing scheme 
For a given coin C, to obtain the value of the coin C, first, compute the threshold RSA 

signature of name of coin C, suppose the result is 0g ; then computes )('' 0gH to obtain the value 
of coin C. Here ''H is a hash function, which could actually be implemented in the standard 
model by the inner product of the bit representation of the input with a random bit string, chosen 
once and for all by the dealer in the initial phase. 

6.3 Proof of the security of the threshold coin-tossing scheme 
Theorem 3. In the random oracle model, the threshold coin-tossing scheme is secure 

assuming the standard RSA signature scheme is secure. 
Clearly, the robustness of the scheme follows from the robustness of the asynchronous RSA 

scheme.  
To prove unpredictability, we assume we have an adversary that can predict a coin with non-



negligible probability, and show how to use this adversary to efficiently generate RSA signature. 
Observe that because the adversary has a non-negligible advantage in predicting the value of the 
coin C, he must evaluate ''H at the corresponding point 0g with non-negligible probability, 
which violates the non-forgeablity of the asynchronous RSA scheme. 

7 An asynchronous proactive secret sharing scheme 

An asynchronous proactive secret sharing consists of two parts: an AVASS scheme and a 
refresh scheme to update shares. In Section 4, we described an AVASS scheme. In this Section, 
we present a proactive secret sharing scheme to update shares in the AVASS scheme.  Combining 
the AVASS scheme and the refresh scheme shown in this section, we achieve an asynchronous 
proactive secret sharing scheme.   
7.1 Definition of asynchronous refresh scheme. 
Our definition of an asynchronous secure refresh is mainly adopted from [7], with some 

modifications.
Definition 3.  Suppose the shared secret key is d. An asynchronous refresh scheme satisfies the 
following conditions for any ዊ�-limited adversary: 
Liveness: If the adversary activates all honest parties on a clock tick for the beginning of a phase 
and delivers all associated messages within phases, then all honest parties complete the refresh, 
except with negligible probability. 
Correctness: If at least ዊ� + 1 honest parties have completed the refresh of sharing and have not 
detected a subsequent clock tick for a new phase, these parties can reconstruct the secret key and 
the reconstructed value equals d, except with negligible probability. 
Privacy: We define privacy using the usual simulation approach. That is, we say that the protocol 
is private if for the adversary there exists a simulator that runs any polynomial number of 
consecutive executions the scheme together with the adversary and produces for it a view that is 
indistinguishable from the real one.  
Efficiency:  the communication complexity of the scheme is probabilistically uniformly bounded. 

Notice that this definition guarantees that the parties complete the refresh only when the 
adversary delivers messages within phases. Otherwise, the model allows the adversary to cause 
the secret to be lost, in order to preserve privacy. Such a trade-off between privacy and 
correctness seems unavoidable in asynchronous networks (See [7] for more discussion about this 
topic). 

7.2 Implementation of the asynchronous refresh scheme 
A party starts to perform the refresh scheme as soon as it detects or receive the next clock tick. 

From a high-level point of view, the scheme works in three stages. First, every party ip shares 
every share 

ipi Sd ∈ using an AVASS scheme. Since every share set has   

)( tl − shares and there are all n parties, there are ntl ×− )( sharings. In order to distinguish 
these sharings, every sharing is identified by a symbol ID| j, ))(1( ntlj ×−≤≤ . In these 
sharings, we call a set of sharings a candidate set if that set consists of exactly one sharing 
generated from each share of all l shares of the secret d. Second, for the above sharings, 
the parties propose a candidate set that have successfully terminated as their input to a validated 
Byzantine agreement scheme; then use the validated Byzantine agreement to select a candidate 
set as the output. Third, they compute fresh shares and share sets from the set of sharings which 
they agreed on.  



Notice that, to ensure the correctness of a sharing, parties need to check if the commitment 
sv of the shared s is correct. For this purpose, parties have to store the commitments of 

Nv id mod  for li ≤≤1 in an array V, every element of which is the commitment of the 
corresponding id . At the end of every phase, id and V are updated. Then in next phase, parties 

can check if the commitment of Nv id mod in a new phase is correct by comparing it with that 
stored in V. 

Every party executes the following three steps to refresh secret shares in phaseτ .
1. Party ip participate in initializing ntl ×− )( AVASS (n, t + 1)-sharings ID|j for 

])(,1[ ntlj −∈ using an extended version of the AVASS scheme. Thus the shares 

id )1( li ≤≤ of the secret key d are re-shared. The AVASS scheme here is a little 
different from that one in Section 3. Firstly, the range of shares’ value is different. For 
example, shares jid , and   publicid , of  id )1( li ≤≤ are chosen or computed as follows.   

∑ =
−= l

k kiipublici ddd 1 ,, , ],[ 22
, NNd Rki −∈ (not ],[ 22

, lNlNd Rki −∈ ).  Secondly, in 
the extended AVSS scheme, each party adds a digital signature to every ready message. 
In extended AVASS instance jID | , the signature is computed on ( ready,,| τjID ). A 
list jΠ of 2t + 1 such signature is output when the sharing is completed and may serve as 
a proof for this fact. Thirdly, to keep a sharing correct, parties have to check the validness 
of the commitment of the shared secret. Finally, party ip should immediately erase the 
current shared secret in sharing ID|j, in which ip as the dealer. (This is used to preserve 
privacy. See [6]  for more discussion about this topic.) 
2. ip waits for completing a candidate set. Recall that the extended AVASS scheme also returns a 
proof jΠ for the completion of the sharing. Next, iP proposes the candidate set for the validated 

Byzantine agreement. Its proposal is a set )},{( jj Π=iL of l tuples, indicating the sharing  ID|j

is completed and containing the list jΠ of signatures on ready messages from the extended 

sharing. The predicate of the VBA scheme is set to verify-termination ),( iLτ , which verifies 
that iL contains l sharing with the proofs that these sharings will actually terminate. It is true if 

and only if l=|| iL and for every iL∈Π ),( jj , the list jΠ contains at least 2t + 1 valid 
signatures on ready messages from distinct parties. 
3. After ip decides in the VBA scheme for a set L that indicates l AVASS instances, it waits for 
these sharings to complete. Then compute its new shares, share set and the new commitments V.
The new shares for id is computed as (1); the new shares for publicd is computed as (2). 

∑ =
= l

j ij
new
i dd 1 , (1) 

∑ =
+= l

j publicj
old
public

new
pubic ddd 1 , (2) 

 Then, the new commitment for id )1( li ≤≤ is computed as (3) 

 ∏
=

=
l

j

dd ij
new
i vv

1

, (3) 



Finally, the party aborts all sharing ID|ዊ� ))(1( ntlj ×−≤≤ , which automatically erases all 
information of these sharings. 

In practice, there is still another step needed to be considered. After the refresh scheme 
updates the shares, parties need to update their certificates. That is, honest parties request the 
certificates for the new phase, and the private keys for the old certificates are erased. Since then, 
the new certificates are used to sign messages; and the messages signed by old private keys are 
not accepted. Note that the certificates issued should contain some information, such as the phase 
information, to distinguish the certificates in different phases.  
 Theorem 4. In the random oracle model, the asynchronous refresh scheme is secure assuming 
the standard RSA signature scheme is secure for tn 3> .

Due to lack of space, the proof of security of the asynchronous refresh scheme appears at 
appendix C. 

8 Discussion 

Combined all the above schemes into a single one, we obtain a complete provably secure 
proactive threshold RSA signature scheme. Now we consider the performance of our scheme.  

Clearly, the message complexity and the communication complexity of our proactive secret 

sharing scheme are both ))((
t
n

O . In normal cases, the message complexity and the 

communication complexity of the asynchronous RSA scheme are also both ))((
t
n

O (Since every 

party have to send )( tl − signature shares for every signature.). However, when parties are 
honest, we can optimize the asynchronous RSA signature scheme as follows. For a set of  1+t
honest parties, suppose 121 ,...,, +tppp , 1p generate its signature share for message m as 

11
, pi

d

p SdmSig
i

∈
∑

= , and 2p generate its signature share for message m as 

212
(, ppi

d

p SSdmSig
i

I∈
∑

= ), and so on. The final signature is 

∏
+

=
=

1

1
)(

t

i
p

public
i

SigmmSig .Consequently, the message complexity is just )(tO .

Although our scheme is the first complete provably secure asynchronous proactive RSA 
scheme and asynchronous proactive secret sharing, the drawback that the message complexity 

and the communication complexity of the refresh scheme are both ))((
t
n

O , renders the whole 

scheme a little inefficient. Such a drawback makes our scheme only suitable to cases when t is 
small (1 or 2). Although it is not very satisfactory, for most applications, such as online CA, a 
small t is sufficient. 

In addition, the message complexity and the communication complexity of our scheme are 
close to those of Zhou’s scheme [10][11]. In his paper, Zhou analyze that such scheme is 
acceptable t is small (1 or 2), and the experiments on the prototype system of their online CA also 
demonstrated that such scheme is feasible in practical applications. 



Acknowledgements 

Many thanks go to Stanislaw Jarecki and Christian Cachin for their valuable suggestions.  

REFERENCES 

[1]  R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In Proc. 10th ACM 
Symposium on Principles of Distributed Computing (PODC), pages 51–59, 1991. 

[2] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or how to cope 
with perpetual leakage. In Advances in Cryptology CRYPTO ’95 (D. Coppersmith, ed. Springer.). 
963:339-352, 1995. 
[3] R. Canetti, Studies in Secure Multiparty Computation and Applications. PhD thesis, 
Weizmann Institute, 1995.  
[4] V. Shoup. Practical threshold signatures. In Advances in Cryptology: EUROCRYPT 2000 (B. 
Preneel,ed.), 1087(207-220), 2000. 
[5] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in Constantinople: Practical 
asynchronous Byzantine agreement using cryptography. In Proc. 19th ACM Symposium on 
Principles of Distributed Computing (PODC), pages 123–132, 2000. 
[6] Cachin C., Kursawe, K. Petzold F., and Shoup V. Secure and efficient asynchronous 
br2adcast protocols (extended abstract). In Advances in Cryptology: CRYPTO 2001( LNCS). 
2139:524-541, August 2001. 
[7] Cachin C., Kursawe K., Lysyanskaya A., and Strobl R. Asynchronous verifiable secret 
sharing and proactive cryptosystems. In Proc. 9th ACM Conference on Computer and 
Communications Security (CCS). Washington, DC, USA, pages 88–97, November 2002. 
[8] Cachin C. An asynchronous protocol for distributed computation of RSA inverses and its 
applications. In Proceedings of the twenty-second annual symposium on Principles of distributed 
computing. Boston, USA, , pages 153 – 162, April 2003. 
[9] CASTRO, M. 2000. Practical Byzantine fault tolerance. PhD. Thesis, Department of 
Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, 
Mass. 
[10] Zhou L. Towards Fault-tolerant and Secure On-line Services. PhD thesis, Department of 
Computer Science, Cornell University, Ithaca, NY USA. April 2001. 
[11] Lidong Zhou, Fred B. Schneider, and Robbert van Renesse. COCA: A Secure Distributed 
On-line Certification Authority. ACM Transactions on Computer Systems 20, 4 (November 
2002), 329--368.  Earlier version: Technical Report TR 2000-1828, December 7, 2000. 
[12] L. Zhou and Z. J. Haas. Securing Ad Hoc Networks. IEEE Network Magazine, 13(6):24–30, 
1999. 
[13] Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. Optimal-Resilience Proactive 
Public-Key Cryptosystems. In Foundations of Computer Science FOCS’97, pages 384–393, 1997. 
[14] Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. Proactive RSA. In Proc. of 
Crypto’97, pages 440–454, 1997. 
[15] T. Rabin. A simplified approach to threshold and proactive RSA. in Proc. CRYPTO ’98, pp.
89–104, Springer, 1998. 
[16] Jiejun Kong, Petros Zerfos, Haiyun Luo, Songwu Lu, and Lixia Zhang. Providing Robust 
and Ubiquitous Security Support for MANET. In IEEE 9th International Conference on Network 
Protocols (ICNP), 2001.
[17] Haiyun Luo, Jiejun Kong, Petros Zerfos, Songwu Lu, and Lixia Zhang. URSA: Ubiquitous 
and Robust Access Control for Mobile Ad Hoc Networks, available on-line at 

http://research.microsoft.com/users/lidongz/2000-1828.ps
http://www.cs.cornell.edu/fbs/publications/cocaTOCS.pdf
http://www.cs.cornell.edu/fbs/publications/cocaTOCS.pdf


http://www.cs.ucla.edu/wing/publication/publication.html. In IEEE/ACM Transactions on 
Networking (ToN), to appear, Oct 2004. 
[18] H. Luo and S. Lu. Ubiquitous and Robust Authentication Services for Ad Hoc Wireless 
Networks, available on-line at http://citeseer.ist.psu.edu/luo00ubiquitous.html. Technical Report 
TR-200030, Dept. of Computer Science, UCLA, 2000. 
[19] M. Narasimha, G. Tsudik, and J. H. Yi. On the Utility of Distributed Cryptography in P2P 
and MANETs: The Case of Membership Control. In IEEE 11th International Conference on 
Network Protocol (ICNP), pages 336–345, November 2003. 
[20] Stanislaw Jarecki, Nitesh Saxena, and Jeong Hyun Yi. Cryptanalyzing the Proactive RSA 
Signature Scheme in the URSA Ad Hoc Network Access Control Protocol. In ACM Workshop 
on Security of Ad Hoc and Sensor Networks (SASN), to appear, October 2004. 
[21] G. Bracha. An asynchronous [(ዊ�ዊ� 1)/3]-resilient consensus protocol. In Proc. 3rd ACM 
Symposium on Principles of Distributed Computing (PODC), pages 154-162, 1984. 
[21]S. Toueg, Randomized Byzantine agreements, In Proc. 3rd ACM Symposium on Principles of 
Distributed Computing (PODC), pages 163–178, 1984. 
 [23] Stanislaw Jarecki and Nitesh Saxena, Further Simplifications in Proactive RSA Signature 
Schemes. A draft communicated to the authors by email by Stanislaw Jarecki. 
 

Appendix 

A Proof of the security of the AVASS scheme 
 

Lemma 1. Suppose an honest party ip sends a ready message containing iC and a distinct 

honest party jp sends a ready message containing jC . Then ji CC = .

Proof. We prove the lemma by contradiction. Suppose ji CC ≠ . ip generates the ready 

message for iC only if it has received at least 



 ++

2
1tn

echo messages containing iC or 

1+t ready messages containing iC . In the second case, at least one honest party has sent a 

ready message containing iC upon receiving at least 



 ++

2
1tn

echo messages; we may 

as well assume that this is ip to simplify the rest of the argument. Thus, ip has received 





 ++

2
1tn

echo messages containing iC , of which up to ዊ� are from corrupted parties. Using 

the same argumentation, jp must have received at least 



 ++

2
1tn

echo messages containing 

jC .Then there are at least 2 



 ++

2
1tn 1++= tn echo messages received by ip and jp

together, among them at least 1++ tn from honest parties. But no honest party generates more 
than one such message by the scheme. 
Liveness. If the dealer dp is honest, it follows directly by inspection of the scheme that all 



honest parties complete the sharing, provided all parties initialize the sharing and the adversary 
delivers all associated messages. 
Agreement.  We first show that if some honest party completes the sharing, then all honest 
parties complete the sharing, provided all parties initialize the sharing and the adversary delivers 
all associated messages. 
Suppose an honest party has completed the sharing. Then it has received 12 +t valid ready

messages that agree on some C . Of these messages, at least 1+t have been sent by honest 
parties.  A valid echo or ready message is one that satisfies verify-share, and it is easy to see 
from the definition of verify-share that honest parties send only valid ready messages. 
Since an honest party sends its ready message to all parties, every honest party receives at least 

1+t valid ready messages with the same C by Lemma 1 and sends a ready message 
containingC . Hence, by the assumption, any honest party receives 12 +>− ttn valid ready
messages containing C and completes the sharing. 

As for the reconstruction part, it follows from Lemma 1 that every honest party ip computes 

the same C . Moreover, ip has received enough valid echo or ready messages with respect 

to C so that it computes valid ready messages and a valid share id with respect toC such that 

verify-share( id , C ) holds. Thus, if all honest parties subsequently start the reconstruction stage, 
then every party receives enough valid shares to reconstruct some value, provided the adversary 
delivers all associated messages. 
Correctness. Let J be the index set of the 1+t honest parties jp that have completed the 
sharing.  

To prove the first part, suppose the dealer has shared ዊ� and is honest throughout the sharing 
stage. Towards a contradiction assume dz ≠ . Because the dealer is honest, it is easy to see that 
every echo message sent from an honest ip to jp contains C,

jiji ppp SSS I∈
,

as the same 

as sent by the dealer. Furthermore, if the party p in J computed their share sets only from these 
echo messages, then the resulting '

pS should be the same as pS sent by the dealer. But 

since dz ≠ , at least one honest party ip computed
ii pp SS ≠' ; this must be because ip accepted 

an echo or ready message from some corrupted mp containing C and 
mm pp SS ≠' . It is 

easy to see from Lemma 1 and from the fact that the dealer is honest that C used by the dealer and 
C sent by mp are equal. Since ip has evaluated verify-share to true for all shares of '

mpS , we 

have NvC id
i mod

'
= for all shares ''

mpi Sd ∈ , where 
mpIi ∈ . Thus, NvNv ii dd modmod

'
= ,

implies 1mod
'

=− Nv ii dd . Recall that the order of NQ is M, which 

means 0'','4' ≠∧∈=− kZkMkdd ii . Consequently, since ],[ 22 lNlNdi −∈ ,

],[ 22' lNlNdi −∈ and N are known, one can easily compute M in polynomial time in k, which 
means the  standard RSA scheme is not secure. 

To prove the second part, assume that two distinct honest parties ip and jp reconstruct 

values iz and jz . This means that they have received two distinct share sets iS and jS of 1+t



shares each, which are valid with respect to the unique commitment array C used by iP and jP

(the uniqueness of C follows from Lemma 1). According to the scheme, iz and jz are computed 

from the shares in the share sets obtained from iS and jS , respectively. Since the shares in iS

and jS are valid, it is easy to see that NvNv ii dd modmod
'''

= for all shares iSd '
i ∈ and  

jSd ''
i ∈ ( li ≤≤1 ). The remaining proof is similar to the first part. 

Privacy.  We show how to simulate the adversary’s view. Let tpp ,...,1 be the set of corrupted 
parties, and assume },...,{ 11 −ldd are shares contained in },...,,{

21 tppp SSS .

Choose secret value ]1,0[ˆ −∈ Nd R , shares ],[ˆ,...,ˆ 22
1 lNlNdd Rl −∈ and 

∑
=

−=
l

i
ipublic ddd

1

ˆˆˆ .Then perform the following steps.  

(a) compute Nvwvw ll d
l

d
l modˆ,...,ˆ 1

1
ˆ

−== −

(b) set Nwvvvw l
i

ddd
l

publicl modˆ/ˆ 1
1 1

ˆ ∏ −
=

==

The statistical distance between the probabilistic distribution of  )1( lidi ≤≤ and that of 

)1(ˆ lidi ≤≤ is 0. Let’s see the statistical distance between the probabilistic distribution of  pubd

and that of publicd̂ . Recall that the adversary corrupts t parties, views the internal state of t parties 

and )11( −≤≤ lidi , then the probability distribution of  ∑
−

=
−−=

1

1

l

i
lipublic dddd is  related to 

ld and  the probability distribution of l

l

i
ipublic dddd ˆˆˆˆ

1

1
−−= ∑

−

=
is related to ld̂ . Since ll dd ˆ,

are randomly selected from the range of ],[ 22 lNlN− and Ndd <− ˆ , the statistical distance 

between probability distribution of  ∑
−

=
−−=

1

1

l

i
lipublic dddd and that of 

l

l

i
ipublic dddd ˆˆˆˆ

1

1
−−= ∑

−

=
is ))(( 1−lNO . Thus, the above simulation is statistically 

indistinguishable to the adversary.  

Efficiency.  Clearly, the communication complexity of the scheme is ))((
t
n

O , and from the 

discussion in Section 8, we know t is chosen as a small number, so the communication 
complexity is uniformly bounded. 

 

B Proof of the security of the asynchronous RSA scheme 
We show how to simulate the adversary’s view, given access to an RSA signing oracle 

which we use only when the adversary asks for a signature share from an uncorrupted party. 
Let tpp ,...,1 be the set of corrupted parties, and assume },...,{ 11 −ldd are shares contained 



in },...,,{
21 tppp SSS .

First, simulate the adversary’ view of asynchronous verifiable secret sharing as Appendix A, 
then perform the following steps. 

(1) compute Nmx id
i modˆ ˆ2×= for 11 −≤≤ li

(2) set Nxxmx l
i ipublic

d
l mod)ˆˆ/(ˆ 1

1
2 ∏ −

=
×= , where Nmx publicd

public modˆ
ˆ2×=

Our proof is similar to that of Shoup’s scheme [4]. With regard to the “proofs of correctness”, 
one can invoke the random oracle mode for the hash function 'H to get soundness and statistical 
zero knowledge.  

 First, consider soundness. We want to show that the adversary cannot construct except with 
negligible probability, a proof of correctness for an incorrect share. Let x and ix be given, along 

with a valid proof of correctness (z, c). We have ),,,,,( ''' xvxvxvHc ii= , where 

 ., 2'' c
i

zc
i

z xxxvvv −×− ==

Now, iv , 'v , 'x , ix , 2x are all easily seen to lie in NQ , and we are assuming that v generates 

NQ . So we have  
δαγβ vxvxvvvxvv i

d
i

i ===== '2 ,,',, ,
for some integers α, β, γ, δ. Moreover, 
 Mcdz i modγ≡− and  Mcz modδ≡β−α .

Multiplying the first equation by α and subtracting the second, we have 
 Mdc i modγ)( δ−α≡α−β (1) 

Now, a share is correct if and only if  
 Mdi modα≡β (2) 
 If (2) fails to hold, then it must fail to hold mod p’ or mod q’, and so (1) uniquely determines c
modulo one of these primes. But in the random oracle model, the distribution of c is uniform and 
independent of the inputs to the hash function, and so this even happens with negligible 
probability.  
 Second, consider zero-knowledge simulatability. We can construct a simulator that simulates 
the adversary’s view without knowing the value d . This view includes the values of the random 
oracle at those points where the adversary has queried the oracle, so the simulator is in complete 
change of the random oracle. Whenever the adversary makes a query to the random oracle, if the 
oracle has not been previously defined at the given point, the simulator defines it to be a random 
value, and in any case returns the value to the adversary. When an uncorrupted party is supposed 
to generate a proof of correctness for a given x, ix , the simulator chooses ]12,0[ 1 −∈ L

Rc and 

]12,...,0[ 1
2 2)( −∈ + LlNL

Rz at random, and for given values x and ix , defines the value of the 

random oracle at ),,,,,( 2 c
i

zc
i

z
ii xxvvxvxv −×− to be c. With all but negligible probability, the 

simulator has not defined the random oracle at this point before, and so it is free to do so now. 
The proof is just (z, c). It is straight forward to verify that the distribution produced by this 
simulator is statistically close to perfect. 
 From soundness, we get the robustness of the threshold signature scheme. From zero-

knowledge, and the above arguments, we get the non-forgeability of the threshold signature 
scheme, assuming that the standard RSA signature scheme is secure, i.e., existentially non-
forgeable against adaptive chosen message attack. 



Notice in the above analysis, we omit the discussion of the case of the outputs of random 
oracle equal to the generator v . The probability of such a case is negligible; otherwise, the 
standard RSA signature scheme is insecure.     
C Security analysis of the asynchronous refresh scheme 
 

We have to show the proposed scheme satisfies the liveness, correctness, privacy properties. 
Liveness.  Since there are at least 1+t honest parties, and there is at least a candidate of set. 
Then the validated Byzantine agreement scheme will terminate with a candidate of set as the 
output within a phases provided the adversary delivers all associated messages within phases.  
Correctness.  Fix a point in time where a set H of at least ዊ�ዊ�+ 1 honest parties has completed the 
refresh scheme and not yet detected the next clock tick for the beginning of the next phase. Due 
to the correctness of the AVSS scheme, the secret key d is shared among new l shares. And since 
the next phase hasn’t started yet, then, for any 1+t honest parties, all l shares are contained in 
their 1+t share sets. So any 1+t honest parties can reconstruct the secret key and the 
reconstructed value equals d, except with negligible probability. 
Privacy.  Assume that we have constructed a simulator to simulate previous phases 

}1,...,1,0{ −τ (In appendix B, we construct a simulator for the initial phase 0, so this holds,) we 
now consider constructing a simulator for phaseτ .

We only consider the initial scheme here (To the modified scheme, proof is similar.). 
For simplification, let tpp ,...,1 be the set of corrupted parties in the current phase, and 

},...,,{ 121 −lddd are the shares that could be observed by the adversary in the next phase. 
Now, we simulate the adversary’s view on the asynchronous refresh scheme. First, for those 

)1( −l shares contained in share sets of tpp ,...,1 , perform as the same steps as that in the 
asynchronous refresh scheme; for that remaining one, suppose it to be id , perform the following 
simulation.  

Assume that 1,1,
ˆ,...,ˆ

−lii dd can be observed by the adversary. Choose shares 

],[ˆ,...,ˆ 22
,1, NNdd Rlii −∈ , ∑

=
−=

l

j
jiipublici ddd

1
,,

ˆˆˆ . Compute 

Nvwvw lii d
li

d
i modˆ,...,ˆ 1,1,

1,
ˆ

1,
−== − and 

set NwvVvw l
j ji

d
i

d
li

publicili modˆ/ˆˆ 1
1 ,

ˆˆ
,

,, ∏ −
=

== ( iV̂ is the “correct” commitment for the 

current 
i

d̂ , note that  ∏
==

=
l

ijj

ddd
i

jpublic vvvV
,1

ˆˆ
/ˆ ). 

Then, new 
i

d̂ , publicd̂ and  iV̂ for )1( li ≤≤ are computed.  

With same method of Appendix A, we can prove that the above simulation is statistically 
indistinguishable to the adversary’s view, and the privacy still holds in other phases rather than 0. 
Efficiency.  The parties execute ntl ×− )( AVSS schemes and one validated Byzantine 
agreement scheme. Because the communication complexity of scheme AVSS is uniformly 
bounded and the communication complexity of the validated Byzantine agreement scheme is 
probabilistically uniformly bounded (Cachin et al prove this in [6]; and here we use the result 
directly), the communication complexity of the asynchronous refresh scheme is probabilistically 
uniformly bounded. 



Taken together, the security of the asynchronous refresh scheme is proved. 


	1 Introduction
	2 System model and cryptographic assumptions
	3 Overview of the scheme
	4 An asynchronous verifiable secret sharing scheme
	5 An asynchronous threshold RSA signature scheme
	6 A threshold coin-tossing scheme
	7 An asynchronous proactive secret sharing scheme
	8 Discussion
	Acknowledgements
	REFERENCES
	Appendix

