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Abstract 

  In this paper, we focus on the design of the winner-determination procedure of 
an electronic voting protocol used at critical elections, e.g. at the meeting of the board 
of a company for critical business decisions or a parliamentary committee for 
legislation.  The number of participating voters is limited to several hundreds but the 
voting should satisfy a new privacy requirement that the accumulated vote-counts of 
all candidates should be kept as secret as possible.  This additional requirement is 
significant only for small/medium-scale elections.  Traditional electronic voting 
frameworks simply take the announcement of vote-counts for granted and hope that 
each individual’s actual vote is hidden in the accumulated vote-counts.  Therefore, it 
is not easy to modify an existing scheme to approach this new goal.  In the proposed 
protocol, the homomorphic ElGamal cryptosystem is used.  An electronic bulletin 
board holds public announced values.  A ballot consists of separate encrypted 
‘yes’/’no’ vote for each candidate such that the accumulated vote-counts can be 
calculated from the ciphertexts without any decryption. The correctness of each ballot 
is guaranteed through ZKPs.  The accumulated vote-count ciphertexts are then 
converted to encrypted unary representation through a mix-and-match sub-protocol 
such that the vote-counts can be concealed in the winner-determination stage.  This 
protocol is suited for both equal-voting and weighted-voting schemes.  Also, the 
type of voter’s selection can be single choice, multiple choices, ranking choice, or the 
allocative choice.  

 
Keywords: e-voting privacy, ElGamal encryption system, homomorphic encryption, 

mix-and-match ciphertext conversion 

1.  Introduction 

Consider the following scenarios: In a small meeting room, members of the board of a 
company are voting for the chairman and the vice chairman of the next term.   Each one can 
vote for two candidates without priority in his ballot.  The company organization rule 
specifies additionally that the winning candidate must have majority supports.  After all the 
anonymous ballots are disclosed and votes tallied, the winners are fairly generated.  However, 
the disclosed ballots leave many intricate traces that might have significant political 
influences to the management of the company, which is particularly detrimental to the 
cooperative framework of the company.  For example, if the vote count for the chairman is 
just above the legal margin of majority, some members might challenge the competence of the 
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winner's leadership.  If some candidates who actively campaigned for the position and were 
promised privately a certain amount of support before the election, but the results turns out to 
have less supporting votes, suspicion and disgust might arise.  In such a situation, a 
traditional solution is by resorting to a trusted third party who counts all votes secretly and 
announces only the resulting winners. 

A second situation happens in parliamentary elections in which members are 
representatives from various political parties.  There might be some predetermined principles 
on a certain topic for each member of a political party to obey.  Sometimes these principles 
might be against the individual judgment of a member or against the benefits of most people 
in the country.  However, the public ballot-disclosing vote-counting process forces most 
participants to obey the principles of their political party.  Otherwise, the accumulated 
vote-counts would reveal some traces about possible traitors.  In such a situation, extensive 
discussions, which usually appear at a meeting before the vote, seem to be superfluous.  The 
seemingly fair public vote-counting process actually prevents voters from voting according to 
his sober and independent judgment.  Somehow, the advantage of voting as a better collective 
decision method vanishes.  Although it is well known that many independent decisions with 
correctness probability slightly higher than a half will accumulate to a good decision with 
correctness probability far away from a half and hopefully close to unity.  In many such 
occasions, the interests of the whole company or country could be sacrificed for maintaining 
the superficially peaceful and cooperative atmosphere.  In this paper, we would like to 
present secret and fair vote-counting and winner-determination procedures that do not 
disclose the vote-count of any individual candidate.  The protocol hides as much information 
as possible except the names of the winning candidates.  At the same time, it is universally 
verifiable and thus achieves the fairness requirement. 

In the past decade, there were extensive researches on electronic voting schemes, [3], [9], 
[17], [13], [4], [19], [18] to name a few.  These schemes make a general electronic election 
for thousands or millions of voters feasible.  The primary achievements include maintaining 
the privacy of each independent votes, preserving the fairness, preventing vote-buying and 
coercion, realizing vote-and-go concepts while reducing the computation and communication 
of the voting centers and the voters.  However, while focusing on achieving the above 
properties, all electronic voting schemes announce the final vote-count of each candidate in 
order to convince all participants that the winner is determined fairly.  For some systems, 
this announcement is the by-product in the course to achieve effectiveness.  For some other 
schemes, this announcement leaves sufficient auditing traces to ensure the fairness of the 
trusted authorities.  However, this type of vote-counting procedure maintains the privacy of 
each voter’s independent choice only when the number of voters is sufficiently large.  For 
those schemes[3, 13] based on homomorphic encryption systems, it is theoretically possible 
to employ the proposed winner-determination procedure to hide the accumulated vote-counts.  
However, this is completely unnecessary for large-scale elections.  For other schemes, it 
would be hard to accommodate them to achieve our new privacy requirement. 

From the aspect of saving computation efforts, there is no obvious reason to automate 
electronically a voting scheme for small/moderate-scale elections.  However, if we rely on a 
trusted person to compare all votes secretly in the anonymous voting scenario where 
vote-counts are also required to be secret, this trusted person is very likely to be bribed or 



 3

coerced later.  Therefore, a good cryptographic vote-counting and winner-determination 
scheme as proposed in this paper finds itself unique valuation in this application scenario. 

In the proposed protocol, the ElGamal cryptosystem[7] is used with its nice 
homomorphic property.  Each ballot consists of separate encrypted ‘yes’/’no’ vote for each 
candidate such that the vote-counts can be accumulated without any decryption.  The 
correctness of each encrypted ballot is guaranteed with zero knowledge proofs.  The 
accumulated vote-count ciphertexts are then converted to encrypted unary representations[2] 
through a ‘mix-and-match’ sub-protocol[14] such that the vote-counts can be concealed in the 
secret winner-determination stage.  The proposed protocol then compares these encrypted 
vote-counts to determine the winner or a set of R winners with highest vote-counts.  All the 
public values in the proposed protocol are announced on an electronic bulletin board in such a 
way that every participant can write in his specified fields along the process of the protocol 
but cannot modify other’s fields.  We also formulate the ballot representations for the 
ranking-choice voting in which each voter gives m candidates a ranking from 1 to m and the 
allocative-choice voting in which each voter gives m candidates separate satisfaction scores in 
the range 0-100 with the constraint that all scores sum up to 100. 

In section 2, we introduce the underlying cryptographic primitives.  In section 3, we 
present the proposed secure voting protocol and especially the vote-counting and 
winner-determination procedures.  Some variations, security analysis and performance 
issues are discussed in section 4.  Section 5 contains the concluding remark. 

2. Cryptographic Primitives 

2.1 Secret Sharing Scheme 

In our protocol, we use a variation of Pederson’s (t, n) threshold secret sharing 
scheme[16, 12] which features a key sharing protocol without any trusted dealer.  Each voter 

Vi chooses a random degree-(t-1) polynomial j
t

j
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g is the generator of the subgroup in the ElGamal system.  A voter Vh shares his secret xh 
with another voter Vi by sending shi=fh(i) to Vi.  On receiving a share shi, Vi verifies it with 
announced public values.  After voter Vi receives all correct sub-shares shi, he applies the 
secret sharing homomorphism to obtain the t-share of the real secret X = ∑

=

n

1i
xi=F(0) where the 

degree t-1 super polynomial F(θ) is defined as ∑
=

n

1i
fi(θ).  

Let T={Vp}p=1,...,k, t≦k≦n, be the set of cooperative voters.  To jointly decrypt an 
ElGamal ciphertext (α, β) on the bulletin board, a voter Vp in the set T needs only compute 
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malicious participants, the following ZKP should be supplied by Vp for proving that the F(p) 

used in 
∏
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α is consistent with all previous published values.  
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Augmented ZKP for joint decryption in Pederson’s threshold scheme: 

In the joint decryption stage, each voter needs only calculate F(p)α of the partial 

decrypted value 
∏

∈≠ Tq p,q
q)-(-q)/(pF(p)

α .  The value ∏
∈≠ Tq p,q

q)-(-q)/(p

 
depends on the identifiers p, q of the 

actual cooperating set T of voters but is public.  To save some efforts in detecting malicious 
voters who claim to be cooperative but submit invalid partial decrypted values.  A ZKP is 

submitted by each voter taking part in the joint decryption: First, we note that gfq(p) can be 

calculated from published values and therefore gF(p)= g
∑
q

q )p(f

can be calculated from published 

values.  Second, α
F(p) is the primary part of the submitted partial decrypted value.  

Therefore, a voter Vp can prove that he uses the same exponent F(p) of the submitted value 

α
F(p)  as the exponent of gF(p) with an “equal discrete log” ZKP[5]. 

2.2 The Ballots 

In the following, we present the format of the ballot for an equal-voting scheme where 
the votes of all voters are equally weighted.  Each voter Vi encrypts his ‘yes’/’no’ vote for 
each candidate as a vector of ElGamal ciphertexts, denoted as Ci:  

Ci = (ci1, ....................., cij, ....................., cim) = (EK(z), EK(1), ....................., EK(z), 
EK(z), ....................., EK(1)), 1≦i≦n, 1≦j≦m, n is the number of voters and m is the number 
of candidates.  An EK(z) in the j-th component of Ci represents a 'yes' vote for the j-th 
candidate, and an EK(1) represents a 'no' vote.  Note that each EK(z) in the above notation 
represents a different ciphertext of the plaintext z with different encryption random number. 
So is EK(1).  There are wi 'yes' votes in each Ci where wi is an integer between zero and L, 
where L is the allowed maximum number of ‘yes’ votes in each ballot.  Note that ‘yes’ votes 
for different candidates have equal weight. 

Each voter must prove that his encrypted vote vector Ci is valid.  It ensures that every 
voter votes at most L candidates and no candidate obtains multiple ‘yes’ votes (i.e. EK(z

c
)) or 

multiple ‘no’ votes (i.e. EK(z
-c
)) such that the following homomorphic counting process can 

proceed correctly.  First, a voter must prove that each element cij of his ballot corresponds to 
a plaintext which is either z or 1.  Second, using the multiplicative homomorphic property of 
the ElGamal cryptosystem, the voting center can calculate χi= ∏

=

m

j 1
ijc which equals EK(z

wi).  
Each voter proves that χi decrypts to one element of a finite set of plaintexts S={z0,z1,z2, ...,zL} 
with the following ‘1-out-of-L’ ZKP.  

‘1-out-of-L’ ZKP: 

Consider the following public parameters of an ElGamal cryptosystem: p, q, g, and K 
where p and q are large prime numbers, p=2q+1, g is a generator in the order q quadratic 
residue subgroup Gq of Zp

* , K ≡ gX (mod p) is the public key, X is the private key, X is 
chosen such that gcd(X, p-1) is 2 and the order of K in Gq is q.  The pair (α ≡ gr(mod p), β ≡ 
Mi·K

r
 (mod p) ) is an ElGamal ciphertext, where r is a random number in Zp-1\{0}.  S is a 
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finite set of specified messages {M1, ..., MJ}, Mi ∈ Gq.  Peggy wants to prove to Victor that 
she knows i and r, corresponding to the ciphertext (α, β), without revealing them. 

1. Peggy picks randomly J-1 values {ej}j≠i∈R Zp-1 and J-1 values {yj}j≠i∈R Zp-1, then she 

computes {aj ≡ gyj α
- e j(mod p)}j≠i, {bj ≡ Kyj (Mj/β}ej (mod p)}j≠i, chooses a random w∈R 

Zp-1 and calculates ai ≡ gw(mod p), bi ≡ Kw (mod p).  Finally, she commits {aj, bj}j=1,...,J to 
Victor.  

2. Victor chooses a random challenge e∈R Zp-1 and sends it to Peggy. 
3. Peggy computes ei ≡ e - ∑j≠i ej (mod p-1), yi ≡ w + r‧ei (mod p-1), and sends the response 

{ej, yj}j=1,...,J to Victor. 

4. Victor checks that e ≡ ∑j ej (mod p-1) and that gyj ≡ aj‧α
ej (mod p), K

yj ≡ bj‧(β/Mj)
ej (mod p) 

for j=1,...,J. 
A formal proof of this ZKP can be found in [20]. 

2.3 Verifiable vector mix-net 

A mix-net[1, 15] is a cryptographic device that takes a list of m encrypted data items and 
outputs a list of m completely different ciphertexts that correspond to an undisclosed 
permutation of the original data items.  The origin of each data item should be hided by the 
mix-net, therefore, most implementations use a series of independently operated mix-servers 
to perform secret permutation and re-encryption operations.  The mix-server in Jakobsson’s 
Millimix[15] proves its private permutation through a “Disjunctive Schnorr identification 
protocol” NIZKP, which is a variation of the “1-out-of-L re-encryption” NIZKP[6, 19], and an 
“equal-discrete log” NIZKP[5] on the product of input and output ciphertexts.  The 
mix-servers in Abe’s mix-net[1] jointly prove their concatenated private permutations more 
efficiently with a graph isomorphism style of NIZKP.  Both mix-net schemes use ElGamal 
ciphertexts as the input data items such that each mix-server can re-encrypt an input 
ciphertext to a different one without decrypting the input ciphertext and prove the correctness 
of re-encryption through “equal-discrete log” NIZKPs. 

In some applications, the data element to be mixed might be larger than a single block of 
ElGamal ciphertexts, e.g. e-mails or the ballot vectors Ci in Section 2.2.  Common practices 
divide the data into a sequence of ciphertexts and form a ciphertext vector.  If a list of 
ciphertext vectors are required to be mixed (i.e. permuted and re-encrypted), the previous 
scheme[15] need to be modified.  Note that it is demanded that the order of the components 
inside a ciphertext vector remains unchanged during the mixing.  The modified vector 
mix-net protocol for each server is as follows: 
Step 1. A mix-server Sf receives m n-dimensional ciphertext vectors from its previous server: 

{ (df-1
1,1, d

f-1
1,2, d

f-1
1,3, ..., d

f-1
1,n-1, d

f-1
1,n), (d

f-1
2,1, d

f-1
2,2, d

f-1
2,3, ..., d

f-1
2,n-1, d

f-1
2,n), 

  ..., (df-1
m,1, d

f-1
m,2, d

f-1
m,3, ..., d

f-1
m,n-1, d

f-1
m,n)}.  The server permutes these vectors, 

re-encrypts all m×n component ciphertexts {df-1
i,j} independently, and outputs the 

resulting m new ciphertext vectors.  As shown in figure 1, each row represents an 
output vector of the mix-server Sf and is published.  Every server and verifier can 
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calculate homomorphically the product of all ciphertexts of a row to obtain µi
f, and the 

product of all ciphertexts of a column to obtain ωj
f. 

Step 2. The mix-server Sf is then required to provide n NIZKPs that the ciphertext set of the 

j-th column {df
1,j, d

f
2,j, ..., d

f
m,j} is permuted and re-encrypted from the previous 

ciphertext set{df-1
1,j, d

f-1
2,j, ..., d

f-1
m,j} and that the product ciphertext set {µ

f
1,j, µ

f
2,j, ..., 

µ
f
m,j} is permuted and re-encrypted from the previous product ciphertext set{µ

f-1
1,j, 

µ
f-1

2,j, ..., µ
f-1

m,j}.  This can be proved in two steps: First, mix-server Sf proves that 
each element in the input set is re-encrypted from one element of the output set using 
the “1-out-of-L re-encryption” NIZKP [6, 19], which is basically a generalization of 
the “equal discrete log” NIZKP.  Note that the above proof is in the reverse direction 
from the input to the output to prevent duplicated output provided that all inputs 
correspond to different plaintexts.  The re-encryption random number used in the 
proof is the negative (mod p-1) of the original random number.  Second, mix-server 

Sf proves that the product ciphertext ωj
f is re-encrypted from the product ciphertext 

ωj
f-1.  This can be done using the “equal discrete log” NIZKP since the server Sf 

knows all the re-encryption random numbers to form ciphertexts ωj
f . 
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1,2,       df
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2,n  

... 

... 

df
m,1,       df

m,2,       df
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m,n  

   
 

  
 

...   
 

 

Figure 1. The published output ciphertexts of the server Sf and all 
homomorphically computed values 

The above protocol prevents each mix-server from sabotaging a ciphertext vector or 
replacing any components of a ciphertext vector received from previous mix-server.  One 
important pre-requisite for this protocol to work is either keeping all plaintexts random and 
unknown to each mix-server or keeping the plaintexts specifically restricted, e.g. in our voting 
protocol the plaintexts allowed are z and 1 only.  To avoid imposing the above constraints on 
the plaintext, another type of NIZKP based on graph isomorphism ZKP [1] can be modified to 
replace step 2.  Due to the space limitation, we leave the security proofs and several other 
variations of this vector mix-net to the full paper. 

2.4 The ‘match’ sub-protocol[14]: 

A ‘match’ sub-protocol takes a ciphertext v and a set of ciphertexts U = {u1, u2, ..., un} to 
determine the index i* such that DK(v) = DK(u i*) without revealing DK(v) or {DK(u i)}i=1,...,n or 
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the relations between DK(v) and arbitrary DK(u i).  This sub-protocol will be used in both the 
‘conversion of vote-count’ and the ‘winner-determination’ stages. 

Step 1. For each i, divide ui by v.  

Step 2. For each i, raise (ui/v) to a secret random power λ sequentially by all participants. 
Every participant chooses a secret random number λk , calculates and publishes  
(ui/v)λk.  Each participant is required to provide a “knowing discrete logarithm” 
NIZKP[19] for the correctness of his operation.  In this way, no participant knows 
the overall random exponent λ = λ1 + λ2 +...+λn . 

Step 3. For each i, perform jointly a threshold decryption on (ui/v)λk.  If the result is unity for 
a particular i*, then u i* equals v.  Output i* as the result. 

3. Secure Voting Protocol 

The secure voting protocol is divided into initialization, voting, counting, vote-count 
conversion, and winner-determination stages.  These stages are presented as follows: 

3.1 Initialization stage 

Enroll, choose the secret, and decide the public key:  Each participating voter is required 
to present a valid certificate signed by a specific certificate authority (CA) at this stage in 
order to register at the vote.  Each voter is then given a one-time password for the electronic 
bulletin board.  This allows a voter to write in his specific field exactly once. 

Step 1. A voter Vi chooses a secret xi, computes gxi, and publishes gxi. 

Step 2. Each voter computes the public key K ≡ gX ≡ g
x1+x2+......+xn ≡ g

x1· g
x2 ·...· g

xn (mod p).  

Share the secret key: 

Step 3. Vi chooses privately a degree t-1 polynomial j
t

j
ijii axf θθ ∑

−

=

+=
1

1
)( which hides the 

secret xi as the constant term, and publishes the exponentials ijag of all coefficients. 

Step 4. Vi sends fi (h), which is the h-th share of xi, to the voter Vh. 

Step 5. Vi cross verifies all the shares he received, {shi}h=1,...,n , against published values at step 
3. through the equation 

1
1

2
21 )()())(()( −

−≡≡
t

tbbbnhhi iaiaiaxifs gggggg L  

Step 6. Vi calculates from {shi}h=1,...,n the share F(i) = ∑∑
==

=
n

h
hi

n

h
h sif

11

)(  of the actual 
decryption key X=F(0). 

Prepare ciphertext conversion vector sets: 

 Let S be a set consisting of n+1 n-dimensional ciphertext vectors: {(EK(1), EK(1), ..., 
EK(1)), (EK(z), EK(1), ..., EK(1)), ..., (EK(z), EK(z), ..., EK(z), EK(1)), (EK(z), EK(z), ..., EK(z))} 
where EK(1) and EK(z) are two common ciphertexts with their encryption random numbers 
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known to everyone.  Each ciphertext vector is the unary representation corresponding to an 
integer in the set {0, 1, ..., n}.  Each voter performs as a mix-server in the vector mix-net 
described in Section 2.3.  The above set S of ciphertext vectors is fed n times into the vector 

mix-net to create n independently permuted vector set S 1
(enc)

, ..., S n
(enc)

.   All voters are 
assured that each permuted set Sk

(enc)
 contains all ciphertexts re-encrypted and permuted from 

S.  No voter can determine the correspondence between elements of Sk
(enc)

 and S.  As 
shown in figure 1 above, the product of ciphertext components of the i-th row is denoted as  

µi
 f
.  Every ciphertext set Sk

(enc)
 will be used only once for converting the representation of an 

accumulated vote-count ciphertext through the ‘match’ sub-protocol later. 

3.2 Voting stage 

Prepare the ballot: 
Step 1. A voter Vi decides ‘yes’/’no’ for each candidate.  He prepares a ballot Ci = ( EK(z), 

EK(1), EK(z), ..............., EK(1) ).  An EK(z) represents a ‘yes’ vote and an EK(1) 
represents a ‘no’ vote.  There are wi ‘yes’ vote in the ballot Ci where wi is no more 
than a constant L. 

Prove the validity of a ballot: There are several illegal cases the protocol would like to avoid.  
First, a ballot contains an element EK(zk).  It is effectively k ‘yes’ votes to the same 
candidate.  Second, a ballot contains more than L ‘yes’-votes.  Third, a ballot contains 
illegal encrypted elements other than EK(z) or EK(1) that would disrupt the homomorphic 
counting procedure.  Fourth, a ballot is copied and re-encrypted from another ballot. 

Step 2. A voter proves that each ciphertext element of the ballot is the encryption of either z 
or 1 with the ‘1-out-of-L’ NIZKP described in section 2.2.  Note that in this proof, a 
voter needs to know the encryption random number for each ciphertext.  Therefore, 
this prevents a dishonest voting center from copying and re-encrypting some other 
voter’s ballot. 

Step 3. A voter also proves that χi≡ ∏
=

m

j
ijc

1
(mod p) is the encryption of an element in the set {1, 

z1, z2, ..., zL} with the ‘1-out-of-L’ NIZKP described in section 2.2. 

Publish the ballot:  

Step 4. A voter logs on the electronic bulletin board with the one-time password received 
earlier.  

Step 5. A voter publishes the ballot and the NIZKPs on his designated fields as shown in 
Figure 2. 

    Candidates  
Voters  1 2 3 ... m-2 m-1 m   

V1 c11 c12 c13 ... c1(m-2) c1(m-1) c1m NIZKP for {c1j} 
NIZKP of χ 1 
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V2 c21 c22 c23 ... c2(m-2) c2(m-1) c2m NIZKP for {c2j}
NIZKP of χ 2 

... ... ... ...  ... ... ... ... 

Vn-1 c(n-1)1 c(n-1)2 c(n-1)3 ... c(n-1)(m-2) c(n-1)(m-1) c(n-1)m NIZKP for {c(n-1)j}
NIZKP of χ n-1 

Vn cn1 cn2 cn3 ... cn(m-2) cn(m-1) cnm NIZKP for {cnj}
NIZKP of χ n 

Tallies τ1 τ2 τ3  τ m-2 τ m-1 τ m  

Figure 2. Ballots published on the electronic bulletin board 

Verify the validity of NIZKPs:  

Step 6. In order to prevent malicious subversion in the remaining protocol, the voting center 
has the responsibility to verify the NIZKPs corresponding to each encrypted vote 
vectors.  

Step 7. Because none of the published cij will be decrypted in the protocol, any suspicious 
participant can also verify these proofs to establish his confidence on the ongoing 
protocol. 

3.3 Counting and tally-conversion stage 

Tally the votes homomorphically: 
As shown in Figure 2, the ciphertexts of the j-th column on the electronic bulletin board 

are multiplied together as the encrypted tally of the j-th candidate, i.e. τ j=∏
=

n

i 1

c ij . 

Convert each candidate’s vote-count to an encrypted unary vector:  

In this stage, each voter jointly converts τj into its unary ciphertext vector representation 
through the ‘match’ sub-protocol without revealing the corresponding vote-count.  First, the 

encrypted tally τj is matched against the set S j
(enc)

, which is prepared in the initialization stage.  
During the ‘match’ sub-protocol, all voters jointly compute random exponentials to blind the 
conversion process and jointly decrypt the result to find the matched item.  The converted 
unary ciphertext vector (σ1j, σ2j, ...,σnj) for the j-th candidate is then published on the bulletin 

board as a column vector as shown in Figure 3.  
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Figure 3. Unary ciphertext vector representations of vote-counts 

Determine R winners: 

As shown in Figure 3, ρi can be calculated as the product of a row of ciphertexts 

homomorphically, i.e. ρi ≡∏
=

m

j
ij

1

σ (mod p).  The plaintexts corresponding to (ρ1, ρ2, ..., ρn) 

must be decreasing exponentials of z, ex. (z
m
, z

m
, z

m-1
, z

m-1
, ..., z

3
, z

3
, z

3
, z

3
, z

2
, z

2
, z

2
, z

2
, z

1
, z

1
, 

z
0
, z

0
, z

0
).  In this example, ρn-5 being z

2
 means that there are two candidates whose votes are 

no less than n-5.  In order to find the R winners without decrypting all candidates’ votes, the 

ciphertext EK(z
R
) is matched against the vector (ρ1, ρ2, ..., ρn) with the ‘match’ sub-protocol.  

After the match, if ρi* is the first entry that decrypts to zR, {σi* j}j=1, ..., m in the i*-th row of 
Figure 3 are decrypted.  If DK(σi* j*) is z, then the j*-th candidate is declared a winner.  

There are R winners with vote-counts no less than i*.  Note that the joint decryptions in the 

‘match’ sub-protocol on { (ρi / EK(z
R
))λ }i=1, ..., n should be performed in increasing order of i.  

The decryption should stop at the i*-th element so that no voter can know the right boundary 

of the sequence of EK(z
R
) in (ρ1, ρ2, ..., ρn).    

4. Security Analysis and Discussion 

Consider the following cases where a malicious mix-server might try to disrupt the 

vector mix protocol of Section 2.3 when it is used to prepare S 1
(enc)

, ..., S n
(enc) 

in Section 3.1. 

Case 1: A server Sf removes a particular input row (df-1
i,1, d

f-1
i,2, ..., d

f-1
i,n-1, d

f-1
i,n) and replaces 

it with a row vector re-encrypted from another row (df-1
i*,1, d

f-1
i*,2, ..., d

f-1
i*,n-1, d

f-1
i*,n).  

This behavior is thwarted by the n re-encryption NIZKPs on the pairs {(ωj
f-1, 

ωj
f)}j=1, ...,n since there is at least one different element between the i-th row and the 

i*-th row in our protocol. 

Candidates  
 

# Votes 
τ 1 ... τ j ... τ m-1 τ m  

1 σ11 ... σ1j ... σ1(m-1) σ1m ρ1 

  ... 

 ...  

 ...  

 ... 

 ... 

 ... 

i σi1 ... σij ... σi(m-1) σim ρi 

  ... 

 ...  

 ...  

 ... 

 ... 

 ... 

n σn1 ... σnj ... σn(m-1) σnm ρn 
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Case 2: A server Sf permutes each column independently.  This will be detected by the m 

‘1-out-of-L re-encryption’ NIZKPs from every element in the set {µ
f-1

1,j, µ
f-1

2,j, ..., 
µ

f-1
m,j} to the set {µ

f
1,j, µ

f
2,j, ..., µ

f
m,j} provided that independent permutations would 

cause different row products.  The next case will discuss some special malicious 
operations that do not satisfy the above condition. 

Case 3: A server Sf chooses two rows i1 and i2, two columns j1 and j2, multiplies E(z-1) to di1j1 
and di2j2 and multiplies E(z) to di2j1 and di1j2.  In this way, the row products µf

i1 and 
µ

f
i2 remain unchanged, the column products ωf

j1 and ωf
j2 also remain unchanged.  

For example:   

 

 

However, the modified element EK(z-1) is not a valid representation, and will be 
detected by the m “1-out-of-L re-encryption” NIZKPs from every element in the set 

{df
1,j, d

f
2,j, ..., d

f
m,j} to the set {df-1

1,j, d
f-1

2,j, ..., d
f-1

m,j}.  In the following table, we list 
the other eight possible cases for the above example.  Note that each output row has 

at least one invalid element, which is either EK(z-1) or EK(z2). 

 

 

 

 

 

 

Case 3a: Similar to case 3, a server Sf chooses two rows i1 and i2, two columns j1 and j2, swaps 

two pairs of ciphertexts, i.e. {d f-1
i1j1, d

 f-1
i1j2} and {d f-1

i2j1, d
 f-1

i2j2}.  For certain 
situations, the row products µf

i1 and µf
i2 , the column products ωf

j1 and ωf
j2 preserve 

their values under the swap operation.  For instance, 

 

 

However, the input EK(1), ..., EK(z) is not a valid representation in our protocol. 

Because the ElGamal encryption system is used, the overall security of the proposed 
voting protocol is built upon the common intractability assumptions, namely, the DDH 

 i1 i2 
j1 EK(1) EK(1) 
j2 EK(1) EK(1) 

 i1 i2 
j1 EK(z-1) EK(z) 
j2 EK(z) EK(z-1) 

d f-1
i1j1 d f-1

i1j2 d f-1
i2j1 d f-1

i2j2  d f
i1j1 d f

i1j2 d f
i2j1 d f

i2j2 
EK(1) EK(1) EK(z) EK(1) ⇒ EK(z-1) EK(z) EK(z2) EK(z-1) 

EK(1) EK(1) EK(z) EK(z) ⇒ EK(z-1) EK(z) EK(z2) EK(1) 

EK(z) EK(1) EK(1) EK(1) ⇒ EK(1) EK(z) EK(z) EK(z-1) 

EK(z) EK(1) EK(z) EK(1) ⇒ EK(1) EK(z) EK(z2) EK(z-1) 

EK(z) EK(1) EK(z) EK(z) ⇒ EK(1) EK(z) EK(z2) EK(1) 

EK(z) EK(z) EK(1) EK(1) ⇒ EK(1) EK(z2) EK(z) EK(z-1) 

EK(z) EK(z) EK(z) EK(1) ⇒ EK(1) EK(z2) EK(z2) EK(z-1) 

EK(z) EK(z) EK(z) EK(z) ⇒ EK(1) EK(z2) EK(z2) EK(1) 

 i1 i2 
j1 EK(z) EK(1) 
j2 EK(1) EK(z) 

 i1 i2 
j1 EK(1) EK(z) 
j2 EK(z) EK(1) 
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assumption.  Because the Fiat-Shamir heuristic[8] of turning a ZKP into an NIZKP is used 
throughout the protocol, we also rely on the random oracle model assumption.  Besides, we 
assume a broadcast channel in the form of a bulletin board.   

At the key sharing stage, the correctness of the shared key can be verified as in 
Gennaro’s framework[12].  In the protocol, it requires at least t corrupted voters to perform 
an unauthorized decryption.  The encrypted ballot is guaranteed nonmalleable through the 
“1-out-of-L” NIZKP in Section 2.2.  This thwarts the phantom votes.  All homomorphic 
computations in the counting and winner-determination stages are publicly repeatable.  
Every voter can verify them to ensure his vote is properly counted.  The vector mix-net 
introduced is completely public verifiable.    

At the vote-count conversion stage, the joint decryption in the ‘match’ sub-protocol does 
not reveal the actual vote-count because of the previous ‘mix’ operation on the conversion 
sets Si

(enc).  The relations between a vote-count and other members in the conversion set Si
(enc) 

are hided by the random exponent λ provided jointly by all participants.  Each random 
conversion set Si

(enc) is used only once to eliminate the chance of collision, i.e. the vote-counts 
of two candidates equal and match to the same element of a set Si

(enc). 

At the winner-determination stage, the homomorphic multiplication is publicly 
repeatable.  The ‘match’ operation of EK(zR) and the decryption of ρi till the first appeared 
‘1’ (=ρi*) reveals only the fact that there are R candidates having votes no less than the 

constant i*.  One special problem to be noticed is the case that the R-th and (R+1)-th 
candidates have equal votes.  In this case, EK(zR) would match to nothing in the list 
{ ρi }i=1, ..., n.  What happened is that ..., zR+1, zR-1, ... is a partial sequence in the list { ρi }i=1, ...,n.  

This problem can be solved by matching EK(zR+1) or EK(zR-1) against the list { ρi }i=1, ..., n 

depending on pre-established election rules about the equal-vote situations.  This procedure 
can be easily generalized when three or more candidates have equal votes 

Along the execution of this voting protocol, all uncooperative participants can be 
identified through the NIZKP at the spot and banned from further participation.  Therefore, 
this protocol is robust against active adversaries.  To further investigate the security features 
of the entire protocol, it is suggested[11] to evaluate this protocol in the universal 
composability framework. 

In a small-scale voting scheme as addressed in this paper, the amount of computation 
and communication is not that critical as a large-scale general e-voting scheme.  It is the 
fulfillment of the newly established privacy requirement that justifies the usage of an 
electronic voting scheme in such a small-scale critical election.  The fairness benefits 
obtained soon pay for the costs of deployment and the operational inconvenience. 
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The proposed secure winner-determination procedure can be used in many voting 
schemes with variations, e.g. a ranking-choice voting or an allocative-choice voting.  To 
accommodate the current scheme to both types of voting schemes, the primary part to be 
modified is the ballot preparation and the corresponding NIZKPs provided by a voter.  The 
remaining tallying, vote-count conversion, and winner-determination stages work in its 
current form. 

In an allocative-choice voting scheme, each voter gives m candidates separate 
satisfaction scores in the range 0-100.  It is required that these m scores sum up to 100.  In 

the ballot preparation stage, each voter Vi prepares a ballot Ci = ( EK(z
a1), EK(z

a2), EK(z
a3), ..., 

EK(z
am) ) where aj is an integer lies within 0 and 100 and satisfies 100

1
=∑

=

m

j
ja .  The voter Vi 

is required to submit m ‘1-out-of-L’ NIZKPs to prove that each ciphertext EK(z
aj) decrypts to 

one element of the set { z
0
, z

1
, ..., z

100
 }.  The voter also needs to prove that the plaintext of 

the homomorphically calculated ciphertext EK(z
 a1+ a2 +...+am) is z

100
 by an ‘equal discrete log’ 

NIZKP. 

In a ranking-choice voting scheme, each voter gives m candidates a ranking from 1 to m.  
It is illegal to give two candidates the same rank.  Again in the ballot preparation stage, each 

voter Vi prepares a ballot Ci = ( EK(z
a1), EK(z

a2), EK(z
a3), ..., EK(z

am) ) where {a1, a2, ...,am} is a 
permutation of the set {1, 2, ..., m}.  The voter Vi is required to submit m ‘1-out-of-L 

re-encryption’ NIZKPs to prove, for each j from 1 to m, that the ciphertext EK(z
j
) is 

re-encrypted from one element of the set { EK(z
a1), EK(z

a2), EK(z
a3), ..., EK(z

am) }. 

5. Concluding Remarks 

In this paper, we identified an important requirement on a small-scale electronic voting 
scheme, namely, to keep all vote-counts secret and the voting process publicly verifiable.  
There are a bunch of application scenarios that require electronic voting schemes to eliminate 
trusted third parties in the election process.  However, the voting schemes proposed in the 
past focused mainly on problems associated with a large-scale generic election and are not 
applicable to the scenario we noticed.  We constructed our voting scheme based on popular 
homomorphic schemes and focused on the design of the winner-determination procedure to 
keep all vote-counts secret.  This task is a specialization of a general multi-party 
protocol[10].  We achieved the goal using a ciphertext format conversion procedure, which 
was based on the ‘mix-and-match’ sub-protocol and many NIZKPs.  In the future, we are 
looking for some light-weight version of protocols that can fulfill the same requirements 
identified here. 

6. References 



 14

[1] M. Abe, “Universally verifiable MIX with verification work independent of the number of 
MIX servers”, Advanced in Cryptology – Eurocrypt 1998, LNCS 1403, 1998. 

[2] M. Abe and K. Suzuki, “M+1-st Price Auction Using Homomorphic Encryption”, PKC 
2002, LNCS 2274, pp. 115-124, 2002. 

[3] O. Baudron, P. Fouque, D. Pointcheval, J. Stern, and G. Poupard, “Practical 
Multi-Candidate Election System”, ACM 20-th Symposium on Principle of Distributed 
Computing, PODC’01, 2001. 

[4] J. C. Benaloh, “Verifiable Secret Ballot Elections”, Ph.D. thesis, Yale University, 1987. 
[5] D. Chaum and T. Pedersen, “Wallet Databases with Observers”, Advanced in 

Cryptology – Crypto 1992, pp. 89-105, 1992. 
[6] R. Cramer, R. Gennaro, and B. Schoenmakers, “A Secure and Optimally Efficient 

Multi-Authority Election Scheme”, Advanced in Cryptology – Eurocrypt 1997, LNCS 
1233, pp. 119-136, 1997. 

[7] T. ElGamal, “A Public-key Cryptosystem and Signature Scheme Based on Discrete 
Logarithms”, IEEE Trans. on Information Theory, Vol. IT-31, pp. 469-472, 1985. 

[8] A. Fiat and A. Shamir, “How To Prove Yourself: Practical Solutions to Identification and 
Signature Problems”, Advances in Cryptology: Proc. Crypto’86, pp.186-194, 1986.  

[9] A. Fujioka, T. Okamoto, and K. Ohta, “A practical secret voting scheme for large scale 
elections”, Advanced in Cryptology – AUSCRYPT’92, 1992.  

[10] O. Goldreich, S. Micali, and A. Wigderson, “How to Play Any Mental Game”, ACM 
STOC’87, 1987 

[11] J. Groth, “Evaluating Security of Voting Schemes in the Universal Composability 
Frmework”, Proc. ACNS’04, 2004. 

[12] R. Gennaro et al. “Secure Distributed Key Generation for Discrete-Log Based 
Cryptosystems”, Advances in Cryptology: Proc. Eurocrypt’99, pp. 293-310, 1999.  

[13] M. Hirt and K. Sako, “Efficient receipt-free voting based on homomorphic encryption”, 
Advanced in Cryptology – Eurocrypt’00, 2000. 

[14] M. Jakobsson and A. Juels,“Mix and Match: Secure Function Evaluation via 
Ciphertexts”, Advanced in Cryptology – Asiacrypt’00, pp. 162-177, 2000.  

[15] M. Jakobsson and A. Juels, “Millimix: Mixing in Small Batches”, Tech. Rep. 99-33, 
DIMACS, 1999.  

[16] T. P. Pedersen, “A Threshold Cryptosystem without a Trusted Party”, Advanced in 
Cryptology – Eurocrypt 1991, pp. 522-526, 1991.  

[17] M. J. Radwin, “An untraceable, universally verifiable voting scheme”, 1995, available at 
http://www.radwin.org/michael/projects/voting.html.  

[18] R. Rivest, “Electronic Voting”, Financial Cryptography’91, 1991. 
[19] Z. Rjaskova, “Electronic Voting Schemes”, Ms Thesis, Comenius University, Bratislava, 

2002.  
[20] P.-Y. Ting, Y.-T. Lee, C.-Y. Chen “On The Public Verifiability of an M+1-st Price 

Auction Using Homomorphic Encryption”, Technical Report, National Taiwan Ocean 
University, Dec. 2003. 


