
Delegateable Signature Using Witness Indistinguishable and

Witness Hiding Proofs

Chunming Tang1,∗ Dingyi Pei1,2 Zhuojun Liu3

1 Institute of Information Security of Guangzhou University, P.R.China

2 State Key Laboratory of Information Security, Chinese Academy of Sciences, P.R.China

3 Academy of Mathematics and systems science, Chinese Academy of Sciences, P.R.China

Abstract

A delegateable signature scheme is a signature scheme where the owner of the signing
key(Alice) can securely delegate to another party(Bob) the ability to sign on Alice’s behalf
on a restricted subset S of the message space. Barak first defined and constructed this
signature scheme using non-interactive zero-knowledge proof of knowledge(NIZKPK)[1]. In
his delegateable signature scheme, the function of NIZKPK is to prevent the signing verifier
from tell which witness(i.e. restricted subset) is being used.

Witness indistinguishable(WI) and witness hiding(WH) proof systems are weaker proof
model than zero-knowledge proof and were proposed by Feige and Shamir in [2], however,
the verifier cannot also distinguish the witness which is being used in these two protocols. In
this paper, we construct delegateable signature scheme using WI and WH proof protocols.

Keywords: Digital signature, delegateable signature, zero-knowledge proof system, wit-
ness indistinguishable proof, witness hiding proof

1 Introduction

A new Cryptographic tool, a delegateable signature scheme, is introduced by Barak[1]. Infor-
mally, a delegateable signature scheme is a signature scheme where the owner of the signing
key(Alice) can securely delegate to another party(Bob) the ability to sign on Alice’s behalf on a
restricted subset S of the message space. By secure delegation we require both that this other
party(Bob) would not be able to generate a signature for a message m /∈ S and that the signa-
tures generated by the delegated party(Bob) would be indistinguishable from those generated
by the owner of the signature key(Alice). As usual, we also require that any other party will
not be able to generate a signature for any message m that it has not seen a signature for.

According to the motivation for delegateable signature, Alice can give Bob a restricted sign
key in a delegateable signature. The restricted signing key sAlice,T will allow its holder to sign
only messages that fit the template T . Formally, We’ll say that a template T is a boolean
predicate defined over the set of all strings (i.e. T : {0, 1}∗ → {0, 1}). We say that a message m
fits the template T if T (m) = 1. In such a scheme we call Alice’s key sAlice the master signing
key(as opposed to a restricted signing key). We require two properties from a delegateable
signing scheme:

1. The holder of the master signing key can create a T-restricted signing key for any function
T : {0, 1}∗ → {0, 1}. We say that sT is a T-restricted signing key if using sT one is able
to sign any message m that satisfies T (m) = 1 and no other messages.

∗Email: chunming.tang@gmail.com or tangcm622@hotmail.com

1

2. IF T, T ′ are two functions and m is a message such that T (m) = T ′(m) = 1 then it is
infeasible to distinguish between a signature that was generated using sT and a signature
that was generated using sT ′ .

In [1], Barak provided the formal definition for delegateable signature schemess, and a con-
struction using Non-interactive zero-knowledge proof of knowledge(NIZKPK)(which is based on
trapdoor permutations) that meet this definition.

Witness indistinguishable(WI) and witness hiding(WH) of knowledge were introduced by
Feige and Shamir[2]. Informally, a two party protocol in which party A uses one of several secret
witnesses to an NP assertion is witness indistinguishable if party B cannot tell which witness A
is actually using. The protocol is witness hiding if by the end of the protocol B cannot compute
any new witness which he did not know before the protocol began. WH is a natural security
requirement, and can replace zero-knowledge(ZK) in many cryptographic protocols.

Obviously, a protocol is WI and WH if it is ZK. Feige and Shamir had proven that the WI
for NP relation R is a WH if R is a non-trivial(that is, R has at least two witness). Based on one
way functions, they constructed the interactive witness indistinguishable(IWI) and interactive
witness hiding(IWH) proofs, furthermore, they also provided the way for constructing noninter-
active witness indistinguishable(NIWI) and noninteractive witness hiding(NIWH) proofs using
noninteractive zero-knowledge proofs.

In delegateable signature scheme, if T, T ′ are two functions and m is a message such that
T (m) = T ′(m) = 1 then it is infeasible to distinguish between a signature that was generated
using sT and a signature that was generated using sT ′ . In order to obtain the above requirement,
NIZKPK is used so that the signing verifier cannot distinguishable which function(T or T ′) is
being used[1]. In fact, it is feasible to obtain the above requirement using WI and WH proofs,
this is because in the two protocols the verifier cannot also distinguish the witness which is being
used.

In Barak’s delegateable signature, the zero-knowledge property of NIZKPK only
guarantees the indistinguishability between function T and T ′, however, it is useless
to other properties of delegateable signature scheme.

In this paper, we construct delegateable signature using NIWI and NIWH proofs. Barak’s
delegateable signature is based on trapdoor permutation, however, our signature is at most
based on trapdoor permutation, and is probably based on weaker assumption than trapdoor
permutation because NIWI and NIWH are weaker protocols than ZK(however, up to now, no
one can construct NIWI and NIWH using weaker assumption than trapdoor permutation).

2 Notation and Definitions

By standard digital signatures we mean a signature scheme that is secure against adaptive
existential forgery attack[3].

The standard notion of boolean circuits is used. We will identity boolean circuits with their
canonical representation as strings in {0, 1}∗. The size of a circuit C(denoted by |C|) is the size
of this representation. If C is a circuit with n inputs then we denote by L(C) the following
language, L(C) = {x ∈ {0, 1}n|C(X) = 1}. For m ∈ {0, 1}∗, we denote by Cm the canonical
circuit of size 10|m| such that L(Cm) = {m}. We assume that any circuit C of n inputs is of
size at least 10n.

An algorithm can be either a uniform algorithm, modeled by a Turing machine, or a non-
uniform algorithm, modeled by a sequence of circuits for each input length. Out adversaries
in this paper will be polynomial non-uniform algorithms, which are modeled by a sequence of
circuits {Cn}n∈N such that |Cn| ≤ p(n) for some polynomial p(·).

2

An oracle algorithm is defined in the standard way(either as a Turing machine with a special
oracle query tape, or as a sequence of circuits with oracle gates). If A is an oracle algorithm, and
B is an algorithm then by AB(x) we denote the result of running A on input x with oracle access
to B. If A is an algorithm that takes two inputs then by A(x, ·) we denote the algorithm that
is the result of fixing A’s first input to be x. VP (x) denotes V ′s output after interaction with
P on common input x(both of P and V are probabilistic polynomial time interactive Turing
machine). M(x,A)(where A may be either P or V) denotes algorithm M ′s output on input x,
where M may use algorithm A as a (blackbox) subroutine. Each call M makes to A is counted
as one computation step for M .

If D is a distribution then x ← D means that x is a random variable distributed according
to D. If S is a set then x←R S means that x is a random variable distributed according to the
uniform distribution on the elements of S.

A negligible function is a function that grows slower that inverse of any polynomial. That
is, µ : N→ N is negligible if for any positive polynomial p(·) there exists a number n0 such that
µ(n) < 1

p(n) for all n > n0. We will sometimes use negl(·) to denote some unspecified negligible
function.

For any strings x, y ∈ {0, 1}∗ we denote by x ◦ y the concatenation of x and y.
The value ⊥ is a special symbol that denotes ”failure”.

2.1 Defining delegateable signature

We describe the definition for delegateable signature defined by Barak[1].
Assume a template T : {0, 1}∗ → {0, 1} to be a boolean circuit C that computes T , so

we talk about C-restricted keys instead of talking about T -restricted keys. Identifying circuits
with their canonical representation as strings in {0, 1}∗, therefore when saying something like
”run the algorithm A with circuit C as input” it means that A is run on input the canonical
representation of C as a string in {0, 1}∗.

The delegateable signature scheme is usually composed of four algorithms:

1. The key generator algorithm(ab. KEY GEN). It generates the master signing and verify-
ing keys. By the master signing key we mean the key that allows signing on any message(as
well as creation of restricted signing keys). This is in contrast with a restricted signing
key. The notation is (smaster, vmaster)← KEY GEN(1n).

2. The delegation algorithm(ab. DELEGATE). It is the algorithm creating a restricted
signing key. This algorithm takes as input the master signing key smaster and a boolean
circuit C, the output of DELEGATE is a restricted signing key sC that allows only to
sign messages m ∈ {0, 1}∗ such that C(m) = 1(or equivalently, m ∈ L(C)). The notation
is sC ← DELEGATE(smaster , C).

3. The signing algorithm(ab. SIGN). It takes as input a message m and a restricted key
sC . If C(m) = 1 then the output of SIGN would be a signature α. The notation is
α← SIGN(sC ,m).

4. The verification algorithm(ab. V ERIFY). It takes as input the master verification key
vmaster, a message m, and an alleged signature α. It then outputs 1 if an only if α is a
valid signature of m with respect to the key vmaster.

The following definition presents the requirements from the four algorithms described above.

Definition 1 A delegateable signature scheme is a quadruple of algorithm (KEY GEN,
DELEGATE,SIGN, V ERIFY) that satisfies the following three requirements:

3

1. (Validity) For any circuit C and message m ∈ {0, 1}∗ such that m ∈ L(C), if we perform
the following experiment:

(a) Generate master keys: (smaster, vmaster)← KEY GEN(1n)

(b) Create a restricted signing key sC that allows to messages in L(C) : SC ←
DELEGATE(smaster, C)

(c) Sign the message m using the restricted key sC : τ ← SIGN(sC ,m).

Then it will always (i.e., with probability 1) hold that V ERIFY (vmaster ,m, τ) = 1.

2. (Security against existential forgery) Consider an adversary A that is given the master
verification key and access to two oracles. The first oracle, when given a circuit C, provides
A with a restricted signing key sC(corresponding to the above verification key). The second
oracle, when given a circuit C ′ and a message m, provides A with a signature on m using
sC′. Suppose that the restricted keys that A received from its second oracle are sC1

, ..., sCk
,

and the signed messages that A received from its second oracle are m1, ...,mj . LetM be the
set of messages that S has acquired signatures for, either explicitly(from the second oracle)
or implicitly (from the first oracle). That is, M = L(C1) ∪ ... ∪ L(Ck) ∪ {m1, ...,mj}.
It will be required that it is infeasible for A to output a signed message (m, τ), such that
V ERIFY (vmaster,m, τ) = 1 and m /∈M.

The formal requirement would be as follows: for any polynomial non-uniform oracle algo-
rithm A we perform the following experiment:

(a) generate the keys (smaster, vmaster)← KEY GEN(1n).

(b) Run A with oracle to the delegation algorithm w.r.t. the master signature keys smaster.
That is run ADELEGATE(smaster,·).

Let (m, τ) be the output of A, we say that A is successful if V ERIFY (vmaster ,m, τ) = 1
and m /∈ M. We require that any polynomial non-uniform oracle algorithm A has only
negligible probability of succeeding in this experiment.

3. (Indistinguishable Signatures) If m ∈ {0, 1}∗ is a message and C1, C2 are two circuits of
the same size such that m ∈ L(C1) ∩ L(C2) then we require that it would be infeasible to
distinguish between a signature on m that was made using sC1

and a signature on m that
was made using sC2

. The actual attack we are considering is even stronger: after having
an access to the same oracle as in the previous item (the oracle that on input a circuit C
outputs a restricted signing key sC), the adversary A will output two circuits C1, C2 and
a message m such that C1(m) = C2(m) = 1 and |C1| = |C2|. We then choose at random
one of the two circuits Cb, create a restricted signing key sCb

and use it to on the message
m. We require that the probability that A manages to guess the which circuit was used is
at most 1

2 . The formal requirement follows.

For any polynomial non-uniform oracle algorithm A we perform the following
experiment:

(a) Generate the keys: (smaster, vmaster)← KEY GEN(1n)

(b) Run A with oracle to the delegating algorithm w.r.t. smaster(i.e. run A with
oracle to DELEGATE(smaster,·)

(c) At this stage A outputs is (m,C1, C2) where C1(m) = C2(m) = 1 and |C1| =
|C2|

(d) Choose b←R {1, 2}

(e) Generate a restricted signing key sCb
: Let sCb

← DELEGATE(smaster , Cb)

4

(f) Provide A with SIGN(sCb
,m)

(g) Let b′ ∈ {0, 1} be the final output of A

A is successful in this experiment if b = b′. We requirement that A is successful with only
negligible advantage over half. That is we require that the probability that after performing
this experiment b′ is equal to b is at most 1

2 + negl(n).

Remark 1 For boolean circuits and standard digital signatures, the reader may make reference
to [1].

2.2 Witness indistinguishable and witness hiding protocols

The concepts of witness indistinguishable and witness hiding were introduced by Feige and
Shamir and constructed by them under the existence of one way functions[2]. Both notions
seem weaker than zero-knowledge, yet they suffice for some specific applications.

We first introduce the following definitions, then introduce the definitions of WI and WH.

Definition 2 Let R be a relation {(x,w)} testable in polynomial time, where |x| = |w|. For any
x, its witness set w(x) is the set of w such that (x,w) ∈ R.

Definition 3 An interactive proof of knowledge system for relation R is a pair of algorithms
(P, V) satisfying:

1. Completeness: ∀(x,w) ∈ R, Prob(VP (x,w)(x) accepts) > 1− µ(n)

2. Soundness: ∃M∀P ′∀x∀w′ Prob(VP ′(x,w′)(x) accepts) < Prob(M(x,w′;P ′) ∈ w(x)) + µ(n)

The probability is taken over the coin tosses of V , P ′, and M . The knowledge extractor M runs
in expected polynomial time, and uses P ′ as a blackbox.

Remark 2 If w(x) is empty, this definition implies that the probability that V accepts is negli-
gible.

Definition 4 Proof system (P, V) is zero knowledge(ZK) over R if there exists a simulator M
which runs in expected polynomial time, such that for any probabilistic polynomial time V ′, for
any (x,w) ∈ R, and any auxiliary input y to V ′, the two ensembles V ′

P (x,w)(x, y) and M(x, y;V ′)

are polynomially indistinguishable. M is allowed to use V ′ as a subroutine.

2.2.1 Witness indistinguishable proofs

Now, we introduce witness indistinguishability defined in [2]. Informally, a protocol is witness
indistinguishable if the verifier cannot tell which witness the prover is using(even if the verifier
knows all witnesses to the statement being proved).

Definition 5 Proof system (P, V) is witness indistinguishable (WI) over R if for any V ′, any
large enough input x, any w1, w2 ∈ w(x), and for any auxiliary input y for V ′, the ensembles,
V ′

P (x,w1)
(x, y) and V ′

P (x,w2)
(x, y), generated as V ’s view of the protocol, are indistinguishable.

Unlike definition for Zero-knowledge, the definition for WI involves no simulator M .
The following propositions hold for WI.

Proposition 1 WI is preserved under polynomial composition of protocols, however, ZK is not
done.

Remark 3 If (P, V) is any ZK protocol, then the protocol is WI.

Proposition 2 Under the assumption that one-way functions exist, any NP language has a
constant round WI proof system.

5

2.2.2 Witness hiding proofs

We then introduce witness hiding protocol defined in [2]. The concept of Witness Hiding(WH-to
be defined shortly) is possible alternative to zero-knowledge, it is a weaker requirement than zero-
knowledge, but in many cases, it still satisfies the security demands of cryptographic protocols.
Informally, a protocol (P, V) is WH if participating in the protocol does not help V to compute
any new witnesses to the input which he did not know at the beginning of the protocol. This is a
natural security requirement of cryptographic protocols. In order to prove the WH property, one
must show that if V ′ can compute a witness to the input after participating in the interactive
proof, then he had this capability in him even before the protocol began. The definition of WH
involves a probability distribute over the inputs.

Definition 6 G is a generator for relation R if on input 1n it produces instances (x,w) ∈ R
of length. G is an invulnerable generator if any polynomial time nonuniform cracking algorithm
C, Prob((x,C(x)) ∈ R) < ν(n), where x = G(1n). The probability is taken over the coin tosses
of G and C.

Definition 7 Let (P, V) be a proof of knowledge system for relation R, and let G be a generator
for this relation. (P, V) is WH on (R,G) if there exists a witness extractor M which runs in
expected polynomial time, such that for any nonuniform polynomial time V ′

Prob(V ′
P (x,w)(x) ∈ w(x)) < Prob(M(x;V ′, G) ∈ w(x)) + ν(n)

where x = G(1n). The probability is taken over the distribution of the inputs and witness, as
well as the random tosses of P and M . The witness extractor is allowed to use V ′ and G as
blackboxes.

Proposition 3 Let G be a generator for relation R. Then under the assumption that one way
functions exist, there exists a witness hiding proofs.

There are two main differences between WH and zero-knowledge: 1) The distribution on the
inputs enters the definition (through G). There might be infinitely many inputs on which P
willingly discloses his witness, but the protocol may still be WH if the probability of G picking
an inputs is negligible. This distribution on the inputs implies that V ′ must have the same
auxiliary input for any common input of size n, unlike the case of ZK protocols, where V ′s
auxiliary input may depend upon x. 2) The definition only guarantees that ”whole” witness are
not disclosed. Partial information may leak. In particular, the communicatoin tape generated by
V ′

P (x,w)(x) may not be simulatable in random polynomial time, and thus may serve as evidence
that the protocol took place. In some cases this is an advantage. For example: Digital signatures
cannot be zero-knowledge(otherwise they are forgeable) and thus zero-knowledge is an adequate
framework for defining their security. On the other hand, digital signatures can be witness
hiding, hiding the auxiliary information which allows the true signer to sign messages.

2.2.3 Constructions of witness indistinguishable and witness hiding proofs

Witness indistinguishable proof systems are not necessary witness hiding. For example, any
language with unique witness has a proof system that yields the unique witness(and so may
fail to be witness-hiding), yet this proof system is trivially witness independent. On the other
hand, for some relations, witness indistinguishability implies witness hiding, provided that the
prover is probabilistic polynomial-time.

6

Proposition 4 Let G be a generator for a proper claw free function f , which generates pairs
(x,w) where x = f(w), with uniform distribution over the arguments w. Let (P, V) be a proof
of knowledge system for proving knowledge of a pre-image of x. Then if (P, V) is WI over over
f , then it is WH over (f,G).

Claw free functions are rare. Many candidates for intractable functions do not even have
two premages. Feige and Shamir had showed a transformation which transforms any relation R
to a new relation R2 for which each argument has two independent witness.

Given relation R = {(x,w)}, define R2, where ((x1, x2), w) ∈ R2 iff (x1, w) ∈ R or (x2, w) ∈
R. Given a generator G for R, obtain a generator G2 for R2, by applying G twice independently,
and discarding at random one of the two witness.

Proposition 5 Let G be a (or an invulnerable) generator for relation. Let (P, V) be a proof of
knowledge system for R2(P proves knowledge of a witness of one of two instances in R). Then
if (P, V) is WI over R2, then it is WH over (R2, G2).

In order to construct WI proofs of knowledge which are also WH, we composed two random
instances of the NP language. This gives a new NP language, and thus has zero-knowledge
protocols. These protocols are also witness indistinguishable(). WI is preserved even if the basic
steps are composed in parallel(). By (), these parallel protocols are also witness hiding on G2.

Proposition 6 Let G be a generator for relation R. Then under the assumption that one
way functions exist, R2 has a constant round proof of knowledge which is witness hiding over
(R2, G2).

2.2.4 Non-interactive witness indistinguishable and witness hiding proofs

Obviously, any NIZK proofs is non-interactive witness indistinguishable and witness hiding.

Definition 8 Noninteractive proof system (P, V) is witness indistinguishable over R if for any
large enough input x, any w1, w2 ∈ w(x), and for a randomly chosen public string σ, the ensem-
bles P (x,w1, σ) and P (x,w2, σ), generated as P ′s proof indistinguishable. The probability space
is that of the random choices of σ together with P ′s random coin tosses.

Proposition 7 Let (P, V) be a noninteractive proof system which is witness indistinguishable
over R. Then the system remains witness indistinguishable even if polynomially many proofs
are given using the same public random string σ.

Proposition 8 Let G be a generator for relation R. Let (P, V) be a noninteractive proof system
for R2 (P proves knowledge of a witness of one of two instances in R). Then if (P, V) is WI
over R2, then it is WH over (R2, G2).

As a result, there exists noninteractive witness indistinguishable and witness hiding proofs.

3 Constructing delegateable signature using WI and WH proofs

In this section, we will construct two delegateable signature schemes. A standard signature
scheme, a Witness indistinguishable protocol, and a witness hiding protocol are used as main
tools in constructing these schemes.

Before constructing delegateable signature, we recall the main idea behind the construction,
which was described by Barak in [1].

7

3.1 The main idea

Consider the following attempt at constructing a delegateable signature signature using a stan-
dard (non-delegateable) signature scheme (KEY GEN ′, SIGN ′, V ERIFY ′):

1. The master signing and verifying keys (smaster, vmaster) would be the signing and verifying
keys (s, v) of the standard signature scheme (KEY GEN ′, SIGN ′, V ERIFY ′).

2. To delegate the ability to sign on message in L(C), the holder of the master signing
key will sign on the circuit C. That is, the restricted signing key sC will be the couple
< C,SIGN ′(s, C) >.

3. The signing algorithm, when given a restricted key sC =< C, τ > and a message m such
that C(m) = 1, would simple output sC .

4. The verifying algorithm, when given a message m and an alleged signature < C, τ > on
m, would check that C(m) = 1 and V ERIFY ′(v, C, τ) = 1.

Barak remarked that this scheme satisfy property 2(security against existential forgery) of
Definition 1, however, it obviously does not satisfy property 3(indistingushable signatures) of
that. This is because a signature using a restricted key sC contains the description of the circuit
C itself, and so clearly if |C| = |C ′|,m ∈ L(C) ∩ L(C ′) but C is not equal to C ′ then one can
distinguish between a signature on m using sC and a signature on m using sC′ . In [?], Barak
solved this problem by the following way: when signing on a message m, the signing algorithm,
instead of outputting < C, τ > as the signature, proves in NIZKPK that it knows a couple
< C, τ > such that C(m) = 1 and V ERIFY ′(v, C, τ).

In WI and WH proofs, it is well known that the verifier can not distinguish that which of
two witness is beng used by the prover, hence, we can use WI and WH proofs(non-interactive)
to replace the NIZKPK proofs in Barak’s delegateable signatures.

We must stress that all NP relation R in next section has at least two witnesses, that is, R
is non-trivial.

3.2 Delegatelable signature using WI proofs

Recall that a delegateable signature scheme is composed of four algorithms (KEY GEN , DELEGATE,
SIGN , V ERIFY). In our construction we use a standard(non-delegatelable) signature scheme
(KEY GEN ′, SIGN ′, V ERIFY ′) and a WI proofs for some non-trivial NP relation R.

Construction 1 A delegateable signature scheme using WI proofs.

1. To generate the master signing and verification keys, we’ll use the standard signature
scheme’s key generator to obtain a pair of signing and verification keys (s, v). We’ll also
use the generator to generator a reference string Σ. The master signing key smaster will
be the signing key s. The master verification key vmaster will be the concatenation of the
verification key v and the reference string Σ. Actually, for technical reasons, we add the
master verification key to the master signing key. Formally, this means that the algorithm
KEY GEN is defined as follows:

(smaster, vmaster) = (s ◦ v ◦ Σ, v ◦ Σ)← KEY GEN(1n).

2. To delegate the ability to sign on a set L(C) where C is some circuit, the holder of the
master signing key signs on the circuit C. That is the restricted signing key sC is the
concatenation of C and a signature (using s) on C. We’ll also add to sC the public

8

information vmaster = v ◦ Σ. Formally, the algorithm DELEGATE is defined in the
following way:

DELEGATE(smaster , C) = DELEGATE(s ◦ v ◦ Σ, C)→ C ◦ τ ◦ v ◦ Σ = sC ,

where τ ← SIGN ′(s, C).

3. If a party has some restricted signing keys sC , and wishes to sign on a message m such
that C(m) = 1, then this party proves using a witness indistinguishable proof that it
knows a circuit C such that C(m) = 1 and a signature on C. That is, the signature on a
message s is a witness indistinguishable proof for relation R ′ :

(< m, v >,< C, τ >) ∈ R′ iff C(m) = 1 ∧ V ERIFY ′(v, C, τ) = 1.

Like to Barak’s delegateable signature, we modify R′ as R in order to make the witness’
size bounded by some fixed polynomial in the size of the theorem, one needs to add the size
of the circuit C to the theorem. We define the modified relation R as following:

(< m, v, 1l >,< C, τ >) ∈ R iff C(m) = 1 ∧ V ERIFY ′(v, C, τ) = 1 ∧ |C| = l.

We use a NIWI for this relation R. Given that, the formal definition of the algorithm
SIGN is the following:

SIGN(C ◦ τ ◦ Σ,m)← PROV ENIWI(Σ, < m, v, 1|C| >,< C, τ >) ◦ 1|C|

4. To verify the validity of a signature α = π ◦ 1l on a message m with respect to the master
verification key vmaster = v ◦ Σ, one simply verifies that π is a valid WI proofs, that is,
the verifier believes that the signer holds a circuit C(a witness) satisfying C(m) = 1 and
V ERFY ′(v, C, τ) = 1. We describe this verification process by following way:

V ERIFY (v ◦ Σ,m, π ◦ 1l) = 1 iff V ERPROOF (Σ, < m, v, 1l >, π) = 1

Theorem 1 The tuple (KEY GEN,DELEGATE,SIGN, V ERIFY) of Construction 1 is a
delegateable signature scheme.

Proof: Construction 1 is a delegateable signature scheme if it satisfies the three properties
required in Definition 1.
(i) Proof of the validity: From the definition of the relation R and character of the NIWI proof,
the validity of construction 1 holds.
(ii) Proof of security against existential forgery:1 Let A be an oracle algorithm. Suppose we
run with A the experiment described in Property 2 of Definition 1, which is hereafter called
Experiment 1. Suppose that the output of A is (m,α). To prove security against existential
forgery we meed to prove the following claim:

Claim 1.1: Let sC1
, ..., sCk

be the restricted signature keys that A received from its
oracle. Recall that A is successful if V ERIFY (vmaster,m, α) = 1 and m /∈M where
M = L(C1) ∪ ... ∪ L(Ck). The probability that A is successful is negligible.
Proof: Suppose, toward the contradiction, that A is successful, with non-negligible
probability ε. We’ll build an adversary A′ that manages to break the standard
signature scheme (KEY GEN ′, SIGN ′, V ERIFY ′) with probability at least ε

2 . This
will contradict the security of the standard signature scheme(and so we’ll be done).

1we copy the proof in [1], because it can completely prove the security against existential forgery of our
delegateable signature.

9

Recall that to break the standard signature scheme, algorithm A′ gets as input the
verification key v and oracle access to the signing algorithm SIGN(s, ·). The goal
of A′ would be the output a pair of a message and a signature (m, τ) such that
V ERIFY ′(m, τ) = 1 but m was not queried by A′ from its oracle. We now describe
the algorithm A′:
Algorithm A’:

1. Input: Verification key v(where (s, v)← KEY GEN ′(1n))

2. Oracle access: oracle S(·) where S(m) = SIGN ′(s,m)

A’s operation:

1. Let (Σ, auxS , auxE)← GEN(1n).

2. We let vmaster = v ◦ Σ, smaster = s ◦ v ◦ Σ. (Note that A′ only knows vmaster

and does not know all of smaster.

3. Algorithm A′ run algorithm A with input vmaster. Note that the distribution
of vmaster is identical to the distribution of A′s input in Experiment 1.

4. Suppose that the ith query A makes to its oracle is the circuit Ci. To answer
it, A′ first uses the oracle S to produce τi ← S(Ci) = SIGN(s, Ci). Algorithm
A′ then replies to A with SCi

= Ci ◦ τi ◦ v ◦ Σ. Note that this is again exactly
the same answer that A would get in the Experiment 1, when is has an oracle
to DELEGATE(smaster, ·).

5. Let (m,α) be the final output of algorithm A, where α = π ◦ 1l. (Note that if
A is successful then we know that V ERIFY (vmaster ,m, α) = 1 which means
that V ERPROOF (Σ, < m, v, 1l >, π) = 1.

6. Using the exacter EXT , algorithm A′ obtains < C, τ >← EXT (Σ, < m, v, 1l >
, π, auxE) and outputs (C, τ).

As both the input A gets and the answers it receives from its oracle are distributed
exactly the same as in Experiment 1 we know that with probability ε, algorithm A
will be successful. This means that A will output a pair (m,α) such that m /∈M and
V ERIFY (vmaster,m, α) = 1. Recall that if C1, ..., Ck are the queries that A made,
then M = L(C1) ∪ ... ∪ L(Ck). Since V ERPROOFNIWI(Σ, < m, v, 1l >, π) = 1, by
the proof of knowledge property of the NIWI, the output of the extractor < C, τ >
satisfies in the case (< m, v, 1l >,< C, τ >) ∈ R with probability at least 1 − ε

2 . In
the case, C(m) = 1 and V ERIFY ′(, v, C, τ) = 1. We claim that it cannot be the
case that C = Ci for some i. This is because if this was the case then we would
have that Ci(m) = 1 and so m ∈ L(Ci) ⊆ M. Therefore we see that with overall
probability ε

2 we have actually succeeded in breaking the standard signature scheme
(GEN ′, SIGN ′, V ERIFY ′).

Note that in order to prove this claim we did not need to use indistinguishability
property of the NIWI, but rather only its proof of knowledge property.

(iii) Proof of indistinguishable signature: Let A be an oracle algorithm. Recall the experiment
described in property 3(Indistinguishable signature) of Definition 1(We copy it here for the
reader’s convenience):
Experiment 2:

1. Generate the keys: (smaster, vmaster)← KEY GEN(1n)

10

2. Run A with oracle to the delegating algorithm w.r.t. smaster(i.e. run A with oracle to
DELEGATE(smaster, ·)).

3. At this stage A outputs is (m,C1, C2) where |C1| = |C2| and C1(m) = C2(m) = 1.

4. Choose b←R {1, 2}.

5. Generate s restricted signing key sCb
: Let sCb

← DELEGATE(smaster , Cb).

6. Provide A with SIGN(sCb
,m).

7. Let b′ ∈ {0, 1} be the final output of A.

To prove this property we need to prove the following claim:

Claim 2 The probability that b′ = b is at most 1
2 + negl(n).

Proof: Assume that the probability that b′ = b is larger than 1
2 + negl(n), obviously, It is a

contradiction against indistinguishability of NIWI.

Remark 4 The proof of security against existential forgery is equal to the proof of security
against existential forgery in delegateable signature constructed by Barak using NIZKPK. This
is because only the extractor of knowledge is needed, however, the zero-knowledge property of
NIZKPK and indistinguishability property of NIWI is not needed.

3.3 Delegateable signature using WH proofs

Let a delegateable signature scheme be composed of four algorithms (KEY GEN , DELEGATE,
SIGN , V ERIFY), and (KEY GEN ′, SIGN ′, V ERIFY ′) be a standard(non-delegatelable) sig-
nature scheme.

Notation For any strings x, y ∈ {0, 1}∗ we denote by x ◦ y the concatenation of x and y.

Construction 2 A delegateable signature scheme using WH proofs.

1. To generate the master signing and verification keys, we’ll use the standard signature
scheme’s key generator to obtain a pair of signing and verification keys (s, v). We’ll also
use the generator to generator a reference string Σ. The master signing key smaster will
be the signing key s. The master verification key vmaster will be the concatenation of the
verification key v and the reference string Σ. Actually, for technical reasons, we add the
master verification key to the master signing key. Formally, this means that the algorithm
KEY GEN is defined as follows:

(smaster, vmaster) = (s ◦ v ◦ Σ, v ◦ Σ)← KEY GEN(1n).

2. To delegate the ability to sign on a set L(C) where C is some circuit, the holder of the
master signing key signs on the circuit C. That is the restricted signing key sC is the
concatenation of C and a signature (using s) on C. We’ll also add to sC the public
information vmaster = v ◦ Σ. Formally, the algorithm DELEGATE is defined in the
following way:

DELEGATE(smaster , C) = DELEGATE(s ◦ v ◦ Σ, C)→ C ◦ τ ◦ v ◦ Σ = sC ,

where τ ← SIGN ′(s, C).

11

3. If a party has some restricted signing keys sC , and wishes to sign on a message m such
that C(m) = 1, then this party proves using a witness hiding proof that it knows a
circuit C such that C(m) = 1 and a signature on C.

In order to use NIWH proofs, we must construct a new NP relation R2. We
random select two circuit C1 and C2 which both of them satisfy Ci(m) = 1 and
V ERIFY ′(v, Ci, τi) = 1, then construct NP relation R2 :

(< m, v, 1l >,< C1, C2, τ >) ∈ R2) iff

∃i s.t. (Ci(m) = 1 ∧ V ERIFY ′(v, Ci, τi) = 1 ∧ |Ci| = l).

Where i = 1, 2.

We use a NIWH for this relation R2. Given that, the formal definition of the algorithm
SIGN is the following:

SIGN(C1 ◦ C2 ◦ τ ◦ Σ,m)← PROV ENIWH(Σ, < m, v, 1l >,< C1, C2, τ >) ◦ 1l

4. To verify the validity of a signature α = π ◦ 1l on a message m with respect to the master
verification key vmaster = v ◦ Σ, one simply verifies that π is a valid WH proofs, that is,
the verifier believes that the signer holds a circuit C(a witness) satisfying C(m) = 1 and
V ERFY ′(v, C, τ) = 1. We describe this verification process by following way:

V ERIFY (v ◦ Σ,m, π ◦ 1l) = 1 iff V ERPROOF (Σ, < m, v, 1l >, π) = 1

Remark 5 It is feasible in step 3 of Construction 2 if only one of C1 and C2 satisfies C(m) =
1∧V ERIFY ′(v, C, τ) = 1. This is the reason that the prover can also convince the verifier that
(< m, v, 1l >,< C1, C2, τ >) ∈ R2 if he only knows a witness C1 or C2. In fact, NP relation
(R′)2 can be denoted by

(< m, v, 1l >,< C1, C2, τ >) ∈ R2) iff

(C1(m) = 1∧V ERIFY ′(v, C1, τ1) = 1∧|C1| = l) or (C2(m) = 1∧V ERIFY ′(v, C2, τ1) = 1∧|C2| = l).

Theorem 3 The tuple (KEY GEN,DELEGATE,SIGN, V ERIFY) of Construction 2 is a
delegateable signature scheme.

Proof: The Proof of the validity and security against existential forgery equal to those of
Construction 1. This is because the witness hiding is not necessary in these proofs.
Proof of indistinguishable signature: We still use Experiment 2.
Experiment 2:

1. Generate the keys: (smaster, vmaster)← KEY GEN(1n)

2. Run A with oracle to the delegating algorithm w.r.t. smaster(i.e. run A with oracle to
DELEGATE(smaster, ·)).

3. At this stage A outputs is (m,C1, C2) where |C1| = |C2| and C1(m) = C2(m) = 1.

4. Choose b←R {1, 2}.

5. Generate s restricted signing key sCb
: Let sCb

← DELEGATE(smaster , Cb).

6. Provide A with SIGN(sCb
,m).

7. Let b′ ∈ {0, 1} be the final output of A.

12

To prove this property we need to prove the following claim:

Claim 4 The probability that b′ = b is at most 1
2 + negl(n).

Proof: It is well known that a NIWH proof, which is constructed in Proposition 5 or 8, is a
NIWI proof. Now, assume that the probability that b′ = b is larger than 1

2 +negl(n), obviously,
It is a contradiction against indistinguishability of NIWI.

4 Extensions and open problems

In [1], Barak extended his construction in several ways, such as, (i) relaxing the dependence
of the signature’s size and the restricted key’s size on the size circuit; (ii) allowing delegation
of sets in NP/Poly; (iii) discouraging sharing of the restricted key; (iv) making signatures
indistinguishable even for the delegating user; (v) adding more levels of delegation. In fact, our
constructions can also be extended in similar ways. Furthermore, our delegateable signature
schemes can also construct ”anonymous unlinkable certificates”.

We construct delegateable signatures using WI and WH protocols, however, some problems
about WI and WH are fuzzy, and are presented as open problem by us.

1. As usual, a WH proof is not WI, then, in what conditions it is WI?

2. How is a WI proof constructed directly no using ZK proofs? or how is a WH proof
constructed no using ZK proofs or WI proofs?

3. if there exists weaker assumption(such as one way function) for constructing NIWI and
NIWH proofs than trapdoor permutation.

In this paper, a WH protocol is a WI protocol because the WH protocol in Proposition 5
and 8 are constructed by WI protocol, however, the first open problem tell us that the common
WH protocol is probably not WI protocol. So, our delegateable signature must use the WH
protocol which is constructed in Proposition 5 or 8.

If there exists weaker assumption(such as one way function) for constructing NIWI and
NIWH proofs than trapdoor permutation, we will obtain the delegateable signature basing on
weaker assumption than trapdoor permutation.

5 Conclusion

In this paper, we present the way constructing delegateable signature schemes using NIWI and
NIWH proofs. However, up to now, the NIWI and NIWH protocols can not be constructed
based on weaker assumption than trapdoor permutation, so our signature scheme are also based
on trapdoor permutation.

References

[1] B. Barak, Delegateable Signatures, 2001. http://www.math.ias.edu/ boaz/Papers/delgsigs.ps

[2] U. Feige, A. Shamir, Witness Indistinguishable and Witness Hiding Protocols, In 22nd ACM
Symposium on the Theory of Computing, 416-426, 1990

[3] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal of Computing, vol. 17, no. 2, April 1988, pp. 281–308

13

