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Abstract

The present survey deals with the recent research in side channel analysis and related attacks
on implementations of cryptographic primitives. The focus is on software contermeasures for
primitives built around algebraic groups. Many countermeasures are described, together with their
extent of applicability, and their weaknesses. Some suggestions are made, conclusion are drawn,
some directions for future research are given. An extensive bibliography on recent developments
concludes the survey.
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1 Introduction

Any cryptographic primitive can be viewed as an abstract mathematical object: the primitive is in fact
a function, or a set of functions parameterized by a key, for example from the set of plaintexts to the set
of ciphertexts. On the other hand, the primitive will have to be implemented as a software or firmware
program that will run on a given hardware, in a given environment, and will therefore present specific
characteristics: just like the amount and type of noise produced by a car during its function can reveal
something about speed and acceleration of the vehicle, there are types of information leaked from an
implementation of the cryptographic primitive that can be used to elicit the secret information used
by the primitive.

We can thus consider primitives both as mathematical objects and as concrete devices executing
a program. These two points of view are very different, however both lead to approaches which can
be useful to break a cryptosystem. In fact they can also be used together to create more powerful
attacks. The first point of view is that of “classical” cryptanalysis; the second one is that of side-
channel cryptanalysis. Even though side-channel cryptanalysis is specific to the implementation of
the primitive to be broken, it is a very serious approach - in fact it has been used to break cryptosystems
based on primitives which are considered mathematically secure.

The most popular target of side channel cryptanalysis, if not the very first, are smart cards. For the
sake of simplicity, the discussion below will often be put in that context, although most of it applies
to other cryptographic devices as well. The various side channels and related attacks known in the
literature are briefly introduced. We then discuss countermeasures, and shall try to assess to which
extent they are effective.

We must stress the fact that no perfect countermeasures exist. It would be very dangerous to be-
lieve that a given solution represents a perfect protection against all side channel attacks. Appropriate
countermeasures can make the task of the attacker harder, to the point that, hopefully, he would ex-
aust the resources he devoted to his goal. Therefore, when designing a device, we must define the
adversary the device is supposed to resist - and only then an appropriate set of countermeasures can
be chosen. In cryptography no amount of paranoia is too much: If our budget permits it, we can (read:
should) use more countermeasures than what we deem strictly necessary, but never, ever, use less.

This field of research is a constantly moving target, hence embedded device designers should
always keep themselves up to date.

The main types of attacks are: Invasive attacks, i.e. Probing and Fault induction attacks, and Non-
Invasive attacks, i.e. Timing attacks and Leaked-Information attacks. The latter can use an analysis of
power consumption or electromagnetic emissions, which are the most known side channels, but other
side channels may be possible. All these attacks can be combined.

Here is a brief history of side channel and fault induction attacks.
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e 1996: Timing Attacks [44].

e 1996: Fault analysis on RSA [79].

e 1997: Differential Fault Analysis (DFA) [11].

e 1998: Simple Power Analysis (SPA) [45, 46].

e 1998: Differential Power Analysis (DPA) (ibid.).

e 1999: Multiple Bit DPA [62, 63, 60] (but, see also [46]).
e 2000: Higher Order DPA [46, 59, 61].

e 2000: Adaptive Fault Analysis [96]. (See also [97].)

e 2002: “Discovery” of EM channel [2].

e 2003: Goubin-Type Analysis [27, 7].

The order in which the attacks and the countermeasures are presented in the sequel does not follow
the chronological order. We have opted for an ordering in the exposition which, in our opinion, better
shows the ideas underlying the attacks and introduces easier concepts first.

Our (partial) conclusions are: almost all attacks that can be mounted against an elliptic curve
cryptosystem can be mounted also against hyperelliptic curve cryptosystems — but the same holds
also for a large number of the countermeasures, in fact rendering implementations of hyperelliptic
curve cryptosystems as secure as implementation of elliptic curve cryptosystems.

We also stress the fact that there is a need for a sound theory of side channel cryptanalysis,
including physical modelling of the devices, and a correct mathematical modelling of the attacks and
of the proposed countermeasures. A correct study of combinations of countermeasures is still missing.

We recall that the European project G3Card <http:/www.g3card.org/> (Contract IST-1999-
13515) is dedicated to the design of a tamper-proof smart card resistant to side-channel attacks, and
that some side channel resistance results presented here have been supported also by the AREHCC
project <http: /www.arehcc.com/> (Contract IST-2001-31613).

The author acknowledges direct and indirect contributions by Marc Joye, Francois Koeune, Tanja
Lange, and Prof. Dr. Jean-Jacques Quisquater.

2 Power and EM analysis

Side channel analysis was first introduced in the form of timing attacks in [44] and then simple and
differential power analysis (SPA and DPA) [45, 46]. These attacks measure some leaked information
of a cryptographic device (e.g. timing, power consumption,...) while it processes its inputs. From the
monitored data, the attacker tries to deduce the inner-workings of the algorithm and thereby to retrieve
some secret information.

A reasonable model for explaining the leakage is the following: Logic gates are made from transis-
tors, and therefore draw current according to the number of switches active at any given moment. The
amount of power drawn depends therefore in an indirect way on the operation being performed, the



4 ROBERTO AVANZI — SIDE CHANNEL ANALYSIS

operands being processed, data in the registers, other instructions in the pipeline... Characteristics of
the processed operands that, in practice, have proven themselves correlated with the leaked traces are:
the Hamming weight or individual bits, or bit sequences, of the processed operands (the paramount
example being coordinates of points or divisors). Some attacks have exploited characteristics of the
memory addresses used by the CPU of the device to fetch the information from memory.

One can put a resistor in series with the supply or the ground pin of the device and thus measure
information which is correlated in real time to the internal state of the device. The measurements can
be done at an astounding level of precision and resolution, even with relatively cheap hardware.

A 2002 IBM paper [2] caused a stir. It showed that one could do the same with the spectrum of
electromagnetic (EM) emissions - and immediately after that it was revealed that the U.S. Gov. knew
this much before (as a part of the research done in the classified TEMPEST project). But the history
of publicly known results goes far before that. In fact, two symposia have been held in 1988 [81] and
1991 [82] in Rome about electromagnetic security for information protection. In 1996 some authors
[4] expressed worries about the possibility of exploiting such emissions for breaking embedded de-
vices, Quisquater and Samylde introduced simple and differential EM analysis at the Rump session of
EUROCRYPT 2000 [77], and in 2001 Gandolfi et al. [26] presented some concrete results, showing
how to disclose secret information used by cryptographic algorithms running on eight-bit embedded
CMOS microcontrollers. EM analysis is very flexible: it can be detected at a long distance, however,
the results are better if the emissions are recorded in close proximity to the device, possibly depack-
aged. EM emissions are localised, in other words an observer can not only measure the intensity of
the activity in the smart card as a function of time, but also as a function of the space, at least in close
proximity to the device.

In [80] we read “Each event’s timing and power consumption depends on physical and environ-
mental factors such as the electrical properties of the chip substrate, layout, temperature, voltage etc.,
as well as coupling effects between events of close proximity. As a first approximation, we ignore
coupling effects and create a linear model, i.e., we assume that the power consumption function of
the chip is simply the sum of the power consumption functions of all the events that take place”. But,
the EM emanations used in [2] seem to be indeed caused by the variations in electric current in the
circuits as well as by coupling effects between components which are in close proximity inside the
device. Hence, linear models need to be replaced. This shows the difficulty inherent to finding a sound
physical model for the leakage.

We shall return later, in see Section 3, to attacks that exploit the total time of a cryptographic
operation to infer information about the secret data being processed. We are concerned here with the
attacks that are based on the analysis of power consumption or electromagnetic emission. If a single
input is used, the process is referred to as a Simple Side Channel Analysis (SSCA), and if several
different inputs are used together with statistical tools, it is called Differential Side Channel Analysis
(DSCA).

Observing a single trace of leaked emissions one can reconstruct the sequence of elementary
instructions performed by the processor, and thus infer the sequence of group operations. In an elliptic
or hyperelliptic curve implementation with distinguishable group addition and doubling, and with a
simple double-and-add scalar multiplication scheme, it is possible to reconstruct the secret scalar just
from the observed sequence of distinct group operations. This is how SSCA works.

Suppose now that the group operations are indistinguishable one from the other by means of
SSCA (this is always possible by inserting dummy operations). DSCA on a double-and-add scalar
multiplication algorithm computing n - D, with n fixed, secret, works as follows.
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Let n = (ny,ny—1,...,n0), and suppose 7., ny—1,. . . ,nj4+1 known. The attacker wants to find
n;. He proceeds as follows:

1. The attacker first makes a guess: n; = 0 or 1.
2. He chooses several inputs D1, ..., D; and computes E; = (>_7_ i nqa2%7) D;.
3. He picks a boolean selection function g to construct two index sets

S ={i: g(F;) =true} and S;={i: g(F;) =false} .

4. He puts C; = C;(7) := side-channel information obtained from the computation of n- D;. This
is a function of the time 7. In the case where the EM emission is used, this function is indeed
also a function of space, for example of a point on the surface of the card: C; = C;(7;x,y).

5. Let <CZ>2 cg denote the average of the functions C; for the ¢ € S. If the guess of n; was
incorrect then

<Ci>iest - <Ci>iesf ~0

i.e. the two sets are uncorrelated. On the other hand, if the guess of n; was correct

<Ci>iest N <Cl'>z‘esf

as a function of time (and possibly space) will present spikes, i.e. deviations from zero.

2.1 Some words on hardware countermeasures

Since we are not evaluating hardware countermeasures here, we just mention some of the issues
involved - which in practice further motivate the research on software countermeasures. The reader
can skip this Subsection and return here after reading the rest of the present Section.

One of the best approach consists in designing hardware with constant power consumption [88]
- this countermeasures is very expensive to implement. It provides protection also against attackers
which can tamper and modify the device before performing the power signal measurements.

Shamir [85] proposes a different solution to the problem: to decorrelate the external power sup-
plied to the card from the internal power consumption of the chip, by putting additional capacitors
and/or batteries on the power supply path. By this, the power consumption trace is filtered, or
smoothed out, and made essentially constant in time. This approach, far from perfect, in practice
decreases the size of the power bias, thereby increasing the number of traces required for a successful
DPA attack. For smart card applications it has been proposed also in [22] and in [78] for contactless
devices. The underlying ideas are quite old: they have been used for almost a century in the develop-
ment of power supplies for high-fidelity audio reproduction equipment. They are easy to implement,
and are quite cost effective: only a few cents per card - we do not need high quality paper-oil silver
foil capacitors as in for the so-called esoteric audiophile market! The drawback is that they are easily
removed by an attacker performing active probing and microsurgery on the device.

The same considerations apply also to EM emissions. The design of hardware with instrinsically
constant EM emissions is extremely expensive. EM shielding is effective, but only against passive
attackers.

One obvious software countermeasure against differential side channel attacks (Subsection 2.4) is
the usage of random process interrupts (RPIs). Instead of executing all the operations sequentially,
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the CPU interleaves the code’s execution with that of dummy instructions so that corresponding op-
eration cycles do not match because of time shifts. This has the effect of smearing the peaks across
the differential trace due to a desyncronisation effect, known in digital signal processing under the
name of incoherent averaging [56, pp. 327-330]. The time shifts can be considered as added noise.
RPIs do not render differential side channed analysis theoretically infeasible but increase the number
of samples considerably. This goes far beyond dummy operations (Subsubsection 2.3.1) which are a
software countermeasure, because it is implemented at the hardware level, and makes the operation
flow intentionally irregular - instead of regular. These two countermeasures can be used together. This
should be combined with suitable randomisation of the scalar if that is fixed. Microprocessors which
are capable of randomized multithreading can be effectively used to implement this type of software
countermeasures, because sometimes dummy traces will be added to effective ones, other times only
effective ones will be added, and the position of the activity in the processing unit varies in an unpre-
dictable way, making EM analysis more difficult. This is an example where special hardware can be
used to implement more powerful software countermeasures. See [19] for attacks on devices featuring
random process interrupts and noisy power consumption. Clocking devices using a randomized clock
signal produces a similar protection [47]. A processor implemented all these countermeasures (RPIs
on parallel pipelines and random time shiftings) is described in [57]. RPIs and randomized clocking
make adaptive fault analysis (See Subsection 4.2) very difficult if not, in practice, impossible.

Conventional countermeasures based on the addition of random noise in the power profile exploit
redundant hardware which, in turn, increases the power consumption. Benini et al. [9], building on
their expertise in designing low consumption hardware, devised a hardware technique called random-
ized power masking, which is based on a combination of power-management techniques and random-
ized clock gating. By this they introduce in the hardware a significant amount of non-deterministic
noise in the power profile, at no cost in the circuit average power consumption. Their approach in-
creases the area used by the device.

The best hardware countermeasures may require increased power consumption or increased sili-
con area, but smart cards must be built under very strict specifications, so that they are not allowed to
draw more current than a specified value, and they must fit in a predefined area. This is unfortunate,
since these specifications had been determined for early, simple, and very insecure, hardware...

2.2 Software countermeasures

Software countermeasures do not try to avoid leakage (for example by making the power consump-
tion constant). Instead, they attempt to make the information it conveys useless. Countermeasures
at the software level seem to be more desirable than hardware countermeasures, from a commercial
standpoint at least, since they can be implemented on existing architectures If effective, they also al-
low smart card developers to design and build new cheaper hardware - or to reduce investments on
hardware countermeasures to concentrate more on increasing raw performance. Hardware counter-
measures may be necessary anyway depending on the required security level.

As far as software countermeasures are concerned, electromagnetic attacks and power attacks are,
in many respects, very similar: the way the side channel leaks information differs, but the nature of the
leaked information is roughly the same. From this point of view, timing attacks bear some similarity
to differential power analysis.

The rest of thie section is devoted to the software countermeasures, and to more refined attacks
together with the corresponding protections.
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2.3 Simple side channel analysis

To harden a cryptographic primitive against simple side channel analysis one can follow one of the
following three approaches: dummy arithmetic instructions, indistinguishable or unified addition and
doubling formulae, and the adoption of a scalar multiplication algorithm with fixed sequence of group
operations.

2.3.1 Dummy arithmetic instructions

Inserting dummy arithmetic instructions in the group operations [21] is the “universal” way of making
the operation flow homogeneous. This is most attractive when the two basic operations are already
quite similar (elliptic curves in affine coordinates are a paramount example, but also hyperelliptic
curves of genus 2 in most cases). It is usually a quite expensive countermeasure in all other cases.

Recently Chevallier-Mames et al. [16] have introduced a new approach: They split each of addi-
tion and doubling in more elementary basic blocks, and then make those homogeneous. This method
has the advantage that no operation is unnecessarily made a lot longer by introducing several op-
erations. The potential drawback is that it requires a very careful implementation in order to avoid
“breaks” between basic blocks sequences of different lengths, which would still enable an attacker
to distinguish the different group operations. This approach seems very promising, in particular on
implementation of cryptographic primitives where doubling and addition have very different lengths
[76, 75]. Note that, in this case, the measurement of the total time of the cryptographic operation (Sec-
tion 3) can still allow the attacker to obtain the total Hamming weight of the scalar. The performance
penalty is rather small.

Dummy instructions alone however are not a sound countermeasure against all types of side chan-
nel analysis. In fact, fault attacks can be used (see Section 4) to reveal the dummy operations and thus
to distinguish the operations. A scalar randomization procedure, or the use of additional hardware
which reveals the induction of faults, are therefore required (see Subsubsection 2.4).

2.3.2 Indistinguishable or unified addition and doubling formulae

This approach has been pursued until now only for elliptic curves. It consists in developing formulae
for addition and doubling which are indistinguishable or unified [14, 15]: this may go as far as consid-
ering alternative, equivalent forms, of the elliptic curve, on which the addition and doubling formulae
are equal.

One of the strongest points of this type of countermeasure is that there are no dummy operations
involved, hence adaptive fault analysis techniques cannot be used (see Section 4).

The only drawback of some these approaches is that they are very specific to the type of group
selected. Also, if the curve must be defined by an equation which is different from the Weierstraf3 form,
it may be the case that not all curves which are defined in standards can profit from such techniques
[12, 37, 53].

2.3.3 Scalar multiplication with fixed sequence of group operations

To prevent SSCA one can of course use scalar multiplication algorithms that have a fixed sequence of
group operations, independent from the scalar [66, 69, 55, 70, 64, 34].

The usual trick for making the double-and-add algorithm homogeneous consists in performing a
dummy group addition when the multiplier bit is zero. Therefore, the scalar multiplications appears
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to an attacker observing the side channel information as an alternating sequence of doublings and
additions. This performance penalty is of course huge. The same idea can be applied to scalar multi-
plication using a NAF-representation [30] — see also [17, Page 105]. In the latter case the sequence of
operations looks as a repeating block of type “doubling, doubling, addition and doubling”. This coun-
termeasure is furthermore subject to the same type of fault analysis that can break dummy arithmetic
operations - hence it requires the same kind of additional precautions, such as scalar randomization of
the type described in §2.4.1.b.

The so-called Montgomery form of an elliptic curve [66, 69, 55] has unified operations for com-
puting, given two points P and () for which P — @ is known, both P + @) and 2P. Additionally, this
technique does not use one of the coordinates of the points, hence do not need to recompute it a every
step, making the computations very efficient. It has been adapted to curves in Weierstrall form [1, 24],
too. See also [40] and [14, 15]. It would be interesting to have a similar form for hyperelliptic curves.

2.4 Differential side channel analysis

A scalar multiplication algorithm which is protected against simple side-channel analysis may still
be vulnerable to differential analysis. From a practical point of view, however, very few public-
key group-based cryptosystems are susceptible to such attacks: In fact in most cases the base group
element is imposed by the system and the multiplier is an ephemeral parameter, varying at each
execution. In some cases, however, the multiplier is the secret key and is fixed, and the base element
is the input to the system. In such a scenario, DSCA becomes a threat.

DSCA is based on the knowledge of the internal representation of the operands, hence the coun-
termeasures will work by “scrambling” all the bits of the computation in a (hopefully) unpredictable
way. Usually, the inputs of the point multiplication algorithm, namely the base group element and the
multiplier will be randomized: see [39] for elliptic curves and [7] for hyperelliptic curves. We now
review the techniques and their advantages and disadvantages.

2.4.1 Scalar randomization

2.4.1.a Varying the representation

The insertion of random decisions during the execution of the point multiplication algorithm also
helps in preventing side-channel analysis. Usually these decisions amount to randomly choosing
among several different redundant weighted binary representations of the same integer [28, 74]. Such
methods must be used with care, and indeed their soundness has been questioned [93], sometimes
under the assumption that no SSCA-countermeasures are implemented [72, 73].

Liardet and Smart [53] describe three general-purpose randomised signed windows methods for
performing SCA-resistant scalar multiplication. Under the hypothesis that additions are distinguish-
able from doublings, Walter [90] shows that repeated use of the same secret key with the algorithm of
Liardet and Smart is insecure. Another randomized m-ary method is given in [33].

It seems that randomised redundant representations of integers are on the whole less safe than the
standard, minimal weight, m-ary recodings. In fact, several different redundant representations of the
same scalar are likely to give information on individual bits or bit sequences within the scalar.

Also the results of [89] apply to this context (for a security analysis, see [92]): even though the
exponentiation algorithm there is described for RSA-like systems, the adaptation to an arbitrary group
based cryptographic system is straightforward. The basic idea is to randomly choose between several
different representations on a mixed base number system, at the same time selecting small addition
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chains for the different parts of the computation which are composed from similar sub-blocks of
group operations. Ideally such a technique would provide both SSCA and DSCA resistance. However,
especially in presence of long keys, also this method alone can leak some information on the exponent
[91].

Ciet, Quisquater and Sica [18] show how to efficiently randomize the decomposition of the scalar
in the GLV scalar multiplication algorithm [25, 86]. This method applies also to hyperelliptic curves.

2.4.1.b Varying the scalar

For RSA, the standard method [44] is to add a random multiple of ¢(V), where N is the RSA
modulus, to the secret exponent before each exponentiation, so that the sequence of squares and
multiplies will be different for each run. Of course, this does not affect the final result. For group
based cryptography, the same idea amounts to replacing the secret scalar n with n + k¢ in nD for a
random integer k, where ¢ is the order of the group used in the system. In [70] it has been shown that
this randomization may leave a bias in the least significant bits of the scalar. Moller [64] combines
it (only in the ecc case) with an idea of Clavier and Joye, and suggests the computation of nD =
(n + ki + kol)D — k1D, where k; and ko are two suitably sized random numbers. In the context
of group-based cryptography this method is called Coron’s first countermeasure [21]. It induces a
performance penalty depending linearly on the bit lengths random quantities k, k1, ko.

These countermeasures can be combined with any of those described in §2.4.1.a to provide
stronger defence.

2.4.2 Randomization of the base group element

There are essentially four types of randomization (blinding) of the base group element. The first
one exploits the knowledge of the fixed scalar (before randomization), whereas the second and third
family exploit redundancy of the representation of the group elements or of field elements. The fourth
approach randomizes the whole computation, curve and points or divisors.

2.4.2.a Randomization exploiting knowledge of the fixed scalar

This is called Coron’s second countermeasure [21]. We describe it in full generality. The coun-
termeasure consists in replacing the computation of n.D with that of n(D + R) — S, where R is a
secret element for which S = n R is known. It is desirable to have a new pair (R, S) at each run of the
device. To do this, the following approach can be taken. A set of secret pairs (R;, S;) with S; = nR;
can be stored in the smart card at initialization time, and at each run both elements of a randomly
chosen pair are multiplied by the same small signed scalar and added to the respective elements of
another pair. The result is then used to randomize the scalar multiplication.

This is particularly useful if applied in conjunction with other countermeasures to thwart Goubin’s
attack (see Subsection 2.5 below).

2.4.2.b Randomization exploiting redundancy of representations

For elliptic curves and genus 2 hyperelliptic curves there exist redundant coordinate systems,
which allow a point to be represented in many different ways. Such coordinate systems have been
developed to allow computations in the group without having to perform inversions. Inversions are
extremely expensive in embedded devices, so it makes sense to trade them for some multiplications
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and a slightly larger memory usage. See [20] for a review of the coordinate systems available for
elliptic curves and [48, 49, 50, 51] for the case of hyperelliptic curves. In fact, as [29] and [6] show,
the usage of these coordinate systems is advantageous even in software implementations.

These representations, however, have also another advantage. In elliptic projective coordinates
two triples (X, Y, Z) and (sX, sY, sZ) represent the same point if s # 0. In elliptic Jacobian coordi-
nates two triples (X,Y, Z) and (s2X, s®Y, sZ) represent the same point if s # 0. Similar results hold
for the other coordinate systems described in [20]. Therefore, to avoid differential side channel anal-
ysis on elliptic curves, the computations can be performed in projective (resp. Jacobian) coordinates,
and the base point (X, Y, Z) can be replaced by (sX,sY,sZ) (resp. (52X, s%Y,sZ)) for a random,
non-zero field element s before starting the scalar multiplication. This approach is first described
in [39].

Avanzi [7] has carried this idea over to the genus 2 setting. Let the hyperelliptic curve C of genus
g over the finite field F, be defined by the Weierstrafs equation

C: Yy’ +hy=f(z),

where f is monic of degree 2¢g + 1 and h has degree at most g. Let oo be the point at infinity
on the curve. The elements of the divisor class group in Mumford’s representation [68] are given
by polynomial pairs, and there are algorithms and explicit formulae for computing with those. Let
D = ", P, — moo be a reduced divisor with m < g, the P; being points on the curve. The
ideal class associated to D is represented by a unique pair of polynomials U(z), V (z) € F,[x] with
g = degU > degV, U monic and such that: U(z) = [[I";(z — xp,) (i.e. the roots of U(z) are
the xz-coordinates of the points belonging to the divisor); V(zp,) = yp, forall 1 < i < m (i.e. the
polynomial V() interpolates those points); and U (x) divides V (x)? — h(z)V (z) — f(z). We say
that the pair [U(x), V (z)] represents the divisor class of D.

In genus 2 projective coordinates a divisor class DD with associated reduced polynomial pair
[U(z), V(x)] is represented as a quintuple [Uy, Uy, V1, Vo, Z] where

U(z) :x2+%x+% and V(z)= %:{H—? .
The randomization in this case consists in picking a random s € Fy and by performing the following
replacement
Uy, Uy, V1, Vi, Z] — [sU1, sUy, sV, sVh, sZ] .

In Lange’s genus 2 new coordinates a divisor class is represented as a sextuple [U1, Uy, V1, Vo, Z1, Z5]

where
Vi Vo

D27 TN

U U
Uz) = 22+ Z—§x+ Z_g and V(z)
1 1

To blind the base point or an intermediate computation, two elements sy, s are picked in F; at
random and the following substitution is performed:

[UlaUO,VlaVb,ZI,ZQ] = [S%UlaS%UOa5?S2V178?52%551Z1552Z2] .

If (some or all of) the additional coordinates z1, 2o, z3 and z4 are used — which satisfy z; = Z12,
Z9 = ZQQ, z3 = Z1Z3 and z4 = z129 — then they must also be updated: the fastest way is to recompute
them from Z; and Z5 by two squarings and two multiplications.
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Ciet and Joye also suggested [17] a clever way to use point (or, we add, divisor) randomiza-
tion while getting high performance. They suggest to randomise the intermediate value but not
the base point in the scalar multiplication. For example, the computation of n - D where n =
(ny,ny—1,...,n0)2 with n,, = 1 may be performed by a double-and-add method as follows

Q = randomise(D);
for i = r-1 to 0 do
Q=20Q;
if (n_i == 1) then Q = Q + D; else dummy addition.
end for;
output Q;

In the case of elliptic curves, the base point may be given in affine coordinates, but Q would be in
projective or jacobian coordinates, and Q would also be randomised in the chosen coordinate system.
It can be adapted to several different scalar multiplication algorithms. Ciet and Joye call this technique
2P*.

If addition and doubling are indistinguishable, then this method is a good starting point for harden-
ing the cryptosystem against DSCA. However, some work still has to be done against operand reusage
detection using higher-order EM emission DSCA (see Subsection 2.6).

2.4.2.c Randomization using isomorphic fields

This randomization has been described by Joye and Tymen in [39]. It has been described for
elliptic curves over binary fields, but it actually works for any Abelian group over any extension
field. It consists in representing the field used for the arithmetic, IF,», with m > 1, as the quotient
ring I, [x]/(f(z)) for randomly updated irreducible polynomials f(z) over F, of degree m. This
randomization effectively scrambles almost all bits of the computations, except for the least significant
one. The main drawback is that the field arithmetic can become excruciatingly slow. In fact, usually
the irreducible polynomial is taken to be a trinomial, a pentanomial or a sedimentary polynomial in
even characteristic, or a binomial in odd characteristic [5], but after randomization it is usually a dense
polynomial, and this makes polynomial multiplication slower by a factor of 3 or even more.

2.4.2.d Randomization using isomorphic groups

Also this approach has been introduced in [39] for elliptic curves, and generalized to the hyperel-
liptic curve setting in [7]. We describe it in the latter version, which includes the first in the particular
case of genus 1 curves.

Let C and C’ be two hyperelliptic curves of genus g > 1 over a finite field F,. Suppose that ¢ : C —
C is an [F;-isomorphism which is easily extended to an F4-isomorphism of the divisor class groups
¢ : Cly(C) — Cly (é) Let us further assume that ¢, together with its inverse ¢!, is computable in
a reasonable amount of time, i.e. small with respect to the time of a scalar multiplication. We do not
require a priori the computation time of ¢ to be negligible with respect to a single group operation.
Then instead of computing Q = nD in Cly(C)(F,), where n is an integer and D € Cly(C)(FF,), we
perform:

Q=¢"'(no(D))

so that the bulk of the computation is done in Cl (é) (IF4), or, since a picture is worth a thousand
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words, we note that the following diagram commutes:

multiplication by n

— T
D € Cly(C)(F,) Cly(C)(F,) 3 n-D

( -

¢(D) € Clo(C)(F,) Clo(C)(Fy) > n - ¢(D)
v

multiplication by n

and we follow it along the longer path. The countermeasure is effective if the representations of the
images under ¢ of the curve coefficients and of the elements of Cly(C)(F,) are unpredictably different
from those of their sources. This can be achieved by using randomly chosen isomorphisms ¢, which
boils down to multiplying all the quantities involved in a computation with “random” numbers.

Let C, C be two hyperelliptic curves of genus g defined by Weierstrass equations

C:y’+hx)y—f(z)=0 (1)
C:y’+hx)y—flz)=0 )

over IF,, where £, f are monic polynomials of degree 2g + 1 in z and h(z), h(z) are polynomials in
x of degree at most g. All F,-isomorphisms of curves ¢ : C — C are of the type

¢ (2,y) = (s 2w +b,s Ty + A(x)) 3)
for some s € F,, b € F; and a polynomial A(z) € Fy[x] of degree at most g. Upon substituting
572z +band s~ 29ty + A(z) in place of z and y in equation (2) and comparing with (1) we obtain

h(x) = s**1 <B(s*2x +b) +2 A(x))

~ ) @
fla) = $2(29+1) <f(3_23: i b) _ A(m)Q — h(s_%: + b)A(x))

whose inversion is
h(z) = s~ n(g) - 24(2)
flw) = s*wﬁ”f(fc) +5~ PITDR(2) A(8) — A(2)? )
where & = s%(z —b
Avanzi shows that

1. For hyperelliptic curves in odd characteristic we can restrict the isomorphisms to the type
¢ ¢ (z,y) — (s 22,5739y | (6)

with h(z) = h(z) = 0. This gives a fast countermeasure which effectively multiplies all
quantities involved in the computations of the group operations by powers of the randomly
chosen non-zero parameter s.

2. For genus 2 hyperelliptic curves in characteristic 2, curve randomization is not adequate if one
wants to keep some restrictions on the coefficients of h(z) and h(x) which are reasonable for
performance reasons. But in this case group element randomization can be used.

3. In the genus 3 case curves of equation ¥y + cy = f(z) can be randomized obtaining good
performance and security - thus effectively obviating the lack of divisor randomization in this
setting.
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2.5 Goubin-type analysis

Recently L. Goubin [27] has pointed out a potential weakness of some ecc randomization procedures,
including Coron’s third and Joye-Tymen’s, when implemented on systems where the secret scalar is
fixed and the base of the scalar multiplication (the message) can be chosen.

His attack is based on the randomization of 0 by multiplication by a constant or by field isomor-
phism being still 0. It requires that the scalar multiplication algorithm has a fixed sequence of group
operations for a given scalar — even after removing any dummy operations.

In full generality, we have the following context:
Let G be the group where the computations take place, and let H be a small subset of the group
G s.t.:

e The elements of H possess properties which make their processing detectable by side-channel
analysis — for example, zeros in the internal representation — and

e are invariant under a given randomisation procedure R.

The set H is called the set of special group elements. It is used in an attack as follows:
Suppose that the most significant bits n,., 1, ..., n; 1 of the secret scalar n are known and that
we want to discover the next bit n ;.

1. The attacker first makes a guess: n; = 0 or 1.

2. Set up a chosen message attack to obtain — if n; has been guessed correctly — an intermediate
result in A during the scalar multiplication. For example, lett = (n,,n,—1,...,nj41,7;). The
attacker chooses first &; € H, for i = 1,2, ..., w, where w is the number of traces he wants to
analyze. Then he finds elements D; € G with ¢ - D; = E; (i.e. (t7' mod #G) - E;), and uses
each D; as input. A further requirement is that for the other choice(s) of n; the corresponding
multiples of D; should not be elements of H.

3. Then, statistical correlation of the side-channel traces corresponding to the computations of
n - E/; may reveal if the guess was correct even if the randomisation procedure R has been used.

As already mentioned, such sets H exist:
o The set of points with a zero coordinate of an elliptic curve.

e The set of divisors on a hyperelliptic curve with a zero coordinate. For example, the divisors
with deg < g, is particularly easy to build and detect. In fact, whereas the divisors with some
zero coordinates but degree g induce some multiplications by zero, which, can be detected,
those with deg < g usually require different routines from those for the generic, most common
cases, which have different timings, too.

The probability that random element € H is O(g 1), so the set is small enough to make fulfilling the
conditions of step 2 quite easy.

The sets H defined above are clearly preserved by multiplicative divisor randomisation, curve
isomorphisms, and field isomorphisms. The side-channel trace correlation may reveal if the guess
was correct even in presence of such randomization procedures. In particular, this can affect the
random isomorphisms of the form ¢ : (z,y) — (8_256, 5_(29+1)y) and the techniques described in
§2.4.2.b.
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For elliptic curves, this attack is not too serious, and can be avoided easily, as shown by Smart [87].
Avanzi [7] has shown that the attacks is a much more grave menace to the integrity of hyperelliptic
cryptosystems.

In fact, on a genus g curve (g > 1), let H be the set of divisors of degree < g. After the compu-
tation of £ =t - D € H, the scalar multiplication algorithm will double it. To do it, the formulae for
the most common case will not work - and even if Cantor’s algorithm is used to implement the group
arithmetic, there will be less reduction steps than in the general case. The consequences are easily
detectable differences in power consumption and even timing. The timing differences are the leaked
information used in the attack described in [43], which we can thus consider as a Goubin-type timing
attack.

An approach to thwart Goubin’s attack could use very general curve isomorphisms which do
not respect the Weierstra form with b, A(xz) # 0 to randomize also the vanishing coefficients of
the divisors: this has the disadvantage of requiring more general and much slower formulae for the
operations.

However, as shown by Avanzi, suitable hyperelliptic curve variants of message or scalar blinding
can be effective against Goubin’s attack. These countermeasures should be completely effective also
on hyperelliptic variants of the exceptional procedure attack [35].

2.6 Higher order DSCA

In the DSCA attacks explained so far the attacker monitors leaked signals and calculates the individual
statistical properties of the signals at each sample time. In a higher order DPA attack, the attacker
calculates joint statistical properties of power consumption at multiple sample times within the power
signals.

More formally, an kth-order DSCA attack is defined as a DSCA that makes use of £ different
samples in the power consumption signal that correspond to k different intermediate values calculated
during the execution of an algorithm.

The attacks described so far are first order DSCA attacks. The idea behind higher order DSCA
had already been defined in [46]. A description of a second-order DPA can be found in [61].

The approach followed by Rita Mayer-Sommer in [59], and by her defined as a refined SPA,
is in fact a higher order DPA: Her attack works by comparing and correlating the characteristics of
different parts of the same, single, power trace. By means of this it is possible to locate the reuse of the
same operands, or to estimate the differences between different operands when the same instruction
is performed more times during the whole cryptographic operation.

We envision here a plausible scenario. Suppose that an implementor chooses a scalar multiplica-
tion algorithm based on sliding windows of size, say, 4 and no precaution against SPA has been taken.
Then, for a 160-bit exponent one expects about 32 non-zero coefficients and a single trace shows 160
doublings with 32 additions interspersed. At each addition, the intermediate value is added to one
of 16 possible precomputed multiples of the base group element D (£D,+3D,...,£15D). Hence
there are 1632 = 2128 different multipliers which can be represented by that trace. However, each
precomputed group element is reused on average 2 times. It an attacker can determine when a given
element is reused, then the number of possible multipliers decreased to 254. The secret key can then be
recovered by a meet-in-the-middle or Pollard rho-like approach having square root complexity, with
o 232 group computations.

If we assume that reusing a group element in the computation leads to a correlation in the traces
then higher order DSCA can lead to such a drastic key space reduction. On the one hand, we doubt that
this is plausible with power analysis, as traces of arithmetic multiplications and addition depend on
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both operands involved, and fixing only one should not determine the characteristic of the operation,
except for very special values of the operand (0, 1, —1,...). On the other hand, this seems definitely
possible with EM emissions recorded in proximity of the device, if they can be used to localize
memory accesses!

The idea of attacks based on operand reusage have been proposed first in [94], where they are
applied to the behaviour of the multiplier in an implementation of RSA to allow the identification of
equal exponent digits.

[71] also proposes such a scenario, which can break the scalar multiplication algorithm proposed
in [64] if addition and doubling are distinguishable, and claim a second-order DPA resistant version
of that algorithm in [72]. Ahn et al. propose an algorithm [3] whose resistance against second-order
DPA is still to be assessed.

Under the assumptions intrinsic to the scenarios just depicted, we recommend the implementor
to relocate, at some intervals, the precomputed data in memory. This should be done a few times
during a run of the whole algorithm, and in a way that prevents the attacker to determine when the
same operand is transferred more times from one memory location to the other. The optimal way of
implementing this is not clear.

In order to avoid the detection of reusage of a precomputed point via leaked-emission analysis, it
is also advisable to use a redundant representation (projective, jacobian, new-weighted) of the group
elements and to randomise the representation of a precomputed point after each time it is used. This
is trivial to implement, and relatively inexpensive.

SSCA-countermeasures will also make it more difficult for the attacker to guess which portions of
single traces are to be correlated. This shall force him, ultimately, to adopt a brute force strategy, i.e.
to try to correlate all possible sub-traces: the amount of possible combinations will increase exponen-
tially with the length of the scalar multiplication and thereby make kth-order attacks computationally
infeasible.

2.7 Address-bit DPA

Address-bit differential power analysis (and, similarly, address-bit differential EM emission analysis)
does not exploit the knowledge of the internal representation of the operands. Instead, it exploits
guesses individual bits of memory addresses or of register numbers in order to detect operand reuse.
From this point of view, this attacks is closely related to higher-order DSCA.

In fact, memory addresses are just another type of operand processed by some CPU instructions,
and have their internal bit representation. Therefore, accessing different memory locations will pro-
duce traces which present less correlation than the traces corresponding to repeated access of the same
memory location.

The attack works by sorting all the memory addresses in two sets using one bit of the address as
discriminating factor, and then continues further in the same way. Clearly, the attack works better
if only a few memory locations are used. The analogous attack using the CPU/coprocessor register
numbers, similarly, will be most effective of the amount of registers used is small.

In [62, 63], not only multi-bit DPA was introduced, but also address-bit DPA. Clearly, the two
ideas can be combined. These attacks were used also on a DES implementation. May et al. [58]
suggest a random register renaming, to be implemented in hardware, on the processor called NDISC
[57], to foil address-bit DPA attacks. Similar ideas can be used on memory addressing.

Itoh et al. [31] successfully devised an address-bit DPA attack on ECC protocols using elliptic
curves in the Montgomery form. In [32] the same authors propose a randomized addressing counter-
measure along the ideas of [58], but implemented entirely in software. Suppose several operands are
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stored in a table contained in the memory of the embedded device. Access is done via a base address
and an index. The basic idea, there, is to choose a new integer r anew for each session, which has
the same bit length as the highest index. Before doing any table access — both during the table initial-
isation phase and later in the scalar multiplication — the index is xor’ed to r. This idea just makes it
more difficult to detect equal coefficients between different runs of the device, and in particular it is
effective against a first order differential power analysis, but it is definitely ineffective against a higher
order bit-address DSCA.

Against higher order bit-address DSCA, operand relocation seems the only choice. As we have
already remarked in the previous Subsection, it is not clear how to implement this countermeasure in
an optimal and effective way.

3 Timing attacks

In our context, timing attacks apply to computations n - D, with n fixed, secret, and D an element
from an abelian group. The latter can be the rational point group of an elliptic curve, the rational
divisor class group of an hyperelliptic curve, the subset of the latter describing a trace-zero variety,
etc. The assumption here is that the scalar n is fixed (hence, not even internally randomized!) and
that the attacker can choose the input — hence, in a certain sense, timing attacks can be seen as very
specific chosen plaintext leakage analysis attacks.

The main observation here is that the device/software combination takes different amounts of time
to process different inputs. This can be due to the presence of branching/conditional statements in the
software, or just because of variable timings of instructions directly in the hardware. An example
of this different timing is the implementation of multiprecision modular arithmetic: with all modular
reduction algorithm, such as the division with remainder, or Barrett’s, Montgomery’s or Quisquater’s
in their basic forms, the final result must be checked and, possibly, the modulus has to be subtracted
again a few times.

A timing attack is very similar to DSCA, but some details are slightly more complicated, even
though this attack was devised earlier. The complication is due to the fact that timing attacks exploit
the timing of the whole cryptographic operation, and do not observe the timings of the sub-operations
in which the cryptographic operations splits. Also, we should not forget that when timing attacks have
been introduced, power or EM side channels were not known to the academic world.

Let then n = (n,,n,_1,...,np) in the binary representation. Suppose that the bits n,,n,_1,.. .,
n,;+1 are known. The attacker wants to find ;. He proceeds as follows:

1. The attacker first makes a guess: n; = 0 or 1.

2. He takes several inputs D1, ..., D; and simulates the internal state of the device at the moment
of the computation of F; = (Zgz y nd2d_j )Di. He then selects a subset of the D;, according
to the following rule: The time necessary to perform the computation of the last addition or
doubling giving E; as a result is strongly biased in one sense or the other. For example he may
select those inputs for which a particular modular reduction always (or never) requires a final
subtraction. In other words, the timings of the part of the whole computation which processes
the bit n; must be biased.

3. Finally, the attacker measures and averages the timings obtained when processing those selected
inputs on the whole scalar multiplication. It is expected that the timings of the parts of the
scalar multiplications which process the other bits of the scalar are “randomly” distributed.
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Whereas the attacker can actually enforce this for the processing of the bits n.,...,n;41, for
the processing of n;_1, ..., ng this must be, essentially, just hoped. In other words, the attacker
hopes that the bias in time in a given part of the computation depending on the guessed input
will result in a bias of the whole computation, if the guess was correct.

4. He compares this average timing with that of a set of random inputs. If these two averages differ
significantly, then the probability that the guess of key bit was correct is high, and can even be
estimated.

At CARDIS 1998 J.-F. Dhem at al. [23] showed how to make timing attacks work on RSA with
Montgomery multiplication. The same idea of course applies also to elliptic curves and hyperelliptic
curves. For hyperelliptic curves, the different timings can be caused, for example, by group operations
involving a special divisor [43], and thus requiring formulae which are different from those for the
most common cosa: as we have seen in Subsection 2.5, this can be understood in the context of
Goubin-type timing attacks.

The countermeasures are in principle the same as for differential side channel analysis. Ran-
domised clocking and RPIs are not a countermeasure, because their influence on the total timing can
usually be eliminated by averaging enough samples — unless the decisions taken by the hardware to
decide how vary the clock or when to add RPIs are deterministically tied to some internal state, but in
a secret way.

4 Fault attacks

4.1 Fault Induction

Usually the name differential fault analysis is used to denote all the attacks presented in this subsec-
tion. However we prefer to use the definition simple fault analysis for all attacks that exploit, the
observation of the consequences of one (or very few) induced faults to recover the secret key, and the
definition differential fault analysis to refer to the attacks that extract the bits of the secret key one by
one by comparing the faulted results with a correct result.

4.1.1 Simple fault analysis

Attacks based on fault induction essentially force the device to perform erroneous instructions - for
example by changing some bits in the internal memory. They have been announced officially in 1996
in a Bellcore press release [79], followed by a paper [13] written by Bellcore researchers, and for this
reason these attacks are sometimes called Bellcore attacks. See also [52] and [8]. It is known that
a simple implementation of RSA which computes separately modulo the two prime moduli and then
reconstructs the result using the Chinese Remaindering Theorem can be easily broken by inducing
faults: in fact a randomly manipulated result immediately leads to a successful factorization of the
RSA modulus. The most obvious way to protect against fault attacks is to check the computation.
The device could, for example, repeat it and compare the results. This is of course extremely ex-
pensive, either in terms of time, or of hardware space (if we double the hardware and perform the
computation twice in parallel). Shamir proposed a more efficient verification procedure [83] for RSA
exponentiation, and patented it [84]. This method was later improved by Joye, Paillier and Yen [36].
Another way to check for the presence of faults is, in the case of public-key cryptography, to
verify the signature (or re-encrypt the message). For RSA, this is usually less time-consuming, as the
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public exponent is usually chosen to be small. For ECC and HECC this is more or less as expensive
as performing the computation twice — unless, also in this case, double hardware is used.

For elliptic curve cryptography, the situation would seem different enough to make a simple fault-
induction attack more or less meaningless, because from one single, randomly manipulated, wrong
result we could naively expect that it is not possible to obtain information on the scalar used in the
scalar multiplication. However, there is a very clever, and somewhat plausible, scenario, which can
shatter that illusion...

At CRYPTO 2000, Biehl, Meyer, and Miiller [10] presented three different types of attacks on
ECC that can be used to derive information about the secret key if bit errors can be inserted into
the elliptic curve computations in a tamper-proof device. They also estimate the effectiveness of the
attacks using a software simulation.

Their methods require very precise placement and timing of the faults. Generalizing the approach
of [54], their first two DFA techniques depend on the ability to change the coordinates of a point on the
curve at the beginning of the scalar multiplication. This can work because the elliptic curve formulae
do not use all the coefficients of the equation of the curve to perform their operations: in fact if the
original curve is defined, over the field IF, by the equation

C:Y?’Z+a XYZ+a3YZ%= X3+ axX?’Z + ayXZ? + ag 23

then it is very likely that a weak curve has an equation differing only in the coefficient ag. Let the
order of the group of F-rational points of

C'":Y?Z+ a1 XYZ+a3YZ? = X3+ auX*Z + as X 7% + afy 73

be the product of several small prime powers — or at least be divisible by a factor, x say, of moderate
size, such that solving the DLP on C’" modulo « is easy. Such a curve is more easily obtained than a
cryptographically strong one, since we have to count points on less curves to find a weak one... Now,
ag 1s not used in the group formulae, hence if the the base point has been modified, so that it lies on
E’ then the device will compute the scalar multiplication with the secret scalar on C’, and solving the
new, easy DLP will return the secret scalar (or the scalar modulo an reasonably sized integer).

Note that if the attacker knows where the y coordinate of the base point will be stored, the attacker
can change its contents, for example using a focused ray of elementary particles - but the hardware
could use an internally scrambled representation of the bits, so that the logical content of that register
will not be known. But the attacker can still choose which point will be input to the device, and the
x—coordinate can be assumed to be known. The attacker might know also the output point, in all its
coordinates. From the latter, it is then possible to determine the curve C’ on which the computation
took place, to establish the two possibilities for the y coordinate of the modified base point, to count
the points on the curve C’ and thus, if this is weak, to solve the DLP. Otherwise, he tries again with a
different point - hence, with overwhelming probability, with a different curve C’. Trying with at most
a few curves will break completely the system.

Here we observe that all the hyperelliptic curve explicit formulae available do not use all the co-
efficients of the equation in their computations - exactly as the elliptic curve formulae. Therefore, a
hyperelliptic curve differential fault analysis attack is absolutely plausible under the same assump-
tions made in [10]. The same countermeasures must be used also for hyperelliptic curve embedded
cryptosystems! The same holds also for the attacks presented next.
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4.1.2 Differential fault analysis

We now introduce a class of attacks which induce faults in order to recover the key bits one by one.
Their attack would work on a right-to-left scalar multiplication algorithm as follows:

Let (n,,n,—1,...,n0)2 the binary representation of a positive integer n, where n is the least signifi-

cant bit. Let D be the base divisor, and let the right-to-left scalar multiplication algorithm:

H=D; Q=0;

for i = 0 to r do
if (n_i == 1) then Q = Q + H;
H= 2 H;

end for;

output Q;

Assume that we know the binary length 41 of the unknown multiplier n (note that an attacker can
easily guess this length). Denote by (i), H (i) the value stored in the variable ), H in the algorithm
description before iteration 7. The final result will then be Q(r + 1). We first use the tamper-proof
device with some input D to get the correct result Q(r + 1) = n - Dg. Then we restart it with input
Dp but enforce a random register fault to get a faulty result Q(r + 1). Assume that we enforce the
register fault in iteration r and that this fault changes the variable H. If the final result is unchanged,
then there was no addition in the last iteration and n,. = 0, otherwise there was an addition ad n,. = 1.
Clearly, we can do this for each bit of the scalar.

[10] has also an approach in which faults are introduced during the scalar multiplication in a more
sophisticated way. Assume that the attacker can, at any prescribed iteration, flip just one bit of the
variable (), say. (The case where the variable H is modified is handled in a similar way.) Assume
also that the scalar is fixed and not randomized, and that we know how the internal variables are
represented. Then, essentially, the bits of the key can be recovered in small blocks as follows:

1. Perform a normal scalar multiplication &/ = n - D with a given input.

2. Repeat the computation of n - D, but this time induce a bit flip in a register m steps before the
end of the scalar multiplication, giving a result E’. Of course all computations before the fault
in the two cases will be equal, and all those involving the processing of the m most significant
bits of the unknown scalar n in the faulted computation will have been changed with respect to
those of the reference computation — the very first difference consisting in just a single bit.

3. For all possible m bit integers z, “reverse” the correct computation and the faulted one, i.e.
determine £ — z-2" "1™ . Dand B/ — ¢ - 27 t1-m . D,

4. If pairs of results which differ in only one bit are found, then the correct and the faulted register
values are now determined together with the /m most significant bits of the scalar.

5. If one bit of H (which is supposed to contain a copy the input base point D) was flipped, and
not one of (), the computations need to be done not only for all possible combinations of m bits,
but also for all possible single bit faults induced in H (this is O(log q) where ¢ is the cardinality
of the used field).

6. Iteration of the above process yields all the bits of the secret scalar m bits at a time.
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The attack works essentially changed if the binary representation of the scalar is replaced with
any other deterministic recording (NAF, m-ary, w-NAF, etc.).

Biehl et al. indeed have more sophisticated attacks, such as attacks where the faults are induced but
it not possible to determine with precision when — such attacks are reasonable if clock randomisation
or RPIs are implemented on the card.

All such attacks have been originally presented for elliptic curves but are in fact entirely generic
and apply to implementations of hyperelliptic curves, trace-zero varieties and other geometric objects.
Countermeasures are obvious: checking at regular intervals whether the intermediate result is on the
curve, and restarting the computation (possibly from a back-up value) if something has gone wrong;
never allowing wrong results to leave the device; randomizing the scalar.

4.2 Adaptive Fault Analysis

Faults can be used to detect dummy operations [96, 97]. Dummy operations are used as a simple SSCA
countermeasure, however faulting them will not change the final result of a cryptographic operation.
Adaptive fault analysis can enable an attacker to distinguish the dummy operations from the effective
ones, i.e. from those which are essential to the computation of a group operation. We now describe
this attack.

Suppose that at a given place of the implementation of the group operations, the doubling routine,
say, contains a dummy instruction whereas, at the correspondig place, the addition routine has an
effective instruction, i.e. one which belongs to the addition formula. Suppose further that the scalar
and its internal representation do not change between different runs of the device. Then very precisely
timed faults can be used to distinguish the two types of operation: if the fault does not change the
result, then at that moment the device was performing a doubling, otherwise that operation was an
addition.

Thus, the key can be recovered in O(log n) steps, where n is the the secret scalar.

Specific randomization procedures in the scalar multiplication algorithm are necessary, just as for
DSCA (or against timing attacks).

If faults or intrusions have been detected, then the computation has to be redone, restarted with
the state before the fault, or aborted without output. This can lead to observable differences in the
behaviour of the system: in [38] the case of an RSA system has been investigated. The observable
behaviour can consist in the success/failure to encipher/decipher, but, for example, also in the total
timing for the cryptographic operations, or in the power trace/EM emission of the device. In other
words, an (apparently) improved cryptosystem may actually leak useful observable information. If
this behaviour can be observed for several different faults induced in different moments of a scalar
multiplication with fixed scalar, then an attacker may be able to guess the secret key. Also in this case
we strongly advice to randomize the scalar.

Some hardware countermeasures against fault induction attacks are rather general countermea-
sures, independent from the algorithm actually performed. For example, the following approaches,
even if introduced for specific cryptosystems, are rather general-purpose:

e Add error-detecting codes to protect the integrity of registers [95];

e Use a self-timed circuit and dual rail-logic to thwart error induction [67]. This is a recent
approach whose effectiveness still has to be thoroughly assessed.
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There are also more limited approaches: Karri et al. [41, 42] add circuitry to perform, in parallel with
the encryption, a reverting of the performed operations: this approach is clearly more oriented towards
symmetric systems.

We believe that the combination of error-detection codes, in combination with glue logic, is a
sound verification technique for the integrity of internal data, as the glue logic makes in principle
impossible for the attacker to modify the content of a register and of the associated error-detection
information.

Randomised clocking and RPIs should make it very difficult to correctly place the faults, at least
for an attacker with commo equipment.

In theory, however, a much better equipped attacker might use a more sophisticated device that
monitors completely the state of the device in order to decide the fault placements in real-time, de-
pending on some observed state, such as a the traces of a very specific instruction sequence. This
would probably circumvent randomised clocking, but not completery RPIs.

5 Conclusions

5.1 Suggestions

In order to thwart SSCA, at least one of the following countermeasures should be used
o Indistinguishable basic operations, at least by employing atomicity.

e A scalar multiplication algorithm with a fixed sequence of operations, even if addition and
doubling are distinguishable.

To prevent DSCA, Goubin-type DSCA, and simple/differential/adaptive fault analysis, we suggest
to use both the following countermeasure types:

e Randomization of the group, or at least of the base point. (But we do not recommend to ran-
domize the representation of the field.)

e A suitable scalar randomization, but with moderately sized constants. (But not a randomized
representation of the same scalar, unless it is a technique resembling the MIST exponentiation
algorithm.)

Against fault analysis, checking regularly if the intermediate results are consistent (for example,
whether points or divisors are on the curve) is advisable.

Against higher order DSCA based on the EM spectrum and higher order bit-address DSCA, we
advise the implementor to make detection of operand reusage difficult. In particular, the already
mentioned re-randomisation of precomputed points after their usage and their relocation would be
good starting points.

Hardware countermeasures, like buffering of the power source, EM shielding, RPI and random-
ized clocking, intrusion and fault detection (using for example checksums), are also suggested.
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5.2 Directions for future research
Important directions for future research are, in our opinion:

e Research of redundant coordinate systems (see Paragraph 2.4.2.b) for genus 3 curves, to allow
divisor randomisation. We recall, however, that curve randomisation is effective and efficient
on those curves.

e Development of atomicity (see Subsubsection 2.3.1) for hyperelliptic curve cryptosystems.

e There is need for mathematical models to allow a sound assessment of the solidity of the com-
bination of different countermeasures.

e Develop reasonable models for resistance against higher order DSCA.

e Sound countermeasures against detection of operand reusage under higher order EM emission
DSCA (see Subsection 2.6) are still needed, to be used together with scalar multiplication algo-
rithms based on several precomputations in order to speed up computations.

e Montgomery ladders and alternate forms with indistinguishable operations for hyperelliptic
curves (see Subsections 2.3.2 and 2.3.3).

5.3 Point of the situation

We are strongly convinced that no perfect protection or countermeasure against side channel, tim-
ing analysis or fault induction attacks exists. On one hand, SSCA-countermeasures are usually not
effective against DSCA. On the other hand one cannot even speak of protecting an implementation
of a cryptographic primitive against DSCA if SSCA-resistance has not been taken into account first.
We know that some countermeasures, like the original version of Coron’s first countermeasure, were
considered potentially weak if used alone. However that countermeasure can be used, in combina-
tion with other techniques, to thwart a hyperelliptic version of Goubin’s very recent attack, which
is a more serious attack that the one against which it had beed originally developed... One should
also consider to protect the operations themselves against side channel attacks which are involved in
setting up a countermeasure... And so on, and so on... Countermeasures can make the attacker’s task
harder, and therefore limit the threat to more skilled, more resourceful, better trained adversaries, but
not impossible: eventually, it may be only a matter of budget.

Whereas effective countermeasures (“effective” is here intended modulo the cautions just said)
have been developed in abundance for elliptic curve cryptosystems, it has been only recently that
side channel attacks have been considered on hyperelliptic curve cryptosystems, and corresponding
countermeasures were developed and analysed: in particular, research on the latter problems is still
in its infancy. However, our (partial) conclusion is that almost all attacks that can be mounted on
an elliptic curve cryptosystem can be mounted also against hyperelliptic curve cryptosystems. This
is no big surprise, since elliptic curves are just particular hyperelliptic curves. The good news is
that it seems also that many countermeasures developed for elliptic curve cryptosystems apply to
hyperelliptic systems, too - we also reviewed how this can be done. It would be interesting to have
alternate forms for hyperelliptic curves too, for example.

The existing countermeasures for hyperelliptic cryptosystems suffice, in our opinion, to make
implementations of those cryptosystems as secure as implementations of elliptic ones can get.

We are persuaded that only a combination of hardware protections and software countermeasures
can effectively lead to “secure” implementations.
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Side-channel cryptanalysis is very implementation-specific, but some general approaches and

ideas can already be given. There is a need for a sound theoretical framework for side channel crypt-
analysis. This should include a thorough physical modelling of the devices and a formally correct,
yet concrete, mathematical modelling of the attacks and of the countermeasures. In particular, a study
of the combinations of countermeasures seems missing, and all the results so far in that direction are,
when available, quite of empiric nature. Results from complexity theory would, in our opinion, play
an important role in this reseach. Only this would allow a correct assessment of the potential of attacks
and countermeasures. This research should be pursued very actively in the next future.
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