Universally Composable Time-Stamping Schemes with Audit

Ahto Buldas-?3*, Peeter Lauti?>**, Mart Saarepera, and Jan Willemédn

1 University of Tartu, Liivi 2, 50409 Tartu, Estonia.
2 Cybernetica, Akadeemia tee 21, 12618 Tallinn, Estonia.
3 Tallinn University of Technology, Raja 15, 12618 Tallinrst&nia.
4 Playtech Estonia.

Abstract. We present a universally composable time-stamping schesedlon universal one-way hash func-
tions. The model we use contains an ideal auditing funclign@mplementable in the Common Reference
String model), the task of which is to check that the roundgésts are correctly computed. Our scheme uses
hash-trees and is just a slight modification of the known w&seof Haber-Stornetta and Benaloh-de Mare, but
both the modifications and the audit functionality are alifr provable security. The scheme turns out to be
nearly optimal — we prove that in every universally compdsatuditable time-stamping scheme, almost all
time stamp requests must be communicated to the auditor.

Keywords: Time-Stamping, Provable Security, One-Way Hash Functiong/ersal Composability.

1 Introduction

Time-stamping is an important data integrity protectionchanism the main objective of which is to
prove that electronic records existed at certain time. Tope of applications of time-stamping is very
large and the combined risks related to time stamps are fterunbounded. Hence, the standard of
security for time-stamping schemes must be very high. ligkli unlikely that currently popular trusted
third party solutions are sufficient for all needs, sincephactice has shown that insider threats by far
exceed the outside ones. This motivates the developmeithefstamping schemes that are provably
secure even against malicious insiders.

Several constructions of potentially insider-resistametstamping schemes have been proposed [6,
14,15, 7, 19] based on collision-resistant hash functidiesvever, only few analytical arguments confirm
the security of these schemes. Two early attempts to sketehuaity proof [6, 15] were recently shown
to be flawed [8]. Presently, there are two schemes with coseturity proofs: a non-interactive time-
stamping scheme in the bounded storage model [19] and a bdurash-chain scheme in the standard
model [8]. However, the schemes in use (like [25-27]) stlvdrno formal security proofs.

The formal security conditions for time-stamping schenressdill a subject under discussion. The
early works [6, 14, 15] focused on tlmnsistency of databasesaintained by time-stamping service
providers. It was required to be hard to change the databdélseuvcompromising its consistency with
a digest published in a secure repository. In [8] it was palrdut that one of the implicit assumptions of
the consistency condition — the adversary knows at leaspwémage of a published digest — may be
unjustified for malicious service providers. An indeperdacurity condition was proposed [8] in which
the stream of time stamp requests is modeled as a high-grdisipibution. Considering the wide range
of time-stamping applications, it cannot be taken for gedrthat these two conditions are sufficient.
Universal Composability (UC) framewofk—4, 9, 21-23] provides a more general approach to security
— rather than studyingd hocbehavior of adversaries, it is proved that real securitynjtives faithfully
implement a certaimdeal primitivethe security of which is evident. Therefor@| security features of
the ideal primitive (including thed hocones mentioned above) are transferred to the real primitive

In this paper, we construct universally composable tinamging schemes under an assumption that
they contain a third party auditing functionality. The idgdhird-party audit in time-stamping schemes is

* Supported by Estonian SF grant no. 5870
** Supported by Estonian SF grant no. 6095

natural and certainly not new. It has been proposed as ohe efdditional security measures in commer-
cial time-stamping schemes [25]. Still, the formal segucibnditions presented thus far do not include
the audit explicitly. We include audit functions into a gealdime-stamping scheme and present new
security conditions that reflect two different types of aaldility — audit-supported publishing and multi-
round audit. We present a practical construction of an abHittime-stamping scheme that uses slightly
modified Merkle trees [18] and collision resistant (or ungéad one-way) hash functions. We prove that
the scheme is secure in the sense of conventional secunititioms, assuming that the underlaying hash
function is collision-resistant. The auditor is cruciatiie scheme — the negative results in [8] imply that
the ordinary reduction techniques are insufficient for qudofs in case no additional functionalities are
added to the time-stamping scheme.

We also prove that our construction of a time-stamping sehesith audit-supported publishing is
universally composable, if the hash function used is usagyr one-way. Our construction turns out to
be nearly optimal in the sense of communication betweeririe$tamping service and the auditor.

In Section 2, we present notations and definitions. In Se@iove define auditable time-stamping
schemes and the corresponding security notions. In Settiae construct an auditable time-stamping
scheme based on collision-resistant hash functions ane phat the construction is secure. In Section
5, we prove that our construction gives a universally coraplestime-stamping scheme with audit-
supported publishing. In Section 6, we prove that our cacstn is nearly optimal.

2 Notation and Definitions

By z «— D we mean that: is chosen randomly according to a distributitn If A is a probabilistic
function or a Turing machine, then< A(y) means that is chosen according to the output distribution
of A on an inputy. By U,, we denote the uniform distribution of, 1}". If Dy, ..., D,, are distribu-
tions andF'(z1,...,x,) is a predicate, theRr[x; «— D1,...,2m «— Dp: F(x1,...,2z,)] denotes
the probability thatF'(x1,...,z,,) is true after the ordered assignmentaqf ..., z,,. For functions
f,g:N — R, we write f(k) = O(g(k)) if there arec,ky € R, so thatf(k) < cg(k) (Vk > ko). We

write f(k) = w(g(k)) if Jim % = 0. If f(k) = k=<, thenf is negligible A Turing machineM

is polynomial-time(poly-timg if it runs in time k°(), wherek denotes the input size. LEP be the
class of all functionsf: {0,1}* — {0, 1}* computable by a poly-tim#. A distributionD on {0, 1}* is
polynomially sampleabld it is an output distribution of a poly-time Turing machin& polynomially
sampleable distributio is polynomially unpredictabléf Pr[L «— N(1%),z « D:z € L] = k=~ for
every predictofll € FP. We say thaD; andD, (on {0, 1}*) areindistinguishable(and writeD; ~ Ds)
if | Prlz « Dy: A(1%,2) = 1] — Prz «— Dy: A(1%,z) = 1] |= k() for every distinguisheA € FP.

A collision-resistant hash functiois a family {hz: {0,1}* — {0,1}¥},cn, such thats(k) =
Prihg, — §, (z,2') — A(LF hp):x # o', hyp(z) = hp(2)] = k=< for everyA € FP. Here,§ is
a certain poly-sampleable distribution B We write h(x) instead ofa ().

A Universal One-Way Hash Functid)OWHRP) is a family {h: {0,1}* — {0,1}*}xcn, such that
Priz — A1(1F), hy — §, 2" — Ag(hp, z):x # o', hi(x) = hi(2)] = k=<0 for everyA = (A}, A;) €
FP. Itis proven [20] that UOWHFs can be constructed from ong-fuactions.

3 Auditable Time-Stamping Schemes

The termtime-stampings somewhat misleading. In academic papers [5-8, 14, Thg-tamping sche-
mes are treated as secure logging mechanisms, rather thtacqgds for assigning precise time values
to data items. The main motivation of the time-stamping s@®discussed in this paper is related to
integrity protection (and preservation). For example gtistamps can prove that a digital signature was
created before the corresponding certificate was revol@dapplications like this, the precision of one
day is mostly sufficient. Applications that require higlegision time are out of the scope of this paper.

2

3.1 General Definition of a Time-Stamping Scheme

A time-stamping schem&S is capable of: (1) assigning a time-valtie N to each request € {0, 1}*,
and (2) verifying whether: was time-stamped during thieth time unit (hour, day, week, etc.). Almost
all known time-stamping schemes consist of the followingmponent-processes:

— Repository — a write only database that receivesit digests, adds them to a list. Repository also
receives queries € N and returns9[7] if 7 <|®|. Otherwise Repository returnsNIL. We assume
that the repository is updated in a regular way (say daily), the update time/date is known to the
users of the system. This is a link between the real time anchtbdeled time value=|9|. Practical
schemes [25] use newspaper-publishing afésitory. Therefore, it is reasonable to assume that
Repository is costly and to keep the number of stored bits as small ashpess

— Stamper — operates in discrete time intervals callednds During at-th round,Stamper receives
requestse and returns pairéz,). We assume thetamper "knows” how many digests have been
stored toRepository. Let L; be the list of all requests received during thth round. In the end of
the round,Stamper creates aertificatec = Stamp(z; Ly, L1, ..., L1) for each request € L.
BesidesStamper computes a digest; = Publish(L,, ..., L;) and send€; to Repository.

— Verifier — a computing environment for verifying time stamps. In g each user may have its
own Verifier but for the security analysis, it is sufficient to have onlyoh is assumed thaterifier
has a tamperproof accessRepository. On input(z, t), Verifier obtains a certificate from Stamper,
and a digestl = D [t] from Repository, and return/erify(x, ¢, d) € {yes, no}. Itis not specified how
c is transmitted fronbtamper to Verifier. In practice ¢ can be stored together with Hence, the size
of ¢ should be reasonable. Note thatan be verified only after the digegt is sent toRepository.
This is acceptable, because in the applications we addrésserified long after stamping.

— Client — any application-environment that usgamper andVerifier.

Definition 1 (Correctness).A triple of functionsTS = (Stamp, Publish, Verify) is called atime-stam-
ping schemef Verify(z,,, Stamp(z, £), Publish(£)) = yes for everyL = (L, ..., L1), andx € L.

Request 1 Audit report
Stamper ISR
cli Time stamp [N :
lent Digest |Repository| +Auditor
Request,Time stamp Digest v _......%
| Verifier / g
Result Time-stamping scheme

Fig. 1. General view of a time-stamping scheme.

3.2 Security Conditions

Itis assumed that an adversays able to corrupbtamper, some instances @lient and some instances
of Verifier. TheRepository is assumed to be non-corrupting. After closing tktl round (i.e. after pub-
lishing d;) it should be impossible to add a new requesb the setl.; of requests and prove to\rifier
thatx € L; by finding a suitable certificate This suggests the following security condition:

Definition 2 (Consistency).A time-stamping schemedsnsistentf for everyA € FP:

Pr[(Ly, ..., L1, c,z)—A(1%):z & L;, Verify(z, ¢, Publish(Ly, ..., L1))=yes] = k=M . (1)

The condition (1) is not completely satisfactory becauseativersary has to explicitly construct
the lists Ly, ..., L1 of time-stamped requests. Back-dating attacks can belpessithout A creating
these lists. For exampléy may publish a valuel which is not necessarily computed by using the
Publish function and then, after obtaining a new (randomly gendjate to find a certificate so that
Verify(z, ¢, d) = yes. This suggests a somewhat different security condition [8]

Definition 3 (Security against random back-dating).A time-stamping scheme $ecure against ran-
dom back-datingf for every polynomially unpredictable distributid® on {0, 1}* and (A, A;) € FP:

Pr[(d, a)—A1(1%), 2D, c—Aq(z, a): Verify(z, ¢, d) =yes] = k1) . (2)

In some applications, additional security features (likafidentiality of messages, availability etc.)
of time-stamping schemes are needed. This paper does dgttkase features. To show why the security
of time-stamping is an issue of independent importance, augt put the essential differences between
time-stamping andommitment schemes

Time-Stamping and Commitment SchemesThe security requirements Gommitment Schemdifer
from those of time-stamping in various aspects. In prirgipme-stamping schemes can be implemented
by using commitment schemes, but as the requirements testiameping schemes are much lower, this
would be inefficient for real applications. The main difieces between these schemes are the following:

— Message SecrecyOne of the two main requirements to Commitment Schemasessage secrecy
— the Receiver should not be able to read the committed medsefgre the message is opened by
the Committer. In Time-Stamping Schemes, message se@eawyt ithe primary security property,
though in some applications (like patent filing) it would lEsdlable.

— Commitment Size In time-stamping schemes, the commitment size is indep#raf the message
size and is much shorter than the message. This is mostiheatse for Commitment Schemes.

— Selective Releaseln time-stamping schemes, a committed messagis a list of submessages
m1,...,my. During the verification, only one submessage is "opened” by presenting the cor-
responding certificate; to the verifier. In Commitment Schemes, the whole messageopened.

3.3 Time-Stamping Schemes with Audit

It is essential for the security of time-stamping that a gptedStamper is not able to publish a value
d in Repository without actually knowing a databasge, ..., x,) such thatPublish(zy,...,z,) = d.
Otherwise, it could be difficult (or even impossible) to findsecurity proof [8]. The easiest way of
proving such knowledge is sending the requests .., z, to a trustedAuditor who checks whether
Publish(z1, ..., z,) = d. Such an audit procedure may be performed before publisitiaier publish-
ing. We observe two different audit models:

— Audit-Supported Publishingn this model, the roles dRepository and Auditor are merged. If the
t-th round is closed, thAuditor/Repository receives a list.; of bit-strings and an audit report from
Stamper and checks their correctness. The digest is not publishibe éudit report is incorrect.

— Multi-Round Audit In this model, audit reports are checked long after puisigshwhich is much
more close to the real-life audit, which is performed no ntbe: once a year.

We define two additional (audit) functionBeport for creating a report; = Report(Ly,...,L1),
andAudit for verifying a report by checking the consistencyrpfindd; = Publish(Ly, ..., Ly).

Definition 4. A 5-tuple ATS = (Stamp, Publish, Verify, Report, Audit) is called anauditable time-
stamping schem#é Audit(Report(L), Publish(L)) = yes, forany £ = (L,..., L) (properly created
audit reports verify successfully), afifitamp, Publish, Verify) is a time-stamping scheme.

In the schemes analyzed in this paper, we assume that thee oBwdit(Ly, . .., L) depends only
on the first argument;. The results we obtain for such schemes can be easily gaeeral

4

Schemes with Audit-Supported Publishing. The audit is performed during (or before) publishing.
The auditor is a trusted middle-man betwesttamper and Publisher. After the ¢-th round, Stamper
computes a digest, = Publish(L, ..., L) and an audit report; = Report(Ly,. .., Ly). Having sent a
pair (d, r), the auditor checks wheth@udit(r, d) = yes and sendg to Repository. Hence, a successful
publishing is possible only if a correct audit report is stenthe auditor. A time-stamping scheme with
audit-supported publishing is secure against random Hatikg if for every polynomially unpredictable
distributionD and for everyA = (A1, As) € FP:

Pr((d,r, a)—A, (1), 2D, c—As(x, a): Verify(z, ¢, d) =yes = Audit(r,d)] = k™1 . (3)

Schemes with Multi-Round Audit. Publishing is done like in the schemes without audit. Thetaud
function is performed after publishing. ¥ rounds are passe8tamper computes audit reports =
Report(Ly), ...,rny = Report(Ly, ..., L1) and sends$ry, ..., ry) to the auditor. For every=1... N,
the auditor obtaing; from Repository and computedudit(r, d;). If for somet the result isno then all
users are informed about the incident. A time-stamping reeheith multi-round audit is secure against
random back-dating if for every polynomially unpredic&i! and for everyA = (A1, As) € FP:

Pr((d, a)—A1 (1%), 2D, (¢, r)—As(z, a): Verify(z, ¢, d) =yes = Audit(r,d)] = k=1 . (4)

3.4 Records of Arbitrary Length

The definitions above assume that all time stamp requeststite long. To time-stamp longer records,
practical schemes use collision-resistant hash func(atrte client side) to make requests shorter. Since
these hash functions have influence on the security, they toaeshow up in the security conditions.

Definition 5. A time-stamping scheme with audit-supported publishirsgig to be secure relative to a
client side hash functioh: {0,1}* — {0, 1}* if for every polynomially unpredictable distributid® on
{0,1}* and for everyA = (A1, Aq) € FP:

Pr((d,r, a)—A (1F), X—D, c—Ay(X, a): Verify (h(X), ¢, d) =yes = Audit(r,d)] = k™) . (5)

A time-stamping scheme with audit-supported publishingpid to be secure relative to a client side
hash function. if for every polynomially unpredictabl® and for everyA = (A1, A2) € FP:

Pr((d, a)—A1(1%), XD, (¢, r)—Az(X, a): Verify (h(X), ¢, d) =yes = Audit(r,d)] = k=1 . (6)
Lemma 1 helps to prove the security of time-stamping scheeiasve to a client-side hash functién

Lemma 1. If D is a polynomially unpredictable distribution oft), 1}* and h: {0,1}* — {0,1}* is a
collision-resistant hash function thér{D) is also polynomially unpredictable. (Appendix A)

Note that a secure auditable time-stamping scheme (in tmeesaf (3) or (4)) is not necessarily
secure relative to every collision-resistant hash fumc{i®),(6)) because, in the conditions (5) and (6)
the adversaryA; has more information (ah-pre-imageX of x) than in (3) and (4).

4 Construction of a Provably Secure Auditable Time-Stampiig Scheme

Let h:{0,1}* — {0,1}* be a collision-resistant hash function, or a universal wag-hash func-
tion chosen randomly bRepository. We defineATS" = (Publish”, Stamp”, Verify”, Report”, Audit")
and prove that this 5-tuple of functions form a secure tita@aping scheme with audit. Let =
(zo, ..., zm_1) be all requests received during thénh round. For simplicity, we assume that= 2°.

5

The publishing functionPublish” (L) builds a complete binary tree of heigheach vertex) of which
has a(k + 1)-bit label A[v] = b||H[v], whereb € {0, 1} indicates whethev is a leaf ¢ = 0iff v is a
leaf) andH [v] € {0,1}* is a hash value computed by the following (inductive) scheffoe then-th leaf
v, we defineH [v] = z,,, andH [v] = h(A[v]||A[vg]) for any non-leafv, wherev;, andvy are the left-
and the right child ob, respectively. As a resulBublish” (L) returns &k + 1)-bit root label of the tree.

The stamping functiorStamp™(L,n) builds the same tree as above. kebe then-th leaf andv =
vg, V1, - - -, Vg_1, V¢ bE the unique path fromto the root vertex«,), i.e.v; is a child ofv;, ; for everyi
{0,...,¢0—1}. Letw(,v],...,v,_, denote the siblings afy, v1,...,v,_1, respectively. Let; = A[v]]
for everyi € {0,...,¢ — 1} andz = (2o, ..., 2_1). The certificate is: = Stamp"(L,n) = (n, 2).

The verification functiorVerify™(z, (n, z), d) recomputes! (based on: and(n, z)) and compares the re-
sults. Letn = ng_1np_o ... ng be the binary representationofindz = (2o, 21, . .., z¢—1). The verifi-

cation function computes sequences- (Ao, A1,..., Ar) € ({0, 1}’“*1)[andx = (x0,X1,---,Xe) €
({0, 1}’€)Z inductively, so thatyg = , \¢ := 0||z, and for everyi > 0, \; = 1||x;, where

X {h()‘i—lHZi) ifn,_,=0 " @)

The verification procedure outpugss, iff Ay = d.

The report functionis trivial, i.e. Report™ (L) = L for every listL.

The audit functionAudit” (L, d) computes?’ = Publish” (L) and returnses iff d’ = d.

Lemma2. (A)If z ¢ L, andAudit"(L,d) = Verify"(z,¢,d) = yes then theh-calls of Verify” and
Publish” contain a collision forh. (B) If L # L' and Publish”(L) = Publish®(L’) then theh-calls
performed by th@ublish” function contain a collision foh. (Appendix B)

Theorem 1. If h is a collision resistant hash function then a time-stampogemeATS” with audit-
supported publishing is secure relative to a client-sidesthiunctionh. (Appendix C)

Theorem 2. If h is a collision resistant hash function then a time-stammobgemeATS” with multi-
round audit is secure relative to a client-side hash funcfio (Appendix D)

Lemma 2 directly implies the consistency condition (1) AdrS". Hence, we have proved that our
construction is secure in the conventional sense.

Note also that it is probabiyot possibléo prove that the schen#S” = (Publish”, Stamp”, Verify")
without audit is secure against random back-dating (2gdbas the collision-resistance f The reason
is that one can find an oraat and choose a hash functiénthat uses)) so thath is collision-resistant
but TS" is still insecure [8]. As the ordinary reduction techniquektivize, the implication is that the
security of TS cannot be proved (in ordinary way) in the real world eitherthis sence, the audit
functionality is crucial for provable security.

5 Universally Composable Time-Stamping Schemes

5.1 Universal Composability Framework

To prove that a cryptographic primitive is securesivery reasonable applicatiaime universal compos-
ability (UC) paradigm is used [1-4, 9—11, 21-23]. If the reader idamoiliar with the UC paradigm, we

6

recommend to study the seminal works by Canetti [10, 11] hadrtonograph on composability by Lin-
dell [16]. Rather than usingd hocbehavior of adversaries, the UC paradigm definesleal primitive
which is "obviously secure” and then proves thahiE FP is an adversary for an application of the real
primitive then there is another adversdyc FP for the same application in which the real primitive is
replaced with the ideal primitive. Loosely speaking, nousiég incident in any application of the prim-
itive is caused by the difference between the real and tred juiémitives. Hence, the real functionality
faithfully implements the ideal functionality.

We use the language of Finite State Machine(FSM) theoryob@d from Pfitzmann [23] when
describing the UC formalism. Every component of the systiEmd fixed value ofk) is a (probabilis-
tic) FSM with input- and output ports. Each port has a nameatype (n or out). By a composition
(M1, M3) of two machinesM; andM, we mean a network of machines obtained by connecting the in-
put and output port pairs in a certain (pre-defined) way. kamgple, pairs with identical names can be
connected. The precise formalism for describing the cdiores is unimportant in this paper, because
the networks we use are very simple. We assume that eachpgopus buffered, whereas the length of
the buffer is unlimited. When analyzing a particular maehiwe use the following abbreviations. By
in, — x we denote the event that the machine has inpmatthe portin,.. By y — out, we mean thay
is sent to the output pottut,. To overcome the difficulties related to the asynchronoustier of the
network, it has been assumed that no two machines run at e ti@e. Technically, this condition is
achieved by introducing the clock-ports to the system. Eaabhine, after finishing its work, can clock
(give the token to) only one machine. In this paper, we usekeld output signals to represent the clock-
ing. By z = out, we mean that is sent to the output port namedand the token is given to the machine
with input portin,. By theview of M; in a compositionlM = (M, ..., M,,) we mean the sequence of
all input/output signals of4; in a particular run oM. The view is denoted by Mwy, (M1, ..., M,). In
general, the view is a probability space.

In the UC framework, we have an ideal time-stamping schdrdg a real schemdSg, and an
environmentClient. A composition(Client, TSg) is called areal application while (Client, TSy) is
called anideal application Each machine has special input/output ports for an adwefsa

Definition 6 (Universal Composability). TSy is universally composablef for everyA € FP there is
aA’ € FP, so that for everClient € FP: VIEW jjent (Client, TSg,A) & VIEW jient (Client, TSy, A).

Informally, this condition mens that anything that can reppo the real applicatiofClient, TSg) can
also happen to the ideal applicatig@lient, TSy).

In most of the proofs of universal composability, a simul&ds constructed that usésas a black-
box, i.e.A” = (S, A). Itis then proved that the behavior @fSg, S) andTS; are indistinguishable, except
when certain cryptographic primitives (used B§r) are broken. Hence, if the primitives are believed
to be secure, this implies the indistinguishability of veeand also the security @iSg in the strongest
possible sense. To prove the identical behaviofT8g, S) and TSy, a bisimulationbetween these two
machines is constructed.

5.2 Onthe Model

Some primitives are hard to cast in terms of the UC framewbhle.commitment probleraccurs, mean-
ing that a simulator that acts as an intermediary betweemethlenvorld adversary and the ideal func-
tionality has to fix the value of a certain data item withoubwing all the components it was created
from, and also without the ability to present instead of thaga item something that is and remains in-
distinguishable from it. Canetti and Fishlin proved [124tthUC bit-commitment is impossible in the in
the "plain model” (i.e. a model without ideal functionadisi) but it becomes possible in the Common
Reference String model, where a common (and accessiblépmastring is added to the system as an
ideal functionality. Similar problems occur when tryingdefine universally composable time-stamping

schemes, but fortunately, the problems dissapearideal audit functionalityrepresented in our model
by Repository that is merged wittAuditor) is added to the system. The universal composability can be
proved based on thaniversal one-wayness a hash functiorh, assuming that a new random instance
of h is generated (bYRepository) during each round. The reduction we obtain is linear-présg and
gives good practical security guarantees.

Hence, our UC Time-Stamping scheme construction is notdrptain model. However, adding the
trustedRepository to the system is reasonable because: (1) there are realytems that behave in
a similar way (e.g. newspapers); (2) it is possible to imgetrsimilar functionalities in the Common
Reference String model by using public-key cryptography.

5.3 Ideal Time-Stamping Scheme

The ideal scheme is a secure host that stores for each rommolentia setZ; of all bit-strings that were
stamped during thé-th round. The value of is initially 0 and is incremented each time the round is
closed. In our real scheme, we allow the stamping functityntd be corrupted. This is reflected in the
ideal scheme by giving the adversary complete control orchvhit-strings will be considered stamped
during the current round. As we shall see, at the end of thedothe adversary sends the contents of
L, to the secure host. Hence no availability is guaranteed.impertant property is, however, that once
thet-th round has ended, no more bit-strings can be addég +e back-datingis not possible.

In the real world, the verification of a time-stamp may fail fonumber of reasons that are under the
control of the adversary. For example, the repository magupeently unavailable or it may be available
but not yet contain the digest of the round we are interestethithis case we cannot rely on the time-
stamp and must behave as if it was invalid. In the ideal wordmwodel this situation by allowing the
adversary to declare any verification attempt unsuccedstwever, the adversary is unable to declare a
time-stamp valid if it really was not.

The internal state of the ideal time-stamping schérfigconsists of an indexed list; each element
£i1[t] of which is a set ok-bit strings. Initially, £; = ||. The ideal schem@&S; (Fig. 1, left) offers service
0N POrtSinyeq, outst, inyer, aNdoutres. The other portsdutreq, inst, iNaud, Outyer, andings) are intended
for communication with an adversa#y. In the following, we describe the behavior ©§; by defining
its reaction to any possible input.

— If infeq — x thenz — outyeq.

— If ingg — (x,t) then(z,t) — outyeq.

— Ifinguq — L theng; = SIHL-

— If inyer — (z,7) then(z, 7) — outyer.

— If inges — (z,b,7) thenb := b & True(z € £;[7]) and(x, b, 7) — OUtyes.

5.4 Real Scheme

In the real scheme, the trusted host is replaced by a numbéerdfer hosts. Some of them may be
corrupted but we observe only one non-corrupteedfier. This is allowed because in the standard time-
stamping setting, there is no communication between théarsr We assume that the channel between
Repository and (non-corruptedYerifier is tamperproof. It is a reasonable practical assumptionaumssz
channels with similar security properties (e.g. newspgpexist in the real life.

Having obtained a verification reque&t,t) (which reads "Wase time-stamped during théth
round?”), Verifier obtains the corresponding from Repository and applies th¥erify" procedure. How-
ever,Verifier needs a certificatefor verification. We take into account possible (malicions)dification
of the certificate before verification. Therefore, it is matuo assume that the certificate is entirely pro-
vided by the adversar.

The real schem@&Sg, (Fig. 2, right) consists of three components:

8

Stamper
Outreq INreq OUtreq INreq Outreq INreq OUtreq Nreq
inst outst inst outst inst outst inst outst
(z,1) (@,t) (2, 1) (2, 1)
. R itor
Client TS A’ Client ;p osttory (ray| A
B L iNaud outaud
Naud outayud outgir iNnum
dT\y T
(x,7) | (@,7) | (z,7) [Mag ovtmm] (2, 7) |
outyer INyer OUtyer Nyer Outyer INyer OUtyer Nyer
iNyes OUtres iNres = Outres iNres outres iNcert Outcert
(IL‘,b,T) 'QI ($,b,7’) (:L',b,’]') Verifier (:L',C,T)

Fig. 2. The ideal schem&S; and the real scheniESg = (Stamper, Repository, Verifier)

— Stamper — a prototype for a server that receives time stamp requestgedurns time stamps to
Client. As we assume that the advers@nhas full control oveiStamper, we defineStamper as a
stateless intermediary betweé€lient andA. Stamper offers service on portg.q andouts;. TwWo
other ports ¢ut,.q anding;) are for the communication witA. The behavior o6tamper is defined
as follows:

o If ineqg — x thenz — outyeq.
e If ing — (z,t) then(z,t) — outs.

— Repository — a prototype for a secure repository that publishes thestigaf rounds. The internal
state ofRepository consists of a (initially empty) lis® of k-bit strings.Repository offers service
on portsin,,m andoutg;,. The third portin,,q is for the communication witi\. The behavior of
Repository is defined as follows:

o If inpym — 7 andr <|®|, thend, := D[r] andd, — outgig.
o If inyym — 7 andr >|D|, thenNIL — outgig.
o If ingug — (r,d) andAudit(r, d) = yes then® := D||d.

— Verifier — a prototype for a real verification environment, which tghlly is a trusted client computer.
Verifier receives verification requests and answers with a verificagsult. It is assumed théerifier
is able to obtain the digests form Repository in a tamperproof way. The internal state\Gdrifier
consists of a bit-string variabhe Initially, © = ||. Verifier offers service on portgie, andoutyes.
Two ports —outnym andingig — are for requesting the digests frdRepository, and two last ports
(outyer andingig) are for the communication witA. Let y 2 out. denote the event thatis sent
to the output channelut. and the corresponding connection is clocked. The behavivedfier is
defined as follows:

e If inye — (z,7) then(z,7) — outyer.

o If incert — (z,¢,7) thent := (z,¢,7) andr 25 outhum-

e If ingig — d; € {0, 1}* andt = (z, ¢,), thenb := Verify(z, c,d,) and(z, b, 7) — outyes.
o If ingig — NIL andt = (x, ¢, 7), then(z,no, 7) — outyes.

For completing the description of the real scheme, it is cieffit to give efficient constructions for
Publish, Audit, andVerify, i.e. exactly the components of an auditable time-schemteaftpear in the se-
curity conditions (3), (4), (5), and (6). Hence, for any dallie time-stamping scheme it is reasonable to
speak aboutiniversal composabilitgs a security condition. In the next subsection, we definealator
for the schem@TS", we presented in Section 4.

5.5 Simulator for ATS"

The internal state of the simulat6r(Fig. 2, right) consists of two listé9y, ¢€1) and a bit-stringe;. The
elements of9; are k-bit strings, while the elements @ are sets ok-bit strings. Initially, ©1 = ||,
¢ = (0,0,...), ande; = ||. The simulator has five port$nfeq, outst, outayd, inver, andout,es) for
communicating withl'S; and five portsqut,eq, inst, inaud, Outyer, @andingert) for communicating withA.
The behavior of is defined as follows:

— If ineg — z thenz — outyeq.

— If ing — (z,t) then(z,t) = outy.

— If ingug — (L, d) andd = Publish(L), then®; := D1||d, andL = out,yq.

— If inyer — (z,7) then(z, 7) — outyer.

— If incert — (,¢,7) thent == (z,¢,7), b := 7 <|D1| & Verify(z, ¢, D1[r]), and(z, b, 7) = outyes.
If b = yes then¢y[r] := &[] U {x}.

| Stamper |
T . T T x T
——=|inreq outreq [| inreq Outreq iNreq OUtreq f—=
<——]outst inst | - out in out, ingg[<——
(z,t) == (1) TN A 1) A)
Reposfcory ' (r,d) ; . I . (r.d
. Naud |- INaud outayd Naud :
19 £l :
- diy AT | TS S |
(w,7):| Verifier |(x,7) (z,7) (x,7) Sz, 7)
—=] iNver OUtyer | | inver outyer inyer OUtyer ="
@ Outres iNcert |* Joutres iNnres = Outres iNcert f=—
(mabaT); ¢ E(.CC,C,T) (x,bﬂ—)s SI (vaaT) QI QI E($,C,T)
Mg : M :

Fig. 3. The real machin®, the simulatoiS, and the ideal machinel; = (TS, S)

5.6 Bisimilarity of the Real- and the Ideal Machines

We start the proof by augmenting the state of the comporfesissitory and Verifier of the real func-
tionality. From the following description it is obvious ththis extra state does not influence the behavior
of these components as the existing parts make no use ofihstat.

We add an initially empty list of sets ofk-bit strings to the state dtepository. We also replace the
third item in the description of its behavior by

— If ingug — (r,d) andAudit(r, d) = yes then® := D||d, andL := £||r.

We add a list® of sets ofk-bit strings to the state d¥erifier. Initially, € is an infinite list with all
elements equal th. We replace the third item in the description of the behawfdverifier by

— Ifingig — d- € {0, 1}* andr = (z, ¢, 7), thenb := Verify(z, ¢, d,) and(x, b, 7) — outes. If b = yes
then€[r] := ¢[r] U {z}.

Let Mg = TSg be the real machine andl; = (TS;,S) be the ideal machine (Fig. 2). A state
s = (£,9,¢, 1) is said to befaulty if 37: &[] Z £[r]. Let Sy and .St be the sets of states dfr and
My, respectively. LetFr and F1 be the corresponding sets of faulty states. Laind O be the sets of

10

inputs and outputs (common fdfr andMy). Letdgr: I x Sg — Sgr be the next-state function dfig
andAg: I x Sg — O be the output function df1z. We defines; and\; analogously foM;. Let s% and
s¥ be the initial states of the corresponding machines.

It is easy to verify (by using Lemma 2) that if one of the maelsimeaches a faulty state then the
h-calls performed so far comprise a collision far

Definition 7. Two machine$/y andM; are said to bebisimilar with error(Fy, F1), if there is a binary
relation (called abisimulation 5 C Sg xSt such thal(s%, s¥) € 3 and for any pair of stateésg, s1) € 3
and for any inputi € I, at least one of the following three conditions hold%) or (i, sg) € Fr, (2)
5I(i, 81) € Fi, or (3) ((5R(i, SR), 5I(i, 81)) ep and)\R(z‘, SR) =)\I(i, SI).

Theorem 3. (See Appendix E for a proof) The machiddg = TSg andM; = (TSy, S) are bisimilar
with error (Fr, F1), whereas the bisimulatiofi is defined as follows:

(2, D, ‘C) ﬂ (21, D1, Q:[,‘q) = (2 = 2[)&(@ = @1)&(@ = Q:I)&(‘C = ‘q).

Corollary 1. If his a collision-resistant (or universal one-way) hash fimethenATS" is a universally
composable time-stamping scheme with audit-supportetispiriy.

6 Size of the Audit Report

In ATS", theReport function is not length-decreasing which means that the odtvoad (and the com-
putations) are doubled compared to the schemes without diLidinatural to ask whether the length of
the report can be reduced. The answer turns out to be negatigeery universally composable time-
stamping scheme with audit-supported publishings|L,|.

We construct &lient and an adversang (for (Client, TSg)) so that no efficient adversa#y (for
(Client, TSy)) can simulateA unless the length dReport(r;) is almost|L;|. Our construction exploits
the commitment problem — the adversdty(or a simulator) knows onlyi; but has to send; to TS,
and hencd.; should be efficiently computable frod.

The internal state o€lient consists of a(k)-element arrayl. = (z1,...,7,4)) € {0, 1}kxp(k)
(wherep(k) = kOM), ak-bit string z (initially 0), and a boolean valuRoundover that is initially false.
Client reacts to the input events as follows:

— If ina — init then theClient generatesr, ..., z,) independently at random, computes=
Report(L), d = Publish(L), and outputgr, d) — outa.

— If ina — round then theClient outputs(0¥, 1) = oute,.

— If inyer — (0%, yes, 1) (a confirmation that the round is closed) then@ient setsRoundover := true
and outputd, — outp (revealsL to the adversary).

— If ina — verify thenClient generates «— {1,...,p(k)} uniformly at random, sets := z; and
outputs(z, 0) = outyer.

— If inyer — (2, yes, 0) andRoundover = yes thenClient outputsyes — outa.

The adversanA is defined as follows. The internal state Afconsists of gp(k)-element array
La = (a1,...,ayp)) € {0,1}7P®) (wherep(k) = k°W). First of all, the adversarA outputs
init — outcjient and then reacts to the input events as follows:

— If inclient — (r,d) then A outputs(r,d) 2, out,uq. After getting control again, the adversaty
outputs(Report (0%), Publish(0%)) = out,yqg. Finally, A outputsround = outciient.

— If inyer — (0%, 1) thenA outputs(0¥, Stamp(0¥, 1),0) — outcert.

— If inclient — L thenA setsLa := L and outputserify = outcjient.

11

— If inyer — (2,0) thenA finds ani, such thatL, = z, computes: := Stamp(i, La), and outputs
(z,¢,0) — outeert- The adversary halts if there is no such

It is easy to see that with probability one, the client’s VIeWEW cjient (Client, TSg, A) contains the
outputyes from Client. Let A’ € FP and VIEWjient (Client, TSg, A) &~ VIEW(jient(Client, TSy, A’).
Hence, due to the indistinguishability, with probability- k=) the view VIEW cjient (Client, TSy, A’)
contains the outpuges from Client. From the description of Sy, it follows that with probabilityl —
k~~() the adversaryA’ (based on partial informatiofReport(L), Publish(L))) is capable of find-
ing La such thatr; € La. Lemma 3 below shows that sué\ is possible only if the bit-length of
(Report(L), Publish(L)) is~ k - p(k).

Lemma 3. Let X1,..., X, € {0,1}* (p(k) = k°D)andS — {1,...,p(k)} be independent uni-
formly distributed random variables. L¢t {0, 1}**(%) — {0,1}¢() and A: {0, 1}¢*) — {0, 1}F>xm(k)
(wherem (k) = k°M) be function families, such that

§=Pr[X1,..., X {0, 1} L= A(f(X1,..., Xp)), S—{1,...,pk) }: Xg € L] = 1 — k=),
Thenl(k) = k - p(k) — O(log k).

Proof. A p(k)-tuple (z1, ..., zyw) isgoodif x; € A(f(z1,...,7,4)) foralli € {1,...,p(k)}. Other
tuples arebad As for any bad tuplézy, ..., z,)) the probability of error — § > ﬁ # k=) the
number of good tuples should & — k—~(1)) . 2#2(k)_On the other hand, the number of good tuples
cannot exceed’®) . m(k)P*) and henc@‘™) . m,(k)?*) = (1 — k~«()).2k2(k) which gives (by taking
logarithm from both sides)(k) = k - p(k) — O(log k). 0

Corollary 2. In every universally composable time-stamping scheme awithit-supported publishing
ATS = (Publish, Stamp, Verify, Report, Audit), where the report and the publishing functions have
types:Report: {0, 1}*P(k) — {0, 1}7(*) andPublish: {0, 1}**2(*) — {0, 1}4k):

r(k) +d(k) = k- p(k) — O(log k),
i.e. the amount of information sent to the auditor is compédo the list of all time stamps.
Actually, the last corollary holds for a weaker securityiontthat is calledsimulatability

Definition 8 (Simulatability). The real schem&Sg is simulatableif for everyClient, A € FP there is
A’ € FP, so thatVIEW cjient (Client, TSgr,A) &~ VIEW jient (Client, TSy,A’).

Like the Universal Composability, also the Simulatabilityplies both the Consistency (1) and the
security against Random Back-Dating (2) but not the othgrieand. So it is still possible that one can
compress the published information and still have a prgvabture auditable time-stamping scheme in
the sense of (1) and (2). One such construction is presentf] but their security reduction is very
inefficient.

The Simulatability (and the Universal Composability) cibiaths depend on the definitions a5,
andTSg. It is not completely excluded that these definitions caretexed (in a reasonable way) so that
the compression of the published information becomes plessilowever, we cannot even imagine how
this could be done.

7 Discussion on Practical Implementation

As in the schemes with audit, all time stamp requests arefsEmtStamper to Auditor who then per-
forms the same hash computations. Hence, if therenatampers in the scheme and each stamper

12

performsp hash operations per round, then the auditor must perfarnp hash operations per round.
Hence, the cost of the service increases by a constant,factonatter how many users there are.

In the schemes described above, we have only one trdsiddor. As one of our main goal was
to develop measures against insider attacks, it is realmatassume that also theuditor can be
malicious. A natural approach would be to replace a trusteditor with a list Auditory, . . . , Auditor,,
of auditors and use secure multi-party computation. A siiegl approach would be that &tamper
sends the digest and the report to all auditors in the list. The auditors check whethedit(r,d) = 1
and send, d and the result (of the check) Repository who then decides by clear majority which value
to publish. This solution works, whenever tRepository and"TJrl of the auditors are honest.

References

(I

. Michael BackesCryptographically Sound Analysis of Security Protoc®#D thesis, Universitat des Saarlandes, 2002.

2. Michael Backes and Birgit Pfitzmann. Symmetric Encrypiioa Simulatable Dolev-Yao Style Cryptographic Librany. |
17th IEEE Computer Security Foundations Workstegcific Grove, CA, June 2004.

3. Michael Backes, Birgit Pfitzmann, and Michael Waidner.m@yetric authentication within a simulatable cryptographi
library. In Einar Snekkenes and Dieter Gollmann, edit@m@mputer Security - ESORICS 2003, 8th European Symposium
on Research in Computer Securitsolume 2808 ofLNCS pages 271-290, Gjgvik, Norway, October 2003. Springer-
Verlag.

4. Michael Backes, Birgit Pfitzmann, and Michael Waidner. Aérsally Composable Cryptographic Library. Bfnoceed-
ings of the 10th ACM Conference on Computer and Communigatecurity Washington, DC, October 2003. ACM
Press.

5. Dave Bayer, Stuart Haber, and W.-Scott Stornetta. Inipgothe efficiency and reliability of digital time-stampintn
Sequences II: Methods in Communication, Security, and Qtenfciencepp.329-334, Springer-Verlag, New York 1993.

6. Josh Benaloh and Michael de Mare. Efficient broadcaststamping. Tech. report 1, Clarkson Univ. Dep. of Matheosati
and Computer Science, August 1991.

7. Ahto Buldas, Peeter Laud, Helger Lipmaa, and Jan Villem$one-Stamping with Binary Linking Schemes.Advances
in Cryptology — CRYPTO’98.NCS1462, pp. 486-501, 1998.

8. Ahto Buldas and Mart Saarepera. On provably secure st@eping schemes. Wdvances in Cryptology — ASIACRYPT
2004 LNCS 3329pp.500-514, 2004.

9. Ran Canetti. A unified framework for analyzing securitypodtocols. Electronic Colloquium on Computational Comp-
lexity (ECCC) 8(16), 2001.

10. Ran Canetti. Security and composition of multi-partyptographic protocolsJournal of Cryptology 13(1):143-202,
2000.

11. Ran Canetti. Universally Composable Security: A NewaBigm for Cryptographic Protocols. In 4@ FOCS pp. 136—
145. 2001.

12. Ran Canetti and Marc Fischlin. Universally Composatden@itments. ICRYPTO’01LNCS 2139, pp. 19-40. 2001.

13. D. Dolev and A. C. Yao. On the security of public key pratisclEEE Transactions on Information Ther39(2):198—
208, 1983.

14. Stuart Haber and W.-Scott Stornetta. How to time-stardigigal document.Journal of Cryptology Vol. 3, No. 2, pp.
99-111 (1991).

15. Stuart Haber and W.-Scott Stornetta. Secure Namest@tBngs. INnACM Conference on Computer and Communications
Security pp. 28-35, 1997.

16. Yehuda LindellComposition of Secure Multi-Party Protocos Comprehensive Study. LNCS 2815. 2003.

17. Michael LubyPseudorandomness and cryptographic applicatiéinceton University Press, 1996.

18. Ralph C. Merkle. Protocols for public-key cryptosyssefroceedings of the 1980 IEEE Symposium on Security and
Privacy, pp.122-134, 1980.

19. Tal Moran, Ronen Shaltiel and Amnon Ta-Shma. Non-igteratimestamping in the bounded storage modehAdmances
in Cryptology — CRYPTO 200&NCS3152, 2004.

20. Moni Naor and Moti Yung. Universal one-way hash funcsi@nd their cryptographic applications. Proceedings of the
Twenty First Annual ACM Symposium on Theory of Compubfay 15-17 1989: Seattle, ACM Press, pp. 33—43, 1989.

21. Birgit Pfitzmann, Matthias Schunter, and Michael Waid@yptographic Security of Reactive Systems. In Steven€ich
der and Peter Ryan, editoM/orkshop on Secure Architectures and Information Fleslume 32 ofElectronic Notes in
Theoretical Computer Scienceoyal Holloway, University of London, 2000. Elsevier Suie.

22. Birgit Pfitzmann and Michael Waidner. Composition arnedgnity preservation of secure reactive systemsC@s 2000,

Proceedings of the 7th ACM Conference on Computer and Coinaiioms Securitypages 245-254, Athens, Greece,

November 2000. ACM Press.

13

23. Birgit Pfitzmann and Michael Waidner. A Model for Asynchous Reactive Systems and its Application to Secure
Message Transmission. BR001 IEEE Symposium on Security and Privgegges 184—200, Oakland, California, May
2001. IEEE Computer Society Press.

24. Alexander Russell. Necessary and sufficient conditioneollision-free hashingJournal of Cryptology(1995) 8: 87—99.

25. www. surety. com

26. ww. aut henti dat e. com

27. ww. di gi st anp. com

A Proof of Lemma 1

Let N be a predictor with success probabilitgk) = Pr[L — M(1¥), X « D:h(X) € L]. Consider the
following adversany that on inputl*:

— CallsM to obtainL « M(1%).
— Generates two independent bit-strings < D and X, <« D and outputg X, X»).

Letp(Lo) = Pr[L « M'(1%): L = L] and letE be the event thai(X;) = h(X,) € Lg. Hence,

= ZP(LO) Pr[Xl,XQ «—D: h(Xl) = h(XZ) € LO]

Lo
= p(Lo)-Y _Pr[Xy, Xo—D:h(X1)=h Zp L)+ Y Pr[X —D:h(X)={]
Lo el teLo
=Y p(Lo) - Pr[X « D:h(X) € Lo] - > _ Pr[h(—e\h X) € L]
Lo LeLo
>3 p(Lo) - PR[X — D:h(X) € Lo ﬁ > L p(S p(Lo) - PRIX — D:h(X) € L]
Lo Lo
2
2
> D olio)-PrX — DibX) €)) = £a)

whereT (k) denotes the running time 6F(1*). Note that ifX; # X, then the evenE leads to a collision
of h. AsPr[X; # X,] = 1 — k=) (otherwise,D would be a successful predictor for itself), then we

conclude thaf finds collisions with time-success ra ((k)) ke, O

B Proof of Lemma 2.

(A) Letc = (n, z,t). Let/ be the height of the tree arfibe the bit-length of.. We prove the lemma by
induction on? + ¢'. As a basis of the induction, we study the special cdses0 and/’ = 0 and then
perform the induction step, which states that if the statgrhelds in the casé — 1 and/’ — 1 then it
holds for/ and?’ as well.

Let ¢ = 0. In this casez = () is an empty list and hencke, = 0|z, which is possible only if there
is only one vertex in the tree, because otherwise the firgiflilte root hash i4. It follows thatz € L
because the the leaves of the tree are in one-to-one radaifpwith the elements aof.. As we have a
contradiction, the statement of the lemma trivially holds.

Let ¢ = 0. In this case, the tree consists of a single vertex labeldd i = 0|y, . But (by the
definition of Verify”), A cannot begin with &-bit except if¢’ = 0, which contradicts: ¢ L.

Now assume that’ and/ are both positive and the statement holds for the smallelegabf? + ¢'.
As Audit"(L,d) = yes, we havePublish”(L) = d. Therefore, the label of the loot vertexis y =
1||h(A[vL]||A[vg]) (computed byPublish”(L)) is equal tohy € {h(ze||Ae—1), h(Aw_1]|z¢)} (com-
puted byVerify"). If A[vr]||A[vr] & {z¢||\e—1, \er—1]|ze} then we have a collision.

14

Otherwise, we assume without loss of generality that;,] = z, and Ajvg] = Ap—1. Let Lp be
the set of all leaves in the right subtreewofNote that the root label of the right subtreelis= A[vg].
Hence, we hav®ublish” (Lr) = \y_;. LetZ = (z,...,20_2) and@ = ny_y ... ng. Hence, we have

Audit"(Lg,d) = Verify"(z, (7, %,t),d) = yes. The statement (A) follows.

(B) As L # L' there is anz which belong to one and only one of the lists L’. Assume without
loss of generality that € L butz ¢ L'. Let n be the sequence number ofin L. Now simulate
¢ = Stamp”(L,n). Due to the correctness condition, we haveify" (z, ¢, Publish®(L)) = yes =
Audit" (L', Publish™ (L)), which by (A) leads to a collision. 0

C Proof of Theorem 1

Let A = (A1, Ay) be an adversary with success probability
6(k) = Pr[(d, L, a)—A;(1%), X =D, c—As(X, a): Verify" (h(X), ¢, d) =yes = Audit"(L, d)] .
We define two adversaries:ccallision-finderl for 4 and apredictor I that predictsh(D).

— The collision findeir (1¥) simulates(d, L, a)«A(1%), XD, ceAq(X, a).
If Verify” (h(X), ¢, d) =yes= Audit"(L, d) andh(X) ¢ L thenr finds a collision by Lemma 2.
— The predictorl1(1%) simulates(d, L, a) < A; (1¥) and outputs..

Considering an experimefd, L, a)—A; (1¥), XD, c—A, (X, a), we define the following events:

Succ = [Verify(h(X), ¢, d) =yes = Audit" (L, d)]
Coll = [Verify(h(X), ¢, d) =yes = Audit" (L, d)] N [h(X) ¢& L]
Pred = [Verify(h(X), ¢, d) =yes= Audit"(L,d)] N [W(X) € L] .

Lety(k) andx(k) denote the success bfandll, respectively. ASucc = Coll U Pred, we have
(k) + 7(k) > Pr[Coll] + Pr[Pred] > Pr[Coll N Pred] = Pr[Succ] = §(k) .

As (k) = k=« by Lemma 1, it follows thafF finds collisions with non-negligible success. a

D Proof of Theorem 2
Let A = (A1, A2) be an adversary with success probability

5(k) = Pr[(d,a) —A,(1¥), X —D, (¢, L) — Ay(X, a): Verify"(h(X), ¢, d) = Audit" (L, d) = yes] .
Consider an experiment with the following computations:

w [X —D, (¢,L) —Ay(X,a), v — Verify"(h(X),e¢,d), w— Audit"(L,d)
(d,a) — Ay (17), ' Y / / b n / hoTr
X' —D,(d,L') — A(X',a), v « Verify"(h(X"),d,d), w' — Audit" (L', d)

We define the following eventSucc: [v = w = yes|, andSucc’: [v = w’ = yes]|. By using the Jensen
inequality, we have

Pr[Succ N Succ’] = Z Pr[d, a] - Pr[Succ N Succ’ |d,a] = Z Pr[d, a] - Pr[Succ | d,a] - Pr[Succ’ | d,a]

d,a d,a
2
= Z Pr(d, a] - Pr®[Succ | d,a] > (Z Pr[d, a] - Pr[Succ | d, a]) = 6%(k) .
d,a d,a

We define two adversaries:callision-finderl for 4 and apredictor I that predictsi(D).

15

The collision finder™: simulates the experiment above and tries to find a collisiwrkf based on the
oracle calls (toh) performed during the experiment. The collision-findingasgy ofl" concerns in the
following checks:

— If =(Succ N Succ’) then halt.
—elseif L # L' or h(X) ¢ L or h(X') ¢ L', then find a collision 21, z2) (by using Lemma 2) and
output(zy, 22) .
The predictorl1 simulates:(d, a) < A;(1¥), XD, (¢, L)—Az(X, a) and returngl..
We define the following events that are related to the expartrabove:

Coll = Succ N Succ’ N [[L # L' U [W(X) & L] U [W(X') & L']]
Pred = SuccNSucc’ N[L=L'N[h(X) e LIN[h(X")e L] .

Hence,Coll U Pred = Succ N Succ’. The success probability(k) of M is

m(k) = Pr[L — N(1*¥), X' —D: h(X') € L]
= Pr[(d, a)—A;(1¥), XD, (¢, L)—Ay(X,a), X'—D, (¢, L')—Ay(X', a): h(X') € L]
> Pr[Pred] .

Hence, if the success 6fis denoted byy(k), we have

v(k) + 7(k) = Pr[Coll] + Pr[Pred] > Pr[Coll U Pred] = Pr[Succ N Succ’] = §2(k). 0

E Proof of Theorem 3

Obviously, (s%,s)) € 8. Letsg = (£,D,¢,t), st = (£1,D1,€¢1,11) and (sg,s1) € B. Leti €
I be an input. To prove the statement, we assw®@,sg) ¢ Fr, d1(i,s1) ¢ Fi, and show that
(0r (i, sr),01(, 51)) € BandAr(i, sr) = Ai(4, s1). We have to check only two input eventéng,g — L
andinet — (x, ¢, 7), because the other inputs do not change the state of the meactnd produce the
same output.

If inyug — (L, d) andd = Publish(L) then:®

— Mg (i.e. Repository) computesD := D||d and£ := £||L. No output is produced.

— M (i.e. the simulatoS) computesD; := D||d, and outputs, = out,.q. The ideal schem&S; (on
inputin,,g — L) computest; := £1||L. No output is produced.

If incert — (2, ¢, 7) andt >|D| then:

— Mg (i.e. Verifier) setst := (z, ¢, 7) and outputs 2, outnum. As a resultRepository obtains an input
innum — 7 and outputNIL — outgi, (because of >|D|) and returns the control tderifier. Having
an inputingiz — NIL, Verifier outputs(z, no, 7) — outyes.

— My (the simulatorS) setst; := (z,¢,7), computesh := 7 <|D;| & Verify(z, c, D1[7]) = no (as
|D1]|=|®|< 7) and outputgz, no, 7) — outyes giving control toTS;. The ideal scheme (on input
inres — (z,no, 7)) computes := no & True(x € £;[7]) = no and outputz, no, 7) — outyes.

If incert — (z,¢,7), 7 <|D|, andVerify(x, ¢, Publish(£[r])) = no then:

5 Both machines do nothing if # Publish(L).

16

— Mg (i.e. Verifier) setst := (z, ¢, 7) and outputs 2, outnum. As a resultRepository obtains an input
iNnum — 7, COMputesi, := D[r] and outputsi, — outgig (returning the control t&/erifier). The
Verifier, having an inputng;; — d,, computes

b := Verify(z, c,D[r]) = Verify(z, ¢, Publish(£[r])) = no,

and output§x, no, 7) — outyes.
— M (i.e. the simulatoiS) setsry := (z, ¢, 7) and computes (considerirg; = D)

b := True[r <|Di|] & Verify(x, ¢, D1[7]) = Verify(z, ¢, D[r]) = Verify(x, c, Publish(£[r])) = no,

and outputgx, no, 7) 2 OUtyes (giving control toTSy). The ideal schemd@$Sy, on inputinges —
(x,no,) computesd := no & True(z € £1[r]) = no, and outputgz, no, 7) — Outyes.

If incert — (z,¢,7), 7 <D, Verify(x, ¢, Publish(£[7])) = yes, andx € £;[7] then:

— Mg (i.e. Verifier) setst := (z, ¢, 7) and outputs 2, outnum. As a resultRepository obtains an input
iNnum — 7, COMputesi, := D[r] and outputsl, — outgig (returning the control t&/erifier). The
Verifier, having an inputngi; — d, compute$

b := Verify(z, ¢,d;) = Verify(z, ¢, ©[r]) = Verify(z, ¢, Publish(£[7])) = yes,

and€[r] := ¢[r] U {z} and outputgz, yes, T) — outyes.
— M (i.e. the simulatorS) setst; := (z, ¢, 7) and computes (considerir®; = D)

b := True[r <|D1|] & Verify(x, ¢, D1[r]) = Verify(x, c,D[r]) = Verify(z, c, Publish(£[7])) = yes,

¢1[7] := €1[r] U {2} and outputgz, yes, 7) = outyes (giving control toTS;). The ideal schem&S;,
on inputin,es — (z,yes, 7) computed := yes &True(x € £1[r]) = yes, and outputgz, yes, 7) —
OUtes-

If incert — (z,¢,7), 7 <D, Verify(x, ¢, Publish(£[7])) = yes, andx ¢ £;[7] then:

— Mg (i.e. Verifier) setst := (z, ¢, 7) and outputs 2, outnum. As a resultRepository obtains an input
iNnum — 7, COMputesi, := D[r] and outputsl, — outgig (returning the control t&/erifier). The
Verifier, having an inputng;; — d,, computes

b := Verify(z, ¢,d;) = Verify(x, ¢, ©[r]) = Verify(z, ¢, Publish(£[7])) = yes,

and¢[r] := €[r] U {x} and outputgz, yes, 7) — out.s. The resulting state is faulty.
— M (i.e. the simulatoiS) setsty := (z, ¢, 7) and computes (considerirg; = D)

b := True[r <|D1]] & Verify(x, c, ®1[7]) = Verify(z, ¢, D[7]) = Verify(x, c, Publish(£[r])) = ves,

¢1[r] := ¢1[r] U {z} and outputgz, yes,) = outes (giving control toTS;). The ideal schem&S;,
on inputin,es — (x,yes, 7) computed := yes & True(z € £1[r]) = yes, and outputgz, yes, 7) —
out.es. The resulting state is faulty.

To conclude, in every input event and in every branch we eeskerthe machines produce the same
output and their internal states are either both faulty tisfyethe relationg. a

® It is easy to check tha[r] = Publish(£[r]) is an invariant oMg, as well asD1[r] = Publish(£;[r]) is an invariant of
Mr.

17

