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Abstract. We present a universally composable time-stamping scheme based on universal one-way hash func-
tions. The model we use contains an ideal auditing functionality (implementable in the Common Reference
String model), the task of which is to check that the rounds’ digests are correctly computed. Our scheme uses
hash-trees and is just a slight modification of the known schemes of Haber-Stornetta and Benaloh-de Mare, but
both the modifications and the audit functionality are crucial for provable security. The scheme turns out to be
nearly optimal – we prove that in every universally composable auditable time-stamping scheme, almost all
time stamp requests must be communicated to the auditor.
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1 Introduction

Time-stamping is an important data integrity protection mechanism the main objective of which is to
prove that electronic records existed at certain time. The scope of applications of time-stamping is very
large and the combined risks related to time stamps are potentially unbounded. Hence, the standard of
security for time-stamping schemes must be very high. It is highly unlikely that currently popular trusted
third party solutions are sufficient for all needs, since thepractice has shown that insider threats by far
exceed the outside ones. This motivates the development of time-stamping schemes that are provably
secure even against malicious insiders.

Several constructions of potentially insider-resistant time-stamping schemes have been proposed [6,
14, 15, 7, 19] based on collision-resistant hash functions.However, only few analytical arguments confirm
the security of these schemes. Two early attempts to sketch asecurity proof [6, 15] were recently shown
to be flawed [8]. Presently, there are two schemes with correct security proofs: a non-interactive time-
stamping scheme in the bounded storage model [19] and a bounded hash-chain scheme in the standard
model [8]. However, the schemes in use (like [25–27]) still have no formal security proofs.

The formal security conditions for time-stamping schemes are still a subject under discussion. The
early works [6, 14, 15] focused on theconsistency of databasesmaintained by time-stamping service
providers. It was required to be hard to change the database without compromising its consistency with
a digest published in a secure repository. In [8] it was pointed out that one of the implicit assumptions of
the consistency condition – the adversary knows at least onepre-image of a published digest – may be
unjustified for malicious service providers. An independent security condition was proposed [8] in which
the stream of time stamp requests is modeled as a high-entropy distribution. Considering the wide range
of time-stamping applications, it cannot be taken for granted that these two conditions are sufficient.
Universal Composability (UC) framework[1–4, 9, 21–23] provides a more general approach to security
– rather than studyingad hocbehavior of adversaries, it is proved that real security primitives faithfully
implement a certainideal primitive the security of which is evident. Therefore,all security features of
the ideal primitive (including thead hocones mentioned above) are transferred to the real primitive.

In this paper, we construct universally composable time-stamping schemes under an assumption that
they contain a third party auditing functionality. The ideaof third-party audit in time-stamping schemes is
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natural and certainly not new. It has been proposed as one of the additional security measures in commer-
cial time-stamping schemes [25]. Still, the formal security conditions presented thus far do not include
the audit explicitly. We include audit functions into a general time-stamping scheme and present new
security conditions that reflect two different types of auditability – audit-supported publishing and multi-
round audit. We present a practical construction of an auditable time-stamping scheme that uses slightly
modified Merkle trees [18] and collision resistant (or universal one-way) hash functions. We prove that
the scheme is secure in the sense of conventional security conditions, assuming that the underlaying hash
function is collision-resistant. The auditor is crucial inthe scheme – the negative results in [8] imply that
the ordinary reduction techniques are insufficient for suchproofs in case no additional functionalities are
added to the time-stamping scheme.

We also prove that our construction of a time-stamping scheme with audit-supported publishing is
universally composable, if the hash function used is universally one-way. Our construction turns out to
be nearly optimal in the sense of communication between the time-stamping service and the auditor.

In Section 2, we present notations and definitions. In Section 3, we define auditable time-stamping
schemes and the corresponding security notions. In Section4, we construct an auditable time-stamping
scheme based on collision-resistant hash functions and prove that the construction is secure. In Section
5, we prove that our construction gives a universally composable time-stamping scheme with audit-
supported publishing. In Section 6, we prove that our construction is nearly optimal.

2 Notation and Definitions

By x ← D we mean thatx is chosen randomly according to a distributionD. If A is a probabilistic
function or a Turing machine, thenx← A(y) means thatx is chosen according to the output distribution
of A on an inputy. By Un we denote the uniform distribution on{0, 1}n. If D1, . . . ,Dm are distribu-
tions andF (x1, . . . , xm) is a predicate, thenPr[x1 ← D1, . . . , xm ← Dm:F (x1, . . . , xm)] denotes
the probability thatF (x1, . . . , xm) is true after the ordered assignment ofx1, . . . , xm. For functions
f, g: N → R, we writef(k) = O(g(k)) if there arec, k0 ∈ R, so thatf(k) ≤ cg(k) (∀k > k0). We
write f(k) = ω(g(k)) if lim

k→∞

g(k)
f(k) = 0. If f(k) = k−ω(1), thenf is negligible. A Turing machineM

is polynomial-time(poly-time) if it runs in time kO(1), wherek denotes the input size. LetFP be the
class of all functionsf : {0, 1}∗ → {0, 1}∗ computable by a poly-timeM. A distributionD on{0, 1}∗ is
polynomially sampleableif it is an output distribution of a poly-time Turing machine. A polynomially
sampleable distributionD is polynomially unpredictableif Pr[L← Π(1k), x← D:x ∈ L] = k−ω(1) for
every predictorΠ ∈ FP. We say thatD1 andD2 (on{0, 1}∗) areindistinguishable(and writeD1 ≈ D2)
if | Pr[x← D1:∆(1k, x) = 1]− Pr[x← D2:∆(1k, x) = 1] |= k−ω(1) for every distinguisher∆ ∈ FP.

A collision-resistant hash functionis a family {hk: {0, 1}
∗ → {0, 1}k}k∈N, such thatδ(k) =

Pr[hk ← F, (x, x′) ← A(1k, hk):x 6= x′, hk(x) = hk(x
′)] = k−ω(1) for everyA ∈ FP. Here,F is

a certain poly-sampleable distribution onF∗. We writeh(x) instead ofhk(x).
A Universal One-Way Hash Function(UOWHF) is a family{hk: {0, 1}∗ → {0, 1}k}k∈N, such that

Pr[x← A1(1
k), hk ← F, x′ ← A2(hk, x):x 6= x′, hk(x) = hk(x

′)] = k−ω(1) for everyA = (A1,A2) ∈
FP. It is proven [20] that UOWHFs can be constructed from one-way functions.

3 Auditable Time-Stamping Schemes

The termtime-stampingis somewhat misleading. In academic papers [5–8, 14, 15], time-stamping sche-
mes are treated as secure logging mechanisms, rather than protocols for assigning precise time values
to data items. The main motivation of the time-stamping schemes discussed in this paper is related to
integrity protection (and preservation). For example, time stamps can prove that a digital signature was
created before the corresponding certificate was revoked. For applications like this, the precision of one
day is mostly sufficient. Applications that require high-precision time are out of the scope of this paper.
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3.1 General Definition of a Time-Stamping Scheme

A time-stamping schemeTS is capable of: (1) assigning a time-valuet ∈ N to each requestx ∈ {0, 1}k,
and (2) verifying whetherx was time-stamped during thet-th time unit (hour, day, week, etc.). Almost
all known time-stamping schemes consist of the following component-processes:

– Repository – a write only database that receivesk-bit digests, adds them to a listD. Repository also
receives queriesτ ∈ N and returnsD[τ ] if τ ≤|D|. Otherwise,Repository returnsNIL. We assume
that the repository is updated in a regular way (say daily), and the update time/date is known to the
users of the system. This is a link between the real time and the modeled time valuet =|D|. Practical
schemes [25] use newspaper-publishing as theRepository. Therefore, it is reasonable to assume that
Repository is costly and to keep the number of stored bits as small as possible.

– Stamper – operates in discrete time intervals calledrounds. During at-th round,Stamper receives
requestsx and returns pairs(x, t). We assume thatStamper ”knows” how many digests have been
stored toRepository. Let Lt be the list of all requests received during thet-th round. In the end of
the round,Stamper creates acertificatec = Stamp(x;Lt, Lt−1, . . . , L1) for each requestx ∈ Lt.
Besides,Stamper computes a digestdt = Publish(Lt, . . . , L1) and sendsdt to Repository.

– Verifier – a computing environment for verifying time stamps. In practice, each user may have its
ownVerifier but for the security analysis, it is sufficient to have only one. It is assumed thatVerifier

has a tamperproof access toRepository. On input(x, t), Verifier obtains a certificatec from Stamper,
and a digestd = D[t] from Repository, and returnsVerify(x, c, d) ∈ {yes, no}. It is not specified how
c is transmitted fromStamper to Verifier. In practice,c can be stored together withx. Hence, the size
of c should be reasonable. Note thatx can be verified only after the digestdt is sent toRepository.
This is acceptable, because in the applications we address,x is verified long after stamping.

– Client – any application-environment that usesStamper andVerifier.

Definition 1 (Correctness).A triple of functionsTS = (Stamp,Publish,Verify) is called atime-stam-
ping schemeif Verify(xn,Stamp(x,L),Publish(L)) = yes for everyL = (Lt, . . . , L1), andx ∈ Lt.

Stamper

Verifier

Repository Auditor

Audit report

Digest
DigestTime stampRequest,

Client

Request

Time stamp

Result Time-stamping scheme

Fig. 1. General view of a time-stamping scheme.

3.2 Security Conditions

It is assumed that an adversaryA is able to corruptStamper, some instances ofClient and some instances
of Verifier. TheRepository is assumed to be non-corrupting. After closing thet-th round (i.e. after pub-
lishingdt) it should be impossible to add a new requestx to the setLt of requests and prove to aVerifier

thatx ∈ Lt by finding a suitable certificatec. This suggests the following security condition:

Definition 2 (Consistency).A time-stamping scheme isconsistentif for everyA ∈ FP:

Pr[(Lt, . . . , L1, c, x)←A(1k):x 6∈ Lt, Verify(x, c,Publish(Lt, . . . , L1))=yes] = k−ω(1) . (1)
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The condition (1) is not completely satisfactory because the adversary has to explicitly construct
the listsLt, . . . , L1 of time-stamped requests. Back-dating attacks can be possible withoutA creating
these lists. For example,A may publish a valued which is not necessarily computed by using the
Publish function and then, after obtaining a new (randomly generated) x, to find a certificate so that
Verify(x, c, d) = yes. This suggests a somewhat different security condition [8]:

Definition 3 (Security against random back-dating).A time-stamping scheme issecure against ran-
dom back-datingif for every polynomially unpredictable distributionD on{0, 1}k and(A1,A2) ∈ FP:

Pr[(d, a)←A1(1
k), x←D, c←A2(x, a):Verify(x, c, d)=yes] = k−ω(1) . (2)

In some applications, additional security features (like confidentiality of messages, availability etc.)
of time-stamping schemes are needed. This paper does not study these features. To show why the security
of time-stamping is an issue of independent importance, we point out the essential differences between
time-stamping andcommitment schemes.

Time-Stamping and Commitment Schemes.The security requirements ofCommitment Schemesdiffer
from those of time-stamping in various aspects. In principle, time-stamping schemes can be implemented
by using commitment schemes, but as the requirements to time-stamping schemes are much lower, this
would be inefficient for real applications. The main differences between these schemes are the following:

– Message Secrecy. One of the two main requirements to Commitment Schemes ismessage secrecy
– the Receiver should not be able to read the committed message before the message is opened by
the Committer. In Time-Stamping Schemes, message secrecy is not the primary security property,
though in some applications (like patent filing) it would be desirable.

– Commitment Size. In time-stamping schemes, the commitment size is independent of the message
size and is much shorter than the message. This is mostly not the case for Commitment Schemes.

– Selective Release. In time-stamping schemes, a committed messagem is a list of submessages
m1, . . . ,mn. During the verification, only one submessagemi is ”opened” by presenting the cor-
responding certificateci to the verifier. In Commitment Schemes, the whole messagem is opened.

3.3 Time-Stamping Schemes with Audit

It is essential for the security of time-stamping that a corruptedStamper is not able to publish a value
d in Repository without actually knowing a database(x1, . . . , xn) such thatPublish(x1, . . . , xn) = d.
Otherwise, it could be difficult (or even impossible) to find asecurity proof [8]. The easiest way of
proving such knowledge is sending the requestsx1, . . . , xn to a trustedAuditor who checks whether
Publish(x1, . . . , xn) = d. Such an audit procedure may be performed before publishingor after publish-
ing. We observe two different audit models:

– Audit-Supported Publishing. In this model, the roles ofRepository andAuditor are merged. If the
t-th round is closed, theAuditor/Repository receives a listLt of bit-strings and an audit report from
Stamper and checks their correctness. The digest is not published ifthe audit report is incorrect.

– Multi-Round Audit. In this model, audit reports are checked long after publishing, which is much
more close to the real-life audit, which is performed no morethan once a year.

We define two additional (audit) functions:Report for creating a reportrt = Report(Lt, . . . , L1),
andAudit for verifying a report by checking the consistency ofrt anddt = Publish(Lt, . . . , L1).

Definition 4. A 5-tuple ATS = (Stamp,Publish,Verify,Report,Audit) is called anauditable time-
stamping schemeif Audit(Report(L),Publish(L)) = yes, for anyL = (Lt, . . . , L1) (properly created
audit reports verify successfully), and(Stamp,Publish,Verify) is a time-stamping scheme.

In the schemes analyzed in this paper, we assume that the value of Audit(Lt, . . . , L1) depends only
on the first argumentLt. The results we obtain for such schemes can be easily generalized.
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Schemes with Audit-Supported Publishing. The audit is performed during (or before) publishing.
The auditor is a trusted middle-man betweenStamper and Publisher. After the t-th round,Stamper

computes a digestdt = Publish(Lt, . . . , L1) and an audit reportrt = Report(Lt, . . . , L1). Having sent a
pair (d, r), the auditor checks whetherAudit(r, d) = yes and sendsd to Repository. Hence, a successful
publishing is possible only if a correct audit report is sentto the auditor. A time-stamping scheme with
audit-supported publishing is secure against random back-dating if for every polynomially unpredictable
distributionD and for everyA = (A1,A2) ∈ FP:

Pr[(d, r, a)←A1(1
k), x←D, c←A2(x, a):Verify(x, c, d)=yes= Audit(r, d)] = k−ω(1) . (3)

Schemes with Multi-Round Audit. Publishing is done like in the schemes without audit. The audit
function is performed after publishing. IfN rounds are passed,Stamper computes audit reportsr1 =
Report(L1), ...,rN = Report(LN , . . . , L1) and sends(r1, . . . , rN ) to the auditor. For everyt = 1 . . . N ,
the auditor obtainsdt from Repository and computesAudit(rt, dt). If for somet the result isno then all
users are informed about the incident. A time-stamping scheme with multi-round audit is secure against
random back-dating if for every polynomially unpredictableD and for everyA = (A1,A2) ∈ FP:

Pr[(d, a)←A1(1
k), x←D, (c, r)←A2(x, a):Verify(x, c, d)=yes= Audit(r, d)] = k−ω(1) . (4)

3.4 Records of Arbitrary Length

The definitions above assume that all time stamp requests arek bits long. To time-stamp longer records,
practical schemes use collision-resistant hash functions(at the client side) to make requests shorter. Since
these hash functions have influence on the security, they have to show up in the security conditions.

Definition 5. A time-stamping scheme with audit-supported publishing issaid to be secure relative to a
client side hash functionh: {0, 1}∗ → {0, 1}k if for every polynomially unpredictable distributionD on
{0, 1}∗ and for everyA = (A1,A2) ∈ FP:

Pr[(d, r, a)←A1(1
k),X←D, c←A2(X,a):Verify(h(X), c, d)=yes= Audit(r, d)] = k−ω(1) . (5)

A time-stamping scheme with audit-supported publishing issaid to be secure relative to a client side
hash functionh if for every polynomially unpredictableD and for everyA = (A1,A2) ∈ FP:

Pr[(d, a)←A1(1
k),X←D, (c, r)←A2(X,a):Verify(h(X), c, d)=yes= Audit(r, d)] = k−ω(1) . (6)

Lemma 1 helps to prove the security of time-stamping schemesrelative to a client-side hash functionh.

Lemma 1. If D is a polynomially unpredictable distribution on{0, 1}∗ andh: {0, 1}∗ → {0, 1}k is a
collision-resistant hash function thenh(D) is also polynomially unpredictable. (Appendix A)

Note that a secure auditable time-stamping scheme (in the sense of (3) or (4)) is not necessarily
secure relative to every collision-resistant hash function ((5),(6)) because, in the conditions (5) and (6)
the adversaryA2 has more information (anh-pre-imageX of x) than in (3) and (4).

4 Construction of a Provably Secure Auditable Time-Stamping Scheme

Let h: {0, 1}∗ → {0, 1}k be a collision-resistant hash function, or a universal one-way hash func-
tion chosen randomly byRepository. We defineATSh = (Publishh,Stamph,Verifyh,Reporth,Audith)
and prove that this 5-tuple of functions form a secure time-stamping scheme with audit. LetL =
(x0, . . . , xm−1) be all requests received during thet-th round. For simplicity, we assume thatm = 2`.

5



The publishing functionPublishh(L) builds a complete binary tree of height` each vertexv of which
has a(k + 1)-bit labelΛ[v] = b‖H[v], whereb ∈ {0, 1} indicates whetherv is a leaf (b = 0 iff v is a
leaf) andH[v] ∈ {0, 1}k is a hash value computed by the following (inductive) scheme. For then-th leaf
v, we defineH[v] = xn, andH[v] = h(Λ[vL]‖Λ[vR]) for any non-leafv, wherevL andvR are the left-
and the right child ofv, respectively. As a result,Publishh(L) returns a(k + 1)-bit root label of the tree.

The stamping functionStamph(L, n) builds the same tree as above. Letv be then-th leaf andv =
v0, v1, . . . , v`−1, v` be the unique path fromv to the root vertex (v`), i.e.vi is a child ofvi+1 for everyi ∈
{0, . . . , ` − 1}. Let v′0, v

′
1, . . . , v

′
`−1 denote the siblings ofv0, v1, . . . , v`−1, respectively. Letzi = Λ[v′i]

for everyi ∈ {0, . . . , `− 1} andz = (z0, . . . , z`−1). The certificate isc = Stamph(L, n) = (n, z).

The verification functionVerifyh(x, (n, z), d) recomputesd (based onx and(n, z)) and compares the re-
sults. Letn = n`′−1n`′−2 . . . n0 be the binary representation ofn andz = (z0, z1, . . . , z`′−1). The verifi-

cation function computes sequencesλ = (λ0, λ1, . . . , λ`′) ∈
(

{0, 1}k+1
)`′

andχ = (χ0, χ1, . . . , χ`′) ∈
(

{0, 1}k
)`′

inductively, so thatχ0 = x, λ0 := 0‖x, and for everyi > 0, λi = 1‖χi, where

χi :=

{

h(zi‖λi−1) if ni−1 = 1
h(λi−1‖zi) if ni−1 = 0

. (7)

The verification procedure outputsyes, iff λ`′ = d.

The report functionis trivial, i.e.Reporth(L) = L for every listL.

The audit functionAudith(L, d) computesd′ = Publishh(L) and returnsyes iff d′ = d.

Lemma 2. (A) If x 6∈ L, andAudith(L, d) = Verifyh(x, c, d) = yes then theh-calls of Verifyh and
Publishh contain a collision forh. (B) If L 6= L′ and Publishh(L) = Publishh(L′) then theh-calls
performed by thePublishh function contain a collision forh. (Appendix B)

Theorem 1. If h is a collision resistant hash function then a time-stampingschemeATSh with audit-
supported publishing is secure relative to a client-side hash functionh. (Appendix C)

Theorem 2. If h is a collision resistant hash function then a time-stampingschemeATSh with multi-
round audit is secure relative to a client-side hash function h. (Appendix D)

Lemma 2 directly implies the consistency condition (1) forATSh. Hence, we have proved that our
construction is secure in the conventional sense.

Note also that it is probablynot possibleto prove that the schemeTSh = (Publishh,Stamph,Verifyh)
without audit is secure against random back-dating (2), based on the collision-resistance ofh. The reason
is that one can find an oracleO and choose a hash functionh (that usesO) so thath is collision-resistant
but TSh is still insecure [8]. As the ordinary reduction techniquesrelativize, the implication is that the
security ofTSh cannot be proved (in ordinary way) in the real world either. In this sence, the audit
functionality is crucial for provable security.

5 Universally Composable Time-Stamping Schemes

5.1 Universal Composability Framework

To prove that a cryptographic primitive is secure inevery reasonable applicationtheuniversal compos-
ability (UC) paradigm is used [1–4, 9–11, 21–23]. If the reader is notfamiliar with the UC paradigm, we
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recommend to study the seminal works by Canetti [10, 11] and the monograph on composability by Lin-
dell [16]. Rather than usingad hocbehavior of adversaries, the UC paradigm defines anideal primitive
which is ”obviously secure” and then proves that ifA ∈ FP is an adversary for an application of the real
primitive then there is another adversaryA′ ∈ FP for the same application in which the real primitive is
replaced with the ideal primitive. Loosely speaking, no security incident in any application of the prim-
itive is caused by the difference between the real and the ideal primitives. Hence, the real functionality
faithfully implements the ideal functionality.

We use the language of Finite State Machine(FSM) theory borrowed from Pfitzmann [23] when
describing the UC formalism. Every component of the system (for a fixed value ofk) is a (probabilis-
tic) FSM with input- and output ports. Each port has a name anda type (in or out). By a composition
〈M1,M2〉 of two machinesM1 andM2 we mean a network of machines obtained by connecting the in-
put and output port pairs in a certain (pre-defined) way. For example, pairs with identical names can be
connected. The precise formalism for describing the connections is unimportant in this paper, because
the networks we use are very simple. We assume that each inputport is buffered, whereas the length of
the buffer is unlimited. When analyzing a particular machine, we use the following abbreviations. By
inν → x we denote the event that the machine has inputx in the portinν . By y → outν we mean thaty
is sent to the output portoutν . To overcome the difficulties related to the asynchronous behavior of the
network, it has been assumed that no two machines run at the same time. Technically, this condition is
achieved by introducing the clock-ports to the system. Eachmachine, after finishing its work, can clock
(give the token to) only one machine. In this paper, we use clocked output signals to represent the clock-
ing. Byx

.
→ outν we mean thatx is sent to the output port namedν and the token is given to the machine

with input port inν . By theview of Mi in a compositionM = 〈M1, . . . ,Mn〉 we mean the sequence of
all input/output signals ofMi in a particular run ofM. The view is denoted by VIEWMi

〈M1, . . . ,Mn〉. In
general, the view is a probability space.

In the UC framework, we have an ideal time-stamping schemeTSI, a real schemeTSR, and an
environmentClient. A composition〈Client,TSR〉 is called areal application, while 〈Client,TSI〉 is
called anideal application. Each machine has special input/output ports for an adversary A.

Definition 6 (Universal Composability). TSR is universally composable, if for everyA ∈ FP there is
a A′ ∈ FP, so that for everyClient ∈ FP: V IEWClient〈Client,TSR,A〉 ≈ V IEWClient〈Client,TSI,A

′〉.

Informally, this condition mens that anything that can happen to the real application〈Client,TSR〉 can
also happen to the ideal application〈Client,TSI〉.

In most of the proofs of universal composability, a simulator S is constructed that usesA as a black-
box, i.e.A′ = 〈S,A〉. It is then proved that the behavior of〈TSR,S〉 andTSI are indistinguishable, except
when certain cryptographic primitives (used byTSR) are broken. Hence, if the primitives are believed
to be secure, this implies the indistinguishability of views and also the security ofTSR in the strongest
possible sense. To prove the identical behavior of〈TSR,S〉 andTSI, a bisimulationbetween these two
machines is constructed.

5.2 On the Model

Some primitives are hard to cast in terms of the UC framework.Thecommitment problemoccurs, mean-
ing that a simulator that acts as an intermediary between thereal-world adversary and the ideal func-
tionality has to fix the value of a certain data item without knowing all the components it was created
from, and also without the ability to present instead of thisdata item something that is and remains in-
distinguishable from it. Canetti and Fishlin proved [12] that UC bit-commitment is impossible in the in
the ”plain model” (i.e. a model without ideal functionalities) but it becomes possible in the Common
Reference String model, where a common (and accessible) random string is added to the system as an
ideal functionality. Similar problems occur when trying todefine universally composable time-stamping

7



schemes, but fortunately, the problems dissapear if anideal audit functionality(represented in our model
by Repository that is merged withAuditor) is added to the system. The universal composability can be
proved based on theuniversal one-waynessof a hash functionh, assuming that a new random instance
of h is generated (byRepository) during each round. The reduction we obtain is linear-preserving and
gives good practical security guarantees.

Hence, our UC Time-Stamping scheme construction is not in the plain model. However, adding the
trustedRepository to the system is reasonable because: (1) there are real-lifesystems that behave in
a similar way (e.g. newspapers); (2) it is possible to implement similar functionalities in the Common
Reference String model by using public-key cryptography.

5.3 Ideal Time-Stamping Scheme

The ideal scheme is a secure host that stores for each round numbert a setLt of all bit-strings that were
stamped during thet-th round. The value oft is initially 0 and is incremented each time the round is
closed. In our real scheme, we allow the stamping functionality to be corrupted. This is reflected in the
ideal scheme by giving the adversary complete control on which bit-strings will be considered stamped
during the current round. As we shall see, at the end of the round t the adversary sends the contents of
Lt to the secure host. Hence no availability is guaranteed. Theimportant property is, however, that once
thet-th round has ended, no more bit-strings can be added toLt — back-datingis not possible.

In the real world, the verification of a time-stamp may fail for a number of reasons that are under the
control of the adversary. For example, the repository may becurrently unavailable or it may be available
but not yet contain the digest of the round we are interested in. In this case we cannot rely on the time-
stamp and must behave as if it was invalid. In the ideal world we model this situation by allowing the
adversary to declare any verification attempt unsuccessful. However, the adversary is unable to declare a
time-stamp valid if it really was not.

The internal state of the ideal time-stamping schemeTSI consists of an indexed listLI each element
LI[t] of which is a set ofk-bit strings. Initially,LI = bc. The ideal schemeTSI (Fig. 1, left) offers service
on portsinreq, outst, inver, andoutres. The other ports (outreq, inst, inaud, outver, andinres) are intended
for communication with an adversaryA′. In the following, we describe the behavior ofTSI by defining
its reaction to any possible input.

– If inreq → x thenx→ outreq.
– If inst → (x, t) then(x, t)→ outreq.
– If inaud → L thenLI := LI‖L.
– If inver → (x, τ) then(x, τ)→ outver.
– If inres → (x, b̄, τ) thenb := b̄&True(x ∈ LI[τ ]) and(x, b, τ)→ outres.

5.4 Real Scheme

In the real scheme, the trusted host is replaced by a number ofVerifier hosts. Some of them may be
corrupted but we observe only one non-corruptedVerifier. This is allowed because in the standard time-
stamping setting, there is no communication between the verifiers. We assume that the channel between
Repository and (non-corrupted)Verifier is tamperproof. It is a reasonable practical assumption because
channels with similar security properties (e.g. newspapers) exist in the real life.

Having obtained a verification request(x, t) (which reads ”Wasx time-stamped during thet-th
round?”),Verifier obtains the correspondingrt from Repository and applies theVerifyh procedure. How-
ever,Verifier needs a certificatec for verification. We take into account possible (malicious)modification
of the certificate before verification. Therefore, it is natural to assume that the certificate is entirely pro-
vided by the adversaryA.

The real schemeTSR (Fig. 2, right) consists of three components:
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Fig. 2. The ideal schemeTSI and the real schemeTSR = 〈Stamper, Repository, Verifier〉

– Stamper – a prototype for a server that receives time stamp requests and returns time stamps to
Client. As we assume that the adversaryA has full control overStamper, we defineStamper as a
stateless intermediary betweenClient andA. Stamper offers service on portsinreq andoutst. Two
other ports (outreq andinst) are for the communication withA. The behavior ofStamper is defined
as follows:

• If inreq → x thenx→ outreq.
• If inst → (x, t) then(x, t)→ outst.

– Repository – a prototype for a secure repository that publishes the digests of rounds. The internal
state ofRepository consists of a (initially empty) listD of k-bit strings.Repository offers service
on portsinnum andoutdir. The third portinaud is for the communication withA. The behavior of
Repository is defined as follows:

• If innum → τ andτ <|D|, thendτ := D[τ ] anddτ → outdig.
• If innum → τ andτ ≥|D|, thenNIL→ outdig.
• If inaud → (r, d) andAudit(r, d) = yes thenD := D‖d.

– Verifier – a prototype for a real verification environment, which typically is a trusted client computer.
Verifier receives verification requests and answers with a verification result. It is assumed thatVerifier

is able to obtain the digestsdτ form Repository in a tamperproof way. The internal state ofVerifier

consists of a bit-string variabler. Initially, r = bc. Verifier offers service on portsinver andoutres.
Two ports –outnum and indig – are for requesting the digests fromRepository, and two last ports

(outver and indig) are for the communication withA. Let y
.
→ outc denote the event thaty is sent

to the output channeloutc and the corresponding connection is clocked. The behavior of Verifier is
defined as follows:

• If inver → (x, τ) then(x, τ)→ outver.

• If incert → (x, c, τ) thenr := (x, c, τ) andτ
.
→ outnum.

• If indig → dτ ∈ {0, 1}
k andr = (x, c, τ), thenb := Verify(x, c, dτ ) and(x, b, τ)→ outres.

• If indig → NIL andr = (x, c, τ), then(x, no, τ)→ outres.

For completing the description of the real scheme, it is sufficient to give efficient constructions for
Publish, Audit, andVerify, i.e. exactly the components of an auditable time-scheme that appear in the se-
curity conditions (3), (4), (5), and (6). Hence, for any auditable time-stamping scheme it is reasonable to
speak aboutuniversal composabilityas a security condition. In the next subsection, we define a simulator
for the schemeATSh, we presented in Section 4.
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5.5 Simulator for ATS
h

The internal state of the simulatorS (Fig. 2, right) consists of two lists(DI,CI) and a bit-stringrI. The
elements ofDI arek-bit strings, while the elements ofCI are sets ofk-bit strings. Initially,DI = bc,
CI = (∅, ∅, . . .), andrI = bc. The simulator has five ports (inreq, outst, outaud, inver, andoutres) for
communicating withTSI and five ports (outreq, inst, inaud, outver, andincert) for communicating withA.
The behavior ofS is defined as follows:

– If inreq → x thenx→ outreq.
– If inst → (x, t) then(x, t)

.
→ outst.

– If inaud → (L, d) andd = Publish(L), thenDI := DI‖d, andL
.
→ outaud.

– If inver → (x, τ) then(x, τ)→ outver.
– If incert → (x, c, τ) thenrI := (x, c, τ), b̄ := τ <|DI| & Verify(x, c,DI[τ ]), and(x, b̄, τ)

.
→ outres.

If b̄ = yes thenCI[τ ] := CI[τ ] ∪ {x}.

outst inst
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Fig. 3. The real machineMR, the simulatorS, and the ideal machineMI = 〈TSI, S〉

5.6 Bisimilarity of the Real- and the Ideal Machines

We start the proof by augmenting the state of the componentsRepository andVerifier of the real func-
tionality. From the following description it is obvious that this extra state does not influence the behavior
of these components as the existing parts make no use of the new state.

We add an initially empty listL of sets ofk-bit strings to the state ofRepository. We also replace the
third item in the description of its behavior by

– If inaud → (r, d) andAudit(r, d) = yes thenD := D‖d, andL := L‖r.

We add a listC of sets ofk-bit strings to the state ofVerifier. Initially, C is an infinite list with all
elements equal to∅. We replace the third item in the description of the behaviorof Verifier by

– If indig → dτ ∈ {0, 1}
k andr = (x, c, τ), thenb := Verify(x, c, dτ ) and(x, b, τ)→ outres. If b = yes

thenC[τ ] := C[τ ] ∪ {x}.

Let MR = TSR be the real machine andMI = 〈TSI,S〉 be the ideal machine (Fig. 2). A state
s = (L,D,C, r) is said to befaulty if ∃τ :C[τ ] 6⊆ L[τ ]. Let SR andSI be the sets of states ofMR and
MI, respectively. LetFR andFI be the corresponding sets of faulty states. LetI andO be the sets of
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inputs and outputs (common forMR andMI). Let δR: I × SR → SR be the next-state function ofMR

andλR: I × SR → O be the output function ofMR. We defineδI andλI analogously forMI. Let s0
R and

s0
I be the initial states of the corresponding machines.

It is easy to verify (by using Lemma 2) that if one of the machines reaches a faulty state then the
h-calls performed so far comprise a collision forh.

Definition 7. Two machinesMR andMI are said to bebisimilar with error(FR, FI), if there is a binary
relation (called abisimulation) β ⊆ SR×SI such that(s0

R, s0
I ) ∈ β and for any pair of states(sR, sI) ∈ β

and for any inputi ∈ I, at least one of the following three conditions holds:(1) δR(i, sR) ∈ FR, (2)
δI(i, sI) ∈ FI, or (3) (δR(i, sR), δI(i, sI)) ∈ β andλR(i, sR) = λI(i, sI).

Theorem 3. (See Appendix E for a proof) The machinesMR = TSR andMI = 〈TSI,S〉 are bisimilar
with error (FR, FI), whereas the bisimulationβ is defined as follows:

(L,D,C, r)β (LI,DI,CI, rI) ≡ (L = LI)&(D = DI)&(C = CI)&(r = rI).

Corollary 1. If h is a collision-resistant (or universal one-way) hash function thenATSh is a universally
composable time-stamping scheme with audit-supported publishing.

6 Size of the Audit Report

In ATSh, theReport function is not length-decreasing which means that the network load (and the com-
putations) are doubled compared to the schemes without audit. It is natural to ask whether the length of
the report can be reduced. The answer turns out to be negative: in every universally composable time-
stamping scheme with audit-supported publishing|rt|≈|Lt|.

We construct aClient and an adversaryA (for 〈Client,TSR〉) so that no efficient adversaryA′ (for
〈Client,TSI〉) can simulateA unless the length ofReport(rt) is almost|Lt |. Our construction exploits
the commitment problem – the adversaryA′ (or a simulator) knows onlydt but has to sendLt to TSI,
and henceLt should be efficiently computable fromdt.

The internal state ofClient consists of ap(k)-element arrayL = (x1, . . . , xp(k)) ∈ {0, 1}
k×p(k)

(wherep(k) = kO(1)), ak-bit stringz (initially 0), and a boolean valueRoundover that is initially false.
Client reacts to the input events as follows:

– If inA → init then theClient generatesx1, . . . , xp(k) independently at random, computesr =
Report(L), d = Publish(L), and outputs(r, d) → outA.

– If inA → round then theClient outputs(0k, 1)
.
→ outver.

– If inver → (0k, yes, 1) (a confirmation that the round is closed) then theClient setsRoundover := true

and outputsL→ outA (revealsL to the adversary).
– If inA → verify thenClient generatesi ← {1, . . . , p(k)} uniformly at random, setsz := xi and

outputs(z, 0)
.
→ outver.

– If inver → (z, yes, 0) andRoundover = yes thenClient outputsyes→ outA.

The adversaryA is defined as follows. The internal state ofA consists of ap(k)-element array
LA = (a1, . . . , ap(k)) ∈ {0, 1}

k×p(k) (wherep(k) = kO(1)). First of all, the adversaryA outputs
init→ outClient and then reacts to the input events as follows:

– If inClient → (r, d) then A outputs(r, d)
.
→ outaud. After getting control again, the adversaryA

outputs(Report(0k),Publish(0k))
.
→ outaud. Finally, A outputsround

.
→ outClient.

– If inver → (0k, 1) thenA outputs(0k,Stamp(0k, 1), 0) → outcert.
– If inClient → L thenA setsLA := L and outputsverify

.
→ outClient.
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– If inver → (z, 0) thenA finds ani, such thatLA = z, computesc := Stamp(i, LA), and outputs
(z, c, 0) → outcert. The adversary halts if there is no suchi.

It is easy to see that with probability one, the client’s viewV IEWClient〈Client,TSR,A〉 contains the
outputyes from Client. Let A′ ∈ FP and VIEWClient〈Client,TSR,A〉 ≈ V IEWClient〈Client,TSI,A

′〉.
Hence, due to the indistinguishability, with probability1 − k−ω(1) the view VIEWClient〈Client,TSI,A

′〉
contains the outputyes from Client. From the description ofTSI, it follows that with probability1 −
k−ω(1) the adversaryA′ (based on partial information(Report(L),Publish(L))) is capable of find-
ing LA such thatxi ∈ LA. Lemma 3 below shows that suchA′ is possible only if the bit-length of
(Report(L),Publish(L)) is≈ k · p(k).

Lemma 3. Let X1, . . . ,Xp(k) ∈ {0, 1}
k (p(k) = kO(1)) and= ← {1, . . . , p(k)} be independent uni-

formly distributed random variables. Letf : {0, 1}k×p(k) → {0, 1}`(k) andA: {0, 1}`(k) → {0, 1}k×m(k)

(wherem(k) = kO(1)) be function families, such that

δ = Pr[X1, . . . ,Xp(k)←{0, 1}
k, L←A(f(X1, . . . ,Xp(k))),=←{1, . . . , p(k)}:X=∈L] = 1− k−ω(1).

Then`(k) = k · p(k)−O(log k).

Proof. A p(k)-tuple(x1, . . . , xp(k)) is goodif xi ∈ A(f(x1, . . . , xp(k))) for all i ∈ {1, . . . , p(k)}. Other

tuples arebad. As for any bad tuple(x1, . . . , xp(k)) the probability of error1 − δ ≥ 1
p(k) 6= k−ω(1), the

number of good tuples should be(1 − k−ω(1)) · 2k·p(k). On the other hand, the number of good tuples
cannot exceed2`(k) ·m(k)p(k) and hence2`(k) ·m(k)p(k) = (1−k−ω(1)) ·2k·p(k), which gives (by taking
logarithm from both sides)̀(k) = k · p(k)−O(log k). ut

Corollary 2. In every universally composable time-stamping scheme withaudit-supported publishing
ATS = (Publish,Stamp,Verify,Report,Audit), where the report and the publishing functions have
types:Report: {0, 1}k×p(k) → {0, 1}r(k) andPublish: {0, 1}k×p(k) → {0, 1}d(k):

r(k) + d(k) ≥ k · p(k)−O(log k),

i.e. the amount of information sent to the auditor is comparable to the list of all time stamps.

Actually, the last corollary holds for a weaker security notion that is calledsimulatability:

Definition 8 (Simulatability). The real schemeTSR is simulatable, if for everyClient,A ∈ FP there is
A′ ∈ FP, so thatV IEWClient〈Client,TSR,A〉 ≈ V IEWClient〈Client,TSI,A

′〉.

Like the Universal Composability, also the Simulatabilityimplies both the Consistency (1) and the
security against Random Back-Dating (2) but not the other way round. So it is still possible that one can
compress the published information and still have a provably secure auditable time-stamping scheme in
the sense of (1) and (2). One such construction is presented in [8] but their security reduction is very
inefficient.

The Simulatability (and the Universal Composability) conditions depend on the definitions ofTSI

andTSR. It is not completely excluded that these definitions can be relaxed (in a reasonable way) so that
the compression of the published information becomes possible. However, we cannot even imagine how
this could be done.

7 Discussion on Practical Implementation

As in the schemes with audit, all time stamp requests are sentfrom Stamper to Auditor who then per-
forms the same hash computations. Hence, if there arem stampers in the scheme and each stamper
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performsp hash operations per round, then the auditor must performm · p hash operations per round.
Hence, the cost of the service increases by a constant factor, no matter how many users there are.

In the schemes described above, we have only one trustedAuditor. As one of our main goal was
to develop measures against insider attacks, it is reasonable to assume that also theAuditor can be
malicious. A natural approach would be to replace a trustedAuditor with a list Auditor1, . . . ,Auditorn
of auditors and use secure multi-party computation. A simplified approach would be that aStamper

sends the digestd and the reportr to all auditors in the list. The auditors check whetherAudit(r, d) = 1
and sendr, d and the result (of the check) toRepository who then decides by clear majority which value
to publish. This solution works, whenever theRepository and n+1

2 of the auditors are honest.
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A Proof of Lemma 1

Let Π be a predictor with success probabilityδ(k) = Pr[L← Π(1k),X ← D:h(X) ∈ L]. Consider the
following adversaryΓ that on input1k:

– CallsΠ to obtainL← Π(1k).
– Generates two independent bit-stringsX1 ← D andX2 ← D and outputs(X1,X2).

Let p(L0) = Pr[L← Π′(1k):L = L0] and letE be the event thath(X1) = h(X2) ∈ L0. Hence,

Pr[E] =
∑

L0

p(L0)· Pr[X1,X2←D:h(X1) = h(X2) ∈ L0]

=
∑

L0

p(L0)·
∑

`∈L0

Pr[X1,X2←D:h(X1)=h(X2)=`] =
∑

L0

p(L0)·
∑

`∈L0

Pr2[X←D:h(X)=`]

=
∑

L0

p(L0) · Pr2[X ← D:h(X) ∈ L0] ·
∑

`∈L0

Pr2[h(X) = ` | h(X) ∈ L0]

≥
∑

L0

p(L0) · Pr2[X ← D:h(X) ∈ L0] ·
1

|L0|
≥

1

p(k)
·
∑

L0

p(L0) · Pr2[X ← D:h(X) ∈ L0]

≥
1

p(k)
·





∑

L0

p(L0) · Pr[X ← D:h(X) ∈ L0]





2

=
δ2(k)

T (k)
,

whereT (k) denotes the running time ofΠ(1k). Note that ifX1 6= X2 then the eventE leads to a collision
of h. As Pr[X1 6= X2] = 1 − k−ω(1) (otherwise,D would be a successful predictor for itself), then we

conclude thatΓ finds collisions with time-success ratioT
2(k)

δ2(k)
− k−ω(1). ut

B Proof of Lemma 2.

(A) Let c = (n, z, t). Let ` be the height of the tree and`′ be the bit-length ofn. We prove the lemma by
induction on` + `′. As a basis of the induction, we study the special cases` = 0 and`′ = 0 and then
perform the induction step, which states that if the statement holds in the casè− 1 and`′ − 1 then it
holds for` and`′ as well.

Let `′ = 0. In this case,z = () is an empty list and henceλ`′ = 0‖x, which is possible only if there
is only one vertex in the tree, because otherwise the first bitof the root hash is1. It follows thatx ∈ L
because the the leaves of the tree are in one-to-one relationship with the elements ofL. As we have a
contradiction, the statement of the lemma trivially holds.

Let ` = 0. In this case, the tree consists of a single vertex labeled with λ`′ = 0‖χ`′ . But (by the
definition ofVerifyh), λ`′ cannot begin with a0-bit except if`′ = 0, which contradictsx 6∈ L.

Now assume that̀′ and` are both positive and the statement holds for the smaller values of` + `′.
As Audith(L, d) = yes, we havePublishh(L) = d. Therefore, the label of the loot vertexv is y =
1‖h(Λ[vL]‖Λ[vR]) (computed byPublishh(L)) is equal toλ`′ ∈ {h(z`′‖λ`′−1), h(λ`′−1‖z`′)} (com-
puted byVerifyh). If Λ[vL]‖Λ[vR] 6∈ {z`′‖λ`′−1, λ`′−1‖z`′} then we have a collision.
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Otherwise, we assume without loss of generality thatΛ[vL] = z`′ andΛ[vR] = λ`′−1. Let LR be
the set of all leaves in the right subtree ofv. Note that the root label of the right subtree isd = Λ[vR].
Hence, we havePublishh(LR) = λ`′−1. Let z = (z0, . . . , z`′−2) andn = n`′−2 . . . n0. Hence, we have
Audith(LR, d) = Verifyh(x, (n, z, t), d) = yes. The statement (A) follows.
(B) As L 6= L′ there is anx which belong to one and only one of the listsL,L′. Assume without
loss of generality thatx ∈ L but x 6∈ L′. Let n be the sequence number ofx in L. Now simulate
c = Stamph(L, n). Due to the correctness condition, we haveVerifyh(x, c,Publishh(L)) = yes =
Audith(L′,Publishh(L)), which by (A) leads to a collision. ut

C Proof of Theorem 1

Let A = (A1,A2) be an adversary with success probability

δ(k) = Pr[(d, L, a)←A1(1
k),X←D, c←A2(X,a):Verifyh(h(X), c, d)=yes= Audith(L, d)] .

We define two adversaries: acollision-finderΓ for h and apredictorΠ that predictsh(D).

– The collision finderΓ(1k) simulates(d, L, a)←A1(1
k),X←D, c←A2(X,a).

If Verifyh(h(X), c, d)=yes= Audith(L, d) andh(X) 6∈ L thenΓ finds a collision by Lemma 2.
– The predictorΠ(1k) simulates(d, L, a)←A1(1

k) and outputsL.

Considering an experiment(d, L, a)←A1(1
k),X←D, c←A2(X,a), we define the following events:

Succ = [Verify(h(X), c, d)=yes= Audith(L, d)]

Coll = [Verify(h(X), c, d)=yes= Audith(L, d)] ∩ [h(X) 6∈ L]

Pred = [Verify(h(X), c, d)=yes= Audith(L, d)] ∩ [h(X) ∈ L] .

Let γ(k) andπ(k) denote the success ofΓ andΠ, respectively. AsSucc = Coll ∪ Pred, we have

γ(k) + π(k) ≥ Pr[Coll] + Pr[Pred] ≥ Pr[Coll ∩ Pred] = Pr[Succ] = δ(k) .

As π(k) = k−ω(1) by Lemma 1, it follows thatΓ finds collisions with non-negligible success. ut

D Proof of Theorem 2

Let A = (A1,A2) be an adversary with success probability

δ(k) = Pr[(d, a)←A1(1
k),X←D, (c, L)←A2(X,a):Verifyh(h(X), c, d)=Audith(L, d)=yes] .

Consider an experiment with the following computations:

(d, a)← A1(1
k),

{

X ←D, (c, L)← A2(X,a), v ← Verifyh(h(X), c, d), w ← Audith(L, d)

X ′ ←D, (c′, L′)← A2(X
′, a), v′ ← Verifyh(h(X ′), c′, d), w′ ← Audith(L′, d)

.

We define the following events:Succ: [v = w = yes], andSucc′: [v′ = w′ = yes]. By using the Jensen
inequality, we have

Pr[Succ ∩ Succ′] =
∑

d,a

Pr[d, a] · Pr[Succ ∩ Succ′ |d,a] =
∑

d,a

Pr[d, a] · Pr[Succ |d,a] · Pr[Succ′ |d,a]

=
∑

d,a

Pr[d, a] · Pr2[Succ | d, a] ≥





∑

d,a

Pr[d, a] · Pr[Succ | d, a]





2

= δ2(k) .

We define two adversaries: acollision-finderΓ for h and apredictorΠ that predictsh(D).
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The collision finderΓ: simulates the experiment above and tries to find a collision for h, based on the
oracle calls (toh) performed during the experiment. The collision-finding strategy ofΓ concerns in the
following checks:

– If ¬(Succ ∩ Succ′) then halt.
– else ifL 6= L′ or h(X) 6∈ L or h(X ′) 6∈ L′, then find a collision(z1, z2) (by using Lemma 2) and

output(z1, z2) .

The predictorΠ simulates:(d, a)←A1(1
k),X←D, (c, L)←A2(X,a) and returnsL.

We define the following events that are related to the experiment above:

Coll = Succ ∩ Succ′ ∩
[

[L 6= L′] ∪ [h(X) 6∈ L] ∪ [h(X ′) 6∈ L′]
]

Pred = Succ ∩ Succ′ ∩ [L = L′] ∩ [h(X) ∈ L] ∩ [h(X ′) ∈ L′] .

Hence,Coll ∪ Pred = Succ ∩ Succ′. The success probabilityπ(k) of Π is

π(k) = Pr[L← Π(1k),X ′←D: h(X ′) ∈ L]

= Pr[(d, a)←A1(1
k),X←D, (c, L)←A2(X,a),X ′←D, (c′, L′)←A2(X

′, a):h(X ′) ∈ L]

≥ Pr[Pred] .

Hence, if the success ofΓ is denoted byγ(k), we have

γ(k) + π(k) = Pr[Coll] + Pr[Pred] ≥ Pr[Coll ∪ Pred] = Pr[Succ ∩ Succ′] = δ2(k). ut

E Proof of Theorem 3

Obviously, (s0
R, s0

I ) ∈ β. Let sR = (L,D,C, r), sI = (LI,DI,CI, rI) and (sR, sI) ∈ β. Let i ∈
I be an input. To prove the statement, we assumeδR(i, sR) 6∈ FR, δI(i, sI) 6∈ FI, and show that
(δR(i, sR), δI(i, sI)) ∈ β andλR(i, sR) = λI(i, sI). We have to check only two input events –inaud → L
andincert → (x, c, τ), because the other inputs do not change the state of the machines and produce the
same output.

If inaud → (L, d) andd = Publish(L) then:5

– MR (i.e.Repository) computesD := D‖d andL := L‖L. No output is produced.

– MI (i.e. the simulatorS) computesDI := DI‖d, and outputsL
.
→ outaud. The ideal schemeTSI (on

input inaud → L) computesLI := LI‖L. No output is produced.

If incert → (x, c, τ) andτ ≥|D| then:

– MR (i.e.Verifier) setsr := (x, c, τ) and outputsτ
.
→ outnum. As a result,Repository obtains an input

innum → τ and outputsNIL→ outdig (because ofτ ≥|D|) and returns the control toVerifier. Having
an inputindig → NIL, Verifier outputs(x, no, τ)→ outres.

– MI (the simulatorS) setsrI := (x, c, τ), computes̄b := τ <|DI | & Verify(x, c,DI[τ ]) = no (as
|DI |=|D|≤ τ ) and outputs(x, no, τ)

.
→ outres giving control toTSI. The ideal scheme (on input

inres → (x, no, τ)) computesb := no &True(x ∈ LI[τ ]) = no and outputs(x, no, τ)→ outres.

If incert → (x, c, τ), τ <|D|, andVerify(x, c,Publish(L[τ ])) = no then:

5 Both machines do nothing ifd 6= Publish(L).
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– MR (i.e.Verifier) setsr := (x, c, τ) and outputsτ
.
→ outnum. As a result,Repository obtains an input

innum → τ , computesdτ := D[τ ] and outputsdτ → outdig (returning the control toVerifier). The
Verifier, having an inputindig → dτ , computes

b := Verify(x, c,D[τ ]) = Verify(x, c,Publish(L[τ ])) = no,

and outputs(x, no, τ)→ outres.
– MI (i.e. the simulatorS) setsrI := (x, c, τ) and computes (consideringDI = D)

b̄ := True[τ <|DI|] & Verify(x, c,DI[τ ]) = Verify(x, c,D[τ ]) = Verify(x, c,Publish(L[τ ])) = no,

and outputs(x, no, τ)
.
→ outres (giving control toTSI). The ideal schemeTSI, on input inres →

(x, no, τ) computesb := no &True(x ∈ LI[τ ]) = no, and outputs(x, no, τ)→ outres.

If incert → (x, c, τ), τ <|D|, Verify(x, c,Publish(L[τ ])) = yes, andx ∈ LI[τ ] then:

– MR (i.e.Verifier) setsr := (x, c, τ) and outputsτ
.
→ outnum. As a result,Repository obtains an input

innum → τ , computesdτ := D[τ ] and outputsdτ → outdig (returning the control toVerifier). The
Verifier, having an inputindig → dτ , computes6

b := Verify(x, c, dτ ) = Verify(x, c,D[τ ]) = Verify(x, c,Publish(L[τ ])) = yes,

andC[τ ] := C[τ ] ∪ {x} and outputs(x, yes, τ)→ outres.
– MI (i.e. the simulatorS) setsrI := (x, c, τ) and computes (consideringDI = D)

b̄ := True[τ <|DI|] & Verify(x, c,DI[τ ]) = Verify(x, c,D[τ ]) = Verify(x, c,Publish(L[τ ])) = yes,

CI[τ ] := CI[τ ]∪{x} and outputs(x, yes, τ)
.
→ outres (giving control toTSI). The ideal schemeTSI,

on inputinres → (x, yes, τ) computesb := yes &True(x ∈ LI[τ ]) = yes, and outputs(x, yes, τ) →
outres.

If incert → (x, c, τ), τ <|D|, Verify(x, c,Publish(L[τ ])) = yes, andx 6∈ LI[τ ] then:

– MR (i.e.Verifier) setsr := (x, c, τ) and outputsτ
.
→ outnum. As a result,Repository obtains an input

innum → τ , computesdτ := D[τ ] and outputsdτ → outdig (returning the control toVerifier). The
Verifier, having an inputindig → dτ , computes

b := Verify(x, c, dτ ) = Verify(x, c,D[τ ]) = Verify(x, c,Publish(L[τ ])) = yes,

andC[τ ] := C[τ ] ∪ {x} and outputs(x, yes, τ)→ outres. The resulting state is faulty.
– MI (i.e. the simulatorS) setsrI := (x, c, τ) and computes (consideringDI = D)

b̄ := True[τ <|DI|] & Verify(x, c,DI[τ ]) = Verify(x, c,D[τ ]) = Verify(x, c,Publish(L[τ ])) = yes,

CI[τ ] := CI[τ ]∪{x} and outputs(x, yes, τ)
.
→ outres (giving control toTSI). The ideal schemeTSI,

on inputinres → (x, yes, τ) computesb := yes &True(x ∈ LI[τ ]) = yes, and outputs(x, yes, τ) →
outres. The resulting state is faulty.

To conclude, in every input event and in every branch we observed, the machines produce the same
output and their internal states are either both faulty or satisfy the relationβ. ut

6 It is easy to check thatD[τ ] = Publish(L[τ ]) is an invariant ofMR, as well asDI[τ ] = Publish(LI[τ ]) is an invariant of
MI.
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