Constant-Round Multiparty Computation Using
a Black-Box Pseudorandom Generator®

Ivan Damgard| Yuval Ishait

August 10, 2005

Abstract

We present a constant-round protocol for general secure multiparty computation which makes
a black-box use of a pseudorandom generator. In particular, the protocol does not require
expensive zero-knowledge proofs and its communication complexity does not depend on the
computational complexity of the underlying cryptographic primitive. Our protocol withstands
an active, adaptive adversary corrupting a minority of the parties. Previous constant-round
protocols of this type were only known in the semi-honest model or for restricted classes of
functionlities.

1 Introduction

General secure computation is often perceived as being inherently impractical. One valid reason
for this perception is the fact that all current protocols either require many rounds of interaction
(e.g., [20, 5, 27, 35, 13, 22]), or alternatively require only a constant number of rounds but make
use of expensive zero-knowledge proofs for each gate of the circuit being computed (e.g., [40, 4, 28,
6, 26, 34, 25]). Indeed, in all constant-round protocols from the literature, players need to provide
zero-knowledge proofs for statements that involve the computation of a pseudorandom generator
or other cryptographic primitives on which the “semi-honest” version of the protocol relies. Thus,
these protocols make a non-black-box use of their underlying cryptographic primitives. We stress
that this holds for all settings of secure computation with security against malicious parties, both
in the two-party and in the multi-party case. The only exceptions to this general state of affairs are
unconditionally secure protocols that apply to restricted classes of functionalities such as NC! 2]
or protocols that require an exponential amount of computation [3].

In this work we consider the setting of multiparty computation with an honest majority, and
present a general constant-round protocol that makes a black-box use of a pseudorandom generator.!
Similarly to all general constant-round protocols from the literature, our protocol relies on Yao’s

*An abridged version of this paper appears in the proceedings of Crypto 2005.

fComputer Science Department, Aarhus University, ivan@daimi.au.dk. Supported by BRICS, Basic research in
Computer Science, Center of the Danish National Research Foundation and FICS, Foundations in Cryptography and
Security, funded by the Danish Natural Sciences Research Council.

fComputer Science Department, Technion, yuvali@cs.technion.ac.il. Research supported by Israel Science
Foundation grant 36/03.

'Here we assume the standard model of secure point-to-point channels. In the setting of open channels, our
protocol can be adapted to make a black-box use of (a suitable form of) encryption.

garbled circuit technique [40], which was later adapted to the multi-party setting by Beaver, Micali,
and Rogaway [4]. The latter “BMR protocol” requires players to verifiably secret-share seeds to
a PRG as well as the outputs of the PRG on these seeds. To ensure that this is done correctly,
the protocol makes a non-black-box use of the PRG by requiring players to prove via (distributed)
zero-knowledge that the shared seeds are consistent with the shared PRG outputs. We get around
this problem by modifying the basic structure of the BMR protocol, using “distributed symmetric
encryption” and error-correction to replace the zero-knowledge proofs. Before providing a more
detailed account of our results we give some more background to put them in context.

Black-box: reductions in cryptography. Most reductions between cryptographic primitives are (fully)
black box, in the sense that they implement a primitive A by using some other primitive B as an
oracle, without depending on the implementation details of B. Moreover, the security proof of
such reductions is also black-box in the sense that an adversary breaking A can be used as an
oracle in order to break the underlying primitive B. (See [36] for a more detailed definition and
discussion.) In contrast, a non-black-box reduction can use the “code” of B when implementing A.
Most examples for non-black-box reductions in cryptography are ones in which the construction
of A requires parties to prove in zero-knowledge statements that involve the computation of the
underlying primitive B. For instance, the construction of an identification scheme from a one-way
function [14] makes a non-black-box use of the one-way function. A rich line of work, originating
from [24], uses oracle separations to rule out the existence of (various forms of) black-box reductions.
Most notably, it is shown in [24] that there is no black-box reduction from key agreement to a
one-way function. A common interpretation of such results is that they rule out the existence
of “practically feasible” reductions. Indeed, all known examples for non-black-box reductions in
cryptography involve a considerable overhead. In the context of cryptographic protocols, this
overhead typically involves not only local computation but also communication: the communication
complexity of the protocol B depends on the computational complexity of the underlying primitive
A2 Our work provides further demonstration for the usefulness of distinguishing between the two
types of reductions.

Constant-round secure computation. The question of implementing secure computation in a con-
stant number of rounds has attracted a considerable amount of attention. The first general constant-
round protocol for secure two-party computation was given by Yao [40]. Yao’s original protocol
considered only the case of semi-honest parties; an extension to the case of malicious parties (equiv-
alently, an active adversary) was given by Lindell [28]. While Yao’s original protocol makes a
black-box use of the underlying primitives (a pseudorandom generator and oblivious transfer), the
protocol from [28] relies on the methodology of Goldreich, Micali, ad Wigderson [20] and thus
makes a non-black-box use of these primitives. Recently, Katz and Ostrovsky obtained a two-party
protocol with an optimal exact round complexity [25].

An extension of Yao’s protocol to the case of multiparty computation with an honest majority
was given by Beaver, Micali, and Rogaway [4] (see also [37, 39]). Similarly to the two-party case,
the BMR protocol makes a black-box use of a PRG in the semi-honest case and a non-black-box use
of a PRG in the malicious case. (Because of the honest majority assumption, the protocol does not
need to rely on OT.) For the case of a dishonest majority, constant-round multiparty protocols were
recently obtained by Katz et al. [26] and by Pass [33]. (The latter protocol also achieves bounded

’In some cases it is possible to reduce the communication overhead by using communication-efficient zero-
knowledge arguments (cf. [31]). However, this approach would make the computational overhead even higher.

concurrent security, extending a previous two-party protocol of Pass and Rosen [34].) The above
protocols for the case of dishonest majority allow the adversary to prevent honest parties from
receiving their output, even when it only corrupts a minority of the parties. Like the two-party
protocols, they follow the GMW methodology and thus make a non-black-box use of the underlying
primitives.

Finally, there has also been a considerable amount of work on unconditionally secure constant-
round multiparty computation in the case of an honest majority (e.g. [2, 15, 23, 9]). Unfortunately,
all known protocols in this setting can only be efficiently applied to restricted classes of function-
alities such as NC! or non-deterministic logspace.

1.1 Our Results

We consider the model of computationally secure multiparty computation against an active, adap-
tive adversary corrupting up to ¢t < n/2 players. Our default network model assumes secure
point-to-point channels and the availability of broadcast (see more on that later). As stated above,
our main result is a new “black-box feasibility” result. Specifically, we construct the first general
constant-round protocol which makes a black-box use of a PRG (equivalently, using [21], a black-
box use of a one-way function). Since much of our motivation comes from the goal of making secure
computation more efficient, we also attempt to minimize the amount of interaction and communi-
cation required by our protocols. To this end, it is convenient to cast the protocols in the following
“client-server” framework.

The client-server model. We divide the players into “input clients” who provide inputs, “output
clients” who receive outputs, and “servers” who perform the actual computation. The security of
the protocol should hold as long as at most ¢ servers are corrupted, regardless of the number of
corrupted clients. These three sets of players need not be disjoint, hence this is a strict generalization
of the standard MPC framework in which all parties play all three roles. It also represents a likely
scenario for applying MPC in practice, using specialized (but untrusted) servers to perform the
bulk of the work. We stress again that this is just a refinement of the standard model. The main
advantage of this refinement, besides conceptual clarity, is that it allows to decouple the number of
“consumers” from the required “level of security”. (The latter depends on the number of servers
and the security threshold.) For instance, we can have just two clients and many servers (which
may be viewed a distributed implementation of two-party computation), or a very large number of
clients and only few servers. The latter might be the most realistic setting for secure computations
involving inputs from many players.

Linear preprocessing. We present our main protocol in two stages. First, we present a protocol in
what we call the “linear preprocessing model”. In this model, it is assumed that there is a trusted
setup phase where a dealer can provide clients and servers with linearly-correlated resources, e.g.,
Shamir-shares of random secrets. Then we use standard subprotocols for emulating the trusted
setup in the plain model. The linear preprocessing model is motivated by the pseudorandom
secret-sharing technique of [11]: when the number of servers is small, linear preprocessing can be
emulated using a “once and for all” setup phase in which (roughly (7;)) replicated and independent
seeds are given to the players. Following this setup, the players can locally generate the required
correlated shares without further interaction.?

3The method of [11] was only proved to be secure in the case of a non-adaptive adversary. Thus, when relying on
pseudorandom secret sharing our protocol loses its provable adaptive security.

Qur protocols. Our main protocol in the linear preprocessing model requires only two communi-
cation rounds when ¢ < n/5. In the first round each input client broadcasts its masked inputs to
the servers, and in the second round the servers send to each output client a total of O(n?|C|k)
bits, where |C| is the size of the circuit being computed and k is a security parameter.* In the
plain model, one can obtain similar protocols at the cost of a higher communication complexity
and additional rounds of interaction. When ¢ < n/5, it suffices to use 3 rounds of interaction by
relying on a VSS protocol from [17]. Alternatively, it is possible to tolerate t < n/3 or even t < n/2
malicious servers at the expense of further increasing the communication and the (constant) num-
ber of rounds. When ¢ < n/3, a communication complexity of O(n3|C|k) bits (including the cost
of broadcasts) can be obtained by using the techniques of [22].

In the case of computing a randomized functionality which has no inputs, the 2-round protocol in
the linear preprocessing model becomes totally non-interactive when combined with pseudorandom
secret-sharing. That is, to securely compute such a functionality it suffices for each server to send a
single message to each output client, without using any broadcasts. Such non-interactive protocols
can be used to obtain efficient distributed implementations of a trusted dealer in a wide range of
applications.

On the use of broadcast. As in most of the MPC literature, our network model assumes the availabil-
ity of broadcast as an atomic primitive. However, using the (expected) constant-round broadcast
protocol of Feldman and Micali [16, 29], our protocols can be turned into (expected) constant-round
protocols also in the point to point model. Concerning the communication complexity, since it is
possible to implement our protocol so that the number of broadcasts involved is independent of |C|
(using the techniques of [22]), one can get the same (amortized) communication complexity in the
point-to-point model. Moreover, in the typical scenario where the number of servers is small, even
a “brute-force” simulation of the broadcasts will not have a major impact on efficiency.

Organization. The remainder of the paper is organized as follows. In Section 2 we define our
security model and preprocessing models, and present some standard subprotocols in these models.
Our main protocol and its variations are presented in Section 3, where the underlying distributed
encryption idea is highlighted in Section 3.3. Finally, Appendix A contains a discussion of the case
t < n/2 and Appendix B addresses the case of general preprocessing. Due to our elaborate use
of techniques from previous works (mostly in the context of information-theoretic multiparty com-
putation), we omit some of the low-level details and assume the reader’s familiarity with standard
MPC techniques from the literature.

2 Preliminaries

The Model. We consider a system consisting of several players, who interact in synchronous rounds
via authenticated secure point-to-point channels and a broadcast medium. Players can be desig-
nated three different roles: input clients who hold inputs, output clients who receive outputs, and

“If there are many output clients with (potentially different) outputs it is possible to reduce the overhead of sending
O(n?|C|k) bits to each output client by using a standard reduction to a single-output functionality. That is, the servers
reveal to the first output client authenticated versions of all outputs, each masked with a key that is revealed only to
the corresponding output client. Then the first output client sends to the remaining ones their authenticated masked
outputs. In contrast to our main protocols, this variant only satisfies a relaxed security requirement, allowing an
adversary corrupting the first output client to abort.

servers who may be involved in the actual computation. As discussed in Section 1.1, this is just
a generalization of the standard model, where each party can play all three roles. We denote the
number of servers by n. The functionalities we wish to compute only receive inputs from input
clients and only provide outputs to output clients. For simplicity we will only explicitly consider
deterministic functionalities providing all output clients with the same output, though an extension
of our results to the general case is straightforward.? (In contrast, we will employ sub-protocols that
compute randomized functionalities and provide servers and input clients with outputs as well.)

We assume by default an active, adaptive, rushing adversary corrupting at most ¢ servers.
(There is no restriction on the number of corrupted clients.) We refer the reader to, e.g., [7] for the
standard definition of security in this model.

Our protocols will employ secret-sharing over a finite field K = GF(2%), where k is a security
parameter that will be used as the length of a seed to a PRG. Slightly abusing notation, each server
P; is assigned a unique nonzero value ¢ € K.

2.1 Linear Preprocessing

As discussed in Section 1.1, it will be convenient to describe and analyze our protocols in the
linear preprocessing model, where we allow some restricted trusted setup as described below. The
protocols can then be converted to the plain model, where no setup assumptions or preprocessing
are allowed, at the price of some efficiency loss.

In the linear preprocessing model, we assume a dealer who initially gives to each player a set
of values in K or in its subfield GF(2). The values distributed by the dealer are restricted to be
“linearly correlated”. Specifically, the dealer picks a random codeword in a linear code defined
over K or over GF(2), and then hands to each player a subset of the coordinates in the codeword.
It is public which subsets are used, but the values themselves are private. This procedure can be
repeated multiple times, possibly using different linear codes.

Of course, we do not expect that such a dealer would exist in practice. This is only a convenient
abstraction, that can be formalized as an ideal functionality. We later separately look at how such
a dealer may be implemented.

Note that in Shamir’s secret sharing scheme, shares are computed as linear functions of the
secret and random elements chosen by the dealer. We may therefore assume that the dealer can
give to players Shamir shares of a random secret or of 0. More concretely, we assume that the
following subroutines are available. When they are called in our protocol descriptions that follow,
this should be taken to mean that the players retrieve from their preprocessed material values as
specified below.

RandSS(¢) Each server P; obtains f(i), where f is a random polynomial over K of degree at most
t.

RandSSy(t) Same as RandSS(t), except that f is subject to the restriction that f(0) = 0.

RandSSy;,, (t) Same as RandSS(t), except that f is subject to the restriction that f(0) is either 0 or
1. Note that this correlation pattern is linear over GF(2).

RandSS?(t) Same as RandSS(t), except that player P additionally receives the polynomial f.

®Standard reductions from the general case to this special case involve interaction between output clients. This
can be avoided by directly generalizing the protocol to the randomized multi-output case.

RandSS{;,, (t) Same as RandSSy, (t), except that P additionally receives f.

If the number of servers is small, all this can implemented efficiently using the share conversion
technique from [19, 11]. This requires a “once and for all” setup, where a set of random seeds
are generated, and each player receives a subset of these seeds. Then using any pseudorandom
function, the players can execute any number of calls to the above subroutines without having to
communicate. Each such call requires applying a local computation on the pre-distributed seeds.
The price to pay for this is that the local storage and computation grow linearly with (’Z) However,
this overhead can be tolerated when the number of servers is small. In any case, the approach is only
known to be secure against static adversary. We note that the setup phase of distributing replicated
seeds can be implemented very efficiently (e.g., using a secure multicast protocol from [17]).

As discussed in Section 1.1, the linear preprocessing model is motivated by the pseudorandom
secret-sharing technique from [11] (see also [19]). When the number of servers is small, a “once
and for all” setup is sufficient for enabling players to execute any number of calls to the above
subroutines without having to communicate.

One can emulate the linear preprocessing model in the plain model using constant-round in-
teraction between players. This is trivial for a passive adversary, and can be done for an active
adversary based on standard verifiable secret sharing schemes from the literature (e.g., [5, 12, 10]).
In particular, [12] shows how to build VSS from any linear secret sharing scheme, and this can
conveniently be used to implement RandSSy;,, (t) using VSS over GF(2).

Our protocols will invoke the following variants of VSS as subroutines.

vss? (t) Player P has a value s € K as private input. The goal is for each server to receive a
Shamir share of s. Using linear preprocessing, this only requires a single round of broadcast:
in the setup phase we invoke RandSS¥ (). Then the value r = f(0) can be computed by P,
and P broadcasts z = s — r. Each server P; takes z + f(i) to be his private output.

VSS{;n(t) Player P has private input a value b € GF(2). The goal is for each server to receive
a Shamir share of b (computed over K). This can be implemented similarly to VSS?(t),
replacing RandSS? () by RandSS{., (t).

2.2 Secure Computation of Low-Degree Polynomials

In the linear preprocessing model, we now show how to securely compute the following functionality,
which will be useful later.

The functionality is defined by Q(), a degree d polynomial over K in [variables z1,...,x;. Each
input client is to supply values for some of the variables, the others are to be chosen at random by
the functionality. For each server P; we define an index set D;; these sets are mutually disjoint and
designate subsets of the random inputs to Q(). If j € D;, the functionality will output z; to P;.
Finally, the functionality will output Q(x1, ..., z;) to the output clients, as well as Shamir shares of
this value to the servers.

The functionality is specifically designed to fit into our protocol for computing Yao-garbled
circuits to be presented later. In particular, some of the random values x; will be used as encryption
keys. Each such key has to be known to exactly one server, and this is the reason why the
functionality outputs some of the x;’s to the servers. This functionality, denoted by F p, .. .p,, is
more precisely defined as follows:

1. In the first round, it receives from each honest input client the z;’s this client supplies. In
addition, it receives from the honest input clients and servers a set of values of the form
produced in the linear preprocessing model. More precisely, these additional inputs take the
following form:

e For each x; that is supplied by input client I, a set of values for RandSS’(t) (as deter-
mined by a polynomial f;).

e For each z; that is random, a set of values for RandSS(t) (as determined by a polynomial
fi)-

e For each z; that is random and where j € D;, a set of values for RandSS™(¢) (as
determined by a polynomial f;).

e A set of values for RandSSy(dt) (as determined by a polynomial f).

The functionality computes the shares and polynomials that all the above results in for the
corrupt players and outputs this to the adversary. For instance, for every x; supplied by
corrupt input client I, this will be the polynomial f;(). Note that, due to our assumed
constraint on the number of corrupt servers, the honest players’ information is enough to
determine this information for the corrupt players. Also, for each z; supplied by an honest
input client, it sends z; — f;(0) to the adversary. (No information is sent to honest players in
this round.)

2. Inround 2, the functionality receives from each corrupt input client the x;’s that it is responsi-
ble for. For each j € D;, the functionality will output x; to ;. It then outputs to each server a
Shamir share of the value Q(z1, ..., z;) generated by the polynomial Q(f1(), f2(), ..., f10))+fo()
(this will be a univariate polynomial of degree at most dt). Finally, the functionality outputs
Q(x1,...,2;) to all output clients.

We securely implement the above functionality in the linear preprocessing model using the
following standard protocol:5

1. We do the following for each z;: if x; is supplied by input client I, execute vss! (t) where I
uses x; as his private input. The communication implied by this is the only communication
in the first round.

If 2, is random, execute RandSS(t). If 2; is random and j € D;, execute RandSS”i(t). In all
cases, a set of shares of x; is obtained. Let x;; be the share of x; obtained by server P;. We
execute RandSSy(dt), creating shares of a degree dt polynomial that evaluates to 0 in 0. Let
z; be the share obtained by server P;.

2. In the second round, each server P; sends Q(x14,...,%1;) + 2; to each output client. Each
output client considers the values he receives as points on a degree dt polynomial f, recon-
structs the polynomial (applying error-correction in the active adversary case) and outputs
f(0). Each server P; outputs Q(x14,...,2;,) + 2;, and the values x; for which j € D;.

We now show the security of this protocol using Canetti’s UC framework [8]. We only show
this for environments that supply inputs of correct form as specified above. This is sufficient, since

5For our purposes the degree d of Q will be no larger than 3, hence we will not consider optimizations that apply
to a larger d.

we will only use the functionality in conjunction with the linear preprocessing, which is assumed
to produce values of the right form.

Theorem 2.1 There exists a 2-round protocol computing Fg p, ... p,, the protocol is secure for all
environments that supply inputs for honest players as specified in the description of Fg p,...D,-
Furthermore, the protocol is secure for an adaptive adversary corrupting at most t servers and an
arbitrary number of clients. For a passive adversary, we assume dt < n, for an active adversary
we need (d 4 2)t < n. The communication complexity involves each output client receiving n field
elements and each input client broadcasting its (masked) inputs.

Proof: To prove security, we describe the required simulator (ideal model adversary), which as
usual works by running an internal copy of the real-life adversary. In the first round, we receive
a set of polynomials and shares from the ideal functionality, which we pass on to the adversary.
In particular, this includes, for each corrupt input client, a random polynomial f;() of degree at
most ¢, for each x; this client supplies. When the adversary broadcasts a values r; on behalf of the
client, we compute x; = f;(0) —r; and give x; as input to the ideal functionality. We also received
from the ideal functionality f;(0) —x; for each z; supplied by an honest client. We use these values
to simulate the broadcasts of honest clients. Note that for each corrupt server P;, the information
received from the functionality now defines a share z;; of each z;, and that it also defines a share
z; of the degree dt sharing of 0.

In the second round, the ideal functionality sends Q(x1, ..., z;) to the simulator (we assume the
adversary has corrupted at least one output client, otherwise the simulation becomes trivial). For
each corrupt output client, we use the value Q(x1,...,2;) and the shares of it known by corrupt
servers to interpolate a random polynomial f of degree at most dt with f(0) = Q(x1,...,2;) and
f(i) = Q(z14,...,21,) + 2, for each corrupt P;, where the x;;, z; are the previously defined values
for P;. Then for each honest server P;, we claim f(i) as the value sent by P;.

To establish adaptive security, we now show how to reconstruct the history of the players if they
are corrupted after the protocol. Earlier corruptions are handled by truncating the reconstruction
procedure.

If an input client or a server is corrupted after the protocol, we learn all his input, and pass
this on to the adversary. This already determines his view of the protocol, and is consistent with
what the adversary already knows by definition of the ideal functionality.

If an output client is corrupted after the protocol, we need not produce new values, as all output
clients receive the same set of messages from honest servers, and these were already produced earlier.

It is straightforward to verify that this simulation leads to perfect indistinguishability between
the real and ideal process. Namely, the only item that is produced using different algorithms in
the two is the polynomial that determines Q(z1,...,z;). However, it is in both cases a random
polynomial of degree at most dt under the constraints that it is consistent with corrupt servers’
shares and its value at 0 is Q(x1, ..., z7). |

Note that if all terms in) contain at least two inputs that are random, then the protocol can
be modified to tolerate more corruptions in the passive case. Concretely, if a term contains the
product of random variables x1 and xo, then the shares of these are available already in round 1.
We can therefore compute a sharing of xyxo using a polynomial of degree t which will be ready
after round 1: we ask each P; to compute x1 ;%2 ;, secret share this value with a degree ¢ polynomial
and send privately shares of it to all servers in round 1. Servers can now take an appropriate linear

combination of the shares they receive to obtain shares of x12x2. We can then proceed as if we had
a polynomial of degree d — 1, treating x1x2 as one variable.

The protocol can be easily extended to secure computation in parallel of several low-degree
polynomials, on some set of inputs, where some inputs may go to several polynomials. While it is
not clear that this is implied by the composition theorem (because of the overlapping inputs) it can
be shown by a trivial extension of the above proof. One can also modify the protocol so that only
shares of Q(z1,...,x;) are computed for the servers, and not the value itself, by simply not sending
the shares to the output clients.

The interest in the above results lies in the tradeoff between the bound on ¢ and the round and
communication complexity. Using standard techniques, say, from [5], it is straightforward to get an
actively secure protocol for the same purpose with O(logd) rounds and where each server receives
O(dn?) field elements, but where we only need to assume n > 3t.

3 Constant-Round MPC Using a Black-Box PRG

In this section we present our main protocol. We start in Section 3.1 by describing a variant of
Yao’s garbled circuit technique on which we rely. Then, in Section 3.2 we sketch the BMR approach
for computing a garbled circuit in a distributed way. Finally, in Sections 3.3 and 3.4 we describe
our modified approach.

3.1 The Basic Garbled Circuit Technique

Loosely speaking, the garbled circuit technique allows to represent a circuit C' on ¢ input bits
by an “encrypted” circuit E(C) along with ¢ pairs of random keys, such that given E(C) and
the ¢ keys corresponding to a specific input by,...,by, one can efficiently compute the output
C(b1,...,by), but this is the only information about the inputs that can be learned. Yao designed
a method for generating such encrypted circuits, and used it to obtain a general constant-round
two-party protocol for semi-honest parties. (See [30] for a formal proof of security of Yao’s protocol
and [32, 1] for other variants of this technique.) This protocol was generalized to the multi-party
case by Beaver, Micali and Rogaway [4]. The circuit encryption process can be done in parallel for
every gate in C, yielding a constant-round protocol for secure function evaluation.

We now describe how the basic technique for garbling a circuit works, by specifying how a
trusted functionality could prepare an encrypted circuit and input keys as above. We will later
show various protocols for implementing this functionality.

Without loss of generality, we assume the function to be computed is described as a Boolean
circuit C' with 2-input NAND gates. Let the number of wires in the circuit be W. We number the
wires from 0 to W — 1. For simplicity, we assume the circuit produces just a single output bit, to
be learnt by all output clients, where this bit corresponds to the last wire, number W — 1. Each
input wire w has a bit b,, assigned to it, where each such bit is supplied by an input client. We
will be using an index 0 < j < 2W — 1, where the values 2w, 2w + 1 are assigned to wire w.

We assume we have available a secure secret-key encryption scheme Fg(), where S is a k-bit
key. We need to assume that the cryptosystem is semantically secure as long as each key is used
on at most 2z messages, of length k + 1 bits each, where z is the maximal fan-out in C.

To compute the garbled circuit, we get as input the bits b, for each input wire, and then proceed
as follows (see below for intuition):

e For every wire w, choose a random bit A,, (masking the true value of the wire) and random
keys So2u, S2uw41-

e For every gate g in C, do the following: suppose g has input wires «, 3 and output wire ~.
Define the following values

ay’ = Soy4600 ; 50 = (Ao nand)_g) ® Ay
adl = Sor 1501 5t = ():a nand Ag) ® \y
a; = Sayypsp0 80 = (Aa nand Ag) @& Xy
aél = Soyte ; 5;1 = (Ao nand Ag) ® \y
Define A;d = (agd, (5gd), for ¢,d € {0,1}. We compute the encryptions
Es,, (ESQﬁ (Ago)z
Es,, (E525+1 (Ag

)
E52a+1 (ES2,8 (A}]O))
E52a+1 (E525+1 (Aél))

e We output, for each g, the 4 encryptions as above along with the mask Ay _1 of the output
wire - this is the encrypted circuit which we denote by E(C'). We also output, for each input
wire w, the values by, & Ay and Soyq (5,02, - these are the encrypted inputs.

A word about the underlying intuition behind this: assume we knew all the inputs and did an
ordinary computation of the circuit. This would result in assigning a bit b, to every wire w.
Instead, we get to know exactly one of the two encryption keys that are assigned to each wire,
namely the key Soyqp,@n,) and the bit by, & Ay, and this is ensured for all input wires initially.
We can think of this information as an encrypted representation of the bit b,. This also means
that by making Ay _1 public, we reveal the output bit, and only that bit.

The idea behind making the individual gates work in this scenario is to encrypt the keys and
bits that might be assigned to the gate’s output wire under keys assigned to input wires in such a
way that players will be able to decrypt the “correct” key and bits for the output wire, and only
this information. For instance, suppose that some gate g in the circuit has input wires o, 8 and
output wire 7. If the information known for the input wires is Saq+., ¢ and Ssgyq,d for bits ¢, d,
then the bit that should be revealed for output wire is 5§d = ((c® Aa) nand (d ® Ag)) @ Ay, and
so the key that should revealed is 55, +ggd- The idea is therefore to encrypt these two values under
S2a+c and Sog44, for all 4 values of ¢, d.

Anyone who is given encrypted circuit and inputs can compute the output by the following local
circuit evaluation procedure: for each input wire w, the key Soy 4 (p,41,) and the bit b, & A, are
given. There will now be a number of gates, for which a key and a bit are known for both input
wires. Let g be such a gate, say with input wires «, 8 and output wire . Since we know by & A,
and bg @ g, we know which of the encryptions associated to g we can decrypt, namely those where
both involved keys are known. We decrypt and obtain as result a key and a bit, which are easily
seen to be Sy, (,@x,) and the bit by & A,. Continuing this way, we will obtain a key and a bit
bw_1 ® Aw_1 for the output wire W — 1. Since we also know Ay _1, we can compute the output
bit by _1.

10

3.2 The BMR Protocol

The protocol from [4] can be seen as a concrete proposal for an encryption scheme E as required
for the garbled circuit technique and a protocol for computing E(C). Their scheme assumes a
pseudorandom generator G taking as input a k-bit seed (such a generator can be constructed from
any one-way function [21]). For a seed s, the output of G(s) is split into k-bit blocks where the
j’th block is denoted by G(s);.

A key S in the encryption scheme consists of n subkeys S = (s!,s2,...,s"), each of which is k
bits long, and where initially s’ is known only to P;. An element m € K is encrypted under S as
Eg(m) =m® G(s'); @ ... ® G(s");, assuming m is the j'th k-bit string we encrypt under S.

Assuming m and each s’ have been secret shared among the servers, we can securely compute
the encryption by having server i locally compute and secret share G(s?) j- We can then use linearity
of the secret sharing to get shares of Eg(m), and send these shares to the output clients. This will
work, and makes only a black-box use of G, if the adversary is passive. But if he is active, each
server needs to prove in zero-knowledge that he has computed and secret shared G/(s?) j correctly.
In general, this requires generic zero-knowledge techniques, which means we no longer make a
black-box use of GG, and also leads to a major loss of efficiency.

3.3 Our Distributed Encryption Scheme

We now suggest a different encryption scheme for the garbled circuit technique, allowing to avoid the
use of zero-knowledge proofs in the case of an active adversary. We assume as before a pseudoran-
dom generator G which expands a k bit seed. A key S consists again of n subkeys S = (s!,s2,...,s")
where initially s’ is known only to P;.

Consider now a situation where a message m € K has been secret shared among the n servers
using a polynomial of degree d, where t < d < n. Let m; denote the share of m given to F;. To
encrypt such a message under a key S, we will let each server encrypt the share he knows under
his part of the key (expanded by G).

We define E4(m) = (G(s'); &my, ..., G(s"); ®m,). Having received the parts of the ciphertext
Efg(m) from the servers and given the key S, one can decrypt each share and reconstruct m from
the shares, where error correction” is used to recover m if the adversary has actively corrupted
some of the servers. The following lemma is straightforward.

Lemma 3.1 The above distributed encryption scheme has the following properties:

o If an adversary is given up to t of the s'’s, and Eg 1s used on at most one message m, the
encryption keeps m semantically secure.

o [f the adversary is passive, and an honest output client is given S and receives EJS(m) from
the servers, he can decrypt correctly if d < n.

o [f the adversary is active, and an honest output client is given S and receives Efg(m) from
the servers, he can decrypt correctly if d + 2t < n.

This generalizes in a straightforward way to cases where two keys U,V are used. We write
By (Ey(m)) = (G(u'); & G(vh); @ my, ..., G(u"); & G(0"); & my).

"In the case t < n/2 the subkeys and the message will be distributed using authenticated shares, in which case
the decryption will involve a correction of erasures rather than errors.

11

In the following, we will be encrypting several elements in K under the same key. This is done
in the natural way, by using a fresh part of the output from G for each new element.

3.4 Distributed Computation of a Garbled Circuit

We now apply the distributed encryption idea for securely computing a garbled circuit using a black-
box PRG. The protocol takes place in the linear preprocessing model, and will use the subroutines
and protocols described in Sections 2.1 and and 2.2.

1. Inround 1, for each wire w = 0..W —1 the servers execute RandSS;,, () to create shares of the
secret wire masks \y’s. Also, for i = 1..n,j = 0..2W — 1, they execute RandSS’ (t) to create
shares of the subkeys 32" such that sé- is known to P;. Finally, for each input bit b, held by
input client I;, the players execute VSS% (t) (i.e., with I; as dealer) and b,, as shared secret.
Thus the only communication in round 1 consists of broadcasts done in the VSS subroutines.

2. In round 2, the servers first do some local computation.

e For each input wire w and ¢ = 1..n, each server locally computes a random share of the
value séw S+ (be®re)" Note that since we work over a field of characteristic 2, this value

can be written as a degree 2 polynomial, namely (1 4 by + Aw)shy, + (bw + Aw)Shyi1-
We can therefore compute shares of the value séw H(bw @) defined by a random degree
2t polynomial and send all these shares to the output clients, using the protocol from
Section 2.2.

e For each input wire w, the servers compute shares of the value b,, ® A, and send them
to the output clients.

e For each gate g in the circuit, suppose the two inputs and output wire are wires «, 3,7,
respectively. Then for each ¢ = 1..n, the servers locally compute random shares of the

values
a0 = 3§7+5SO ;000 = (Aa nand Ag) & Ay
i — 327-5-581 ;008 = (A nand Ag) & My
aloi = séfyﬂ%o ;00 = (A nand \g) & My
alls Shogni 0) = (Aa nand Ag) & Ay

Note that these values can be written as degree 3 polynomials in the already shared
values, for instance,)" = (AaAg+ X\,)sh, + (1 +AaAg+Ay)sh, 1. We can therefore use
the protocol from Section 2.2 to locally compute these random shares (without sending
them to the output clients).

3. Let agd = (ang, ...,agd”‘), for ¢,d € {0,1}. (This vector of n subkeys replaces the single

key a;d in the basic garbled circuit construction from Section 3.1). Define Agd = (Agd, 6;‘1).
The servers can now reveal to the output clients encryptions of the form Eg,, . (Es,;., (A;d))
using the distributed encryption scheme from Section 3.3. (Note that both the data we need

to encrypt and the encryption subkeys are already shared in the required form.)

4. The output clients now apply the local circuit evaluation procedure described in Section 3.1,
replacing ordinary decryption with distributed decryption (Section 3.3).

12

Theorem 3.2 (Black-box constant-round protocol in linear preprocessing model) In the
linear preprocessing model, there is a general 2-round MPC protocol making a black-box use of a
pseudorandom generator. The protocol tolerates t < n/2 adaptively corrupted servers in the semi-
honest case and t < n/5 in the malicious case. The communication complexity for computing a
circuit C involves O(n?|C|k) bits sent to each output client, and each input client must broadcast
its (masked) inputs to the n servers.

Proof sketch: Formally speaking, we want to prove that the above protocol realizes a func-
tionality Fo that accepts inputs by, ..., by from the input clients and then outputs C(by, ..., b¢) to all
output clients.

Let Fiow—degree be an extended version of Fg p, .. p,, computing all polynomials of degree 2,3
and shares we compute in the protocol 7 as described above (see the remarks following Theorem
2.1). Let rfiow—degree he the protocol we obtain by replacing in the natural way steps 1 and 2 in 7
by a call to Fjoy—degree- By Theorem 2.1 and the composition theorem, to show security of m, it is
sufficient to show security of 7ftow—degree,

We now describe a black-box simulator for this protocol. The simulator proceeds by running
internally copies of the linear preprocessing functionality, Fjow—degree and the (initially) honest
players. The internal copies of honest players are called virtual honest players. They will be given
0’s as input instead of the real values of their b;’s (which are unknown to the simulator). Otherwise
all these internal entities proceed according to the protocol. There are only two differences between
this and the real process: When the adversary specifies input bits to Fjoy—degree, this in particular
fixes values of the b;’s for the corrupt players. The simulator then sends these bits to Fo. Second,
when we get C(by,...,b¢) from Fo and construct the encrypted circuit, we assign a number of
ciphertexts to the output gate g, exactly one of which will be decrypted in the local evaluation
procedure. The simulator will put the bit Ayy—1 @ C(b1, ..., b¢) as plaintext inside this encryption.
This is done as follows: the degree 3t polynomial that defines this bit is of the form g() + z() where
z() is a random degree 3t polynomial with z(0) = 0. We then change z() to a random z’()of the
same degree, but such that g(0)+2’(0) is that value we want and 2() is consistent with the shares of
corrupt players. This change introduces no inconsistencies in the view of the virtual players, since
z() is used for nothing else than randomizing g. The simulated execution now results in output
C(by, ..., by) which is consistent with what the ideal functionality gives to the honest clients.

It remains to be described how the simulator handles corruptions. We describe how the sim-
ulator will reconstruct the view of a newly corrupted player. We assume the player is corrupted
after the protocol terminates. For earlier corruptions, the reconstruction procedure is truncated
appropriately. The general idea is that the simulator already has the views of the virtual honest
players, including the one the adversary now wants to corrupt. We then modify this information
so it becomes consistent with what we learn as a result of the corruption, without changing what
the adversary already knows.

If an input client is corrupted, we learn his input bit(s), say b,. We already broadcasted
a value r,, related to this, and the virtual client has from the preprocessing a polynomial f,
with f,(0) = r,. We then change f,, to f/,, so fI, is random of degree at most ¢, subject to
11,(0) = by ®ry, and fi,(c) = £ (c) for all corrupt P.. We now want to claim that the virtual honest
players used the polynomial g/, () = f/,()+7 in the further computation, instead of g, () = fu()+7w
we used so far. Note that, to compute the garbled inputs, the protocol computes a set of degree-2
polynomials. Consider one of them, say Q(by, Aw, S2w, S2w+1)- Say the last 3 variables are shared
using polynomials g2(), g3(), g4(). Before corruption, we had Q(0, Ay, S2u, S2w+1) shared using a

13

univariate polynomial of the form Q(gw (), 92(), 93(), 94()) + zw(), where z,() is random of degree
2t and z,(0) = 0. Define 2/, () by

Qgw(), 920), 930, 940)) + 20() = Q91,05 920), 930), 920)) + 2,()

and change z,() to z/,(). This will change honest virtual server’s shares, but not the corrupted
server’s shares, by construction of f! (), g.,(). It will also preserve the data sent to output clients.
We now give to the adversary the updated view of the virtual client.

If a server or an output client is corrupted, note that this does not result in any new data
learnt from Fo. We can therefore give the current view of the virtual output client or server to the
adversary.

This concludes the description of the simulator. The intuition of the analysis of the simulation
is that all plaintext data are identically distributed in simulation as in real execution, the difference
lies in the data that remain encrypted, and this cannot be detected efficiently by semantic security
of the encryption.

Towards formalizing this: assume there exist environment and adversary for which simulation
and real execution can be distinguished. We observe that the simulated execution can be changed
into the real one by modifying the choice of a particular set of plaintexts residing inside undecrypted
ciphertexts. We then define a series of hybrids by modifying one plaintext at a time from its value
in simulation to its value in real life, and by a standard argument, there exists some hybrid that
can be distinguished from its neighbor. Since each hybrid distribution can be sampled given the
set of inputs we assume exists, this leads to an algorithm contradicting semantic security of the
underlying encryption scheme. [|

From the remarks following Theorem 2.1, it follows that We can weaken the assumption on ¢ in
the active case to t < n/3, using standard techniques, at the expense of a larger (but still constant)
number of rounds and more communication.

A word about how this result compares to earlier work: First, it was pointed out in [11] that
MPC is possible in two rounds, given access to shares of random variables. This was argued using
known general methods, and thus made a non-black-box use of the underlying PRG. Moreover,
[11] only obtained security for n > 3t in the passive case. A comparison to [4] was already made
above.

3.5 The Plain Model

To implement the above protocol in the plain model, we need to emulate the procedures for generat-
ing random shared secrets. The cost of the resulting protocol is dominated by the cost of emulating
O(n|C]) invocations of (different variants of) RandSS(¢). In the semi-honest case, each invocation
of RandSS(t) can be implemented in a straightforward way by communicating O(n?) field elements:
each player distributes a random secret, and the players output the sum of the shares they receive.
(In fact, it suffices that ¢ + 1 players share secrets.) Thus, the overall complexity in this case will
be O(n3|Clk). In the malicious case, one could use a similar procedure based on any standard
constant-round VSS protocol from the literature (e.g., the one from [5]). In fact, using the 2-round
VSS protocol from [17], one can obtain a 3-round protocol in the plain model (assuming t < n/5).

We can weaken the assumption on ¢ in the active case to ¢t < n/3 by replacing the non-interactive
polynomial evaluation protocol from Theorem 2.1 by an interactive one (e.g., using [5]). The result-
ing protocol will have a larger (but still constant) number of rounds and a higher communication

14

complexity. In the appendix, we sketch how to use the VSS and multiplication protocol from [10]
to further extend the feasibility result to the case t < n/2. This is based on two observations: first,
a variant of our distributed encryption scheme can be used to encrypt values that have been shared
under any VSS with a non-interactive reconstruction protocol. Second, by requiring that all values
in the computation as well as shares of these values are VSS’ed, we can obtain a multiplication pro-
tocol that is guaranteed to terminate in a constant number of rounds, even for the case of t < n/2.
Thus, our main feasibility result in the plain model is the following;:

Theorem 3.3 (Black-box constant-round protocol in plain model) In the plain model, there
18 a general constant-round MPC protocol making a black-box use of a pseudorandom generator.
The protocol tolerates adaptively t < n/2 corrupted servers in the semi-honest case and t < n/3 in
the malicious case.

The above protocol is quite attractive when the number of servers is not too large. However, its
extensive use of broadcasts makes the asymptotic communication complexity higher in the point-
to-point model. To avoid paying this price, one can rely on an (information-theoretic) protocol
of [22], which tolerates t < n/3 corrupt players and requires only O(n?k) amortized communication
per gate (including “randomness” gates and “degree-2” gates). Since we only need to evaluate
polynomials of a constant degree, the protocol of [22] can be implemented in a constant number
of rounds. Thus, using [22], we get a protocol for computing a circuit C' where O(n?|C|k) bits are
exchanged between the servers, O(n?|C|k) bits are sent to each output client, and each input client
must broadcast its (masked) inputs to the n servers.

References
[1] B. Applebaum, Y. Ishai, and E. Kushilevitz. Computationally private randomizing polynomials and
their applications. In Proc. 20th Conference on Computational Complexity, 2005.

[2] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in a constant number of rounds.
In Proc. 8th ACM PODC, pages 201-209, 1989.

[3] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Security with low communication overhead
(extended abstract). In Proc. of CRYPTO ’90.

[4] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols (extended abstract).
In Proc. of 22nd STOC, pages 503-513, 1990.

[5] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-
tolerant distributed computation. In Proc. of 20th STOC, pages 1-10, 1988.

[6] C. Cachin, J. Camenisch, J. Kilian, and J. Muller. One-round secure computation and secure au-
tonomous mobile agents. In Proceedings of ICALP’ 00, 2000.

[7] R. Canetti. Security and composition of multiparty cryptographic protocols. In J. of Cryptology, 13(1),
2000.

[8] R. Canetti. Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. FOCS 2001: 136-145.

[9] R. Cramer and I. Damgard. Secure distributed linear algebra in a constant number of rounds. In Proc.
Crypto 2001.

[10] R. Cramer, I. Damgard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient Multiparty Computations
Secure Against an Adaptive Adversary. In Proc. EUROCRYPT 1999, pages 311-326.

15

[11]

[12]

R. Cramer, I. Damgard, and Y. Ishai. Share conversion, pseudorandom secret-sharing and applications
to secure computation. In Proc. of second TCC, 2005.

R. Cramer, I. Damgard, and U. Maurer. General secure multi-party computation from any linear
secret-sharing scheme. In Proc. of EUROCRYPT ’00, LNCS 1807, pp. 316-334, 2000.

R. Cramer, I. Damgard, and J. Nielsen. Multiparty computation from threshold homomorphic encryp-
tion. In Proc. of EUROCRYPT 01, LNCS 2045, pp. 280-299, 2001.

U. Feige, A. Fiat, and A. Shamir. Zero-Knowledge Proofs of Identity. J. Cryptology 1(2): 77-94 (1988).

Uri Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation (extended abstract).
In Proc. 26th STOC, pages 554-563. ACM, 1994.

P. Feldman and S. Micali. An Optimal Algorithm for Synchronous Byzantine Agreement. SIAM. J.
Computing, 26(2):873-933, 1997.

R. Gennaro, Y. Ishai, E. Kushilevitz and T. Rabin. The Round Complexity of Verifiable Secret Sharing
and Secure Multicast. In Proceedings of the 38rd ACM Symp. on Theory of Computing (STOC '01),
pages 580-589, 2001.

R. Gennaro, Y. Ishai, E. Kushilevitz and T. Rabin. On 2-round secure multiparty computation. In
Proc. Crypto "02.

N. Gilboa and Y. Ishai. Compressing cryptographic resources. In Proc. of CRYPTO ’99.

O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game (extended abstract). In Proc.
of 19th STOC, pages 218-229, 1987.

J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way
function. SIAM J. Comput., 28(4):1364-1396, 1999.

M. Hirt and U. M. Maurer. Robustness for Free in Unconditional Multi-party Computation. CRYPTO
2001: 101-118.

Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with applications to
round-efficient secure computation. In Proc. 41st FOCS, pp. 294-304, 2000.

R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permutations. Proceed-
ings of 21st Annual ACM Symposium on the Theory of Computing, 1989, pp. 44 — 61.

J. Katz and R. Ostrovsky. Round-Optimal Secure Two-Party Computation. In CRYPTO 200/, pages
335-354.

J. Katz, R. Ostrovsky, and A. Smith. Round Efficiency of Multi-party Computation with a Dishonest
Majority. In EUROCRYPT 2003, pages 578-595.

J. Kilian. Founding cryptography on oblivious transfer. In Proc. 20th STOC, pages 20-31, 1988.

Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation. J. Cryptology
16(3): 143-184 (2003). Preliminary version in Crypto 2001.

Y. Lindell, A. Lysyanskaya, and T. Rabin. Sequential composition of protocols without simultaneous
termination. In Proc. PODC 2002, pages 203-212.

Y. Lindell and B. Pinkas. A Proof of Yao’s Protocol for Secure Two-Party Computation. Cryptology
ePrint Archive, Report 2004/175, 2004.

M. Naor and K. Nissim. Communication preserving protocols for secure function evaluation. In Proc.
STOC 2001, pages 590-599.

M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism design. In Proc. 1st
ACM Conference on Electronic Commerce, pages 129-139, 1999.

16

[33] R. Pass. Bounded-concurrent secure multi-party computation with a dishonest majority. In Proc. STOC
2004, pages 232-241.

[34] R. Pass and A. Rosen. Bounded-Concurrent Secure Two-Party Computation in a Constant Number of
Rounds. FOCS 2003.

[35] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multiparty Protocols with Honest Majority. In
Proc. 21st STOC, pages 73-85. ACM, 19809.

[36] O. Reingold, L. Trevisan, and S. P. Vadhan. Notions of Reducibility between Cryptographic Primitives.
TCC 2004: 1-20.

[37] P. Rogaway. The Round Complexity of Secure Protocols. PhD thesis, MIT, June 1991.
[38] A. Shamir. How to share a secret. Commun. ACM, 22(6):612-613, June 1979.

[39] S. R. Tate and K. Xu. On garbled circuits and constant round secure function evaluation. CoPS Lab
Technical Report 2003-02, University of North Texas, 2003.

[40] A. C. Yao. How to generate and exchange secrets. In Proc. 27th FOCS, pp. 162-167, 1986.

A The Case t < n/2

In this section, we sketch how one can achieve a security threshold ¢ < n/2 for an active, adaptive
adversary.

We will use as point of departure the VSS and MPC protocols from [10], which were shown to
be actively and adaptively secure. However, only the VSS protocol is constant-round.

In the VSS protocol, each player P; receives a share a; which is a standard Shamir share
corresponding to a polynomial of degree at most ¢, and in addition some authentication information,
of which one part is to be broadcast at reconstruction time together with a; and the rest is used
to verify information from other players at reconstruction time. Due to the non-linearity of the
authentication information, this protocol does not entirely fit into our linear preprocessing model.
Thus, in what follows we refer to the plain model.

We will use the VSS protocol such that input clients and servers may act as dealers, the secret
is shared among the servers, and secrets can be reconstructed by servers and output clients. It is
trivial to adapt the original protocol this way. The VSS protocol has a number of properties that
we list here, with terminology adapted to the client/server model:

1. The reconstruction protocol is non-interactive: each sever broadcasts information, and each
server and output client can then locally reconstruct the secret.

2. The VSS protocol is linear: if secrets a, b have been VSS’ed, then for known constants «, 3, a
VSS of aa + Bb can be computed by servers locally computing the same linear combination
of their shares and authentication information.

3. The VSS protocol allows a constant round multiplication protocol using a standard reduction
to computation of linear functions: each server P; holding shares a;, b; of a,b, can compute
and VSS a;b; and prove that this was correctly done. Then each server locally computes an
appropriate linear combination of shares of all n VSS’s, which results in a VSS of ab. Let
A1, ..., Ap be the coefficients used here.

17

Note that the multiplication protocol assumes that all servers complete their part correctly. If this
is not the case, we need to take a different action, this is the motivation for the extended VSS
protocol we now describe.

The extended VSS, called EVSS, works as follows:

e The dealer D VSS’s (in parallel) the secret a and ¢ random field elements cy, ..., ¢;, and we
think of a,ci,...,¢; as coefficients of a polynomial f() of degree at most t. Using linearity,
compute locally VSS’s of f(i), for i = 1,...,n. Finally open f(i) privately to P;: each server
sends privately to P; the information he would normally broadcast to reconstruct f(i). The
share of P; is now f(i) and the entire information from the VSS’s of a, ¢y, ..., ¢;.

When the EVSS is used as subprotocol later, some servers may have been disqualified because
they have been found to be corrupt. In this case, f(i) is publically reconstructed and kept
by the remaining players as part of their share. If a server is later disqualified for any reason,
his share will immediately be reconstructed and kept by the remaining players.

e To each EVSS will be attached a so called public correction value . The rule for reconstruc-
tion will be that we first reconstruct a value from the shares by interpolation, and then § is
added to get the final reconstructed value. When a dealer constructs an EVSS from scratch,
0 is 0 by default, but for technical reasons, we will need non-zero values later.

The EVSS inherits the basic properties of the VSS: it has non-interactive reconstruction (we
really only need to open the VSS of the secret itself), it is linear, and finally it allows a constant
round multiplication protocol that cannot be blocked by the adversary:

1. Assume values a,b have been EVSS’ed, with public correction values ., dp, and server P;
holds shares a;,b; of a,b. Note that this means that a;,b; are VSS’ed, and that aq,...,a,
determine a — J, as standard Shamir shares. Now do the following in parallel for each P; who
has not been disqualified at this point:

(a) P; computes and VSS’s a;b; and proves he did this correctly. The protocol from [10] can
be used directly here, as it works for any commitment scheme that is linear over the
field used.

(b) P; extends the VSS of a;b; to an EVSS by VSS-ing ¢ random field elements thus deter-
mining a polynomial f;(), and finally opening privately f;(j) to each P; (each of these
EVSS’s have public correction value 0).

2. Each server P, who failed to perform the above two steps correctly is disqualified, and we
reconstruct publically a;,b;. Let C' be the total set of disqualified servers. Note that if
a player was disqualified for any reason external to the multiplication protocol, a;,b; was
already public, so we can compute v = >_p c Aia;b;.

3. Using linearity, we compute the linear combination of the EVSS’s of a;b; from P; ¢ C. Note
that results in an EVSS of (a — d4)(b — 0p) with public correction value . ;jFrom this EVSS
and the original ones for a, b, we can now use linearity to compute with no further interaction

an EVSS of ab.

The final element we need is how to use our distributed encryption scheme with the EVSS. This
is simple, since the scheme works with any VSS with non-interactive reconstruction: Suppose we

18

want to encrypt value a that has been EVSS’ed, and server P; holds a part s’ of the encryption key.
P; now computes all the information he would broadcast to reconstruct a, encrypts it under s*, and
sends the result to the output clients. If an output client knows the entire key, all contributions
can be decrypted and the client can simulate the reconstruction protocol locally. If the encryption
algorithm is semantically secure, and the key has been EVSS’ed, the adversary (computationally)
learns nothing new from seeing an encryption.

This leads to the following constant-round protocol for general MPC:

1. The input clients EVSS their inputs among the servers. If a client fails to do this, we can use
default values for his input.

2. In parallel, the servers create EVSS’s of all random values needed to construct a garbled
circuit for the desired computation (keys and wire masks). This is done in the standard way,
by having each server EVSS his own random contribution and adding all contributions. If a
server fails to do this, he is disqualified and his contributions are ignored.

3. As described earlier, all the values that need to be encrypted to form the garbled circuit
and inputs can be computed by evaluating a number of constant degree polynomials on the
inputs, keys and wire masks. We can therefore compute these values in EVSS’ed form in a
constant number of rounds by running some instances of the multiplication protocol. Each
server then performs his part of the encryptions and send the results to the output clients.

4. The output clients perform local evaluation of the garbled circuit as described earlier.

B The General Preprocessing Model

We now briefly consider the case of general preprocessing, in which the dealer is allowed to do any
(polynomial time) computation and send the results to the players, as long as the computation
is independent of the inputs to the actual computation to be done later. The main motivation
for this model is to focus on how much work in MPC can be shifted to a preprocessing phase.
Unfortunately, unlike the case of linear preprocessing, we do not have a non-interactive way of
emulating the dealer in the general case of preprocessing.

Note first that the simplest way to construct an appropriate encryption scheme for Yao’s tech-
nique is to build it directly from a pseudorandom bit generator, using only a single seed as key,
and using a fresh part of the output as a 1-time pad on each new message to encrypt. In this way,
the encrypted circuit has size O(|C|k) bits.

This can be used to get a very efficient general protocol for the general preprocessing model.
We define the preprocessing to output E(C) to all players and for each input wire w, it outputs
Sow, S2uw+1, Aw to the input client that chooses input for this wire. For a passive adversary, it will
then be sufficient that, once by, is known, the input client sends by, & Aw, S2u+ (b, @2,,) 0 €ach output
client, who can then do the local circuit evaluation procedure.

For an active adversary, we need to make sure the output clients receive correct keys. One
way to do this is to require the preprocessing to secret share Soy, Sor1 among the servers. In
the computation phase, the input client broadcasts b,, ® A, and the servers then send their shares
of Souw(b,®r,) to the output clients. This will directly allow reconstruction of the correct key if

19

t < n/3. But if we attach authentication tags to the shares, as in the protocol of Rabin and Ben-
Or [35], we only need t < n/2. This assumes, of course, that clients receive keys in the preprocessing
for verifying the tags. Summarizing, we have

Theorem B.1 There exists general multiparty computation protocols for a Boolean circuit C in the
general preprocessing model with the following properties. For a passive adversary, clients receive
O(|C|k) bits in the preprocessing, the computation phase is non-interactive and each output client
receives O(Ik) bits (where I is the number of inputs). For an active adaptive adversary, where
t < n/3, clients receive O(|C|k) bits in the preprocessing, the computation phase is 2 rounds, each
input client must broadcast his (masked) input, and each output client receives a total of O(nlk)
bits from servers. If we only assume t < n/2, add O(nlk) bits to the preprocessing data.

20

