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Abstract

Secure, anonymous and unobservable communication is becoming increasingly important due to the gradual erosion of privacy
in many aspects of everyday life. This prompts the need for various anonymity- and privacy-enhancing techniques, e.g., group
signatures, anonymous e-cash and secret handshakes.

In this paper, we investigate an interesting and practical cryptographic construct – Oblivious Signature-Based Envelopes (OS-
BEs) recently introduced in [15]. OSBEs are very useful in anonymous communication since they allow a sender to communicate
information to a receiver such that the receiver’s rights (or roles) are unknown to the sender. At the same time, a receiver can obtain
the information only if it is authorized to access it. This makes OSBEs a natural fit for anonymity-oriented and privacy-preserving
applications, such as Automated Trust Negotiation and Oblivious Subscriptions.

Previous results yielded three OSBE constructs: one based on RSA and two based on Identity-Based Encryption (IBE). Our work
focuses on the ElGamal signature family: we succeed in constructing practical and secure OSBE schemes for several well-known
signature schemes, including: Schnorr, Nyberg-Rueppel, ElGamal and DSA. As experiments with the prototype implementation il-
lustrate, our schemes are more efficient than previous techniques. Furthermore, we show that some OSBE schemes, despite offering
affiliation privacy for the receiver, introduce no additional cost over schemes that do not offer this feature.

NOTE: An earlier incarnation of this paper was previously submitted to another security conference. The present version is a
result of a major revision. In particular, it includes a thorough proof of security for the Schnorr-OSBE scheme as well as an in-depth
discussion of implementation and efficiency/experiments.

1 Introduction

The surge in popularity of electronic communication and electronic transaction prompts many natural concerns about
anonymity and, more generally, privacy of communicating entities. In the last decade, there has been a lot interest in
privacy-enhancing tools and techniques. Prominent topics include advanced cryptographic constructs, such as: blind
signatures [10], group signatures (e.g., [4]), identity escrow (e.g., [14]), secret handshakes [2] and privacy-preserving
trust negotiation [7].

In a recent paper [15], Li, Du and Boneh introduced a simple and interesting cryptographic concept termed OSBE:
Oblivious Signature-Based Envelopes. One motivating scenario for OSBE is as follows: suppose that Bob is an agent of
the British Secret Service and has a digitally signed certificate asserting his membership. The rules of the trade stipulate
that a secret agent must only reveal his certificate to another party if that party is also a secret agent. Thus, if Bob and
Alice (who is also a secret agent) want to communicate securely, they are seemingly at an impasse since someone must
reveal their certificate first. A simpler, and perhaps more appealing, scenario occurs if Alice is a regular entity without
any specific affiliation. However, she has some information that she is only willing to reveal to another party (who claims
to be named Bob) if that party has certain credentials, for example, Alice might be a potential informant and Bob might
be an FBI or DEA agent. At the same time, Bob is unwilling – or not allowed – to reveal his credentials. In this case,
Alice and Bob are also stuck since neither wants to be the first to reveal information. Note that, in both examples, Bob
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has a signed credential which he cannot reveal; specifically, Bob needs to keep the signature secret, whereas, the message
covered by the signature is not secret at all.

An OSBE scheme can help in the aforementioned situations since it allows Alice to communicate information to Bob
in such a way that: (1) Bob only obtains the information if he possesses appropriate credentials, (2) Alice does not
determine whether Bob possesses such credentials, and (3) no other party learns anything about Alice’s information and
Bob’s possession, or lack of, the credentials. A more detailed discussion about application of OSBEs can be found in
Appendix C.

Besides introducing the OSBE concept, [15] presented three concrete OSBE schemes: RSA-OSBE, BLS-OSBE and
Rabin-OSBE. The last two use Identity-Based Encryption (Boneh-Franklin [5] and Cocks [11] schemes, respectively)
and don’t require interaction, while RSA-OSBE is essentially a 2-round protocol1 with some very interesting properties
(a discussion of these properties can be found in Section 9). Notably, no OSBE schemes for any signature schemes
derived from ElGamal [13] have been developed. (In fact, OSBE for DSA is explicitly mentioned as an open problem.)
In this paper, we begin where the work of [15] left off.
Contributions: Our main result is the development of a series of OSBE schemes for the ElGamal family of signature

schemes, including Schnorr, Nyberg-Rueppel and DSA. We rigorously prove the security of Schnorr-OSBE and discuss
the security of the other schemes. We analyze and compare their respective costs (as well as that of RSA-OSBE) and
present the results of our implementation of the OSBE schemes. Our proposed schemes are very efficient and, in fact,
demonstrate that, in some cases, added privacy (provided by OSBE schemes) introducesno additional costs. We also
consider some natural extensions of OSBEs to constructing provably secure and practical secret handshake protocols.
Organization: This paper is organized as follows: the next section contains the necessary OSBE definitions. Section

3 presents the roadmap and a summary of our contributions. Then, Section 4 shows the construction of OSBE for
Schnorr signatures, followed by Section 5 which does the same for Nyberg/Rueppel signatures. Section 6 presents
OSBE schemes for other ElGamal family signatures, including one for the Digital Signature Standard (DSA). The costs
of all OSBE schemes and the results of the implementation of the OSBE schemes are analyzed in Section 8. We discuss
certain other security features apart from the security features required for OSBEs in Section 9. We then sketch some new
approaches to building secret handshake protocols in Section 10 and conclude in Sections 11 and 12 with an overview of
some related work and future research directions.

2 Preliminaries

This section presents some background material, including definitions of OSBE components and OSBE security
properties.2

An OSBE scheme enables a sender to encrypt a message and send it to a receiver who can decrypt the messageif and
only if the receiver has the right third party’s signature (e.g., a signature from a certification authority) on a previously
agreed upon message. However, the sender is not allowed to know – not even at the end – if the receiver has the right
third party’s signature. The sender is assured only that the encrypted message will only be decrypted if the receiver has
the right signature. The components of an OSBE scheme are (1) a setup algorithm and (2) three partiesS, R1 andR2 or
sender, authorized receiver and unauthorized receiver (adversary), respectively. In other words,S is the party who wants
to send messageP to the authorized receiver who has the right signature on some authorization stringM , e.g.,M can
be thought of as a certificate.R1 is the receiver who has the right signatureσ on messageM andR2 is the receiver who
does not haveσ and who might try to impersonateR1.

An OSBE scheme consists of two phases:SetupandInteraction.3

Setup: This algorithm generates two messagesM andP and a public/private key-pair for a given signature scheme. It
uses the secret key to generate a signatureσ on an input messageM . The valuesM and the public parameters/keys for
the signature scheme are known to all parties. Whereas,P is known only toS andσ is known only toR1. Since the

1See Appendix B for a brief re-cap of RSA-OSBE.
2Since much of the material in this section is adapted from [15], those familiar with [15] may wish to skip this section with no lack of continuity.
3Note that [15] defines an additionalOpenphase. We merged this phase withInteraction.
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setup algorithm generates the signature, we assume that it also takes the role of a certification authority (CA). (However,
this is not a requirement.)
Interaction: In this phase,S communicates with the receiverR, which is eitherR1 or R2. However, in the process,S
cannot distinguish betweenR1 or R2. At the end of this phase, ifR = R1, R1 outputs messageP ; otherwise,R2 cannot
outputP .

An OSBE scheme must satisfy three properties:soundness, obliviousnessandsemantic security against the receiver,
which are informally defined as (formal treatment of these properties can be found in [15]):
Soundness:An OSBE scheme is sound if the authorized receiverR1 (who has the signatureσ on messageM ) can output
P with non-negligible probability at the end of theInteractionphase.
Obliviousness:An OSBE scheme is oblivious if, at the end of the interaction phase,S does not know whether it is

communicating withR1 or R2. In other words, if one of:R1 or R2 is randomly picked to take part in the Interaction
with S, the probability ofS correctly guessing the other party is, at best, negligibly over1/2.
Semantic Security Against the Receiver:An OSBE scheme is semantically secure against the receiver ifR2 learns noth-
ing aboutP . Even ifP can be only one of two possible messages (selected byR2), at the end of the Interaction phase,
R2 cannot determine – with probability non-negligibly greater than1/2 – which message was actually sent.

In the remainder of this paper we use the termnegligibleto refer to functions with a certain property: a functionf(x)
is said to benegligibleif, for each polynomialp(k), there exists ak0 with f(x) ≤ 1

|p(k)| for all x ≥ k0.
As discussed in Section 9 below, there are other features that could be desired from OSBE schemes.

3 Roadmap

As mentioned earlier, the only prior result in OSBEs is [15]. We consider the main contributions of [15] to be two-
fold: (1) the introduction and formalization of the novel OSBE concept, and (2) the construction of, and proof of security
for, a practical RSA-OSBE scheme. The results of [15] also include two non-interactive (or one-round) OSBE schemes
for BLS and Rabin signatures using Boneh-Franklin and Cocks IBE schemes, respectively. However, their constructions
are quite intuitive since, as the authors of [15] show, an OSBE scheme can be built fromany identity-based encryption
scheme.

Our work has roughly the same goals as [15]. Specifically, we are interested in coming up with more practical and
secure OSBE schemes that are: (1) based on standard cryptographic assumptions, and (2) utilize popular (or at least
well-known) signature schemes. Since RSA-OSBE and Rabin-OSBE schemes have been already demonstrated, we turn
to the natural alternative: the family of signature schemes originated by the ElGamal signature scheme [13]. This family
includes such notable signature schemes as DSA, Schnorr and Nyberg-Rueppel.

Besides being grounded in different number-theoretic settings, the biggest difference between ElGamal-like and RSA
signatures is their physical representation: an ElGamal-like signature is a pair, whereas, an RSA signature is a single
value. When building an OSBE scheme for RSA signatures, intuitively, one has no choice but to somehow encrypt (or
otherwise hide) the receiver’s RSA signature. With ElGamal-like signatures, there is a choice: we can try to encrypt the
entire signature or reveal only part of it. In this paper, we elect to do the latter, partly because we observe that half of an
ElGamal signature is essentially random and yields no information about the other half.

The above observation leads us to design relatively simple, yet secure and efficient, OSBE schemes for Schnorr,
Nyberg/Rueppel, ElGamal and DSA signatures. A valuable, but not entirely unexpected, side-effect is that each proposed
OSBE scheme can be used as a natural building block for secret handshake protocols [2].

We begin, in the next section, with the Schnorr signature scheme. The Nyberg/Rueppel signature scheme is considered
next, followed by other ElGamal schemes, including DSA.

4 OSBE with Schnorr Signatures

Recall that Schnorr’s signature scheme works as follows [21]:

Let p be a large prime andq be a large prime factor ofp − 1. Let g be an element of orderq in Z∗
p, M be

the message space andH : M→ Z∗
q be a suitable cryptographic hash function. The signer’s secret key is:
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a ∈R Z∗
q and the corresponding public key is:y = ga mod p. The values:p, q andy are public, whilea is

only known to the signer. A signatureσ = (e, s) on input messageM is computed as follows:

1. select a random valuek ∈R Z∗
q

2. computee = H(M, gk mod p)

3. computes = ae + k mod q

A Schnorr signature is verified by checking thatH(M, gsy−e mod p) matchese.

Similar to RSA-OSBE [15] and all other non-IBE-based OSBE schemes, the interaction in Schnorr-OSBE is essen-
tially a Diffie-Hellman style key agreement protocol. It is run betweenS and eitherR1 or R2 where the former is a
legitimate certificate holder and the latter is an adversarial party. IfS andR1 take part in the protocol, then – at the end
– both parties agree on the same shared secret key. Whereas, ifS andR2 run the protocol, then they compute distinct
values andR2 is unable to derive the key computed byS. Since the very nature of OSBE prohibitsR1 (or R2) from
authenticating toS, no key confirmation flows in either direction.

OnceS computes the Diffie-Hellman secretKS , it sends its message (P ) to the other party (eitherR1 or R2) encrypted
under a key derived fromKS .

R1/2 starts the protocol by sending toS one part of its signature:X = gsy−e mod p = gk mod p. S then generates
a randomz ∈R Z∗

q and computes its version of the secret as:

Ks = [yH(M,X)X]z = g(ae+k)z

and sendsZ = gz mod p toR1/2. If R1/2 is indeedR1, it knows the other half of the signature:s = ae+k mod q. It can
thus easily computeKr = Zs = gz(ae+k). BothS andR1 employ a functionH ′() for deriving from the Diffie-Hellman
secret, the actual key to be used for the symmetric encryption of message P. In more detail, Schnorr-OSBE is as follows:
Setup: On input of a security parametert, this algorithm creates a Schnorr key:(p, q, g, a, y), selects a suitable crypto-
graphic hash functionH, a functionH ′ for key derivation and two security parameterst1 andt2, which are linear int.
It also chooses a semantically secure symmetric encryption schemeE , two messagesM andP . It computes a Schnorr
signatureσ = (e, s) on messageM . Finally, it givesM, σ and(p, q, g, y) to R1, M and(p, q, g, y) to R2 andM,P and
(p, q, g, y) to S.
Interaction:

Step 1a:R1 −→ S : X = gs · y−e mod p = gk mod p

OR

Step 1b:R2 −→ S : X = gk′ mod p for somek′ ∈ Z∗
q

Step 2:S receivesX, checks that:(X)(p−1)/q mod p /∈ {0, 1}, picks a randomz ∈ {1..2t1q} with z mod q 6= 0,
computesKs = [yH(M,X)X]z, ks = H ′(Ks) and:

Step 3:S −→ R1 or R2 : Z = gz mod p, C = Eks [P ]

Step 4:R1 receives(Z,C), computesKr = Zs mod p, deriveskr = H ′(Kr) and finally decryptsC with kr.

We now prove that Schnorr-OSBE is sound, oblivious and semantically secure against the receiver.

Soundness:To see that Schnorr-OSBE is sound, at the end ofInteraction, Kr = Ks has to hold. This is easily
established, since:

Ks = [yH(M,X)X]z = [gaegsy−e]z = [gae+ae+kg−ae]z = gsz = gzs = Zs = Kr
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Showing that Schnorr-OSBE is oblivious is similar to the proof of obliviousness for RSA-OSBE in [15]. We first re-state
the notion of statistical indistinguishability. Two distribution familiesD1(t1) andD2(t1) are said to bestatistically
indistinguishable if:

Σy|Prx∈D1(t1)[x = y]− Prx∈D2(t1)[x = y]|

is negligible int.
If two distribution families are statistically indistinguishable, then there exists no algorithm that can distinguish be-

tween the two with non-negligible advantage by sampling from them. We use this to prove the following theorem.
Theorem 1.Schnorr-OSBE is oblivious.

Proof (sketch): Two distribution families:

D1(t1) = {gsy−e mod p = gk mod p | k ∈ {1..2t1q}}
and

D2(t1) = {gk′ mod p | k′ ∈ {1..2t1q}}

range over the same values and, during each run ofInteraction, a random value from one of these distribution families
is sent by a communicating partner (eitherR1 or R2). Since these values are chosen at random and the two distribution
families range over the same values,S cannot decide whether the other party isR1 or R2. Consequently, Schnorr-OSBE
is oblivious.

In more detail, sinceq is the order ofg, D1(t1) andD2(t1) (for a fixed t1) each haveq points. The probability
difference on any point is at most1

2t1q
, therefore, the total difference is at mostq

2t1q
= 1

2t1
. Since this quantity is

negligible in t1 and t1 is linear in t, the total difference is also negligible int. Thus, the two distribution sets are
statistically indistinguishable.
Theorem 2. Assuming the non-existence of a polynomial time algorithm for solving the CDH Problem and thatH and
H ′ are modelled as random oracles, Schnorr-OSBE is secure against the receiver.

Proof. Schnorr-OSBE uses a semantically secure symmetric encryption algorithm andH ′ is modelled as a random
oracle. Therefore, Schnorr-OSBE is semantically secure against the receiver if no polynomially bounded adversary, who
does not possess the signatureσ = (e, s) on M , can compute with non-negligible probability the OSBE keyKs =
gz(ae+k) mod p. More precisely, Schnorr-OSBE is semantically secure against the receiver if there is no polynomially
bounded adversary who can win with non-negligible probability the following game:

1. A is given a messageM and the public key(p, q, g, y) with y = ga mod p.

2. A chooses a valueX = gk mod p.4

3. A is given the valueZ = gz mod p.

4. A outputs a valueK.

A wins the game if and only ifK = gz(ea+k) mod p with e = H(M, gk). We prove our claim by contradiction. We show
that if there is a polynomial adversary who wins the above game with non-negligible probability, then such an adversary
can also solve every instance(ga, gz) of the CDH Problem in polynomial time. Assume there is an adversaryAwho does
not have a signatureσ = (e, s) but who nevertheless wins the above game (i.e. computes the valuegz(ae+k) mod p) with
non-negligible probabilityε. Using the forking lemma [20], we know that then,A can be executed twice in a row with
the same valueX = gk mod p and different random oraclesH andH ′ (such thate = H(M, gk) 6= H ′(M, gk) = e′)
andA wins both games with non-negligible probability of at leastε2

qH
, whereqH is the number of queriesA makes to

4Note that we do not make any assumptions aboutA’s knowledge aboutk. A might know the value ofk, it might have partial knowledge ofk
or k might even be completely unknown toA.
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the hash function. This means,A can compute with non-negligible probability the valuesK = gz(ea+k) mod p and
K ′ = gz(e′a+k) mod p with e 6= e′. Consequently,A can also efficiently computegaz:(

K
K′

)(e−e′)−1

=
(
gzea−ze′a

)(e−e′)−1

=
(
gza(e−e′)

)(e−e′)−1

= gaz mod p.

However, this means thatA can solve the CDH Problem in polynomial time, which is a contradiction to our assump-
tion.
Note that the Schnorr signature scheme is existentially unforgeable assuming there is no polynomial time algorithm
which can solve the Discrete Logarithm (DL) Problem [20]. Since we assume that there is no polynomial time algorithm
for solving the CDH Problem, this also implies that there is no polynomial time algorithm which can solve the DL Prob-
lem. Therefore, assuming there is no polynomial time algorithm which can solve the DL Problem, a polynomial time
adversaryA cannot forge a signature onM in order to be able to compute the OSBE key.

5 Nyberg/Rueppel OSBE

We now turn to the Nyberg/Rueppel signature scheme. Recall that the Nyberg/Rueppel signature scheme [18] is as
follows:

Let p be a large prime andq be a large prime factor ofp − 1. Let g be an element of orderq in Z∗
p,

M be the message space andH : M → Zp be a suitable cryptographic hash function. (Note that the
textbookdescription of Nyberg-Rueppel scheme does not require a hash function, since the scheme provides
the message recoveryfeature.) The signer’s secret key is:a ∈R Z∗

q and the corresponding public key is:
y = ga mod p. The values:p, q andy are public, whilea is only known to the signer. A signatureσ = (e, s)
on input messageM is computed as follows:

1. select a random valuek ∈R Z∗
q and seth = H(M)

2. computee = hg−k mod p

3. computes = ae + k mod q

A Nyberg-Rueppel signature is verified by checking that: (1)0 < e < p, 0 < s < q, and (2)h′ =
gsy−ee mod p matchesh′ = H(M).

NR-OSBE is very similar to Schnorr-OSBE presented above:
Setup: This algorithm takes as input a security parametert and creates a Nyberg-Rueppel key:(p, q, g, a, y), selects a
suitable cryptographic hash functionH, a functionH ′ for key derivation and two security parameterst1 andt2, which are
linear int. It also chooses a semantically secure symmetric encryption schemeE , two messagesM andP and computes
σ = (e, s) where:5

e = hg−k mod p wherek ∈R Z∗
q ,

e mod q 6= 0 ands = ae + k mod q

It then givesM,σ and(p, q, g, y) to R1, M and(p, q, g, y) to R2 andM,P and(p, q, g, y) to S.
Interaction: Although in the following, we describe actions forS, R1 andR2, it is understood that only one of[R1, R2]
actually participates in the protocol. (The termparticipatesmeans:sends a message in Step 1a/b below.)

Step 1a:R1 −→ S : e = hg−k mod p

OR

Step 1b:R2 −→ S : e = hg−k′ mod p for somek′ ∈ Z∗
q

5We need the propertye mod q 6= 0 for the proof of security of our scheme. Note that this is only a restriction on the signer and in particular
no restriction on S orR1/2.
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Step 2:S receivese, checks that:(e/h)(p−1)/q mod q /∈ {0, 1}, picks a randomz ∈ {1..2t1q}, computesKs =
[ye(e/h)−1]z derivesks = H ′(Ks) and:

Step 3:S −→ R1 or R2 : Z = gz mod p, C = Eks [P ]

Step 4:R1 receives(Z,C), computesKr = Zs = gz(ae+k), deriveskr = H ′(Kr) and finally decryptsC with kr.

Note that, in Step 1b, the valuee sent byR2 must be such that:(e/h)(p−1)/q mod p /∈ {0, 1}. In other words,e/h
has to be in the unique group of orderq, which is generated byg. If this is not the case,e is immediately rejected
by S. Therefore, there must bek′ ∈ {1..2t1q} such that:e = hg−k′ mod p.

Soundness:To show that NR-OSBE is sound,S andR1 must share the same symmetric key when the protocol com-
pletes successfully, i.e.,Kr = Ks. It is easy to see that:

Ks = [ye(e/h)−1]z = g(ae+k)z = gzs = Zs = Kr

Theorem 3.NR-OSBE is oblivious.

Proof (sketch): Two distribution families:

D1(t1) = {e = hg−k mod p|k ∈ {1..2t1q}}
and

D2(t1) = {e = h · g−k′ mod p|k ∈ {1..2t1q}}

range over the same values and, during each execution of the Diffie-Hellman key exchange protocol, a random value from
one of the two families is sent by each party. Since these values are chosen at random and, since the two distribution
families have the same values,S does not know if the other party isR1 or R2. Consequently NR-OSBE is oblivious.
More concretely, sinceq is the order ofg, both D1(t1) and D2(t1) (for a fixed t1) have q points. The probability
difference on any point is at most1

2t1q
and, therefore, the total difference is at mostq

2t1q
= 1

2t1
. Since the total difference

is negligible int1 andt1 is linear int, the total difference is also negligible int. Thus, two distribution sets are statistically
indistinguishable.
Semantic security against the receiver:While proving the semantic security of Schnorr-OSBE is straightforward, the
proof of the semantic security of Nyberg/Rueppel-OSBE and also that of ElGamal-OSBE and DSA-OSBE is far from
easy, if standard cryptographic assumptions are to be made. Further discussion of semantic security for Nyberg/Rueppel-
OSBE, ElGamal-OSBE and DSA-OSBE can be found in the appendix.

6 ElGamal and DSA OSBE

A number of ElGamal variants are known in the literature. The following 6 are taken from [16] (note that none of
them corresponds to either Schnorr or Nyberg-Rueppel schemes):

1. s = (h− agk)k−1

2. s = (h− kgk)a−1

3. s = agk + kh

4. s = ah + kgk

5. s = (gk − kh)a−1

6. s = (gk − ah)k−1
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All computation is done modulo(p − 1) and existence ofq is not required, although(p − 1) cannot be a product of
small factors (to prevent the so-called Pohlig-Hellman attack [19]). In each case, the other part of the signature is
e = gk mod p.

It is easy to construct OSBE schemes for variants (3) and (4) above. In each case, the interaction component is as
follows (the Setup component is trivial):

Step 1:R1 −→ S : e = gk mod p

Step 2:S receivese, generatesz ∈R {1..2t1q}, computes:

Ks = [ye · eh]z = gz(agk+kh) for variant (3)

Ks = [yh · ee]z = gz(ah+kgk) for variant (4)

and derivesks = H ′(Ks)

Step 3:S −→ R1; : Z = gz mod p, C = Eks [P ]

Step 4:R1 receives(Z,C), computesKr = Zs, deriveskr = H ′(Kr) and decryptsC with kr.

To avoid repetition, we omit proofs of obliviousness and semantic security against the receiver for the above OSBE
variants. Suffice it to say that the proofs are almost identical to those for Schnorr-OSBE and NR-OSBE.

OSBE constructs for variants (1), (2), (5) and (6) are less trivial since the signing equation (computation ofs) involves
eithera−1 or k−1. We now focus on variant (1) since it represents the original ElGamal signature scheme [13] and also
naturally leads to an OSBE scheme for DSA.

The Interaction Component in EG-OSBE is as follows:
Interaction:

Step 1:R1 −→ S : e = gk mod p

Step 2:S receivese, generatesz ∈R {1..2t1p} with e mod (p− 1) 6= 0, computesKs = yez · g−hz mod p and
derivesks = H ′(Ks)

Step 3:S −→ R1; : Z = ez mod p, C = Eks [P ]

Step 4:R1 receives(Z,C), computesKr = Z−s, deriveskr = H ′(Kr) and decryptsC with kr.

Soundness.It is easy to see that:

Ks = yezg−hz = g(ae−h)z = gk(ae−h)k−1z = e−sz = e−zs = Z−s = Kr

Theorem 4.EG-OSBE is oblivious.

Proof. Almost identical to that for Schnorr-OSBE.

The Digital Signature Algorithm (DSA) [17] was developed by NIST as a more efficient alternative to ElGamal. The
DSA signature scheme works as follows [17]:

Let p be a prime such thatp − 1 has a large prime divisorq, let g be an element of orderq in Z∗
p, M be

the message space andH : M → Z∗
q be a cryptographic hash function. Furthermore, leta ∈R Z∗

q and
y = ga mod p be signer secret and public keys, respectively. A DSA signatureσ = (e, s) on input message
M is computed as follows:

1. generatek ∈R Z∗
q and seth = H(M).

2. computee = (gk mod p) mod q ands = k−1(h + ea) mod q.

8



A DSA signature is verified by checking that:(gs−1hyes−1
mod p) mod q matchese.

To avoid unnecessary repetition, due to similarities between ElGamal and DSA, we omit the full description of DSA-
OSBE. The only details worth mentioning involve the arithmetic of computing the secret:

1. Ks = (yegh)z = g(ae+h)z

2. Kr = Zs = ezs = gk(ae+h)k−1z = g(ae+h)z

Semantic security against the receiver:as mentioned in Section 5, proving the semantic security of Nyberg/Rueppel-
OSBE, ElGamal-OSBE and DSA-OSBE is far from straightforward, if standard cryptographic assumptions are to be
used. A discussion of the semantic security of these schemes can be found in the appendix.

7 Cost Analysis and Comparison

We now consider the communication and computation costs of the five schemes discussed in this paper, including
RSA-OSBE (which is presented in Appendix B). Table 1 below summarizes the results.6 We collapse EG-OSBE and
DSA-OSBE since they are substantially similar. (However, we keep in mind that exponentiations and other modular
arithmetic in DSA are appreciably cheaper than in ElGamal).

The number of rounds and the number of messages exchanged between the parties are the same (two rounds and two
messages of constant length) for all OSBE schemes.

Schnorr-OSBE involves the most total exponentiations, while NR and EG/DSA have the fewest. Interestingly, all
schemes requireS to perform 3 exponentiations, whereas,R1 performs between1 and3 exponentiations. Although we
show the number of exponentiations forR1 in RSA-OSBE as2, this can be reduced to1 by observing thatR1 does
not need to generate a new blinding factor for each OSBE run.7 Other cost factors (inverses and multiplications) are
relatively minor and we do not elaborate on them further.

. OSBE Schemes:
Costs: NR Schnorr EG/DSA RSA

protocol rounds 2 2 2 2
protocol messages 2 2 2 2
mod exps. forS 3 3 3 3
mod exps. forR1 1 3 1 2
inverses for S 2 0 0 1
inverses forR1 0 0 0 0
mod mults. for S 2 1 1 1
mod mults. forR1 0 1 0 2

Table 1. Cost Factors for Various OSBE Schemes

To put the costs of OSBE schemes into perspective, we consider the hypothetical scenario wherebyS andR1 com-
municate securely without OSBEs (i.e., without the obliviousness factor). IfR1’s affiliation privacy were not an issue,S
would expectR1 to first supply a valid signed certificate. Verifying a certificate would involve a cryptographic operation
(e.g., one exponentiation for RSA and two for DSA). This would be in addition to cryptographic operations necessary
to compute a Diffie-Hellman session key: two forS and at least one forR1. (Here we are assuming thatS always
computes a new Diffie-Hellman exponent, whereasR1 does not; to mimic their respective actions in all of the above
OSBE schemes.) It becomes clear that the total costs (three exponentiations forS and one forR1) would be the same
as these forNR−OSBE, EG/DSA−OSBE andRSA−OSBE. This is an interesting observation demonstrating
that, for some OSBE schemes, there isno extra cost for added privacy.

6We do not include IBE-based OSBE schemes since they are non-interactive and, also, because BLS-IBE involves cryptographic operations in
a very different setting, while Rabin-OSBE is very space-inefficient.

7Re-using blinding factors would sacrifice the impostor obliviousness property (see Section 9) but would not affect other security properties.
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8 Implementation

Section 7 presented a comparison of the cost factors for different OSBE schemes. However, this only gives us a rough
overview of the efficiency of OSBE schemes since arithmetic operations are performed in different algebraic structures.
Consequently, a comparison of the number of multiplications alone does not provide a fair overall cost comparison.
For instance, modular operations in ElGamal-OSBE are performed inZ∗

p while modular operations in DSA-OSBE are
performed in a subgroup ofZ∗

p (of orderq) and are appreciably cheaper. Apart from that, arithmetic operations in BLS-
IBE-OSBE scheme [6] – which were not considered in Section 7 – are performed in a different algebraic setting and thus
a fair comparison becomes more difficult.

To provide a more accurate comparison, we implemented all OSBE schemes (including BLS-IBE-OSBE) in ’C’.
We used popular OpenSSL cryptographic library for modular arithmetic with long integers and Miracl library for the
implementation of BLS-OSBE. We modified some functions in the Miracl IBE package and introduced some new data
structures. The following modifications were made:

• The original IBE implementation uses AES to encrypt the message (using a randomly chosen session key) while
all other our OSBE implementations use RC4. For the sake of consistency we replaced AES with RC4.

• Miracle saves the parameters of the IBE scheme, the extracted key corresponding to an ID string (which, in our
case, is the signature), the ciphertext and the decrypted cleartext in separate files and loads them every time they
are needed. Whereas, other OSBE schemes use user-defined data structures kept in memory. Once again, for
consistency’s sake, we modified Miracl to work with user-defined data structures.

We also consider two implementation flavors of RSA-OSBE: plain and optimized. Recall that in RSA-OSBE,R1 sends to
S a blinded RSA signaturehx+d using the blinding factorhx. Since it is chosen anew for each interaction, RSA-OSBE
provides two extra properties (discussed in Section 9): Perfect Forward Secrecy (PFS) and Impostor Obliviousness.
However, it also requires one extra modular exponentiation and one extra modular multiplication for each interaction.
This slows down the scheme. Since neither property is, strictly-speaking, required and since none of the other OSBE
schemes provide them8 we can improve the performance of RSA-OSBE by re-using the same blinding factor. The
optimized version is referred to as “RSA(optimized)” in Table 2 below.

We measured the schemes’ performance with the following settings:

• For all ElGamal-family schemes we set|p| = 1024 andq = 160

• For RSA schemes we set|n| = 1024

• For BLS-IBE scheme we set|p| = 512 andq = 160

Our results (in milliseconds) are illustrated in Table 2. All of them were obtained on an IBM Thinkpad R40 with Pentium
M processor running at 1.3Ghz with 256MB of RAM. The experimental OS platform was Debian Linux (Kernel Version
2.4.27). Timings for each scheme represent average values taken over1, 000 executions. The results illustrate that the
most efficient scheme is Schnorr-OSBE while BLS-IBE-OSBE is the least efficient one. We also observe that three
ElGamal family schemes (DSA-, NR- and Schnorr-OSBE) are more efficient than even the optimized RSA sheme.

# Runs: RSA RSA(optimized) BLS-IBE(Miracl) EG DSA NR Schnorr

1,000 60.29 45.21 181.53 57.68 22.71 23.37 27.27

Table 2. Average running time for different OSBE Schemes

8Note, however, that PFS can be provided in all of these schemes using a blinding factor as described in Section 9.

10



9 Additional Features

In addition to the two security properties specified in [15] and in Section 2 (sender obliviousness and semantic security
against the receiver), another interesting and useful feature is Perfect Forward Secrecy (PFS). PFS is a well-known
property particularly desirable in key distribution and key agreement protocols. Informally, PFS means that compromise
of a long-term secret (or secrets) does not result in compromise of short-term (session or ephemeral) secrets. In [15],
this feature is considered but neither recognized nor referred to as PFS. Instead, it is calledinability to recover a shared
secret even if the adversary knows the signatureand is treated as a useful but not mandatory feature.

Another way to motivate PFS in OSBE is to re-state it as: security against the original signer (TTP or CA), i.e.,
the party who originally issuedσ to R1. Since the signer is assumed to know all such signatures, it can successfully
eavesdrop on all communication betweenS andR1, unless, of course, PFS is provided.

RSA-OSBE (see Appendix B) offers PFS, as proven in [15]. In contrast, none of the OSBE schemes presented in this
paper offer PFS. This can be easily seen by observing that, in all variants, Interaction involvesR1 computing, in Step 4,
Kr = Zs or Kr = Z−s. An adversary – who at some point discoversσ = (e, s) – can thus trivially computeKr = Ks.

While we recognize and acknowledge lack of PFS as a shortcoming, a small change to each of our OSBE schemes
would enable PFS. The change involves adding a new quantity:gb mod p (whereR1 picksb at random fromZ∗

p) to Step
1 of the Interaction. Then,S computesK ′

s asKs · gbz whereKs is the secret as computed byS in each protocol as
presented above. Similarly,R1 computesK ′

r asKr · gbz. This change does not influence any OSBE security properties
for our schemes.

Showing that PFS is attained entails proving that the adversary (who knowsσ and can computeKr = Ks) cannot
computeK ′

s or K ′
r, or equivalently, cannot computegbz. But, computinggbz from gz andgb represents a solution to the

CDH problem which is assumed to be intractable.
Another closely related feature is what we refer to as:impostor obliviousness. This, incidentally, is a new feature,

not considered either in prior work. Suppose thatS runs two different instances of OSBE Interaction, each time with
someone who claims to beR1 and claims to possess the necessary credentials (i.e.,σ). We call an OSBE scheme
impostor-obliviousif, after running both Interaction instances,S is unable to determine9 whether one of the counter-
parties was an impostor. (This definition can be trivially extended to cover more than two Interaction instances.)

Clearly, since our goal is to maximize anonymity, impostor-obliviousness is a very useful feature. Its main advantage
is that, over multiple OSBE Interactions, the sender remains totally unaware of the genuineness of the population of
receivers. It is easy to see that RSA-OSBE is impostor-oblivious, owing to the very same feature that provides PFS:
randomized encryption of the RSA signature in Step 1 of RSA-OSBE Interaction. (Recall that in RSA-OSBE, for each
Interaction,R1 chooses a new randomx and encrypts its RSA signature ashx+d mod n. See Appendix B for the
summary of RSA-OSBE.)

None of the OSBE schemes presented in this paper are impostor-oblivious. To see this, consider what happens ifS
engages in two instances of OSBE Interaction (using any of our proposed OSBE schemes): once withR2 (the impostor)
and once withR1. Since each of our schemes involves revealinggk in Step 1 of the Interaction component and this value
is constant for a given signatureσ, only R1 reveals the correctgk. Whereas,R2 reveals some other value –gk′ . At that
point,S would determine, with certainty, that one of the parties is an impostor. One of the items for our future work is
the further investigation of impostor obliviousness for the proposed OSBE schemes.

10 Towards Secret Handshakes

As a concept, OSBEs are very closely related to Secret Handshakes [2, 22]. Briefly, a secret handshake scheme allows
two parties to authenticate each other in an anonymous, unlinkable and unobservable manner such that one’s membership
is not revealed unless every other party’s membership is also ensured. In more detail, a secure handshake allows two
members of the same group to identify each othersecretly, such that each party reveals its affiliation to the other if and
only if the latter is also a group member. For example, an FBI agent (Alice) wants to authenticate to Bob only if Bob is

9With probability which is non-negligibly greater than1/2.
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also an FBI agent. If Bob isnot an FBI agent, he should be unable to determine whether Alice is one (and vice versa).
This property can be further extended to ensure that affiliations are revealed only to members who hold specificroles in
the group. For example, Alice might want to authenticate herself as an agent with a certain clearance levelonly if Bob is
also an agent with at least the same clearance level.

OSBEs can be viewed as a sort of a one-sided or asymmetric secret handshakes. Based on the required security
properties alone, it is easy to see that OSBEs are a simpler concept than secret handshakes. It is thus natural to wonder
how to construct a secret handshake scheme out of an OSBE scheme. To conserve space, we limit our discussion to
sketching out a general method and leave further details for future work.

The most naive approach is to simply combine two OSBE Interactions(S, R1) and(R1, S) to obtain a secret hand-
shake. For clarity, we rename the two communicating parties asA andB (since neither is a sender or receiver in a secret
handshake). Assuming thatA hasσa = (ea, sa) andB hasσb = (eb, sb) we can build a simple secret handshake protocol
composed of a single (assuming synchronized clocks) round:

A −→ B : gk1 , Za

B −→ A : gk2 , Zb

wherek1 andk2 are the respective randomizers inσa andσb.
Note that the single-round protocol is possible with RSA-OSBE, NR-OSBE, Schnorr-OSBE and OSBEs from ElGa-

mal variants (3) and (4). However, it does not work for EG- and DSA-OSBE since they computeZ = ez = (gk)z. (Thus
an extra initial round to exchangegk1 , gk2 would be necessary.)

Thereafter,A computesKa
s (acting asS with respect to A-to-B OSBE) fromgk2 andZa as well asKa

r (acting asR1

with respect to B-to-A OSBE) fromZb andgk1 . Finally,A setsKa = H ′(Ka
s ||Ka

r ). B does the same by computingKb
s ,

Kb
r and settingKb = H ′(Kb

s ||Kb
r).

We claim (albeit, without proof) that the above construct is a secure secret handshake protocol. In particular, no
observer derives any information from the exchange andA andB computeKa = Kb if and only if each possesses a
valid signature produced by the same authority (signer). Clearly, much more work is needed to properly assess our claim
of security. We leave this as a major item for future research.

11 Related Work

The OSBE schemes introduced in this paper are closely related to those in [15] and secret handshakes [2, 9]. Since
both of these topics have been amply discussed earlier, we do not elaborate on them further.

Another related cryptographic concept is Fair Exchange of Signatures (FES) [1, 3]. FES enables two parties to
exchange signatures such that either both parties obtain the other party’s signature or none of them obtains the other
party’s signature. There are several differences between OSBE and FES. First, OSBE does not require fair exchange.
In OSBE,S sends its encrypted message toR1 without receivingR1’s signature.S is assured only thatR1 will obtain
the message if it has a required signature. This allows for efficient OSBE protocols, without the involvement of any
third parties (other than the original signer, of course). Another difference is that in FES, signatures are generated by the
parties involved in the protocol. Whereas, in OSBE the signatures are generated by a certification authority or some other
trusted third party. Also, at some stage in FES protocols, one party finds out that the other party has a signature without
obtaining that signature. This does not hold for OSBE and would in fact violate one of the OSBE security requirements
(sender obliviousness).

12 Summary and Future Work

In this paper we began where the initial OSBE work had left off. Our main result is a collection of OSBE schemes for
all signature schemes in the ElGamal family, including Nyberg-Rueppel, Schnorr and DSA. Proposed OSBE schemes
are simple and quite efficient. Furthermore, they can be easily used to build secret handshake protocols. There are several
directions for future work:
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• Further exploration of the impostor-awareness feature.

• Design of Secret Handshake protocols from OSBE schemes presented in this paper.

• Investigation of other OSBE applications, including Automated Trust Negotiation.
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Appendix A: Semantic Security of NR-OSBE, EG-OSBE and DSA-OSBE

In Section 4 we used the forking lemma to prove that Schnorr-OSBE is semantically secure against the receiver. More precisely,
we prove that assuming there is no polynomial time algorithm which can solve the CDH-Problem and assuming that the hash
functionsH andH ′ are modelled as random oracles, Schnorr-OSBE is semantically secure against the receiver.

Recall that in the Schnorr signature scheme, the hash valuee is not computed on the messageM alone but on the concatenation
of M andgk which is determined by the signer (e = H(M, gk)). We use this fact to prove semantic security for Schnorr-OSBE as
follows:

Using the forking lemma in the ROM we can show that if an adversary, who has only access to the public data, can compute the
OSBE key, we can construct for onegk two valuese = H(M, gk) ande′ = H ′(M, gk) with e 6= e′ for two different random oracles
H andH ′.

This in turn, enables us to solve the CDH problem (see proof of Theorem 2 in Section 4). However, we cannot use the same “trick”
for OSBE schemes based on Nyberg/Rueppel, ElGamal or DSA signatures. This is because, in all these signature schemes, the hash
is computed only over the messageM . Therefore, the forking lemma does not help us prove semantic security of these OSBE
schemes. In fact, proving semantic security of these schemes based on the Decision Diffie Hellman (DDH), the Computational
Diffie Hellman (CDH) or the Discrete Logarithm (DL) assumption alone would be a major progress not only in proving the security
of the corresponding OSBE schemes but also in proving the security of the underlying signature schemes. (We note the security of
none of these signature schemes has been shown to be based on efficiently solving DDH, CDH or DL problem.)

Another possibility would be to prove semantic security by showing that an adversary who can compute the OSBE key can be
used to forge signatures in the underlying signature scheme. Proving this also seems difficult: the signatures in all three signature
schemes have the form(e, s), wheree is computed modp ands is computed modp− 1 in ElGamal and modq in Nyberg/Rueppel
and DSA. In each OSBE scheme,S sendsZ to the receiver who (if he isR1) computes the OSBE secret asZs mod p. Therefore,
the signature and the OSBE key are computed in different algebraic structures.

Proving that an adversary who can break the OSBE scheme can also forge signatures in the underlying signature scheme means
being able to chooseZ such thatZs yields the signature or a part of the signature. In particular, if the desired part of the signature
the adversary wants to forge iss, extracting the values from Zs is equivalent to computing the discrete logarithm ofZs to baseZ,
which is assumed to be intractable.

Therefore, we make the following assumptions about the security of the three OSBE schemes:

Nyberg/Rueppel-OSBE:We assume that there is no polynomially bounded adversaryA, who can win with non-negligible proba-
bility the following game:

1. A is given a messageM and a public key(p, q, g, y) with y = ga, wherea is only known to the signer.

2. A chooses a valuee = hg−k with h = H(M) and outputs it.10

3. A is given the valuegz.

4. A outputs its OSBE keyK.

A wins the above game if and only ifK = gz(ea+k).
The above means thatA knows the values(p, q, g, y), M , e, gk =

(
e
h

)−1
andgz. Usingy, gk ande, A computesgea+k. In the

best case,A also knowsk. However, even in that case,ea + k can assume any value sincea is only known to the signer and, for
givene, k ands ∈ Z∗

q , there exists ana = e−1(s− k) with s = ea + k.
More precisely, it holds forSe,k =

{
s | ∃ a ∈ Z∗

q : s = ea + k
}

: |Se,k| = q − 1. Therefore,A, who wins the above game with
non-negligible probability, can computegz(ea+k) from gz andgea+k without knowingz or ea + k andz andea + k are completely
unrelated. Therefore, he can solvean instanceof the CDH problem. Note that this is quite different from solving the CDH problem
(since doing so would mean solving it forall instances).

Our security assumption for Nyberg/Rueppel is that a polynomially bounded adversary cannot win in the above game, i.e., solve
the instance(gz, gea+k) of the CDH problem. If this assumption holds, we can make the following statement:

If H’ is modeled as a random oracle and the Nyberg/Rueppel signature scheme is existentially unforgeable11, NR-OSBE
is semantically secure against the receiver.

ElGamal-OSBE/DSA-OSBE:Here, we also assume that there is no polynomially bounded adversaryA who can win with non-
negligible probability the following game:

10Recall from Section 5 thate must have the forme = hg−k, otherwise, it is rejected byS.
11Note that we apply a hash functionH on the messageM before we apply the signature generation algorithm on it. If no such hash function is

applied onM , the Nyberg/Rueppel signature scheme is existentially forgeable.
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1. A is given a messageM and a public key(p, g, y) for ElGamal-OSBE and(p, q, g, y) for DSA-OSBE withy = ga, wherea
is only known to the signer.

2. A choosese = gk and outputs it.

3. A is givenez = gzk.

4. A outputs its OSBE keyK.

A wins the above game if and only ifK = gz(−h+ea) with h = H(M). This means thatA knows(p, g, y) for ElGamal-OSBE
((p, q, g, y) for DSA-OSBE),gk, gkz andg(−h+ea).

If A wins the above game with non-negligible probability, it can also computegz(−h+ea) from gk, gzk andg−h+ea. Similarly, we
assume that this is impossible for a polynomially bounded adversaryAwho does not have a valid signature onM . If this assumption
holds, we can conclude the following:

If H’ is modeled as a random oracle and the ElGamal (DSA) signature scheme is existentially unforgeable, then
ElGamal-OSBE (DSA-OSBE) is semantically secure against the receiver.

Appendix B: OSBE for RSA

We present the RSA-OSBE scheme from [15] in order make the paper self-contained. Also, RSA-OSBE is a good “measuring
stick” for the proposed OSBE schemes. RSA-OSBE is defined as follows:
Setup: This algorithm takes as input a security parametert and creates an RSA key:(n, e, d), selects a suitable cryptographic

hash functionH, a functionH ′ for key derivation and two security parameterst1 andt2, which are linear int. It then chooses a
semantically secure symmetric encryption schemeE , two messagesM andP and computes the signatureσ = hd mod n. It then
givesM,σ and(n, e) to R1, M and(n, e) to R2 andM,P and(n, e) to S.
Interaction:

Step 1a:R1 −→ S : Y = hxσ mod n

OR

Step 1b:R2 −→ S : Y = hx′
mod n for somex′ ∈ Z∗

n

Step 2:S receivesY , picks a randomz ∈ {1..2t1n}, computesKs = (Y e/h)z = (h(x+d)ez/h) = hzxe mod n, derives
ks = H ′(Ks) and:

Step 3:S −→ R1 or R2 : Z = hz mod n, C = Eks
[P ]

Step 4:R1 receives(Z,C), computesKr = Zxe = hzxe, deriveskr = H ′(Kr) and finally decryptsC with kr.

As shown in [15], RSA-OSBE is sound, oblivious and semantically secure against the receiver.

Appendix C: Potential Applications

We briefly discussed the motivation for OSBEs in Section 1. In this section, we consider using OSBEs in client-server interactions
where client anonymity plays an important role. In general, we believe that OSBEs can be used in any application where a client
needs to access a resource anonymously, but, with authorization. We consider two types of such applications: (1) distribution of
Blogs and (2) distribution of content in peer-to-peer (P2P) networks.

Suppose that Alice is a member of a dissident groupG in an authoritarian state. Since membership in this group is illegal and
anyone suspected of being a member can risk serious consequences, Alice has to hide her membership with respect to non-members.
In particular, she cannot disclose her membership to anyone she does not know. However, as an active member of G, Alice wants to
follow the activities of the groupG and, in particular, to be informed about secret group meetings.

Some members ofG have weblogs, where they provide information about secret meetings. However, there is an essential
difference between these and ordinary weblogs. Only members of G should be allowed to read the weblog contents. Clearly, if the
secret police were to read weblog contents, it would find out the times and places of secret meetings. By using OSBEs, we can solve
the problem as follows:

Each memberA with identification informationIDA gets from the group authority a certificate attesting to its membership. This
certificate is essentially a signature on a messageM=“IDA is a member of G”. Each timeA requests a weblog, it executes the
OSBE protocol with the Blog server. The Blog server encrypts the data such that only someone who has a valid signature on M, can
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decrypt it. Even if the Blog server is ever seized (say, by the police) and the identification information from past OSBE transactions
is obtained, there would be no proof of membership for anyone who may have taken part in past transactions.

A very similar OSBE application is in P2P content-sharing networks. Here, both the content provider and the party requesting
the content are peers. A peer might need a certain license for accessing some files but might not want the provider to prove to a
third party that it has that license. As with Blogs, a client can use OSBEs to ensure anonymity. We are currently working on the
implementation of an OSBE plug-in for a popular P2P client library.
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