
On Fairness in Simulatability-based

Cryptographic Systems?

Michael Backes1, Dennis Hofheinz2, Jörn Müller-Quade3, and Dominique Unruh1

1 Saarland University, Germany, { a k s u r h @ s u i s . eb c e , n u } c . n - b d
2 CWI, Amsterdam, D n i . o h i z c i ne n s H f e n @ w . l

3 IAKS, Universität Karlsruhe, m e l r @ r . k . eu l e q i a u a d

Abstract. Simulatability constitutes the cryptographic notion of a secure refinement and
has asserted its position as one of the fundamental concepts of modern cryptography.
Although simulatability carefully captures that a distributed protocol does not behave
any worse than an ideal specification, it however does not capture any form of liveness
guarantees, i.e., that something good eventually happens in the protocol.
We show how one can extend the notion of simulatability to comprise liveness guaran-
tees by imposing specific fairness constraints on the adversary. As the common notion of
fairness based on infinite runs and eventual message delivery is not suited for reasoning
about polynomial-time, cryptographic systems, we propose a new definition of fairness that
enforces the delivery of messages after a polynomial number of steps. We provide strength-
ened variants of this definition by granting the protocol parties explicit guarantees on the
maximum delay of messages. The variants thus capture fairness with explicit timeout sig-
nals, and we further distinguish between fairness with local timeouts and fairness with
global timeouts.
We compare the resulting notions of fair simulatability, and provide separating examples
that help to classify the strengths of the definitions and that show that the different
definitions of fairness imply different variants of simulatability.
Keywords: fairness, simulatability, cryptographic protocols, scheduling.

1 Introduction

Simulatability constitutes the cryptographic notion of a secure refinement and has asserted its
position as one of the fundamental concepts of modern cryptography. Although simulatability
carefully captures that a distributed protocol does not behave any worse than an ideal specifica-
tion, it however does not capture any form of liveness guarantees, i.e., that the protocol ensures
that something good eventually happens. As a consequence, protocols are considered to be se-
cure even if a single corrupted player can prevent the protocol from terminating. Clearly, this can
lead to unsatisfactory situations, especially in protocols in which liveness aspects are considered
crucial, e.g., in an electronic voting scheme.

One solution to this is to explicitly check protocols for liveness properties. This approach has
the drawback that such properties have to be formulated individually for each and every protocol
task. Furthermore, it is unclear how such explicitly formulated properties behave under protocol
composition. In this paper, we investigate how one can extend the notion of simulatability itself
so that it comprises liveness guarantees. The natural solutions as well as the one we choose
in this paper is to restrict the master scheduler—the adversary in our case—to fair scheduling.

? This is the full version of [BHMQU05] which appeared at the FMSE’05, Alexandria. Research was
done while the first author was at IBM Research, Zurich and the second and fourth author were at
the IAKS, Universität Karlsruhe.

However, the common definition of fairness based on infinite runs and eventual message delivery
is not suited for reasoning about cryptographic systems whose parties are required to run in
polynomial-time. Hence we first define a new notion of fairness corresponding to a polynomial-
time variant of the usual fairness definition, i.e., we require that every message be scheduled
within a specific, polynomially bounded number of steps of the adversary instead of requiring
eventual delivery of every message.

The new notion of fairness guarantees protocol participants that their messages are delivered,
but as the specific polynomial need not be known to the participants, they cannot decide whether
a message has been sent at a particular time or within a particular time interval. This is in contrast
to practical scenarios where timeouts are usually explicitly used to avoid (or attenuate) situations
where a corrupted protocol participant can prevent a protocol from terminating, thereby granting
the participants additional capabilities of continuing with a protocol. It hence seems promising
to extend the new definition of fairness with explicit timeouts and to compare the strength of the
resulting notions in simulatability proofs. We thus provide strengthened variants of polynomial-
time fairness that we call fairness with timeouts, which make the guaranteed maximal delay
times of the messages known to the participants. Knowing the delay times will allow the protocol
participants to distinguish between a message that is delayed by the network and a message
that was not sent at all. We will distinguish between two variants of fairness with timeouts: First,
there is fairness with local timeouts, which provides different delay times for different connections,
and each participant learns only the guarantees of its own connections. Second, there is fairness
with global timeouts, which provides a globally unique delay time for each connection, and each
participant learns this time.

We compare the definitions of fair simulatability resulting from the different notions of fair-
ness, and we provide separating examples that help classify the strengths of the simulatability
definitions. One would be tempted to think that a protocol that is secure with respect to one
definition will be secure with respect to a definition that provides more comprehensive fairness
guarantees. However, and somewhat counterintuitively, the examples have shown that this is
not always the case. This stems from the fact that simulatability is defined by comparing a real
protocol with an ideal specification. Hence the more guarantees are given in the ideal model,
the more requirements have to be fulfilled by the real protocol. In a nutshell, we show that our
different definitions of fairness imply different definitions of fair simulatability. The separations
shown in this work are not given by protocols that are secure in one network model and become
insecure in another network model, but by protocol tasks that can be realized with respect to
one scheduling and cannot in principle be realized with respect to another. More specifically, we
show that a specification of broadcast protocols can be securely realized in a nontrivial manner
with respect to usual (nonfair) simulatability, but that broadcast cannot be securely realized with
respect to fair simulatability. Moreover, we prove that there is a simple and intuitive protocol
task that separates fair simulatability and fair simulatability with timeouts. Finally, we show
that there is a simple and intuitive protocol task that separates fair simulatability with global
timeouts and fair simulatability with local timeouts.

1.1 Related Work

Simulation-based definitions of security were given for the synchronous model [PSW00, Can00]
and the asynchronous model [PW01, Can01]. In [BPSW02] scheduling with fairness properties
is introduced to prove liveness properties. This scheduling of [BPSW02] differs from the fair
scheduling presented here in that guarantees are given only for service ports, and the adversary
can be stopped by the user to let all waiting messages be delivered, thus ensuring liveness.

2

In [Bac03] a construction was introduced that allows synchronous protocols to be represented
in an asynchronous network such that asynchronous security with respect to the new represen-
tation implies security in the synchronous model. This result holds with respect to the specific
representation used and does not imply a relation between asynchronous and synchronous secu-
rity. The work [HMQ04] introduces timeout-fair scheduling (which is called “reliable scheduling”
there) in a model of security specifically designed for this purpose. For the timeout-fair scheduling
it is proved that oblivious transfer (together with broadcast) is not complete.

Timing issues for non-simulation-based definitions of security have long been studied in cryp-
tography. Fault tolerance has been studied primarily in connection with agreement and consensus
problems. A task that is impossible in a completely asynchronous network, but possible with syn-
chronous communication, was given in [FLP83]. In [DLS88] this impossibility result was studied
in a network where delivery is guaranteed, but where the bounds for possible delays are not known
to the protocol participants. This network model is adapted to the security model of [PW01] in
this work by the use of fair schedulers. In [ADG84] an asynchronous model is used that gives
delivery guarantees for messages sent by non-faulty processors. These guaranteed maximal delay
times are known to all participants, and we adapted this type of scheduling to the security model
of [PW01] under the name of globally reliable scheduling. A fair scheduling where the adversary
can suppress messages only with a certain probability is defined in [BT85], but if one does not
consider efficiency this network model can be made reliable by sending messages multiple times.
In more recent work [CKPS01] a machine sends messages to itself to measure time. A similar
approach is used here to implement timers by self-loops and delivery guarantees.

The study of more general cryptographic protocols in an asynchronous setting was initiated
by [BOCG93]. Differences between asynchronous and synchronous scheduling were shown in a
simulation-based security model. Another work relating to fairness in the context of simulation-
based security is [GMY04]. However, fairness is denoted there as the property where no party
has an advantage at the end of the computation. The underlying network model is synchronous.
In the context of proactive security, asynchronous networks are investigated in [CKLS02]. In a
completely asynchronous model, proactive security is shown to be impossible, but with some
synchronization it becomes possible, thereby showing an influence of scheduling on security.

1.2 Overview

In Section 2, we briefly summarize the model of security used here. Section 3 first motivates and
then rigorously defines the notion of a fair scheduler. Section 5 introduces two variants of fair
schedulers. In Section 6, we investigate the relationships among our new security notions and
existing ones. The paper concludes with Section 7.

2 Reactive Simulatability

Our work is based on the model of reactive simulatability [PW01, BPW07], which is an asyn-
chronous probabilistic execution model with distributed scheduling that provides universal com-
posability properties while including computational aspects as needed for cryptography. The
model is automata based, i.e., protocols are executed by interacting machines, and event-based,
i.e., machines react on certain inputs. All details of the model that are not necessary for under-
standing are omitted; they can be found in the original papers.

In particular, we repeat the scheduling model in detail because it is important for the defini-
tions of fairness. The specific scheduling aspects needed for cryptographic asynchronous systems

3

are that schedulers are “normal” system machines so that they schedule with realistic knowl-
edge, and that different channels may be scheduled by different machines, e.g., so that local
submachines can be represented.

2.1 General System Model

A machine is a probabilistic IO automaton (extended finite-state machine) in a slightly refined
model to allow complexity considerations. For these automata, Turing-machine realizations are
defined, and the complexity thereof is measured in terms of a common security parameter k,
given as the initial work-tape content of every machine. A structure consists of a set M̂ of
connected machines (also called a collection henceforth) and a subset S of free ports, called
service ports. Each structure is complemented to a configuration by a user machine H, modeling
the entirety of the honest users, and an adversary machine A. The machine H connects only to
ports in S , whereas A connects to the remaining free ports of the structure and may interact
with the users. We denote the set of configurations of a structure (M̂ ,S) by Conf(M̂ ,S) and
the subset of polynomial-time configurations by Confpoly(M̂ ,S). A protocol (called a system in
[PW01, BPW07]) is then modelled as a family of structures (structA)A where A ranges over all
possible sets of uncorrupted parties. (I.e., in a protocol where at least t out of n parties are
guaranteed to be honest, A would range over all sets of parties with |A| ≥ t.) Each structure
structA then models the original protocol with all machines corresponding to parties not in A
removed (such that the adversary may take over all connections that where owned by these
machines). Since a system will be defined to be secure if each of its structures is secure, in the
following we will for simplicity only consider the security of structures.4 For details we refer the
reader to [BPW07].

The general scheduling model in [PW01, BPW07] gives each connection q (from an out-port
q! to an in-port q?) a buffer q̃, and the machine with the corresponding clock out-port q/! can
schedule a message there when it makes a transition, cf. Figure 1 (note that some or all of
these ports may belong to the same machine). Scheduling of machines is done sequentially, so
there is exactly one active machine M at any time. The machine receives messages at its in-
ports (representing incoming network connections) and may output messages at its out-ports.
An output message is appended to a queue of messages maintained by the buffer associated with
the respective out-port. If the active machine has clock out-ports, it can select the next message
to be scheduled by outputting a number n ≥ 1 to one clock out-port q/!. If the buffer q̃ contains
at least n elements, the n-th message of buffer q̃ is delivered to the unique receiving machines
that has the port q?, and the message is removed from the buffer. The unique receiving machines
becomes the next active machine. If M tries to schedule multiple messages, only one is taken,
and if it schedules none, if the message does not exist, and at the start of the run, the special
master scheduler is scheduled. In our setting, we assume the adversary to be the master scheduler.
Usually, a connection is clocked by (i.e., the corresponding clock out-port is part of) the sender
(a delay-less connection), or by the adversary (an asynchronous connection). For simplicity, we
disallow a machine to clock a connection between two other machines in a structure (which does
not have a natural counterpart in the real world). The most important use of a clock out-port is
to schedule the oldest (and typically only) message in a buffer, i.e., to output 1 at the respective
clock out-port. We then say that the machine schedules the buffer or the connection.

This means that a closed collection, i.e., a collection whose ports are fully connected, has
a well-defined notion of runs, also called traces or executions. Formally a run is essentially a
sequence of steps, and each step is a tuple of the name of the active machine in this step and

4 With the exception of Section 4 where a special treatment is necessary for the case with no corrupted
party is necessary.

4

q?- -

?
Sending machine Receiving machine

Buffer q̃

q!

Scheduler for buffer q̃

q/!

Fig. 1. Ports and Buffers

its input, output, and old and new local state. As the underlying state-transition functions of
the individual machines are probabilistic, we also get a probability space on the possible runs.
We call it runĈ ,k for a collection Ĉ and the security parameter k. One can restrict a run r to a

machine M or a set of machines M̂ by retaining only the steps of these machines; this is called
the view of these machines, and the corresponding random variables are denoted by view Ĉ ,k(M)

and view Ĉ ,k
(M̂), respectively. For a configuration conf = (M̂ ,S , H, A) we simply write runconf ,k

instead of runM̂∪{H,A},k, and similar for views.

2.2 Reactive Simulatability

Simulatability constitutes the cryptographic notion of secure implementation and has asserted its
position as a fundamental concept of modern cryptography. For reactive systems, it means that
whatever might happen to an honest user in a (typically real) structure (M̂1,S) can also happen
in a (typically more ideal) structure (M̂2,S) given as a specification: For every user H and every
real adversary A1 of the real structure, there exists an ideal adversary A2 (also called simulator)
such that the views of H are indistinguishable if H is either run with the real structure and the
real adversary, or with the ideal structure and the simulator. This is illustrated in Figure 2. The
most important notion of indistinguishability is called computational indistinguishability, which
is a well-known cryptographic notion from [Yao82] that captures that two (families of) random
variables cannot be distinguished in probabilistic polynomial time. Other common notions of
indistinguishability are perfect indistinguishability (”≈perf”), which requires the families to be
identical, and statistical indistinguishability (“≈SMALL”), which requires the statistical distance
of the families to be a function of a class SMALL.

Definition 1 (Reactive Simulatability). For two
structures (M̂1,S) and (M̂2,S) with identical sets of service ports, and x ∈ {perf,SMALL, poly},
one says (M̂1,S) ≥x

sec (M̂2,S) (at least as secure as) iff for every configuration conf 1 = (M̂1,S ,
H, A1) ∈ Conf(M̂1,S), there exists a configuration conf 2 = (M̂2,S , H, A2) ∈ Conf(M̂2,S2) (with
the same H) such that view conf

1
(H) ≈x view conf

2
(H). In the case x = poly, H, A1, and A2 have

to be polynomial-time.
For x = poly we speak of computational, for x = SMALL of statistical, and for x = perf of

perfect reactive simulatability. We write ≥sec if x is clear from the context and speak of reactive
simulatability. Universal simulatability, written ≥univ

sec , means that A2 does not depend on H (only
on M̂1, S , and A1).

In the following, we will sometimes call this notion asynchronous reactive simulatability to dis-
tinguish it from the other notions introduced below.

An essential feature of this definition of simulatability is a composition theorem [PW01,
BPW07], that roughly says the following: Given a structure A (usually a protocol) that is at

5

H

A
1

S

M
1

H

A
2

M
2

S

Fig. 2. Simulatability example: The two views of H must be indistinguishable

least as secure as a structure B (usually some primitive), and given a protocol XB (having B as
a sub-protocol, i.e., using the primitive), the protocol XA obtained by replacing B by A in XB

is at least as secure as XB. This allows to modularly design protocols, i.e., one first designs the
protocol XB and then proceeds by deriving an implementation for B that is secure in the sense
of reactive simulatability.

3 Fairness in Simulatability-based Cryptographic Systems

Albeit being a powerful notion for establishing the security of cryptographic tasks, the notion of
reactive simulatability does not provide any assurance that messages are in fact delivered (except
if immediate delivery of message is desired and explicitly modeled, which would constitute too
strong an assumption in most cases). More precisely, a protocol that does not produce any
outputs is at least as secure as any other protocol. In other words, reactive simulatability does
not enforce liveness.

The common solution to achieve liveness is by relying on a fair scheduler. In our scenarios,
this corresponds to requiring the adversary as the master scheduler to eventually deliver all
messages. However, as already stated in the introduction, a definition of fairness that is suitable
for reasoning about cryptographic systems has to take computational restrictions into account;
in particular, this stands in contrast to the traditional notion of eventual delivery of messages
which is based on runs of infinite length. Once a suitable notion of fairness for adversaries is in
place, we can then restrict the simulatability definition to the class of fair adversaries.

3.1 Fair Schedulers

In contrast to the traditional notion of fairness—any message sent over the network will eventually
arrive—a concise treatment of fairness in the presence of cryptography imposes several additional
difficulties.

First, delivery should happen after a polynomial number of steps. Otherwise, a scheduler may
suppress message delivery until all protocol machines have halted. We will therefore require the
existence of a polynomial F that bounds the number of activations of the scheduler between two
clockings of any connection in the security parameter.

Secondly, we explicitly have to exclude schedulers that stop working, e.g., because they reach
a final state. This would relieve them of their duty to schedule the network connections fairly. In
particular, this excludes machines that are polynomially bounded in the traditional sense, i.e.,
those that halt after a polynomial number of overall steps.

Since this excludes the use of the usual definition of computational security in our setting,
we need a different notion of computational security where the adversaries are not required to
eventually terminate. To allow for a sensible notion of fairness, we therefore consider a refined
notion of polynomial-time users and adversaries here, following ideas initiated in [HMQU05]. For
describing this refinement, let us first review the intuitive idea underlying computational security.

6

Computational security states that a security property is maintained unless the adversary has
super-polynomial power. To capture this idea, it is sufficient to assume that participants in a
communication do not have immense computational power per time unit. We do not care whether
they may break any hard problem when computing an exponential amount of time, since we only
consider events (like breaking the protocol) which happen in a conceivable future, e.g., not after
1010 years.

In other words, we drop the hard polynomial bound on the overall number of steps a machine
may perform, but instead we bound the machines only in such a way that in polynomial prefixes
of the users’ view, the overall number of steps of all machines is polynomial. Consequently, we
only consider polynomial prefixes of the users’ view for security comparisons, hence it suffices
to restrict H to be polynomial-time in each activation. Moreover, the adversary A must be kept
polynomial in the size of H’s view. Thus, we demand that A is polynomial in the overall size of
all inputs from H and outputs A gave to H. However, it should be stressed that neither H nor
A actually halts. In particular, A cannot delay message delivery up to a point in time where H

would not see the consequences of this delivery.
Such users and adversaries are called continuously polynomial. The corresponding security

notion, i.e., the restriction of reactive simulatability to continuously polynomial users and ad-
versaries, behaves well under composition and is stricter than the original notion of reactive
simulatability. For detailed proofs of these claims and rigorous definitions, we refer to [HMQU05].
Here, it is important that we can use this notion to sensibly catch what it means for an adversary
to be a fair scheduler.

Definition 2 (Fair Schedulers). Let M be a machine, p/! a clock out-port of M, and F : N0 →N>0 a function. We say that M F -schedules p/! if in every closed collection Ĉ that contains M,
and for every sufficiently large security parameter k ∈ N, M schedules the port p/! at least every
F (k)-th activation.

The machine M is F -fair if it is a master scheduler that never halts and F -schedules every
of its clock out-ports. If F is a polynomial, M is called polynomially fair, or simply fair. Con-
tinuously polynomial users / adversaries which are fair are called computationally fair users /
adversaries.

3.2 Fair Reactive Simulatability

The restriction of reactive simulatability to (computationally) fair users and adversaries now
yields the notion of fair reactive simulatability.

Definition 3 (Fair Reactive Simulatability). Let (M̂1, S) and (M̂2, S) be structures, and
let further x ∈ {perf,SMALL, poly}. We call (M̂1, S) at least as secure as (M̂2, S) with respect
to fair adversaries (written ≥x ,fair

sec) iff for every configuration conf 1 = (M̂1, S, H, A1) with fair
adversary A1, there exists a configuration conf 2 = (M̂1, S, H, A2) with fair adversary A2 such
that view conf

1
(H) ≈x view conf

2
(H). In the case x = poly, A1 and A2 have to be computationally

fair, and H has to be continuously polynomial. Universal fair simulatability is defined in an
analogous manner.

We only briefly note that Definition 3 behaves well under composition. In addition to the com-
posability proof of the original notion of reactive simulatability, we have to investigate aspects of
fairness and of continuous polynomial-time. It has been shown in [HMQU05] that polynomially
bounded protocols can be composed without losing continuously polynomial security. The proof
was conducted by reducing an attack on the composed protocol to an attack against a subpro-
tocol. Since the subprotocols are secure by assumption, there is a corresponding ideal adversary

7

A2 which is then shown to be a good simulator for the attack on the composed protocol. For the
definition of fair reactive simulatability, the same proof applies if one additionally shows that the
constructed simulator A2 is fair. This can easily be established since the notion of fairness of an
adversary does not depend on the protocol it is run with.

4 Non-Trivial Protocols

The notion of fair reactive simulatability as introduced in the preceding section allows us to
capture the idea of protocols that eventually terminate. This gives rise to the question whether
the requirement of eventual termination will reduce the number of realisable cryptographic tasks.
More concretely, is there a cryptographic task (i.e., a trusted host, a primitive, or a functionality)
that can be realised asynchronously but not with respect to fair adversaries. It turns out that
this is the case due to a mere technicality: Any cryptographic task5 is realised by the trivial
protocol that never gives any output and never sends any messages. Obviously, this is not the
case for fair reactive simulatability. So why does the trivial protocol asynchronously realise any
functionality? Assume any adversary. Whatever this adversary does, the trivial protocol will
never send any message to the environment. The simulator can easily reproduce this behaviour
by never scheduling any of the outputs of the ideal functionality. Thus we have security in the
sense of asynchronous reactive simulatability.

This problem was first addressed in [Can01] by requiring a protocol to be non-trivial. A
natural way to define non-triviality would be to require the protocol to eventually generate
output as long as no party is corrupted (as was done in [Can01]). However, this approach leads
to the following problems:

– Consider a trusted host that may—even when used in a honest way—generate no output.
For example, a functionality for password authenticated key exchange may be formalised to
output a key if the passwords match and to be silent otherwise. A protocol implementing
that functionality will necessarily violate the requirement of eventual generation of output
(at least for some inputs).

– To avoid this problem, one might choose to define a protocol as non-trivial if there exists some
honest user such that for all adversaries the protocol will eventually give output. However,
consider the functionality for authenticated message transmission. This functionality is imple-
mented by a protocol that silently ignores all messages except for strings consisting only of 0’s.
This protocol may then asynchronously realise the functionality. Since there exists an honest
user that sends only such strings, we would further call such a protocol non-trivial. However,
such a protocol is clearly not a satisfying implementation of an authenticated channel.

– Another question is whether we require that all protocol parties give output or that at least
one party gives output. In the first case, a protocol for secure message transmission in which
only the recipient has output would not be considered non-trivial. If we choose the second
variant, we can non-trivially implement the coin-toss functionality using the following simple
protocol: Upon the first activation, Alice outputs a random bit. Bob never gives output. This
protocol is an asynchronously secure implementation of coin-toss since the simulator may
choose never to deliver the answer on Bob’s side of the functionality. However, this protocol
is non-trivial if we only require one party to give output. Of course, such a one-sided non-
trivial protocol does not fulfil the intuitive requirement of non-triviality, in particular in view
of the fact that a non-trivial implementation of coin-toss (in an intuitive sense) has been
shown impossible by [CKL03].

5 At least if it is not given as a localised functionality.

8

– Finally, even if we capture the intuitive meaning of non-triviality, it is not guaranteed that
this notion composes securely. That is, we might have a non-trivial secure implementation
π of a given task, and we replace some primitive used by π by some non-trivial subprotocol,
we may ask whether the resulting protocol is still non-trivial. If possible, a definition of
non-triviality should fulfil this condition.

These arguments show that the actual meaning of non-triviality seems to depend on the actual
functionality that is being implemented. Thus one would have to give a separate definition of
non-triviality for each and every cryptographic primitive. However, this contradicts the idea
of simulatability where the specification of a protocol task is given by the functionality alone.
Instead, a functionality would have to come paired with a non-triviality specification. Fortunately,
there is a better solution to this problem. We call a protocol M̂1 non-trivial with respect to some
ideal protocol M̂2 if, given that no party is corrupted and when considering only adversaries
that deliver all messages, M̂1 securely realises M̂2.

6 Somewhat more formally, M̂1 is non-trivally
asynchronously as secure as M̂2 if M̂1 is asynchronously as secure as M̂2 and additionally M̂1 is
as secure as M̂2 with respect to fair adversaries when we do not allow corruptions. Formally, this
is defined as follows:

Definition 4 (Non-trivial asynchronous reactive simulatability). Let π and ρ be two
protocols (systems in the nomenclature of [PW01, BPW07]). Let A0 be the set of all protocol
parties. Assume that π and ρ consist of structures (structπA)A∈A and (struct

ρ
A)A∈A, respectively,

where A ranges over sets A ∈ A of uncorrupted parties. Assume that A0 ∈ A.
We then call π non-trivially asynchronously as secure as ρ (written ≥x ,nt

sec) iff the following
two conditions are fulfilled:

– The structure structπA0
is as secure as struct

ρ
A0

with respect to fair adversaries (i.e.,

structπA0
≥x ,fair

sec struct
ρ
A0

).
– For every A ∈ A, we have that structπA is asynchronously as secure as struct

ρ
A (i.e.,

structπA ≥
x
sec struct

ρ
A).

For this notion, composability now directly follows from the fact that both asynchronous reactive
simulatability and fair reactive simulatability compose securely.

Obviously, non-trivial asynchronous reactive simulatability is at least as strict as asynchronous
reactive simulatability. In [CKL03] is has been shown that the coin-toss functionality can be
asynchronously realised by the trivial protocol but cannot be realised non-trivially, not even in
the case of polynomial reactive simulatability. (Their proof used a notion of non-triviality that
was tailored for the case of coin-toss. However, their proof easily adapts to our definition.)

We can now restate the question from the beginning of this section: Is there a cryptographic
task (i.e., a trusted host, a functionality) that can be realised statistically non-trivially but
that cannot be realised with respect to fair adversaries? This question is answered positively in
Section 6.1.

5 Variants of Fairness with Timeouts

In Section 3 we have elaborated on the benefits of protocols that eventually terminate. Many
practical protocols will however only provide a guarantee of eventual termination if timeout
signals are used appropriately. A mail server trying to deliver mail will not forever try to talk to

6 This approach was already pursued in [CLOS02]. However, they gave no definition of adversaries that
deliver all message (non-blocking in their nomenclature). As the present paper shows, such a definition
is far from straightforward.

9

another server but will after some time either try another server or abort with an error message;
a computer that auto-detects printers in a network will, after waiting a given amount of time,
stop and consider the list as complete; an election protocol may exclude voters that do not vote
within a specified time frame as is common in the conventional election method using the non-
electronic ballot-and-urn method. This exemplifies the need of suitably capturing timeouts as
well in simulatability-based cryptographic systems.

We first discuss what a protocol must have at its disposal to implement timeouts. First
and foremost, there should be a means of measuring time. Additionally, there should be some
guarantees concerning the time needed for a message to be delivered. If no such guarantees
exist, implementing a timeout would risk ignoring messages from uncorrupted parties since their
connections might delay messages beyond the chosen timeout.

When expressing these two concepts, we tried to use as few additional assumptions as possible;
in particular, we did not want to imply that different machines had synchronous clocks or even
only clocks running at the same speed. We tried to meet this condition by capturing the possibility
of measuring time by introducing so-called time lines. These are special designated connections,
usually self-loops, that guarantee that messages on these connections are never delivered too fast.
Time lines can be used to measure time since after n clockings of a given time line, at least n
times a given amount of time (say n “seconds”) passed. However, clocking of time lines can take
place much less frequently, hence only very weak synchronization among different parties can be
realized using time lines. In real-world implementations, time lines are naturally realizable by
normal clocks, and one would simply assume that time lines deliver, e.g., one message per second.
To capture the notion of time lines formally in the model, we assign a specific prefix time to the
names of the respective ports, i.e., connections are considered as time lines if the names of the
respective ports start with time . We call such ports time ports.

We furthermore have to implement guarantees on the maximum delay of a given connection.
We achieve this by forcing the adversary to send a number J(k) to some or all parties (before
any other machine is activated). The adversary is then obliged to clock any time line at most
J(k) times between two clockings of any connection. This allows any party to realize a timeout
for any given connection by waiting for J(k) clockings of its time line (i.e., J(k) “seconds”) before
assuming the message to be delivered. To prevent the adversary from choosing arbitrary large
values J(k), we require J to be a fixed function that is polynomially bounded in the security
parameter. J(k) hence serves as an a priori and generally known upper bound on the delay of a
connection. Such upper bounds are usually known in practice, at least if the hardware used in
the protocol is known (we may have to use quite generous bounds to be sure). Similar to time
lines, we assign the names of ports on which J(k) is to be sent by the adversary a prefix fair .
We call such ports guarantee ports.

5.1 Fairness with Global Timeouts

Combining the notions of time lines and of guaranteed maximum delay of a connection for all
users with the notion of fairness in the sense of Definition 2 yields the following variant of fairness,
which we call fairness with global timeouts. We speak of global timeout to distinguish them from
so-called local timeout that provide a guaranteed maximum delay only for some distinguished
connections and as such constitutes only a local guarantee. We will address local timeouts in
Section 5.2.

Definition 5 (Fair Schedulers with Global Timeouts). Let M be a machine and
J : N0 → N>0 a function. We say that M is fair with global timeouts of delay J , if

– The machine M is fair.

10

– For any clock out-port p/! and any time port t/! of M, any closed collection Ĉ containing
M, the following holds (with probability one over the runs of Ĉ): The machine M does not
schedule the port t/! more than J(k) times without scheduling p/! at least once.

– In its first activation, M writes J(k) (in unary representation) to all guarantee out-ports.
Furthermore, M never writes anything else to the guarantee out-ports.

A machine M is called fair with global timeouts if it is fair with global timeouts of delay J for
some polynomially bounded J .

Extending the definition of fair reactive simulatability to comprise global timeouts can be derived
as usual by considering fair adversaries with global timeouts instead of only fair adversaries.
We refer to this notion by ≥gtfair

sec in the following. It can easily be shown that ≥gtfair
sec retains

compositionality; the proof can be conducted along the lines of the original compositionality
proof for reactive simulatability and its extension to fair adversaries.

- --

?? ?

- --

??

-

adv3 adv2

R3R1 R2

adv2adv1

R2

adv1

R1

(a) (b)

Fig. 3. Chains of repeaters

The notion of fair reactive simulatability with global timeouts allows us to specify and examine
protocols using timeouts. However, it turns out that fair reactive simulatability with global
timeouts constitutes a rather strict notion. Consider the following construct: Let Ri be machines
that take an input of length k on in?, forward it to out!, and copy it to the adversary via advi !.
Assume three such machines to be connected to form a protocol M̂1 as in Figure 3 (a) (with
ports renamed accordingly). Compare this protocol with M̂2 which consists of only two such
repeaters as shown in Figure 3 (b). Intuitively, we would assume three repeaters to implement
two repeaters, at least in a world where exact time measurements are not possible. However, this
is not the case: Assume that a real adversary schedules the connections between the repeaters
as seldom as possible (i.e., every J(k)-th time line clocking). Thus an honest user H with a time
line will be able to deduce that a message sent through the three repeaters has a round trip
time of 4J(k) time line clockings. An ideal adversary A2 now has to guarantee the same J(k)
to avoid being distinguishable by the announced J(k) in a trivial manner. So A2 can deliver a
message through the two repeaters no slower than within 3J(k) time-line clockings, which gives
distinguishability. So M̂1 is not as secure as M̂2.

What is the impact of this observation? Any natural specification of a trusted host will have
response times which are fixed and small multiples of J(k) (e.g., delay of the in-port, delay of
the out-port, and delay of some self loop giving the adversary time to modify the result, giving
3J(k)). Complex protocols however take a large number of communication steps, thus having a
much larger response time. Then using similar arguments as with the repeaters, one can see that
such a complex protocol can never be as secure as the simple trusted host. However, designing
the trusted host to have so much delay that the protocol can still be implemented would seem
unnatural, since an ideal trusted host should abstract from protocol implementation details.

Several solutions come to mind. We could forbid the honest user to have time or guarantee
ports and thus prevent it from noticing the complexity difference between the protocols. Then
however the composition theorem would not hold any more since its proof makes use of the fact
that protocol parties are combined into the honest user without changing the behavior of the

11

overall network (this would now be impossible for parties having time lines and guarantee ports).
In fact, the proof does not only become invalid but counterexamples can easily be constructed.

Alternatively, we could free the simulator from the obligation of fulfilling the guarantees he
gave. This seems reasonable at first glance since the added guarantees only allow the use of
timeouts in the real-life protocol. However, when imposing less restrictions on the simulator than
on the adversary, the notion of fair reactive simulatability with global timeouts would not be
transitive any more, and hence the composition theorem would not be very useful.7

One way to circumvent this is to have a canonical way to “slow down” ideal connections by
inserting special buffers that need to be clocked a certain, fixed number of times to deliver. This
still allows for reliability in the sense that ideal messages are delivered after a polynomial number
of steps. However, the concrete reliability is in general not known to the ideal host, since the
delaying buffers (or, delay boxes) are inserted after specification of the ideal host. This method is
explored in detail in Appendix A. Another way of catching the notion of reliable communication
lines is presented in the next section.

5.2 Fairness with Local Timeouts

The notion of fairness with global timeouts requires the adversary to give global delivery guaran-
tees, i.e., guarantees that are valid for all of the adversary’s clock out-ports. We have seen that
simulatability problems arise out of the fact that these guarantees have to be identical in the
real and ideal settings, and we showed that these problems can be suitably tackled by delaying
ideal structures. However, these problems do not even arise when considering only local timeouts
corresponding to local delivery guarantees. Local delivery guarantees are scheduling guarantees
which relate only to a specific connection, i.e., a guarantee is only given to a machine that is
sender or receiver of the considered connection.

Local timeouts can be motivated and justified by the situation of a very large protocol where
it seems plausible to assume that each protocol participant knows delivery guarantees for its
local connections. For example, the hardware used for direct connections might be able to give
such guarantees. On the other hand, it may seem unrealistic to assume delivery guarantees
for connections between two distant participants to be known when the hardware structure is
inhomogeneous.

We first introduce the notion of locally admissible machines and collections, which are those
machines and collections that demand only local timeouts.

Definition 6 (Locally Admissible Machines). A machine M is called locally admissible if
the following holds for all n ∈ Σ+:

– If M has a port fair snd n?, then it also has the out-port n!, but not the clock out-port n/!.
– If M has a port fair rcv n?, then it also has the in-port n?, but not the clock out-port n/!.

A collection M̂ or a structure (M̂, S) is locally admissible if every machine of M̂ is locally
admissible.

Definition 7 (Fair Schedulerwith Local Timeouts). A machine M is called fair with local
timeouts if M is fair, and if for all clock out-ports p/! of M there is a polynomially bounded
function Jp/! : N0 → N>0 such that the following holds.

7 From “protocol π using primitive X implements primitive Y,” and “protocol ρ implements primitive
X” we could still conclude “protocol π using protocol ρ implements protocol π using primitive X. But
from that we could not deduce “protocol π using protocol ρ implements primitive Y.”

12

– For any time port t/! and any closed collection Ĉ containing M the following holds with
probability one over the runs of Ĉ : The machine M does not schedule the port t/! more than
Jp/!(k) times without scheduling p/! at least once.

– In its first activation, A writes Jp/!(k) (in unary representation) to fair snd p! and fair rcv p!
(provided that these are ports of A).

Based on this definition, fair reactive simulatability with local timeouts, written ≥locrel
sec , is defined

in the usual manner except that we additionally only allow configurations with locally admissible
honest users. It should be remarked that the composition theorem still holds with the proof being
conducted as for the previous extensions.

Similar to the notion of fairness with global timeouts, we neither require that fair . . . is a
port of M nor that M schedules that port (provided that it is a port of M). This is no weakness
of the definition; in the first case, the machine possessing the port may schedule it, in the second
case M is forced to eventually schedule that port since M is required to be fair.

Note that our notion of local timeouts allows the simulator to give different delivery guarantees
for protocol-internal connections than the real adversary does. In particular, three repeaters
implement two repeaters (cf. Figure 3) when considering local (in contrast to global) timeouts.

6 Relations Among the Notions

We finally investigate relations among the described notions and relations to the asynchronous
scheduling model.

6.1 Non-Trivial Protocols

With fair reactive simulatability we have a security notion that allows us to capture the idea of
protocols that eventually terminate. It is an interesting question whether requiring protocols to
terminate will lessen the number of realizable cryptographic tasks. In other words, we ask whether
there is a protocol task that can be realised with respect to non-trivial reactive simulatability,
but not with respect to fair reactive simulatability.

The proof argument from [FLM86]—adapted to the case of fair reactive simulatability—shows
that no protocol can be as secure as the task broadcast in the sense of fair reactive simulatability.
Yet, for non-trivial reactive simulatability, a trivial protocol exists that is as secure as broadcast
(it is an asynchronous variant of Protocol 1 in [GL02]).

We conclude without further proof:

Theorem 1. There is no protocol that is as secure as broadcast in the sense of fair reactive
simulatability. However, there is a protocol that is as secure as broadcast in the sense of non-
trivial reactive simulatability.

6.2 Drawing Profit from Timeouts

In this subsection we give a simple example of a protocol that can be securely realized in the sense
of fair reactive simulatability with global timeouts, but is impossible in principle in a security
model with only a fair adversary that does not provide timeouts. The protocol in question is the
one that enables one machine M1 to check whether another machine M2 got input already.

Let us assume that the machines M1 and M2 communicate with each other through a secure
connection. However, at least M1 may be corrupted. Then, we are looking for a protocol that
guarantees the following. Assume M2 requests to check whether M1 already got input. Then, if M1

13

indeed got input at that point, M2 shall eventually output that input. In any case, M2 eventually
outputs either M1’s input or ⊥. The formal definition of the corresponding ideal protocol RNVP

can be found in Appendix B.1.(RNVP stands for “rien ne va plus” to reflect that any input that
the “player” M1 has given so far is fixed by a signal of the “croupier” M2.) Of course, we cannot
expect that M2 generates output immediately so that the specific scheduling influences what it
means for M2 to “eventually” generate output.

This protocol task can be securely realized when interacting with adversaries that are fair
with global timeouts. Intuitively, the machine M2 sends a request to M1 and sets a timeout within
which an answer from an uncorrupted machine must be received. The machine M1 answers with
its own input and the machine M2 either outputs whatever it received from M1 or outputs ⊥ if
no answer is received before the time out (in which case M1 must be corrupted).

Theorem 2. There is a real protocol that is as secure as (RNVP)p in the sense of fair reactive
simulatability with global timeouts of delay p(k) := 3.

Formal definitions and a sketch of the proof of this theorem are given in Appendix B.1.
However, no protocol exists that is as secure as RNVP in the sense of fair reactive simulatability

(without timeouts) because the maximal delay times are not known to the uncorrupted protocol
parties.

Theorem 3. Any protocol with the communication structure and trust model described above is
not as secure as RNVP in the sense of fair reactive simulatability.

A sketch of the proof can be found in Appendix B.2.Note that the theorem statement would not
be stronger if it considered delayed ideal protocols (RNVP)p, since delay-boxes do not add any
additional capabilities to the simulator if the considered adversaries do not provide timeouts. In
fact, the proof sketch given in the appendix applies also to this seemingly stronger statement.
The above example furthermore serves as a separating example for the notions of fair reactive
simulatability with local timeouts on the one hand and fair reactive simulatability (without
timeouts) on the other hand, with very similar proofs.

6.3 Global vs. Local Timeouts

It is reasonable to ask whether there are protocol tasks which actually need global timeouts
(possibly with respect to delay boxes). More precisely, do there exist ideal protocols that can be
securely realized when assuming fair adversaries with global timeouts but that cannot be securely
realized in the presence of fair adversaries with local timeouts? We show that this question can
be answered in the positive.

As an example of a protocol task for which one needs global delivery guarantees, suppose that
a machine M1 wants to send a k-bit message privately to another machine M4. Let us assume
that both machines are incorruptible and directly connected via an authenticated but insecure
channel (e.g., a telephone wire). Furthermore, we assume that both machines can communicate
securely only indirectly via two machines (e.g., servers) M2 and M3. Our goal is to find a protocol
for M1, . . . M4 which achieves the following requirements:

Protocol task CW (Chinese Whisper)

1. If neither M2 nor M3 is corrupted, M4 outputs M1’s input, and M1’s input stays secret.
2. If M2 and/or M3 is corrupted, M4 outputs either M1’s input or an abort message; no

secrecy is required.

14

To get a seperating protocol task, we would like to have information-theoretic security guar-
antees from the protocol; in particular this means that we consider statistical indistinguishability
for the class of exponentially small functions below instead of the more common computational
indistinguishability, cf. Definition 1. Actually, in face of a polynomially bounded adversary, public-
key encryption over the authenticated channel between M1 and M4 would satisfy our needs. A
natural and interesting question is whether there is also a protocol that distinguishes local and
global timeouts w.r.t. computational security. We currently know of no such protocol.

An ideal structure reflecting these goals could consist of a trusted host CW{1,...,4} with code
(in the uncorrupted case) as follows:

Program of CW{1,...,4}

1. If activated with in?-input: set data to that input, then output 1 on loop!, and inform the
adversary by sending it a 1 via public!. Ignore any further in?-inputs.

2. If activated with loop?-input (which can only happen after an in?-input, so data is set),
output the value of data on out! and halt.

??

�

-

�

- -

�

aut14

aut41

sec43sec32sec21

sec12 sec23 sec34

M1 M2 M3 M4

Fig. 4. All indicated connections are adversary-clocked. Each Mi may optionally have time i?,
time i! ports and/or fair . . .?, fair . . ./! ports for local connections.

The service ports are in, out and public. In case of corrupted machines M2 and M3, one
would of course modify this specification to send not only a notification “1”, but instead the
whole message data over public!: one can certainly not expect a message to be transmitted in a
statistically indistinguishable way with corrupted intermediate hosts but without pre-distributed
secrets. Furthermore, we allow a special abort message from the adversary which causes CW{1,4}

(the trusted host in the case of corrupted parties M2 and M3) to output ⊥ instead of the actual
message to be transferred. This models that we do not expect correct message delivery if M2 and
M3 are corrupted; only eventual delivery of either ⊥ or the correct message is mandatory.

The communication situation from our motivation above can be modeled by a structure
structure (M̂∗, S∗) with machines M̂∗ := {M1, M2, M3, M4} and service ports in and out. The
only allowed connection between the machines are those depicted in Figure 4. All connections
except the two between M1 and M4 (the telephone wire) are secure. We stress that we do not fix
the actual protocol (i.e., the code) the machines M1, . . . , M4 run.

Theorem 4. For any protocol with the communication structure and trust model as described
above, it holds that the protocol is neither statistically as secure as CW in the sense of fair reactive
simulatability, nor is it statistically as secure as CW in the sense of fair reactive simulatability
with local timeouts. This holds independent of the code of the machines M1, . . . , M4.

We give a proof sketch in Appendix B.3.Finally, we investigate the same protocol task with respect
to global timeouts and delayed buffers. A proof sketch of the theorem is given in Appendix B.4.

Theorem 5. There is a protocol that is statistically as secure as (CW)p in the sense of fair
reactive simulatability with global timeouts for a sufficiently large delay polynomial p.

15

7 Conclusions

The notion of simulatability has asserted its position as one of the fundamental concepts of
modern cryptography. While this notion carefully captures that a distributed protocol does not
behave any worse than an ideal specification, it however does not capture any form of liveness
guarantees, i.e., that the protocol ensures that something good eventually happens. In particu-
lar, a protocol that does not create any output or that can be caused to hang indefinitely by
corrupted parties serves as a good implementation of every ideal specification in the sense of
reactive simulatability. In this paper, we investigated how one can extend the notion of reactive
simulatability so that it additionally comprises liveness guarantees. The natural solutions and
also the one we chose in this paper is to restrict the master scheduler—the adversary in our
case—to fair scheduling, where notions of fairness that allow for reasoning about cryptography
in a meaningful way still had to be defined.

To live up to the polynomial runtimes of the parties in cryptographic systems, we defined
fairness as a polynomial-time variant of the usual fairness definition, i.e., we required that every
message be scheduled within a specific, polynomially bounded number of steps of the adversary
instead of requiring eventual delivery of every message. We further strengthened the definition
by not only requiring that messages be delivered after some polynomial number of steps but
by requiring that the number of steps, i.e., the maximum delay of messages, be made known
explicitly to the protocol parties. We called this notion fairness with explicit timeouts, and we
further distinguished variants with local and global timeouts.

We finally compared the resulting definitions of fair reactive simulatability, and we provided
separating examples that helped to classify the strengths of the definitions. Somewhat counterin-
tuitively, the examples have shown that protocols that are secure with respect to one definition
might be insecure with respect to a definition that provides more comprehensive fairness guaran-
tees. This stems from the fact that simulatability is defined by comparing a real protocol with an
ideal specification, hence the more guarantees are given in the ideal model the more requirements
have to be fulfilled by the real protocol.

An interesting research question for future work is the investigation of other notions of
cryptography-suited fairness that reflect less abstract network models. Such notions could pro-
vide additional guarantees that are better suited for specific applications. Further research might
also strive for conditions that are sufficient to prove that a protocol is as secure as an ideal func-
tionality with respect to a given class of different fairness notions. For example, many protocols
that are secure with respect to fairness with global timeouts, but do themselves not use timeouts,
might be secure both with respect to fairness with and without timeouts, as well as possibly with
respect to other notions in between.

Acknowledgements

This work was partially funded by the EC project ProSecCo under IST-2001-39227.

A Delayed Buffers

The problem with global timeouts that is sketched at the end of Section 5.1 is basically that
guarantees given in some real and ideal structures have to be exactly identical. But then, the
ideal adversary may not have enough freedom to adapt the response times of the ideal structure
according to the response times of the real one. This can lead to strange effects as illustrated
in the example from Section 5.1. The problem is of a general nature since we cannot expect all

16

protocols for the same protocol task to have identical response times when assuming an identical
network quality.

On the other hand, it is a tedious and possibly error-prone task to explicitly build another
specific trusted host (or ideal structure) for each and every protocol which is to be proven secure;
this would violate the idea of an abstraction from the considered class of real protocols. However,
one can still start with a completely abstract specification of an ideal structure that is designed
without taking care of, e.g., concrete response times of a real protocol. From that, one could
construct a suitably delayed structure in a canonical manner so that the delayed structure can
be securely realized by a specific real protocol. Thus, the only protocol-dependent parameter
would be a specification of concrete extra delay times used as an adaptation of the initial ideal
specification. If that construction is canonical enough, it will not break the abstractness of the
ideal specification. In resemblance to the “shell constructs”of [HMQ04, Bac03], we therefore start
with a structure (M̂, S), and replace it with a structure {(M̂p, S)}p that is parametrized with a
function p : N2

0 → N0. Intuitively, p(J, k) indicates the factor with which the structure is delayed,
where J is the delivery guarantee given by the adversary and k the security parameter.

Before going further, we need a tool for delaying connections. For a function p : N2
0 → N0 and

a connection name n ∈ Σ+, the delay box dbox p n is a machine with the ports as in Figure 5.
The program of dbox p n is as follows:

Program of the delay box dbox p n

1. First, dbox p n waits to get a delivery guarantee p(J, k) at port fair n?.
2. Then, a counter wait is set to 1, and 1 is output on time n!.
3. After that, on nonempty time n?-input, wait is incremented, and again 1 is output on

time n!.
4. Every clk n?-input c is forwarded to n/!; if c = 1, then wait is reset to 0.
5. If at any time, wait ≥ p(J, k), then wait is reset and n/! is clocked with 1.

- fair n? �time n?

time n!- clk n?

? -

n
/!

n?n!

Fig. 5. A delay box dbox p n for a connection n. Unless indicated otherwise, all connections are
adversary-clocked.

So essentially, dbox p n serves as a forwarder from clk n? to the clock port n/!. Since clk n?
is a simple in-port, an adversary that is fair with respect to global timeouts is not required to
regularly give input to clk n? (and thus schedule n). Merely, dbox p n itself ensures a regular
scheduling of clk n?. The function p and the delivery guarantee from the adversary determine
how often clk n? is scheduled at minimum.

Most of the time, it may seem reasonable to demand that p is polynomially bounded, i.e., that
there is a bivariate polynomial q with q(x, y) ≥ p(x, y) for all x, y ∈ N0. Otherwise, not even a
fair adversary with global timeouts guarantees that the connection n is scheduled regularly (i.e.,
at least once in a polynomial number of activations of the adversary). Delay boxes now allow for
defining delayed structures:

17

Definition 8 (Delayed structures). Let (M̂, S) be a structure and p : N2
0 → N0 be a function.

Then the p-delayed structure (M̂p, S) is obtained by adding to M̂ all machines dbox p n for which

n ∈ Σ+ begins with delay , and n? or n! but not n/! is a port of M̂ .

So essentially, delay . . . connections enable the adversary to delay messages (polynomially) longer
than it would be possible with a regular buffer. Loosely speaking, an adversary that is fair with
global timeouts may schedule delay . . . connections with delay p(J, k).

We only delay connections that are explicitly labeled as delay . . . in order to minimize the
modification of the original structure. Note that when designing a protocol using a delayed trusted
host we can either design the protocol without respect to the delay parameter; in that case the
guarantees given on the fair . . .? ports are useless for deriving delays of that trusted host. Or
we can write the protocol in dependence of the concrete delay. Then a concrete realization of a
delayed variant of the trusted host would imply a concrete delay polynomial, and we would know
how to instantiate the larger protocol to allow for composition.

B Postponed Proof Sketches

This section contains more detailed definitions and sketches of proofs for the theorems above,
which are not meant as complete proofs.

B.1 Details/Sketch of Proof for Theorem 2

Formally, the uncorrupted case can be modelled with a structure (RNVP{1,2}, S{1,2}),
where the service ports S are specified through their complements Sc

{1,2} =

{in!, in/!, request!, request/!, out?}, and the ports of the trusted host RNVP{1,2} are in?, request?,
out!, out/!, commit?, req info!, req info/!, in info!, in info/!, loop!, and loop?}. For RNVP{1,2}’s
program, we initially assume data = ⊥, com = false. RNVP{1,2} acts as follows:

Program of the trusted host RNVP{1,2}

1. On the first in? input x ∈ {0, 1}, and when com = false, set data := x, and output and
schedule x on in info!;

2. on the first nonempty request? input, output 1 on loop!, and output and schedule 1 on
req info!.

3. on nonempty loop? input, output and schedule data on out! and halt;
4. on nonempty commit? input, and when having received request? input, set com := true.

So already in case of a fair scheduler, RNVP{1,2} guarantees responses upon request?-inputs.
A structure (RNVP{2}, S{2}) for the case of a corrupted M1 can be derived simply by setting

RNVP{2} := RNVP{1,2} and Sc
{2} := Sc

{1,2}\{in!, in/!}. So in case of a corrupted M1, the adversary

gains control over the connection in. These two structures already form our ideal protocol RNVP.8

For realizing this system with a two-party protocol, we assume a structure (M̂{1,2}, S{1,2})

with machines M̂{1,2} = {M1, M2} and service ports S{1,2} as above in the uncorrupted case.
The machines M1 and M2 have only one bidirectional and adversary-clocked secure channel in
between them, modelled by two connections sec12 and sec21.

The machine M1 has the in-port in?; M2 has the in-port request?, and the out-port out! (along
with the corresponding clock out-port out/!). Furthermore we allow, but do not mandate ports

8 The case of a corrupted M2 is not very interesting and omitted for simplicity. However, the statements
below also hold for this case.

18

time i!, time i?, and/or fair i?, fair i/! for the machines Mi (i ∈ {1, 2}). Thus, the machines may
at wish receive delivery guarantees (which are, of course, only meaningful in case of a timeout-fair
adversary).

The structure (M̂{2}, S{2}) for the case of a corrupted M1 is derived canonically.
The ideal protocol RNVP just presented can be implemented when dealing with timeout-fair

adversaries:

Theorem 6. There is a real protocol of the form above, that securely implements (RNVP)p for
the delay function p(k) := 3.

Sketch of proof. To determine the protocol, it suffices to describe machines M1 and M2.
Only M2, but not M1, has the optional time and fair ports. M1 answers the first sec21-request

from M2 with the first in? input M1 got, or ⊥, if there was no input so far.
In its first activation, M2 polls (via fair 2/! := 1) a delivery guarantee J . After that, when

having got request? input, M2 sends 1 over sec21!, and then waits J time 2?-activations (where
time 2! is constantly fed with 1’s) for a response on sec12?. If there is a response x ∈ {0, 1}, M2

out!-outputs and schedules x; otherwise, M2 out!-outputs and schedules ⊥.
A proof of security can be conducted as follows: one can transform a given real configuration

step-wise into an ideal configuration. In each step, only a small modification is done, such that
the view of the (unchanged) honest user is easily seen to remain unchanged. Now transitivity
of simulatability can be used to derive indistinguishability of the user-views in real, resp. ideal
configuration. If the ideal adversary does not depend on H, but only on the real adversary, this
shows even universal simulatability.

Assume M1 is not corrupted. We transform a given real configuration (M̂{1,2}, S{1,2}, H, A)
(with globally timeout-fair A) step-wise and without changing H’s view into an ideal configuration
(
(
RNVP{1,2}

)
p
, S{1,2}, H, Sim).

First, A is modified to never output a value 6∈ {ε, 1} on sec/
12! and sec/

21!.
Then, we rename A’s sec/

12! and sec/
21! ports into loop! and commit!, respectively. We also add

the respective ports loop/! and commit/!, which are clocked with 1 whenever loop!, resp. commit!
gets a nonempty output. Furthermore, we introduce a new machine CS (that will later become
part of the trusted host) with ports {sec/

12!, sec
/
21!, commit?, loop?}. CS only forwards commit? to

sec/
21!, and loop? to sec/

12!.
Next, we add two ports req info! and req info/! to M2. The first time M2 gets req? input, it

outputs 1 on both req info! and req info/! as a notification. Analogously, M1 gets in info! and
in info/! ports, which are used to forward in? input. Furthermore, CS is changed to have req info?
and in info? ports which are ignored.

Then, we change CS to ignore all inputs until the first req info? input arrives. Next, CS is
changed again to always output ε on sec/

12! until sec/
21! has been clocked. Finally, CS now halts

after the first loop? input.
In the next step, the loop connection is turned into a self-loop of CS which A only clocks.

Therefore, loop! is renamed into loop/!, and CS outputs 1 on loop! upon every req info? input.
Now we introduce a delay box dbox 3 loop and rename A’s loop/! port to clk loop!. A also

gets an additional clk loop/! port that is 1 clocked whenever clk loop! got output, or the original
A would have 1-clocked sec/

12!. A connects to the other free ports of dbox 3 loop in the obvious
manner without losing its regained reliability property. Specifically, A can schedule time loop/!
so that dbox 3 loop never 1-clocks loop/! on its own.

Finally, we combine M1, M2 and CS into a new machine RNVP{1,2}; this combination can

be formulated equivalently without internal secij connections. Furthermore, RNVP{1,2} can—
without changing H’s view—be modified to generate out!-output on loop? input, even without
prior commit? input. But then, RNVP{1,2} is nothing but a reformulation of RNVP{1,2}.

19

None of these steps changed the view of H. Furthermore, the construction of the globally
reliable simulator Sim (the modified A) was independent of H, so the established simulatability is
universal. The proof in the corrupted case follows the same lines (although of course the concrete
construction of trusted host and simulator differs), and will not be given here. ut

B.2 Sketch of Proof for Theorem 3

For the following sketch of the proof idea, this is not relevant. Assume for contradiction to the
statement, that we have a real protocol π of the form above that securely implements RNVP with
respect to fair adversaries.

In the configurations in this proof, we will exclusively consider a honest user H̃ that first gives
random input to M1 and then lets M2 check for M1-input. For an efficiently computable function
J : N0 → N0, let AJ be a round-robin scheduler, with the exception that scheduling of the M1-
M2-connections is slowed down by a factor of J(k). Let AJ

cor denote the analogous construction
in case of a corrupted M1 which discards all messages from and to M2. For every polynomially
bounded J , both AJ and AJ

cor are fair and polynomial.
Let SimJ , resp. SimJ

cor be the corresponding (fair) simulators for fair AJ , resp. AJ
cor. As H’s

views in real configurations are always nonempty, the same applies in ideal configurations with
overwhelming probability.9

In an ideal configuration with any SimJ
cor, there is out!-output in a polynomial prefix of H’s view

by definition of RNVP{2}. By simulatability, M2 thus generates out!-output after a polynomial
number of activations in a configuration with any AJ

cor, i.e., when not getting any sec12? input
at all. So there is a polynomial F = F (k) independent of J , such that M2 generates out?-output
after F (k) activations when not getting sec12? input.

Now the view of M2 in a configuration with H̃ and AJ , and M2’s view with H̃ and AJ
cor are

identical until a connection between M1 and M2 gets scheduled. So even in the uncorrupted case,
for a suitably chosen J(k) > F (k) and real configurations with AJ , M2 eventually generates out!-
output that is independent of M1’s input. But by specification of H̃ and definition of RNVP{1,2},
there is always out!-output which is identical to the former in?-input in a polynomial prefix of
H’s view. This gives the desired contradiction. ut

B.3 Sketch of Proof of Theorem 4

For contradiction, assume protocol machines M1, . . . , M4 that do implement the ideal system with
respect to locally reliable adversaries. Consider adversaries AJ

cor (for computable J : N0 → N0)
which attack the protocol in case of (passively) corrupted M2 and M3. AJ

cor schedules round-robin
except for messages between M2 and M3 which are delayed for J(k) rounds. Because M2 and
M3 are corrupted and thus part of the adversary, AJ

cor can be changed to be locally timeout-fair
(without changing the view of any machine connected to AJ

cor).
So by assumption, there are locally timeout-fair simulators SimJ

cor attacking the trusted host
CW{1,4} and yielding a user-view indistinguishable from that with AJ

cor. Each SimJ
cor is fair, so

the ideal (and thus also the real) system generates output after a polynomial number of user-
activations; however, the specific polynomial may depend on J . Let F (k) be smallest natural
number such that the probability for the real protocol to generate output after less than F (k)

steps (in a configuration with A2
k

cor) is ≥ 1/2. Since the runtime of the real protocol is bounded by

9 For readability, in the following we will often omit the phrase “with overwhelming probability” where
it is clear.

20

a polynomial p(k), F (k)− 1 is also bounded by p(k) by definition of F . Thus F is polynomially
bounded. But by definition of F , the real protocol with adversary AF

cor generates output prior to
the first scheduling of any M2-M3-connection with non-negligible probability.10

Since F is polynomially bounded, even an adversary AF that does not corrupt any party
but schedules like AF

cor is locally timeout-fair. Using simulatability again, we get that with
non-negligible probability, the real protocol generates non-⊥ output without using a M2-M3-
connection. So a message is transferred from M1 to M4 only by means of an authenticated channel.
However, then we can construct an adversary that simply guesses the most likely message which
corresponds to a given transcript of this authenticated channel. This adversary can be shown to
be a successful guesser and thus breaks the security of the real protocol. Note that as the ideal
specification does not use delivery guarantees, this proof also applies in the fair case. ut

B.4 Sketch of Proof of Theorem 5

We describe only the machines M1, . . . , M4. Briefly, M1, on in?-input x ∈ Fk
2 , randomly picks

A
R
← Fk×k

2 and b
R
← Fk

2 . Then, M1 writes (start) on aut14! and (x, Ax + b) on sec12!. (Ax + b is a
message authentication code for x as described in [Sti95].) From then on, M1 ignores all inputs
except the next aut41!-input from M4. Specifically, M1 writes (A, b) on aut14! and halts when
receiving the next nonempty aut41!-input.

The machines M2 and M3 only relay the first nonempty sec12?-input (resp. sec23?-input) to
sec23! (resp. sec34!).

M4 has a fair4? port (together with the corresponding clock port fair/4!) to get a global delivery
guarantee. So in its first activation, M4 clocks fair/4! with 1 to get a global guarantee J ∈ N0 at
port fair/4?. Furthermore, on receiving (start) at aut14? and (x, x̃) ∈ Fk

2 × Fk
2 at sec34? (in any

order), M4 sends (ack) over aut41! back to M1. Then, on aut14-input (A, b) ∈ Fk×k
2 × Fk

2 , M4

generates and 1-clocks out!-output y. Here, y = x if Ax + b = x̃, and y = ⊥ otherwise. As a
timeout mechanism, M4 outputs (and 1-clocks) ⊥ on port out! and halts when there are more
than 5J + 1 nonempty time loop4-inputs after the initial (start) message.

The security of this real protocol can be proven by a step-wise transformation of a real con-
figuration into an ideal one, where each step leaves the view of the honest user indistinguishable
from the original one. Again, we only provide a quick overview of the proof. Into a given configu-
ration in the uncorrupted case, we first insert the following machine CW′ in between the honest
user and the protocol machines with service ports (i.e., M1 and M4). CW′ relays only the first
in?-input to M1, and only the first out!-output from M4 which arrives after the first in?-input.
Furthermore, this out!-output is substituted with the former in?-input.

Next, we change M1 to replace the first in?-input x with 0k and M4 to replace all outputs by
1. After that, the machines A and M1, . . . , M4 can be combined into a new machine Sim′. Finally,
CW′ and Sim′ can simultaneously be changed into machines CW and Sim: CW is the trusted host
CW{1,...,4}, and Sim clocks CW’s loop/! port instead of writing to out!.

The timeout-fair property of Sim can then be restored by introducing a delay box dbox p loop

for the delay function p(J, k) = 7J2 + 2J , and adapting Sim to this delay box in the obvious
way. Intuitively, the construction of M1 and M4, and that of p allows Sim to schedule the ports
of dbox p loop in a timeout-fair manner, without ever forcing dbox p loop to clock loop/! on its
own.

Note that this sketch constructed a simulator Sim which depends only on A, but not on H.
The proof for the corrupted case is very similar, but additionally makes use of the properties of

10 F may or may not be computable, but in any case can be approximated suitably.

21

the message authentication code to ensure the integrity of the transmitted message. We omit a
sketch here. ut

References

[ADG84] Chagit Attiya, Danny Dolev, and Joseph Gil. Asynchronous byzantine consensus. In
Third Annual ACM Symposium on Principles of Distributed Computing, Proceedings of

PODC 1984, pages 119–133. ACM Press, 1984.

[Bac03] Michael Backes. Unifying simulatability definitions in cryptographic systems under dif-
ferent timing assumptions. In Roberto Amadio and Denis Lugiez, editors, Concur-

rency Theory, Proceedings of CONCUR 2003, volume 2761 of Lecture Notes in Com-

puter Science, pages 350–365. Springer-Verlag, 2003. Full version online available at
http://eprint.iacr.org/2003/114.ps.

[BHMQU05] Michael Backes, Dennis Hofheinz, Jörn Müller-Quade, and Dominique Unruh. On fairness
in simulatability-based cryptographic systems. In 3rd ACM Workshop on Formal Methods

in Security Engineering: From Specifications to Code, pages 13–22, September 2005.

[BOCG93] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation.
In Twenty-Fifth Annual ACM Symposium on Theory of Computing, Proceedings of STOC

1993, pages 52–61. ACM Press, 1993.

[BPSW02] Michael Backes, Birgit Pfitzmann, Michael Steiner, and Michael Waidner. Polynomial
fairness and liveness. In 15th IEEE Computer Security Foundations Workshop, Proceed-

ings of CSFW 2002, pages 160–174. IEEE Computer Society, 2002. Online available at
http://www.zurich.ibm.com/~mbc/papers/BPSW_02Liveness.ps.

[BPW07] Michael Backes, Birgit Pfitzmann, and Michael Waidner. The reactive simulatability
(RSIM) framework for asynchronous systems. To appear in Information and Computation,
2007. Preliminary version available online at http://eprint.iacr.org/2004/082.ps.

[BT85] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols. Journal

of the ACM, 32(4):824–840, 1985.

[Can00] Ran Canetti. Security and composition of multi-party cryptographic protocols. Journal

of Cryptology, 3(1):143–202, 2000. Full version online available at http://eprint.iacr.

org/1998/018.ps.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In 42th Annual Symposium on Foundations of Computer Science, Proceedings of

FOCS 2001, pages 136–145. IEEE Computer Society, 2001. Full version online available
at http://www.eccc.uni-trier.de/eccc-reports/2001/TR01-016/revisn01.ps.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally
composable two-party computation without set-up assumptions. In Eli Biham, editor,
Advances in Cryptology, Proceedings of EUROCRYPT ’03, volume 2656 of Lecture Notes

in Computer Science, pages 68–86. Springer-Verlag, 2003. Full version online available at
http://eprint.iacr.org/2004/116.ps.

[CKLS02] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. Asynchronous
verifiable secret sharing and proactive cryptosystems. In 9th ACM Conference on Com-

puter and Communications Security, Proceedings of CCS 2002, pages 88–97. ACM Press,
2002.

[CKPS01] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient
asynchronous broadcast protocols. In Joe Kilian, editor, Advances in Cryptology, Pro-

ceedings of CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages
524–541. Springer-Verlag, 2001.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable
two-party and multi-party secure computation. In 34th Annual ACM Symposium on The-

ory of Computing, Proceedings of STOC 2002, pages 494–503. ACM Press, 2002. Extended
abstract, full version online available at http://eprint.iacr.org/2002/140.ps.

22

[DLS88] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmayer. Consensus in the presence of
partial synchrony. Journal of the ACM, 35(2):288–323, 1988.

[FLM86] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility proofs for
distributed consensus problems. Distributed Computing, 1(1):26–39, 1986.

[FLP83] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed
consensus with one faulty process. In Second ACM SIGACT-SIGMOD Symposium on

Principles of Database Systems, Proceedings of PODS 1983, pages 1–7. ACM Press, 1983.
[GL02] Shafi Goldwasser and Yehuda Lindell. Secure computation without agreement. In

Dahlia Malkhi, editor, Distributed Computing, 16th International Conference, DISC 2002,

Toulouse, France, October 28-30, 2002 Proceedings, volume 2508 of Lecture Notes in Com-

puter Science, pages 17–32. Springer, 2002.
[GMY04] Juan A. Garay, Philip MacKenzie, and Ke Yang. Efficient and secure multi-party compu-

tation with faulty majority and complete fairness. IACR ePrint Archive, January 2004.
Online available at http://eprint.iacr.org/2004/009/.

[HMQ04] Dennis Hofheinz and Jörn Müller-Quade. A synchronous model for multi-party com-
putation and the incompleteness of oblivious transfer. In Workshop on Foundations

of Computer Security, Proceedings of FCS 2004, 2004. Full version online available at
http://eprint.iacr.org/2004/016.

[HMQU05] Dennis Hofheinz, Jörn Müller-Quade, and Dominique Unruh. Polynomial run-
time in simulatability definitions. In 18th IEEE Computer Security Foundations

Workshop, Proceedings of CSFW 2005, pages 156–169. IEEE Computer Society,
2005. Online available at http://iaks-www.ira.uka.de/home/unruh/publications/

hofheinz05polynomial.html.
[PSW00] Birgit Pfitzmann, Matthias Schunter, and Michael Waidner. Secure reactive systems.

Technical Report RZ 3206, IBM Zurich Research Laboratory, 2000. Online available at
http://www.semper.org/sirene/publ/PfSW1_00ReactSimulIBM.ps.gz.

[PW01] Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive systems and
its application to secure message transmission. In IEEE Symposium on Security and

Privacy, Proceedings of SSP 2001, pages 184–200. IEEE Computer Society, 2001. Full
version online available at http://eprint.iacr.org/2000/066.ps.

[Sti95] Douglas R. Stinson. Cryptography – Theory and Practice. CRC Press, 1995.
[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions. In 23th Annual

Symposium on Foundations of Computer Science, Proceedings of FOCS 1982, pages 80–91.
IEEE Computer Society, 1982.

23

	Introduction
	Related Work
	Overview

	Reactive Simulatability
	General System Model
	Reactive Simulatability

	Fairness in Simulatability-based Cryptographic Systems
	Fair Schedulers
	Fair Reactive Simulatability

	Non-Trivial Protocols
	Variants of Fairness with Timeouts
	Fairness with Global Timeouts
	Fairness with Local Timeouts

	Relations Among the Notions
	Non-Trivial Protocols
	Drawing Profit from Timeouts
	Global vs. Local Timeouts

	Conclusions
	Delayed Buffers
	Postponed Proof Sketches
	Details/Sketch of Proof for Theorem 2
	Sketch of Proof for Theorem 3
	Sketch of Proof of Theorem 4
	Sketch of Proof of Theorem 5

