
Zero-Knowledge Blind Identification For Smart Cards Using

Bilinear Pairings

Amitabh Saxena and Ben Soh

Computer Science and Computer Engineering

La Trobe University

Bundoora, VIC, Australia 3086

Serguey Priymak

Applied Science Department

RMIT University

Melbourne, VIC, Australia 3000

December 22, 2005

Abstract

In identification protocols with public verifier coins (like Fiat-Shamir), a passive adversary watch-
ing the communication gains information intended only for the verifier. On the other hand, private
coin protocols with fewer than three rounds cannot be zero-knowledge. In this paper, we introduce
the notion of bounded-prover zero-knowledge proofs which require only two rounds and can be con-
sidered perfectly zero-knowledge under certain intractibility assumptions. Specifically, we exploit the
gap between two computational problems to achieve zero-knowledge in a dishonest verifier scenario.
Our example is based on the apparant intractibility of the Linear Diffie-Hellman Problem in bilinear
maps. As a natural extension of the single user identification, we present the concept of ‘all or none’
group identification protocol that can be used to authenticate together an arbitrary number of users
in a batch. We also present some extensions of our scheme.

1 Introduction

Zero-knowledge proofs [1, 2, 3] have both theoretical and practical implications. For instance, in a
cryptographic protocol, zero-knowledge provides us some assurance of the robustness of the protocol. We
observe, however, that either the existing notions of zero-knowledge proofs do not sufficiently capture the
security requirements of many protocols or that most protocols do not sufficiently adhere to the theoretical
definition of zero-knowledge proofs. We see this as a limitation of our definitions of zero-knowledge. We
elaborate this below.

Typically, zero-knowledge proofs assume that the prover is computationally unbounded and the ver-
ifier is only allowed to toss public coins. However, in many practical scenarios, it is necessary for the
verifier to toss secret coins. To prove security (or essentially, zero-knowledge) of cryptographic protocols
in this scenario, new intractability assumptions need to be used; for instance the existence of a “secure”
encryption function or the use of random oracles. Likewise, using ‘compilers’ [4] by increasing the num-
ber of rounds to convert an honest verifier zero-knowledge protocol to dishonest-verifier zero-knowledge
protocol is inefficient in practice.

Our Contribution

In this paper, we study zero-knowledge proofs with bounded provers and secret (verifier) coin-tosses
and propose an identification protocol using bilinear pairings based on this study. Our proposed protocol
has several advantages:

1. Our protocol is provably perfect zero-knowledge in our new notion of bounded-prover zero-knowledge [5]
under the LDHP hypothesis (see section 4).

1

2. It is a two-round identification protocol (the verifier issues a challenge and the prover replies).
To date, all perfect zero-knowledge identification protocols (including Fiat-Shamir [6]) are three-
round (prover sends initial message, verifier issues challenge, prover replies). Contrary to popular
belief that two-round perfect zero-knowledge protocols are not possible for non-trivial languages,
we show that two-round protocols can be classified perfectly zero-knowledge under some reasonable
assumptions.

3. The protocol is “blind” to a passive adversary; no passive adversary watching the communication
gains any “useful” information on the outcome of the identification. That is, it is impossible for the
adversary to tell if the verifier is honest or not. Similarly it is also impossible to tell if the prover
is honest or not.1 We note that neither the Fiat-Shamir protocol nor any of the other (perfect
zero-knowledge) identification protocols provide this blindness property.

4. Our protocol is based on exactly the same infrastructure as the BLS scheme [7]. Thus, the two
schemes can be used in conjunction.

The rest of the paper is organized as follows. In section 2 we give some notations and concepts neces-
sary to describe our protocol. In section 4 we present the cryptographic primitives used in our protocol
along with the necessary hardness assumptions. We describe the underlying Public Key Infrastructure
required for our protocol in section 4.1. Finally, we present our scheme in section 4.2 and provide several
extensions in sections 6 and 7.

2 Background

In this section, we present a simple two-round identification scheme using a public key cryptosystem.
Assume that Alice and Bob are two users and Alice wishes to identify herself to Bob. We only consider
one-way identification and ignore the case of Bob identifying himself to Alice.

First we give some notation. If A is a non-empty set, then x← A denotes that x has been uniformly
chosen in A. A round of a protocol involves the exchange of one message. A sequence of two synchronous
(ordered) message transmissions constitutes two separate rounds while any number of asynchronous
messages (i.e. messages that can be unordered) are part of the same round. A single message passing is
a one-round protocol.

2.1 Two-Round Identification With Secret Coins

Alice has public encryption function Ea and a secret decryption function Da. Let H : {0, 1}∗ 7→ {0, 1}∗

be a cryptographic hash function.

1. Alice begins by claiming to know Da.

2. Bob tosses secret coins to generate a random challenge message m and encrypts it using Ea to get
ciphertext c = Ea(m). Bob sends c to Alice over an insecure channel.

3. Alice generates a random r ← {0, 1}∗ and computes s = H(Da(c)‖r). She sends back the tuple
〈r, s〉 to Bob over the same insecure channel.

4. Bob accepts if s = H(m‖r).

Observe that Alice must toss coins to insert randomness r into her reply to avoid the known ciphertext
attack. The identification protocol presented in this paper is based on a similar idea. However, instead of
the difficulty of inverting the public encryption function, we rely on the difficulty of computing discrete
logarithms in certain groups. Like the above protocol, our scheme is two-round and begins by the verifier
tossing secret coins while the prover then tosses public coins.

1Of course, the prover should be able to decide if the verifier is honest or not. Our protocol allows this. Additionally,
if the verifier is dishonest and the prover does not respond, then it gives some information to the adversary. The protocol
is blind assuming a prover replies irrespective of whether the verifier is honest or not. In case the verifier is dishonest, the
prover simply replies with randomly selected string.

2

3 Bounded Prover Zero-Knowledge

In this section, we will formalize the notion of Bounded Prover Zero-Knowledge (BP-ZK). Although, the
name is misleading, since by “bounded-prover” we implicitly imply “bounded-prover, secret (verifier) coin
toss”, we drop the latter for notational convenience.

Notation

1. We say a real valued function f : Z 7→ [0, 1) is negligible if there is no polynomial p such that
∀x ∈ Z, f(x) ≥ |1/p(x)|.

2. If A is a non-empty set, then x
R
← A denotes that x has been uniformly chosen in A. Fix the

alphabet Σ = {0, 1}. The set of strings over Σ is denoted by Σ∗. For any string s ∈ Σ∗, the symbol
|s| denotes the bit-length of s.

3. Let L ∈ NP be some language. For any x ∈ L, we denote by W(L, x), the witness that x ∈ L. We
denote by Sample, a randomized PPT algorithm that outputs a pair (w, x) such that w =W(L, x).
Note that there may be more than one witness to x.

Let P and V be two PPT machines (intuitively, the ‘prover’ and ‘verifier’). Define the following game
between P and V. Assume that the setup phase is performed by a trusted third party.

1. Setup phase: Generate (w, x)
R
← Sample. The prover P is given (w, x) and x is made public.

2. Proof phase: The following 2-round protocol is sequentially repeated arbitrary number of times
between the prover and random verifiers. Each run i of the protocol between prover P and some
verifier V∗ is elaborated below:

(a) Challenge: V∗ tosses secret coins si to compute challenge ci using a deterministic challenge

generator Challenge. Formally, si
R
← Σ∗; ci ← Challenge(x, si).

(b) Response: On receiving ci, the prover P uses a PPT algorithm VerifyP : Σ∗×Σ∗×Σ∗ 7→ {0, 1}
to “verify” the challenge and responds as follows.

i. If VerifyP(w, x, ci) = 1, it computes a proof πi using the triplet (w, x, ci) and a random-

ized proof generator Proof. Formally, πi
R
← Proof(w, x, ci)

ii. If VerifyP(w, x, ci) = 0, it generates πi
R
← Σ∗.

P responds with πi as its proof.

(c) Result : On receiving πi, the verifier V∗ uses a PPT algorithm VerifyV : Σ∗×Σ∗×Σ∗ 7→ {0, 1}
to “check” the proof. It accepts if VerifyV(x, si, πi) = 1 and rejects otherwise.

Definition 1. The above protocol is a Bounded-Prover Interactive-Proof (BP-IP) between bounded PPT
Turing machines P and V∗ if the following two conditions hold:

1. Completeness: For all x ∈ L and w =W(L, x),

Pr
[

si
R
← Σ∗; ci ← Challenge(x, si);πi

R
← Proof(w, x, ci) : VerifyV(x, si, πi) = 1

]

= 1 (1)

2. Soundness: For all x, the following probability is negligible in |x|.

Pr
[

si, x
R
← Σ∗; ci ← Challenge(x, si);πi ← P(x, ci) : VerifyV(x, si, πi) = 1 ∧ x /∈ L

]

(2)

3

In other words, the probability of V∗ accepting proof πi as valid is negligible unless P “knows” w. We
will now attempt to define zero-knowledge in this model. First we define the probabilities:

ǫv = Pr
[

x
R
← L; ci ← V

∗(x) : VerifyP(W(L, x), x, ci) = 1
]

ǫp = Pr
[

si, x
R
← Σ∗; ci ← Challenge(x, si);πi ← P(x, ci) : VerifyV(x, si, πi) = 1 ∧ x /∈ L

]

Clearly, ǫv is the probability that a dishonest verifier can convince an honest prover to accept the
challenge as valid while ǫp is the probability that a dishonest prover can convince an honest verifier that
x ∈ L (without itself knowing whether x ∈ L or not). Soundness requires that ǫp be negligible.

Definition 2. The above protocol is Bounded-Prover Perfect Zero-Knowledge (BP-pZK) if and only if
(a) it is a BP-IP and (b) the following two conditions are satisfied:

1. Honest Verifier Zero-Knowledge: There exists a PPT simulator Sim such that for all x ∈ L,

(a) Pr
[

si
R
← Σ∗; ci ← Challenge(x, si);π

′
i

R
← Sim(x, si, ci) : VerifyV(x, si, π

′
i) = 1

]

= 1, and;

(b) The distributions Sim(x, si, ci) and Proof(W(L, x), x, ci) are identical.

2. Dishonest Verifier Zero-Knowledge: For all x, the ratio δ = ǫv/ǫp is negligible in |x|.

For completeness, we also define Bounded-Prover Computational Zero-Knowledge (BP-cZK) to imply
proofs where an honest verifier simulator exists and the ratio ǫv/ǫp (< 1) is non-negligible. On the other
hand, the protocol is ‘knowledge-revealing’ if this ratio is ≥ 1. We will prove that our protocol is perfect
zero-knowledge in this notation. We emphasize that the trivial looking statement of condition 2 in the
definition of BP-pZK, could in fact, be considered one of the main results of this paper. This definition
essentially provides us with a method to prove (or disprove) that any two-round protocol is perfectly
zero-knowledge irrespective of whether a dishonest verifier simulator exists or not.

4 Bilinear Pairings

Pairing based cryptography is based on the existence of efficiently computable non-degenerate bilinear
maps (or ‘pairings’) which can be abstractly described as follows: Let G1 be a cyclic additive group of
prime order q and G2 be a cyclic multiplicative group of the same order. Assume that computing the
discrete logarithm in both G1 and G2 is hard. A bilinear pairing is a map e : G1×G1 7→ G2 that satisfies
the following properties [7, 8]:

1. Bilinearity : e(aP, bQ) = e(P,Q)ab ∀P,Q ∈ G1 and a, b ∈ Zq

2. Non-degeneracy : P 6= 0⇒ e(P, P) 6= 1

3. Computability : e is efficiently computable

The above properties also imply:

e(P + Q,R) = e(P,R) · e(Q,R) ∀P,Q,R ∈ G1

e(P,Q + R) = e(P,Q) · e(P,R) ∀P,Q,R ∈ G1

Additionally, we assume that it is easy to sample elements from G1. Typically, the map e will be derived
from either the modified Weil pairing or the Tate pairing on an elliptic curve over a finite field [7, 8, 9].
Without going into the details of generating suitable curves (since the same parameters of [7] will suffice2),
we assume that q ≈ 2171 so that the fastest algorithms for computing discrete logarithms in G1 take ≈ 285

iterations. For the rest of this discussion, we fix P 6= 0 as any uniformly chosen generator of G1. Define
the following problems in G1.

2Boneh et al.’s short signature scheme of [7] uses a bilinear map G0 × G1 7→ G2 such that an efficiently computable
isomorphism ψ : G1 7→ G0 exists. Their construction can be directly adapted to our’s by setting G0 = G1.

4

1. Diffie-Hellman Problem (DHP): Given P, xP, rxP ∈ G1 for unknowns x, r ∈ Z
∗
q , compute

rP ∈ G1.
3

2. Decisional Diffie-Hellman Problem (DDHP): Given P, xP, rxP, V ∈ G1 for unknowns x, r ∈
Z
∗
q , decide if V = rP .

3. Extended Diffie-Hellman Problem (EDHP): Given P, xP, rxP ∈ G1 for unknowns x, r ∈ Z
∗
q ,

compute r2P ∈ G1.

4. Extended Decisional Diffie-Hellman Problem (EDDHP): Given P, xP, rxP,U ∈ G1 for
unknowns x, r ∈ Z

∗
q , decide if U = r2P with probability > 1

2
.

5. Linear Diffie-Hellman Problem (LDHP): Given P, xP, rxP ∈ G1 for unknowns x, r ∈ Z
∗
q ,

compute any pair 〈yP, (r + xy)P 〉 for some y ∈ Zq.

6. Linear Decisional Diffie-Hellman Problem (LDDHP): Given P, xP, yP, rxP,Z ∈ G1 for
unknowns x, y, r ∈ Z

∗
q , decide if Z = (r + xy)P with probability > 1

2
.

Figure 1 shows the observed relationship between the different problems. We justify the relationships
using theorems 1-3 below. First we note an important observation.

Observation. The DDHP in easy.

Proof : It is a well known fact that the DDHP is easy in bilinear maps. Given P, xP, rxP, V , deciding
if V = rP is equivalent to deciding if e(P, rxP) = e(xP, V) which can be done in polynomial time.

Theorem 1. DHP ⇐⇒ EDHP. In other words, the EDHP is hard if and only if the DHP is hard.

Proof : First we prove that EDHP⇒ DHP. let DHPP (xP, rxP) be the output of an oracle that solves
the DHP for some fixed P and arbitrary xP, rxP . We can construct an oracle EDHPP (xP, rxP) that
solves the EDHP for any tuple 〈P, xP, rxP 〉 as follows:

EDHPP (xP, rxP) = DHPP (DHPP (DHPP (xP, rxP), xP), rxP).

For the converse, let EDHPP (xP, rxP) be the output of an oracle that solves the EDHP for some
fixed P and arbitrary xP, rxP . We construct a DHPP (xP, rxP) oracle that solves the DHP for the tuple
〈P, xP, rxP 〉 as follows:

DHPP (xP, rxP) =
1

2
(EDHPP (xP, xP + rxP)− EDHPP (xP, rxP)− P)

.

Theorem 2. LDHP ⇒ DHP. In other words, the LDHP cannot be hard if the DHP is easy.

Proof : It is trivial to prove that LDHP ⇒ DHP by constructing an LDHPP (xP, rxP) oracle using
a DHPP (xP, rxP) oracle as follows: Generate y ← Zq. Then,

LDHPP (xP, rxP) = 〈yP,DHPP (xP, rxP) + y(xP)〉

.

Theorem 3. LDDHP ⇒ DHP and EDDHP ⇒ DHP.

3The reader may notice that our statement of the DHP is different from the usually accepted one, which asks finding
rxP given (P, xP, rP). It is easy to see that the two definitions are equivalent if the the order of G1 is prime; denote the
original variant of the problem by ODHP and our variant by DHP. Clearly, ODHP(P, xP, rP) = DHP(xP, P, rP). Swapping
the generators is allowed because the ODHP is random self-reducible in a prime order subgroup.

5

Proof : First we prove the latter; simply use the DHP oracle to solve the EDHP and decide the
EDDHP instance (since there is a unique solution). To prove the former; given P, xP, rxP, yP, Z, use the
DHP oracle to output rP from (P, xP, rxP) and decide if e(Z,P) = e(rP, P) · e(xP, yP).

The security of our protocol relies on an unproven hypothesis which we now describe. Define the
following statements. The ‘R’ indicates a positive reduction, while the ‘L’ denotes a non-reduction.

R1 : DHP⇒ LDHP

R2 : LDDHP⇒ LDHP

L1 : DHP 6⇒ LDHP

L2 : LDDHP 6⇒ LDHP

Clearly from theorem 3, R1 ⇒ R2 (and so L2 ⇒ L1). Here the arrow denotes an ‘implies’ rela-
tionship. An open question at this stage is if the converse is true; that is, does R2 ⇒ R1? (i.e. does
L1⇒ L2?) Next, we give our hypothesis in the form of the following conjuncture.

Conjuncure 4. (LDHP Hypothesis) LDDHP ⇒ LDHP if and only if the LDHP is easy.

If this conjuncture turns out to be true, this would clearly imply that DHP ⇒ LDHP if and only if
the DHP is easy (since, by theorem 3, we have LDDHP ⇒ DHP and if DHP ⇒ LDHP, this would also
imply LDDHP ⇒ LDHP).

To disprove this conjuncture, it would seem natural to try and construct a DHP oracle using an LDHP
oracle and show that DHP ⇒ LDHP even if the DHP is hard. It appears, however, that constructing a
DHP oracle using just an LDHP oracle is infeasible if we are unable to verify the LDHP oracle’s outputs
(assuming that the oracle outputs different values each time when given the same inputs). Another ap-
proach would be to try and exhibit an example where the LDHP is easy but the LDDHP is hard or an
example where the LDHP is hard but LDDHP ⇒ LDHP. Unfortunately, we have been unable to prove
this conjuncture at this stage.

Corollary 4. Assuming conjuncture 4, EDHP 6⇒ LDHP unless both the problems are easy.

DHP (Hard) ks +3 EDHP
3;

nnnnnnnnnnnn

nnnnnnnnnnnn

ks EDDHP (Hard ?)

LDHP (Hard ?) LDDHP (Hard ?)

dl QQQQQQQQQQQQQ

QQQQQQQQQQQQQ

Figure 1: Problem Hierarchy

We exploit this apparent “gap” in the two problems (LDHP, EDHP) to construct perfect two-round
interactive zero-knowledge proofs as shown in the next section. Before describing our protocol, we make
the following three assumptions:

1. LDHP Assumption: The LDHP is intractable in G1

2. LDDHP Assumption: The LDDHP is intractable in G1

3. EDDHP Assumption: The EDDHP is intractable in G1

6

4.1 Setup PKI

1. The TA selects a security parameter l and uses the BDH parameter generator of [7], which we will
call Params, to set the system parameters as follows. It generates {e, q, G1, G2} ← Params(1l)
where G1, G2 are group descriptions for two groups each of prime order q > 2l and e : G1×G1 7→ G2

is a bilinear mapping as defined in section 4. The TA then generates P ← G1. If P 6= 0 then P is
a generator of G1. The system parameters are 〈e, q, l, G1, G2, P 〉.

2. Each participant IDi generates xi ← Zq as the private key. The corresponding public key is
Yi = xiP ∈ G1. Each user also obtains a certificate from the CA linking the identity IDi and the
public key Yi, for example, using the identification protocol given below.

4.2 Two-Round (Blind) Identification

We are now in a position to describe our identification protocol. Assume that user ID having secret
key x ∈ Zq and public key Y = xP ∈ G1 wants to prove to server S, the knowledge of x. Additionally,
ID wants to ensure that no one except the verifier S gets convinced of this fact from watching the
communication. Here (ID,S) can be considered as a pair of (prover, verifier). The protocol is graphically
described in figure 2.

Figure 2: Two-round Identification

1. ID starts by claiming to know x ∈ Zq, the discrete logarithm of Y ∈ G1 to base P .

2. The verifier S generates r ← Zq and computes R = rY and U = r2P . It sends 〈R,U〉 as its
challenge to ID.

3. ID computes V = 1

x
R and verifies e(V, V) = e(U,P). If this test passes, ID is convinced that R

was indeed randomly generated. ID generates Q← G1 and computes Z = V +xQ. It sends 〈Z,Q〉
as its proof to S.

4. S accepts if e(Z − rP, P) = e(Q,Y).

Correctness: The correctness of the protocol is easily checked. In the verification process;

LHS = e(Z − rP, P) = e(
1

x
xrP + xQ− rP, P) = e(Q,xP) = RHS

7

5 Security of the Proposed Protocol

In this section, we prove that the above protocol is perfect zero-knowledge using a restricted definition
of Bounded-Prover perfect Zero-Knowledge (BP-pZK) [5], which essentially requires that the probability
of a dishonest verifier succeeding is negligibly less then that of a dishonest prover succeeding. The
completeness is guaranteed by the correctness of the verification process.

5.1 Soundness

Assuming an honest verifier, we must show that a dishonest prover cannot succeed except with a negligible
probability. Given xP, rxP, r2P , the task of a dishonest prover is to compute a pair 〈Z ′, Q′〉 such that
Z ′ = rP + xQ′. It is easy to see that this is an instance of the LDHP (section 4). We also claim that
knowledge of U does not give a dishonest prover any additional advantage in solving this LDHP instance
because deciding if U = r2P is an instance of the EDDHP. An algorithm that has a non-negligible
probability in solving the LDHP given a true EDDHP instance is essentially a distinguisher for the
EDDHP instance. Thus, the proof is sound from a verifier’s view as long as both the LDHP and the
EDDHP are intractable.

5.2 Honest Verifier Zero-Knowledge

We construct a simulator that can generate an accepting transcript {P, xP, rxP, r2P,Z ′, Q′} without
interaction with a prover as follows. Given (P, xP), generate r, α ← Zq, compute rxP, r2P,Q′ = αP
and Z ′ = rP + αxP . It is easy to see that the simulated and real distributions are identical. Thus, our
protocol is Honest Verifier Zero-Knowledge.

5.3 Dishonest Verifier Zero-Knowledge

A dishonest verifier will generate R non-uniformly. In other words, a dishonest verifier will not know r
corresponding to R. To prove zero-knowledge in this case, it is enough to prove that the probability of a
dishonest verifier succeeding is negligibly less than the probability of a dishonest prover succeeding.

First, note that it is infeasible for a dishonest verifier to succeed except with a negligible property
because computing r2P from P, xP, rxP (without knowledge of r or x) is exactly an instance of the
EDHP.4

Let ǫv be the probability that a dishonest verifier S∗ succeeds in making an honest prover ID ac-
cept a challenge as valid. Also let ǫp be the probability that a dishonest prover ID∗ can convince an
honest verifier S. Let Pr[EDHP] and Pr[LDHP] be the probabilities that any computationally bounded
adversary can solve the EDHP and the LDHP respectively. From the above discussion, we know that
ǫv = Pr[EDHP] and ǫp = Pr[LDHP|(EDDHP instance = TRUE)] ≥ Pr[LDHP]

We can straightaway conclude that Pr(EDHP) < Pr(LDHP) under the LDHP hypothesis using
corollary 4 and so the above protocol is computationally zero-knowledge in the BP-cZK model. Now
let δ = ǫv/ǫp. Clearly, if δ is non-negligible, it would imply that EDHP ⇒ LDHP, again contradicting
corollary 4. Hence we conclude that the above protocol is, in fact, perfectly zero-knowledge in the BP-pZK
model from a prover’s viewpoint.

4We observe that the alternate cheating verifier problem; given P, xP, r2P , computing rxP is at least as hard as the DHP
due to the following reduction. Denote this problem by ACVP (for Alternate Cheating Verifier Problem). For simplicity,
we will only show how to reduce the Original Diffie-Hellman Problem (ODHP) (see footnote in section 4) to the ACVP.

Using an ACVP(P, xP, r2P) oracle that always outputs rxP for any given inputs P, xP, r2P , we can easily construct
an ODHP(P, xP, rP) oracle that outputs rxP as follows. If r is a quadaratic residue (mod q), then we simply output
ODHP(P, xP, rP) = ACVP(P,ACVP(P, xP, rP), rP). If r is a quadratic non-residue (mod q) (in which case the ACVP

oracle outputs Error), we generate another quadratic non-residue r′ (mod q). Thus, rr′ is a quadratic residue (mod q). In
this case, we output ODHP(P, xP, rP) = 1/r′ACVP(P,ACVP(P, xP, rr′P), rr′P). Thus, clearly DHP ⇒ ACVP.

8

5.4 Passive Adversary Blindness

An inherent property of the above protocol is passive adversary blindness which informally implies that no
polynomially bounded adversary has a non-negligible advantage in deciding the honesty of the participants
in the protocol. Assuming that the EDDHP is intractable, it is impossible for a passive adversary
to decide the honesty of the verifier; given P, xP, rxP,U , deciding if U = r2P is an instance of the
EDDHP. Similarly, it is not possible for a passive adversary to decide the honesty of the prover; given
P, xP, rxP,Q,Z, deciding if Z = rP + xQ is an instance of the LDDHP.

5.5 Knowledge Extractor

It is trivial to prove that the above interactive protocol is a “proof of knowledge” by constructing an
extractor. On a closer look at the protocol, we see that ID essentially proves knowledge of the witness
〈rP, xQ〉 such that 〈Q,Z〉 ∈ L1 using the shared string 〈P, xP, rxP 〉 where L1 is the language:

L1 = {〈Q,Z〉 |Z = rP + xQ}.

Clearly L1 ∈ NP . Assume that a dishonest prover (ID∗) is able to make any honest verifier accept.
That is, given (P, xP, rxP), ID∗ can always output a pair 〈Z ′, Q′〉 such that e(Z ′ − rP, P) = e(Q′, xP).
By simulating the honest verifier itself, ID∗ can obtain 〈rP, xQ′〉, the witness that 〈Q′, Z ′〉 ∈ L1.

6 Two-Round Group Identification

This scheme enables a group of users to identify themselves to a server such that: (a) The identification
test passes if none of the users cheat, (b) if any of the users cheat, the test will fail with a high probability,
(c) it is not possible for the server or the users to know who cheated.

Assume that {ID1, ID2, . . . IDn} are the set of users who want to jointly identify themselves. It is
necessary that each user IDi must have a certified public key Yi as described earlier. The goal of the
protocol is that all users will simultaneously identify themselves to a server S. That is, the proof is valid
only on all the statements together: “IDi knows xi” ∀i : 1 ≤ i ≤ n but not on any of the individual
statements like “ID1 knows x1” or “ID2 knows x2” independently of the others. We will assume the
infrastructure of section 4.1. The identification is done as follows:

1. The n provers ID1, ID2 . . . IDn start by claiming to S that they know the discrete logarithms
x1, x2, . . . xn ∈ Zq of Y1, Y2, . . . Yn ∈ G1 (to base P) respectively.

2. The verifier S generates r1, r2, . . . rn ← Zq and computes Ri = riYi and Ui = r2
i P . It makes the

list of challenges 〈IDi, Ri, Ui〉 public.

3. Each IDi computes Vi = 1

xi

Ri and checks that e(Vi, Vi) = e(Ui, P). If this test passes, it generates
Qi ← G1 and computes Zi = Vi + xiQi

4. All users then collaborate to jointly compute the value Z =
∑j=n

j=1
Zj . This computation is hidden

from S so that individual values Zj are effectively hidden the it’s view. The combined proof
{Z,Q1, Q2 . . . Qn} is sent to S.

5. S accepts if e(Z −
∑j=n

j=1
rjP, P) =

∏j=n

j=1
e(Qj , Yj).

6.1 Security Proof (Sketch)

We claim that this test will pass if and only if each IDi knows xi. To summarize the goals of the protocol,
the individual users can jointly authenticate themselves to the server such that:

(a) If all users are honest, the server always accepts.

(b) If any of the users are dishonest, the server rejects with a high probability.

9

(c) The protocol is zero knowledge. It is not possible for anyone (including the server) to know which
user cheated.

(d) Collusions are possible between users but not with the server (the server is trusted).

The protocol is secure based on the following observations:

1. Soundness: Computing individual proofs 〈Zi, Qi〉 without xi or ri is infeasible using similar rea-
soning for the single user scenario (section 4.2). Using the idea of aggregate signatures of [10], the
same applies to the multiuser case. Consequently the verifier will reject.

2. Honest Verifier Zero Knowledge: S can generate a valid accepting transcript on its own correspond-
ing to {ri, Ri, Ui} ∀i : 1 ≤ i ≤ n as follows: S generates αi ← Zq ∀i and computes Qi = αiP ,

Ri = riYi. Then Z =
∑j=n

j=1
riP + αiYi.

3. Dishonest Verifier-Zero-knowledge: A dishonest verifier will generate R non-uniformly and will
therefore not know ri corresponding to Ri. Due to this it will be hard for this verifier to generate
Ui such that e(1

xi

Ri,
1

xi

Ri) = e(Ui, P) due to the hardness of the EDHP. Thus a dishonest verifier
will not be able to make anyone accept his/her challenge as valid. The above reasoning for single
user identification can be extended here.

4. Honest Verifier Secrecy: We require that it is impossible for a passive adversary to decide the
honesty of the verifier. The reasoning for the single user case can be extended here. That is, given
P, xiP,Ri, Ui, deciding if e(1

xi

Ri,
1

xi

Ri) = e(Ui, P) is infeasible without knowledge of ri or xi due
to the hardness of the EDDHP.

5. Honest Prover Secrecy: Assume that all the provers are honest and thus, S will eventually accept.
We require that it is impossible for a passive adversary (including the provers) to decide the honesty
some prover. We note that given P, xiP, rixiP, r2

i P,Qi, Zi, deciding if Zi = riP + xiQi is infeasible
without knowledge of r or x due to the hardness of the LDDHP. Thus a passive adversary cannot
decide the outcome of the identification.

6. Dishonest Prover Secrecy: Assume that some of the provers are dishonest. In this case, given
P, xiP, rixiP, yiP,Zi ∈ G1, deciding if Zi = (ri +xiyi)P is infeasible under the LDDHP assumption.
Therefore if S rejects, none of the provers know which pairs 〈Zi, Qi〉 correspond to invalid proofs
(if the individual coin tosses ri of S are kept secret and S is honest, no information is leaked to the
provers). Similarly if the individual values Zi are kept secret (from S), the identity of the dishonest
provers is still concealed since computing individual proofs Zi just from Z, y1P, y2P . . . ynP such
that Zi = (ri +xiyi)P ∀i is infeasible assuming the hardness of the 2-Element Aggregate Extraction
Problem (2-EAEP) (which is equivalent to the DHP as shown in theorem 1 of of [11]). Consequently,
even the verifier S does not have the ability to decide which of the provers are dishonest.

Finally, if the joint computation of Z is carried out in a way that any one individual prover or a
small coalition of provers can know Zi’s for only a small fraction of users, the identities of dishonest
provers can still be effectively hidden, even if S can be coerced to reveal all the coin tosses ri.

7 Other Extensions

In this section we will provide several extensions of our scheme. We refer to the definitions of sections 4.1
and 4.2. The private keys xi can either be generated by the users or by a trusted authority. The public
key Yi are assumed to be certified in the former case. Note that the identification is a two-round protocol,
with the verifier sending the challenge R in the first step and the prover sending the response Z,Q in the
second step. The private key for each smart card is encapsulated in a tamper proof chip. Signing access
to this key is given via some access control mechanism like a PIN number. The corresponding public key
is also present in the smart card along with a certificate. Smart cards may be purchased from a (reputed)
third party and must be registered with the relevant authority (like a bank) before they can be used. To
register a smart card, the authority simply provides a certificate.

10

7.1 Hidden Signatures

In the protocol of section 4.2, where user ID identifies to the server S, ID can also send plaintext messages
along with hidden signatures such that only S can extract the signature. Of course, once extracted, the
signatures provide the same non-repudiation as the BLS signatures [7].

1. Initialization : The process begins when at some point, S asks ID to identify itself by sending
the challenge R = rxP and U = r2P in the first step of the protocol of section 4.2.

2. Signing : Like the previous scheme, the message to be signed is M ∈ G1 and Q = H(M). However,
in this case, the verifier’s challenge is not ignored. As always, the signer ID first computes V = 1

x
R

and checks that e(V, V) = e(U,P). The hidden signature of ID on M is then Z = V + xQ. The
tuple 〈M,Z〉 is sent to S.

3. Verification : On receiving 〈M,Z〉, S extracts the signature S = Z−rP . The verification condition
is e(S, P) = e(H(M), Y) like before.

7.2 Plaintext-Aware Encryption And Signcryption

The above idea of hidden signatures suggests that we can also easily convert the interactive identification
protocol to a non-interactive public key encryption scheme. We present (without a security proof) such
a scheme here based on El Gamal encryption. Our variant of El Gamal provides semantic security and
additionally achieves plaintext awareness (which informally requires that an adversary cannot generate
ciphertexts without “knowing” the actual plaintext [12, 13]). The idea is to simulate the identification
protocol for an arbitrary user and give the message as input to the simulator. Then construct the challenge
for a specific user ID using the same coin tosses of the verifier from the simulation. As usual, we assume
user ID has a private key x ∈ Zq and the corresponding certified public key Y = xP ∈ G1 for a known
generator P of G1. Let the plaintext be M ∈ G1. We also require a hash function H : G1 7→ G1. The
use of the hash function is necessary only to achieve semantic security.

1. Encryption : Generate r, x′ ← Zq, P ′ ← G1. Compute Q = 1

x′
(H(rP)+M), Z = rP +H(rP)+M ,

Y ′ = x′P ′, R = rY and U = r2P . The ciphertext is the tuple 〈P ′, Y ′, R, U, Z,Q〉. The values
{P ′, Y ′} can be re-used in multiple encryptions to save bandwidth (without any compromise in
security). It is also possible to have P = P ′ which saves further bandwidth. We allow the case of
P 6= P ′ to enable signcryption (described later).

2. Decryption : Compute V = 1

x
R. Check that e(V, V) = e(U,P) and e(Z − V, P ′) = e(Q,Y ′). If

both checks pass, accept the ciphertext as valid and compute M = Z − V −H(V).5

Plaintext Awareness: An adversary cannot make ID accept the ciphertext 〈P ′, Y ′, R, U, Z,Q〉
without knowing the corresponding message M = x′Q−H(rP) such that Y ′ = x′P ′. This follows from
the various Diffie-Hellman assumptions given earlier.

Semantic Security: Given plaintexts {M0,M1} and one of the ciphertexts 〈P ′, Y ′, Rb, Ub, Zb, Qb〉 , b ∈
{0, 1}, computing b is equivalent to one of the following:

1. Decide if M0

?
= Zb −

1

x
Rb −H(1

x
Rb) with probability greater than 1/2

2. Decide if
〈

Qb, P
′,M0 +H(1

x
Rb), Y

′
〉

forms a valid DDH tuple with probability greater than 1/2.
We say that 〈A,B,C,D〉 forms a valid DDH tuple if e(A,B) = e(C,D).

Signcryption: In the above protocol 〈P ′, Y ′〉 acts as the public key of the user in the simulated
identification. If it is a real certified public key then this scheme also serves as a signcryption scheme.
The tuple 〈V,Q,M〉 provides non-repudiation; a verifier can check that e(M +H(V), P ′) = e(Q,Y ′).

5In this case 〈P ′, Y ′〉 acts as the public key of the simulated user. Observe that we have “mixed” the public keys of
different users in the identification. This mixing is justified assuming that the order of G1 is prime. Due to this, all elements
of G1 except 0 will have order q. Alternatively, if P ′, Y ′ 6= 0 then it is ensured that the hardness assumptions on 〈P, Y 〉
based purely on the order of the cyclic group generated hold equally well for any other pair with the same properties

11

7.3 Deniable Signcryption

It is possible for some user IDa to send an authenticated and encrypted message to IDb (with IDb’s
co-operation) such that it can be later denied by IDa. As before we assume that the private key of IDa

is xa corresponding to the public key xaPa. Also, let xb be the private key of IDb corresponding to the
public key xbPb (possibly with Pa = Pb).

1. Initialization : At some point IDb asks IDa to identify itself. To do this it generates rb ← Zq,
computes Rb = rbYa, Ub = r2

bPa and sends 〈Rb, Ub〉 to IDa.

2. Signcryption : IDa computes Va = 1

xa

Rb and accepts the challenge if e(Va, Va) = e(Ub, Pa). Using
IDb’s challenge Rb, IDa can then encrypt a message Ma ∈ G1 for IDb as follows: IDa generates
ra ← Zq, sets Qa = M + 2raPb and computes Za = Va + xaQa as always. It then computes
Ta = Qa − raPb and Ra = raYb and sends 〈Za, Ta, Ra〉 as its signcrypted message to IDb

3. Verification/Decryption : On receiving 〈Za, Ta, Ra〉, IDb first computes Qa = Ta + 1

xb

Ra and

verifies that (Za, Qa) is a valid accepting transcript for IDa. That is, e(Za− rbPa, Pa) = e(Qa, Ya).
If this check passes IDb computes Ma = Ta −

1

xb

Ra. The zero knowledge identification property
ensures that IDb will only accept messages that were actually sent by IDa. Thus, an adversary
cannot make it accept any random message as valid, thereby ensuring plaintext-awareness.

4. Repudiation (Deniablity): We will show that the above scheme allows IDa to later deny sending
the message Ma. Firstly note that Ma = Qa −

2

xb

Ra and Ta = Qa −
1

xb

Ra. For any given pair

(Ma, Qa), it is easy to see that IDb has the ability to generate 〈Ra, Ta〉. Due to this, there is no
evidence left for IDb to prove that these values were actually computed by IDa.

Also note that Za−rbPa = xaMa+2xaraPb. Extracting xaMa (which would serve as IDa’s signature
on Ma) using this relation is equivalent to computing xaraPb from raPb and xaPa without knowing
ra or xa. This is a hard problem of the order of the DHP (see [10], section 4.2 and [11]).

7.4 Two-Round Authenticated Key Agreement

User IDa having public key xaPa and private key xa can establish a shared key with user IDb having
public key xbPb and private key xb as follows. Let H : G1 7→ G1 be a cryptographic hash function.

1. IDa generates ra ← Zq and computes Ra = raYb, Ua = r2
aPb and Za = raPb +xaH(Ra). It initiates

the protocol by sending 〈Ra, Ua, Za〉 to IDb. Essentially, IDa simulates the identification protocol
with itself and sends part of the transcript to IDb.

2. On receiving 〈Ra, Ua, Za〉 from IDa, IDb computes Vb = 1

xb

Ra and Qa = H(Ra). It then verifies

that 〈Ra, Ua, Za, Vb, Qa〉 is indeed an accepting transcript of IDa’s identification. That is, it checks
that e(Za − Vb, Pa) = e(Qa, Ya) and e(Vb, Vb) = e(Ua, Pb). If both tests pass IDb accepts IDa’s
authentication. If IDb decides to continue with the process it generates Qb ← G1 and rb ← Zq. It
then computes Rb = rbYa, Ub = r2

bPa and Zb = Vb + rbPa + xbH(Rb). It sends 〈Rb, Ub, Zb〉 to IDa

as its response. It also keeps Kab = rbPa + Vb = rbPa + raPb as the shared key.

3. On receiving 〈Rb, Ub, Zb〉, IDa computes Va = 1

xa

Rb and Qb = H(Rb) and performs the following
two checks: e(Va, Va) = e(Ub, Pa) and e(Zb − raPb − Va, Pb) = e(Qb, Yb). If both checks pass, it
accepts IDb’s authentication and keeps Kab = raPb + Va = rbPa + raPb as the shared key.

We claim that in the second step, IDb will accept if and only if IDa knows ra and xa. To see this,
first note that 〈Za, Qa〉 is a zero knowledge identification proof of IDa. Due to this, there is no guarantee
that the proof was generated by IDa (since it could also have been efficiently simulated according to
section 4.2). However, observe that if this protocol is simulated, the resulting Qa will almost certainly
be random. A simulator cannot choose a predetermined value of Qa since there is no way to output an
accepting configuration for a specific Qa without knowledge of xa under the LDHP assumption. The use

12

of the hash function additionally ensures that the simulator did not have control even over the random
coin tosses ra. Hence, for this particular instance, the simulation must have been carried out by IDa.

The second and third steps of the protocol involve the identification of IDb to IDa keeping ra as
the random coin tosses of verifier. The need to include Rb becomes evident when we observe that the
first message from IDa does not include any session specific information. Thus, authenticating the first
message alone cannot guarantee key freshness. We use the technique mentioned in [14], section 3.1 and
provide freshness via the computation of the session (or ephemeral) key which includes the ‘fresh’ value
rbPa along with the possibly ‘stale’ value raPb. Due to this, a replay attack is detectable when no message
or a garbled message is received by either parties.

7.5 Anonymous Seller Credit Card Payments

In this section, we will present a simple on line payment system with some interesting security features.
The protocol requires only one certified key. The seller of a product need not provide a certified key to the
buyer, effectively remaining anonymous. The seller must produce some identification to the credit card
processor or the bank to ensure that the payment is successful. If the buyer notices a disputed transaction
on his credit cart statement, he can ask the bank to reveal the identity of the party who received the
money. If the transaction is not disputed, the seller can remain completely anonymous. Moreover, we
provide the additional advantage of ‘single-use’ transactions, that is after having successfully processed a
payment, the seller cannot later reuse the same information to process another identical payment. We will
assume the identification scheme of section 4.2 where the buyer is ID and the seller is S. The protocol
also involves a third party B which could be a bank or a credit card processor. The certified public key
of ID is Y = xP . This key could itself serve as a credit card number. We also use two cryptographic
hash functions H : G1 7→ G1 and H1 : {0, 1}∗ 7→ G1.

1. The buyer ID begins by visiting the website of S and initiating a purchase transaction. The details
of the transaction are encapsulated in a request REQ. The tuple 〈ID,REQ, P, Y 〉 is sent to S

2. S generates random r ← Zq and computes R = rY = rxP and U = r2P . It also creates a contract
CON containing the payment amount, transaction date, time and other details (though it will
possibly not mention the identity of the seller or the commodity for sale to protect privacy). It
sends 〈CON , R, U〉 to ID. It is understood that transactions are accepted as valid by the bank
only for a short specified deadline (say five minutes) from the time mentioned in the contract.

3. On receiving 〈CON , R, U〉, ID checks that the contract is correct. It then computes V = 1

x
U and

checks that e(V, V) = e(U,P). It this check passes, it computes Q = H1(CON), Z1 = V + xQ and
Z2 = xH(Z1). It sends 〈Z1, Z2〉 back to S and saves 〈CON , R〉 in its database until it receives its
next credit card statement from the bank. It also keeps a record of S’s reply to the transaction in
case a dispute arises.

4. S computes Q = H1(CON) and verifies that e(Z1 − rP, P) = e(Q,Y) and e(Z2, P) = e(H(Z1), Y).
If both checks pass, S forwards the tuple 〈Z1, Z2, r, Y, ID,S, CON〉 as a payment request to the
bank B.

5. On receiving a payment request, B does the same verification as S; that is, it computes Q =
H1(CON) and verifies e(Z1−rP, P) = e(Q,Y) and e(Z2, P) = e(H(Z1), Y). It also ensures that the
〈r, ID〉 pair has not been previously used by checking its database. Finally, the bank checks the date
and time specified in CON and ensures that it is within the specified expiry period (five minutes)
of the current time. If all checks pass, B accepts this transaction, deducts the amount specified
from ID’s account, credits that amounts to S’s account, saves the tuple 〈Z1, Z2, ID,S, CON , r〉 in
its database and returns success to S.

6. The bank’s reply is forwarded to the buyer along with a receipt of a successful transaction.

13

7. If the bank receives another transaction with the same 〈r, ID〉 pair in the future, it outputs failure.
For security reasons, it also saves the corresponding 〈S,S ′, r, ID〉 in a blacklist where S ′ is the
identity of the other seller corresponding to the same pair. This blacklist can be used for further
investigation if necessary.

8. Sometime in the future, the bank sends CON in a credit card statement to ID. If some transaction
is disputed, ID reports the corresponding 〈CON , R〉 back to the bank, along with some evidence
(eg. a transaction receipt with a failure response). The bank can easily trace the disputed seller
S using its database after validating that R = rY .

7.6 Identity Based Cryptography (IBC)

Using the primitives for identification of section 4.2, any smart card user can dynamically setup a complete
Identity Based Cryptosystem (IBC) [15] incorporating both Identity Based Encryption (IBE) and Identity
Based Signatures (IBS). The IBE scheme described here is directly taken from [8]. However, to the best
of our knowledge, the IBS scheme presented below has not been proposed earlier (we note that the IBS
scheme of [16] can also be directly used here).

This smart card user acts as the Key Generating Center (KGC). The interesting feature of our scheme
is that the private keys can be distributed over an insecure channel as long as the key-request can be
authenticated. The infrastructure is roughly as follows: messages for a user ID can be encrypted using
the public key ID. The private key for decryption is given out by the KGC over an insecure public channel
but masked using the hidden-signature scheme of section 7.1. User ID, however, must produce some
authenticating information to request a private key. We assume that a signature is used to authenticate
user’s requests for private keys.

7.6.1 Private Key Distribution

The private key of the user who acts as the KGC for this setup is x ∈ Zq and the corresponding public
key is Y = xP ∈ G1. Let H1 : {0, 1}∗ 7→ G1 be a cryptographic hash function. The public key of IDi is
implicitly understood to be Qi = H1(IDi)

1. All users must have a prior certified public key to authenticate its requests to the KGC. Each user
IDi generates ri ← Zq and computes Ri = riY = rixP and Ui = r2

i P . IDi then signs Ri using its
certified private key and sends 〈Ri, Ui〉 to the KGC over an insecure channel.

2. The KGC verifies the signatures and thus authenticates the request of users. For each valid request
Ri of IDi, the KGC computes Vi = 1

x
Ri and verifies that e(Vi, Vi) = e(Ui, P). If this check passes,

it computes Qi = H1(IDi) and Zi = Vi +xQi and makes each 〈Zi, IDi〉 tuple public via an insecure
channel.

3. If IDi knows corresponding ri, he/she can compute the private key xQi = Zi − riP after authen-
ticating it by checking that e(xQi, P) = e(Qi, Y). The encryption/decryption can be done exactly
as described in [8] after this step (described next). The zero-knowledge property ensures that only
the right user can compute the private key from Zi.

7.6.2 Identity Based Encryption (IBE)

We briefly describe the identity based encryption scheme here (further details can be obtained from [8]).
Let H2 : G2 7→ {0, 1}k be a cryptographic hash function. A random k bit message M for IDi is encrypted
as follows:

1. Encryption : Generate α← Zq, compute Qi = H1(IDi), C1 = M ⊕H2(e(αQi, Y)) and C2 = αP .
The ciphertext (C1, C2) is sent to IDi.

2. Decryption : IDi decrypts M = C1 ⊕H2(e(C2, xQi)).

14

7.6.3 Identity Based Signatures (IBS)

In this section, we propose a novel IBS scheme using bilinear pairings. The setup of the scheme is exactly
as the one for the above IBE scheme. We will use the same hash function H1 : {0, 1}∗ 7→ G1 in this
scheme. As before the public key of IDi is 〈Qi, Y, P 〉 and the private key is xQi where Qi = H1(IDi).

1. Signing : To sign a message M ∈ {0, 1}∗, user IDi generates α← Zq, computes S = xQi+αH1(M)
and T = αP . The tuple 〈M, (S, T)〉 is a valid message-signature pair.

2. Verification : To verify a signature, we check that e(S, P) = e(Qi, Y) · e(H1(M), T). To the best
of our knowledge, this IBS variant has not been proposed before.6

The scheme is secure in the random oracle model under the Diffie-Hellman assumption in G1. The
security of this scheme will be further detailed in the full version of this paper.

8 Summary

Scheme Ref. Shared Hash Processing Message Size (bits)
(Sec.) Params Functions Initiator Responder First Second

Single User 4.2 none none 3 exp 2 exp 344 344
Identification 2 pairing 2 pairing

Multi-User 6 P, G1, G2 none 2n + 1 exp 2 exp 344n 171(n + 1)*
Identification 2 pairing 2 pairing

Hidden 7.1 none H : G1 7→ G1 2 exp 3 exp 2# 344 344
Signatures 2 pairing 2 pairing

Plaintext-aware 7.2 none H : G1 7→ G1 5 exp 1 exp 859
Encryption 4 pairing

Plaintext-aware 7.2 G1, G2 H : G1 7→ G1 4 exp 1 exp 688
Signcryption 4 pairing

Deniable 7.3 G1, G2 none 3 exp 3 exp 344 513
signcryption 2 pairing 2 pairing

2-round key 7.4 G1, G2 H : G1 7→ G1 5 exp 4 exp 513 513
agreement 4 pairing 4 pairing

Credit-card 7.5 none H : G1 7→ G1 4 exp 4 exp 344# 344
payment H1 : {0, 1}∗ 7→ G1 2 pairing 4 pairing

IBS 7.6.3 none H1 : {0, 1}∗ 7→ G1 2 exp 3 pairing 344

Here the initiator is S.

* For simplicity, we do not count the communication overhead incurred in computing the joint proof in the
multi-user identification. Here n is the number of users.

Assuming q ≈ 2171, each pairing computation takes ≈ 8.5 ms and each exponentiation takes ≈ 1.5 ms on
the hardware mentioned.

Table 1: Summary

In this paper, we proposed the notion of zero knowledge blind identification. Informally, in such a
protocol, an honest prover reveals only one (intended) bit of information to an honest verifier and reveals
less than that information to a dishonest verifier. In effect, using our scheme, any user can correctly
identify to a random server and a passive adversary cannot learn anything about the outcome of the

6A previously proposed IBS scheme [16] uses a hash function H3 : {0, 1}∗ 7→ Zq and works as follows: To sign a message
M ∈ {0, 1}∗, IDi generates α ← Zq and computes S = (H3(M) + α)xQi and T = αP . The signature is 〈S, T 〉 which is
verified by checking that e(S, P) = e(H3(M)Qi + T, Y). Our scheme has the advantage of requiring only one hash function
(at the cost of one extra pairing computation).

15

identification. Hence we coin the term blind identification. To the best of our knowledge, this blinding
property is unique to our scheme.

Referring to the definitions of sections 4 and 4.2, essentially, the security of our protocol relies on the
hardness of the LDDHP (i.e. deciding if Z = (r + xy)P for given P, xP, rxP, yP, Z). Although, this is
not a well studied hard problem like the DHP, we feel reasonably confident that it is computationally
intractable.

In section 7, we show how these simple identification primitives can be used for constructing complex
mechanisms like key agreement, digital signatures, encryption and signcryption. As a simple application
of our smart card scheme, we propose a model for on line credit card and cheque transactions. The
protocol can be used in conjunction with the Secure Electronic Transaction (SET) specification or in
a completely different infrastructure. As some other applications, we mention subliminal identification,
designated verifier proofs and multiuser authentication. For optimal security, the primitives for signing are
best implemented in a tamper proof chip supporting elliptic curve point addition and doubling operations.
As observed, all the verification primitives require one or two pairing computations and deal with public
keys only. Consequently, they are not restricted to a secure tamper proof device. We refer the reader
to [7] for details on constructing the hash functions used here.

Finally, we summarize the efficiency and viability of our scheme. For this discussion, we will assume
that q ≈ 2171 so that the best known algorithms for computing discrete logarithms in G1 require ≈ 285

operations and are therefore impractical. The benchmarks of [17] indicate that each pairing operation
using these parameters takes ≈ 8.6 ms and each elliptic curve point exponentiation takes ≈ 1.5 ms. These
results were obtained on a desktop PC with an AMD Athlon 2100+ 1.8 GHz, 1 GB RAM and an IBM
7200 RPM, 40 GB, Ultra ATA/100 hard drive [17]. Using these values we obtain the following results.
Table 1 summarizes our results.

References

[1] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems. Journal
of Cryptology, 7(1):1–32, 1994.

[2] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity or
all languages in np have zero-knowledge proof systems. J. ACM, 38(3):690–728, 1991.

[3] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. Lecture Notes in Computer
Science, 740:390–420, 1993.

[4] M. Bellare, S. Micali, and R. Ostrovsky. The (true) complexity of statistical zero knowledge. In
STOC ’90: Proceedings of the twenty-second annual ACM symposium on Theory of computing, pages
494–502, New York, NY, USA, 1990. ACM Press.

[5] Amitabh Saxena and Ben Soh. Bounded prover zero-knowledge in two-rounds, 2005. Unpublished
Manuscript. url: http://homepage.cs.latrobe.edu.au/asaxena/saxena05bounded.pdf.

[6] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and signature
problems. In Proceedings on Advances in cryptology—CRYPTO ’86, pages 186–194, London, UK,
1987. Springer-Verlag.

[7] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In ASIACRYPT
’01: Proceedings of the 7th International Conference on the Theory and Application of Cryptology
and Information Security, pages 514–532, London, UK, 2001. Springer-Verlag.

[8] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In CRYPTO
’01: Proceedings of the 21st Annual International Cryptology Conference on Advances in Cryptology,
pages 213–229. Springer-Verlag, 2001.

16

[9] Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott. Efficient algorithms for pairing-
based cryptosystems. In CRYPTO ’02: Proceedings of the 22nd Annual International Cryptology
Conference on Advances in Cryptology, pages 354–368, London, UK, 2002. Springer-Verlag.

[10] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In Eli Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes
in Computer Science, pages 416–432. Springer, 2003.

[11] Jean-Sébastien Coron and David Naccache. Boneh et al.’s k-element aggregate extraction assumption
is equivalent to the diffie-hellman assumption. In Chi-Sung Laih, editor, ASIACRYPT, volume 2894
of Lecture Notes in Computer Science, pages 392–397. Springer, 2003.

[12] Moses Liskov, Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Adam Smith. Mutually inde-
pendent commitments. Lecture Notes in Computer Science, 2248:385+, 2001.

[13] Jonathan Herzog, Moses Liskov, and Silvio Micali. Plaintext awareness via key registration. Technical
report, MIT Laboratory for Computer Science, February 2003.

[14] Hugo Krawczyk. Hmqv: A high-performance secure diffie-hellman protocol. Cryptology ePrint
Archive, Report 2005/176, 2005.

[15] Adi Shamir. Identity-based cryptosystems and signature schemes. In Proceedings of CRYPTO 84
on Advances in cryptology, pages 47–53, New York, NY, USA, 1985. Springer-Verlag New York, Inc.

[16] Jae Choon Cha and Jung Hee Cheon. An identity-based signature from gap diffie-hellman groups. In
Yvo Desmedt, editor, Public Key Cryptography, volume 2567 of Lecture Notes in Computer Science,
pages 18–30. Springer, 2003.

[17] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy re-
encryption schemes with applications to secure distributed storage. Cryptology ePrint Archive,
Report 2005/028, 2005.

17

