Parsimonious Asynchronous Byzantine-Fault-Tolerant
Atomic Broadcast

HariGovind V. Ramasanty Christian Cachih
August 19, 2005

Abstract

Atomic broadcast is a communication primitive that allows a group jpérties to deliver a common
sequence of payload messages despite the failure of some parties. We address the problem of asyn-
chronous atomic broadcast when up ta n/3 parties may exhibit Byzantine behavior. We provide

the first protocol with an amortized expected message complexify(aj per delivered payload.

The most efficient previous solutions are the BFT protocol by Castro and Liskov and the KS pro-
tocol by Kursawe and Shoup, both of which have message compléxity). Like the BFT and

KS protocols, our protocol is optimistic and uses inexpensive mechanisms during periods when no
faults occur; when network instability or faults are detected, it switches to a more expensive recovery
mode. The key idea of our solution is to replace reliable broadcast in the KS protocol by consistent
broadcast, which reduces the message complexity &g¢nt) to O(n) in the optimistic mode. But

since consistent broadcast provides weaker guarantees than reliable broadcast, our recovery mode
incorporates novel techniques to ensure that safety and liveness are always satisfied.

1 Introduction

Atomic broadcast is a fundamental communication primitive for the construction of fault-tolerant dis-
tributed systems. It allows a group afparties to agree on a set of payload messages to deliver and
also on their delivery order, despite the failure of ug foarties. A fault-tolerant service can be con-
structed using the state machine replication approach [22] by replicating the service: agles and
propagating the state updates to the replicas using atomic broadcast.

In this paper, we present a new message-efficient atomic broadcast protocol that is suitable for
building highly available and intrusion-tolerant services in the Internet [4][23]. Since the Internet is an
adversarial environment where an attacker can compromise and completely take over nodes, we allow
the corrupted parties to deviate arbitrarily from the protocol specification thereby exhibiting so-called
Byzantine faults We work in an asynchronous system model for two reasons: (1) it best reflects the
loosely synchronized nature of nodes in the Internet, and (2) not relying on synchrony assumptions for
correctness also eliminates a potential vulnerability of the system that the adversary can exploit, for
example, through denial-of-service attacks.

Though the problem of Byzantine-fault-tolerant atomic broadcast and the equivalent problem of
Byzantine agreement have been widely studied for over two decades, the applicability of many of the
previous works for our purpose is quite limited. Any asynchronous atomic broadcast protocol must use
randomization, since deterministic solutions cannot be guaranteed to terminate [10]. Early work fo-
cused on the polynomial-time feasibility of randomized agreement [18][7][2] and atomic broadcast [1],
but such solutions are too expensive to use in practice. Many protocols have followed an alternative
approach and avoided randomization completely by making stronger assumptions about the system

“H. V. Ramasamy is with the University of lllinois, Urbana-Champaign. Emmaihasamy@-crhc.uiuc.edu
fC. Cachin is with the IBM Zurich Research Laboratory. Emeda@zurich.ibm.com



model, in particular by assuming some degree of synchrony (like Rampart [21], SecureRing [14], and
ITUA[19]). However, most of these protocols have an undesirable feature that makes them inapplicable
for our purpose: they may violate safety if synchrony assumptions are not met.

Only recently, Cachin et al. proposed practical asynchronous agreement [6] and atomic broadcast [5]
protocols that have optimal resilienee< n/3. Both protocols rely on a trusted initialization process
and on public-key cryptography. Cachin et al’s atomic broadcast protocol proceeds in rounds, with
each round involving a randomized Byzantine agreement and resulting in the atomic delivery of some
payload messages.

The BFT protocol by Castro and Liskov [8] and the protocol by Kursawe and Shoup [15] (hereafter
referred to as the KS protocol) take an optimistic approach for providing more efficient asynchronous
atomic broadcast while never violating safety. The motivation for such optimistic protocols is the ob-
servation that conditions arermalduring most of a system’s operation. Here, normal conditions refer
to a stable network and no intrusions. Both protocols proceegachswhere an epoch consists of an
optimistic phasand arecovery phaseand expect to spend most of their time operating in the optimistic
phase, which uses an inexpensive mechanism that is appropriate for normal conditions. The protocol
switches to the more expensive recovery phase under unstable network or certain fault conditions. In
every epoch, a designated party acts &saderfor the optimistic phase, determines the delivery order
of the payloads, and conveys the chosen delivery order to the other parties through Bracha’s reliable
broadcast protocol [3], which guarantees delivery of a broadcast payload with the same content at all
correct parties. Bracha’s protocol is deterministic and invol¥¢s?) protocol messages; it is much
more efficient than the most efficient randomized Byzantine agreement protocol [5], which requires ex-
pensive public-key cryptographic operations in addition. Consequently, both the BFT and KS protocols
communicate)(n?) messages per atomically delivered payload under normal conditions, i.e., they have
message complexit(n?).

No protocol for asynchronous atomic broadcast with message complexity les®than was
known prior to our work. Our protocol for asynchronous atomic broadcast is the first to achieve op-
timal resiliencet < n/3 and O(n) amortized expected message complexity. We call our protocol
parsimoniousbecause of this significant reduction in message complexity. Linear message complexity
appears to be optimal for atomic broadcast because a protocol needs to send every payload to each party
at least once and this requiresnessages (assuming that payloads are not propagated to the parties in
batches). Like the BFT and KS protocols, our protocalpsimisticin the sense that it progresses very
fast during periods when the network is reasonably behaved and a party acting as de $glztas
correct. Unlike the BFT protocol (and just like the KS protocol), our protocol guaranteesafety
and livenessin asynchronous networks by relying on randomized agreement. The reduced message
complexity of our protocol comes at the cost of introducing a digital signature computation for every
delivered payload. But in a wide-area network (WAN), the cost of a public-key operation is small com-
pared to message latency. And since our protocol is targeted at WANSs, we expect the advantage of lower
message complexity to outweigh the additional work incurred by the signature computations.

The key idea in our solution is to replace reliable broadcast used in the optimistic phase of the
BFT and KS protocols witltonsistent broadcastlso known ascho broadcasf20], the standard
implementation of which needs ont9(n) messages. Consistent broadcast is a weaker form of reliable
broadcast that guarantees agreement only among those correct parties that actually deliver the payload,
but it is possible that some correct parties do not deliver any payload at all. But the replacement also
complicates the recovery phase, since a corrupted leader might cause the payload to be consistently
delivered at only a single correct party with no way for other correct parties to learn about this fact. Our
protocol provides mechanisms to address such complications.

Our protocol is related to the reliable broadcast protocol of Malkhi et al. [17] in its use of consistent
broadcast as a building block. Their protocol addresses reliable broadcast over a WAN, but provides no
total order.

The rest of the paper is organized as follows. Section 2 describes the formal system model, the



protocol primitives on which our algorithm relies, and the definition of atomic broadcast. The protocol
is presented in Section 3 and analyzed in Section 4. Section 5 discusses the practical significance of our
parsimonious protocol and compares it with related work. Finally, Section 6 concludes the paper.

2 Preliminaries

2.1 System Model

We consider an asynchronous distributed system model equivalent to the one of Cachin et al. [5], in
which there are no bounds on relative processing speeds and message delays. The system consists of
n parties P, ..., P, and anadversary Up tot < n/3 parties can be controlled by the adversary. We

call such partiesorrupted the other parties are calledrrect We use ataticcorruption model, which

means that the adversary must pick the parties it corrupts once and for all before starting the protocol.
There is also an initialization algorithm that is run by some truskealerthat performs system setup

before the start of the protocol. All computations by the parties, the adversary, and the trusted dealer
are probabilistic, polynomial-time algorithms. The parameteand¢ are given as input to the dealer,

which then generates the state information that is used to initialize each party. Note that after the initial
setup phase, the protocol has no need for the dealer.

Each pair of parties is linked by asuthenticated asynchronous chantieht provides message
integrity (e.g., using message authentication codes [25]). The adversary determines the scheduling of
messages on all the channels. Timeouts are messages that a party sends to itself; hence, the adversary
controls the timeouts as well.

We restrict the adversary such that every run of the systeongpletei.e., every message sent by a
correct party and addressed to a correct party is delivered unmodified before the adversary términates
We refer to this property in liveness conditions when we say that a messagensiallydelivered or
that a protocol instanceventuallyterminates.

There may be multiple protocol instances that are concurrently executing at each party. A protocol
instance is invoked either by a higher-level protocol instance or by the adversary. Every protocol instance
is identified by a unique stringD, called theag, which is chosen by the entity that invokes the instance.

By convention, the tag of a sub-protocol instance contains the tag of the calling instance as a prefix.

A correct party is activated when the adversary delivers a message to the party; the party then updates
its internal state, performs some computation, and generates a set of response messages, which are given
to the adversary. There may be several threads of execution for a given party, but only one of them is
allowed to be active at any one time. When a party is activated, all threads aagtistates which
specify a condition defined on the received messages contained in the input buffer, as well as on some
local variables. In the pseudocode presentation of the protocol, we specify a wait state using the notation
wait for condition There is a global implicitvait for statement that every protocol instance repeatedly
executes: it matches any of tkkenditionsgiven in the clauses of the foropon condition block If
one or more threads that are in wait states have their conditions simultaneously satisfied, one of these
threads is scheduled (arbitrarily), and this thread runs until it reaches another wait state. This process
continues until no more threads are in a wait state whose condition is satisfied. Then, the activation of
the party is terminated, and control returns to the adversary.

There are three types of messages that appear in the interface to our protocols, narnimglyt (1)
actions which are messages of the forD, in , type, ...); (2) output actionswhich are messages
of the form (D, out , type,...); and (3)protocol messagesvhich are ordinary protocol messages to
be delivered to other parties (of the forfiD, type, . ..)). Note that input actions and output actions
are local events within a party. Before a party starts to process messages that are taggéy with

LA more restrictive formalization of liveness conditions for environments with a computationally bounded scheduler is
provided by Cachin et al. [5] through the notion mbbabilistically uniformly bounded statisticthis notion can be easily
applied to our protocol with some modifications, but we refrain from using it for the sake of readability.



the instance must beitialized by a special input action of the for(dD, in ,open,type), wheretype
denotes the protocol type and/or its implementation. Such an action must precede any other input action
with tag ID. We usually assume that it occurs implicitly with the first regular input action.

To analyze a protocol, we use two measures, message complexity and communication complexity.
The message complexity of a protocol instance withitags defined as the total number of all protocol
messages with the taf or any tag starting withD| ... that correct parties generate. The commu-
nication complexity of a protocol instance with taf is defined as the total bit length of all protocol
messages with the tal@ or any tag starting witD| . .. that correct parties generate.

We make use of a digital signature scheme for our protocol. A digital signature scheme consists of
algorithms for key generation, signing, and verification. As part of the system initialization, the dealer
generates (using the key generation algorithm) the public key/private key pair for each party and gives
every party its private key and the public keys of all parties. We assume that the signature scheme is
secure in the sense of the standard security notion for signature schemes of modern cryptography, i.e.,
preventing existential forgery under adaptive chosen-message attacks [12].

Since we use the formal model of modern cryptography [11], we allow for a negligible probability
of failure in the specification of our protocols.

2.2 Protocol Primitives

Our atomic broadcast protocol relies on a consistent broadcast protocol with special properties and on a
Byzantine agreement protocol.

2.2.1 Strong Consistent Broadcast

We enhance the notion of consistent broadcast found in the literature [5] to develop the notion that we
call strong consistent broadcagDrdinary consistent broadcast provides a way for a designated sender
P; to broadcast a payload to all parties and requires that any two correct parties that deliver the payload
agree on its content.

The standard protocol for implementing ordinary consistent broadcast is Redko$roadcadO];
itinvolvesO(n) messages, has a latency of three message flows, and relies on a digital signature scheme.
The sender starts the protocol by sending the paylaad all parties; then it waits for a quorum of
[%t“} parties to issue a signature on the payload and to “echo” the payload and the signature to the
sender. When the sender has collected and verified enough signatures, it composes a final protocol
message containing the signatures and sends it to all parties.

With a faulty sender, an ordinary consistent broadcast protocol permits executions in which some
parties fail to deliver the payload when others succeed. Therefore, a useful enhancement of consistent
broadcast is a transfer mechanism, which allows any party that has delivered the payload to help others
do the same.

For reasons that will be evident later, we introduce another enhancement and require that when a
correct party terminates a consistent broadcast and delivers a payload, there must be a quorum of at
leastn — t parties (instead of only%t*lb who participated in the protocol and approved the delivered
payload. We call consistent broadcast with such a transfer mechanism and the special quorum rule
strong consistent broadcast

Formally, every broadcast instance is identified by atBg At the senderP;, strong consistent

broadcast is invoked by an input action of the faff®, in , sc-broadcast ,m), with m € {0, 1}*.
When that occurs, we salj; sc-broadcastsn with tag ID. Only P, executes this action; all other
parties start the protocol only when they initialize instadée in their role as receivers. A party
terminates a consistent broadcastnoftagged with/D by generating an output action of the form
(ID,out ,sc-deliver ,m). Inthat case, we sa¥; sc-deliversn with tag ID.

For the transfer mechanism, a correct party thatdtadeliveredn with tag /D should be able to
output a bit string\/;p thatcompleteshesc-broadcasin the following sense: any correct party that has



not yetsc-deliveredn can run avalidation algorithmon M ;p (this may involve a public key associated
with the protocol), and if\/;p is determined to bealid, it can alsosc-deliverm from M;p.

Definition 1 (Strong consistent broadcast).A protocol for strong consistent broadcast satisfies the
following conditions except with negligible probability.

Termination: If a correct partysc-broadcastsn with tag ID, then all correct parties eventuaky-
deliverm with tag ID.

Agreement: If two correct parties?; and P; sc-deliverm andm/ with tag ID, respectively, them =
m'.

Integrity: Every correct partygc-deliversat most one payloadh with tag 7D. Moreover, if the sender
Py is correct, thenn was previouslysc-broadcasby P, with tag ID.

Transferability: After a correct party hasc-deliveredm with tag ID, it can generate a striny/;p
such that any correct party that has sotdelivereda message with tagDis able tosc-deliver
some message immediately upon processihg.

Strong unforgeability: For anyID, it is computationally infeasible to generate a valdethat is ac-
cepted as valid by the validation algorithm for completitiy unlessn — 2t correct parties have
initialized instance D and actively participated in the protocol.

Note that the termination, agreement, and integrity properties are the same as in ordinary consistent
broadcast [20][5].

Given the above implementation of consistent broadcast, one can obtain strong consistent broadcast
with two simple modifications. The completing stridd;p for ensuring transferability consists of the
final protocol message; the attached signatures are sufficient for any other party to compsete the
broadcast Strong unforgeability is obtained by setting the signature quorum-ta.

With signatures of siz& bits, the echo broadcast protocol has communication compleXit |+
nK)) bits, where|lm/| denotes the bit length of the payload By replacing the quorum of signatures
with a threshold signature [9], it is possible to reduce the communication comple@tWQm\ +K))
bits [5], under the reasonable assumption that the lengths of a threshold signature and a signature share
are also at mosk’ bits [24].

In the rest of the paper, we assume that strong consistent broadcast is implemented by applying the
above modifications to the echo broadcast protocol with threshold signatures. Hence, the length of a
completing string i€0(|m| + K) bits.

2.2.2 Multi-Valued Byzantine Agreement

We use a protocol for multi-valued Byzantine agreement (MVBA) as defined by Cachin et al. [5], which
allows agreement values from an arbitrary domain instead of being restricted to binary values. Unlike
previous multi-valued Byzantine agreement protocols, their protocol does not allow the decision to fall
back on adefaultvalue if not all correct parties propose the same value, but uses a protocol-external
mechanism instead. This so-callexternal validity conditiors specified by a global, polynomial-time
computable predicat€;p, which is known to all parties and is typically determined by an external
application or higher-level protocol. Each party proposes a value that contains certain validation infor-
mation. The protocol ensures that the decision value was proposed by at least one party, and that the
decision value satisfigg;p.

When a partyP; starts an MVBA protocol instance with tad and an input value € {0,1}*
satisfying predicaté);p, we say thatP; proposew for multi-valued agreement with takP and predi-
cate@p. Correct parties only propose values that satigfy. WhenP,; terminates the MVBA protocol
instance with tagD and outputs a value, we say that idecidesv for ID.

Definition 2 (Multi-valued Byzantine agreement). A protocol formulti-valued Byzantine agreement
with predicatel) ;p satisfies the following conditions except with negligible probability.



External Validity: Any correct party that decides f@D decidesy such that);p(v) holds.

Agreement: If some correct party decidedor ID, then any correct party that decides fér decides.

Integrity: If all parties are correct and if some party decidefor 1D, then some party proposed
for ID.

Termination: All correct parties eventually decide féD.

The MVBA protocol of Cachin et al. [5] builds upon a protocol for binary Byzantine agreement
(such as the one of Cachin et al. [6]), which relies on threshold signatures and a threshold coin-tossing
protocol (e.g., [6]). The expected message complexity of the MVBA protocd(ig€ ) and the expected
communication complexity ié)(n3 +n?(K + L)), whereK is the length of a threshold signature and
L is a bound on the length of the values that can be proposed.

2.3 Definition of Atomic Broadcast

Atomic broadcast provides a “broadcast channel” abstraction [13], such that all correct parties deliver the
same set of messages broadcast on the channel in the same order. B paotyically broadcastgor
a-broadcastya payloadn with tag ID when an input action of the forfYD,in ,a-broadcast ,m)

with m € {0,1}* is delivered toP,. Broadcasts are parameterized by the f&gto identify their
corresponding broadcast channel. A patymically deliverqor a-deliverg a payloadn with tag 1D

by generating an output action of the fo(#D, out , a-deliver  ,m). A party maya-broadcastand
a-deliveran arbitrary number of messages with the same tag.

Definition 3 (Atomic broadcast). A protocol for atomic broadcast satisfies the following properties
except with negligible probability.

Validity: If ¢ + 1 correct parties-broadcastsome payloadn with tag /D, then some correct party
eventuallya-deliversm with tag ID.

Agreement: If some correct party haa-deliveredm with tag ID, then all correct parties eventually
a-deliverm with tag ID.

Total Order: If two correct parties botla-delivereddistinct payloadsn; andms with tag ID, then
they havea-deliveredthem in the same order.

Integrity: For any payloadn, a correct party’; a-deliversm with tag /D at most once. Moreover, if
all parties are correct, then was previousha-broadcasby some party with tadgD.

The above properties are similar to the definitions of Cachin et al. [5] and of Kursawe and Shoup [15].
We do not formalize theifairnesscondition, which requires that the protocol “makes progress” towards
delivering a payload as soon@s 1 correct parties hava-broadcasit. However, our protocol actually
satisfies an equivalent notion (cf., Lemma 4).

3 The Parsimonious Asynchronous Atomic Broadcast Protocol

3.1 Overview

The starting point for the development of our ProtoBABC is the BFT protocol [8], which can be

seen as the adaptation of Lamport's Paxos consensus protocol [16] to tolerate Byzantine faults. In the
BFT protocol, a leader determines the delivery order of payloads and conveys the order using reliable
broadcast to other parties. The parties then atomically deliver the payloads in the order chosen by the
leader. If the leader appears to be slow or exhibits faulty behavior, a party switches to the recovery
mode. When enough correct parties have switched to recovery mode, the protocol ensures that all
correct parties eventually start the recovery phase. The goal of the recovery phase is to start the next
epoch in a consistent state and with a new leader. The difficulty lies in determining which payloads
have been delivered in the optimistic phase of the past epoch. The BFT protocol delegates this task to



the leader of the new epoch. But since the recovery phase of BFT is also deterministic, it may be that
the new leader is evicted immediately, before it can do any useful work, and the epoch passes without
delivering any payloads. This denial-of-service attack against the BFT protocol violates liveness but is

unavoidable in asynchronous networks.

The KS protocol [15] prevents this attack by ensuring that at least one payload is delivered during
the recovery phase. It employs a round of randomized Byzantine agreement to agree on a set of payloads
for atomic delivery, much like the asynchronous atomic broadcast protocol of Cachin et al. [5]. During
the optimistic phase, the epoch leader conveys the delivery order through reliable broadcast as in BFT,
which leads to an amortized message complexit§? 0f?).

Our approach is to replace reliable broadcast in the KS protocol with strong consistent broadcast;
the replacement directly leads to an amortized message complexity o©dnly But the replacement
also introduces complications in the recovery phase, since a corrupted leader may cause the fate of some
payloads to be undefined in the sense that there might be only a single correct party scatiélagered
a payload, but no way for other correct parties to learn about this fact. We solve this problem by delaying
the atomic delivery of asc-deliveredpayload until more payloads have besmdelivered However,
the delay introduces an additional problem of payloads getting “stuck” if no further payloads arrive. We
address this by having the leader genethtsmmypayloads when no further payloads arrive within a
certain time window.

The recovery phase in our protocol has a structure similar to that of the KS protocol, but is simpler
and more efficient. At a high level, a first MVBA instance ensures that all correct parties agree on
a synchronization point. Then, the protocol ensures that all correct partielverthe payloads up
to that point; to implement this step, every party must store all payloads that were delivered in the
optimistic phase, together with information that proves the fact that they were delivered. A second
MVBA instance is used t@-deliver at least one payload, which guarantees that the protocol makes
progress in every epoch.

3.2 Detalils

We now describe the optimistic and the recovery phases in detail. The line numbers refer to the detailed
protocol description in Figures 1-3.

3.2.1 Optimistic Phase

Every party keeps track of the current epoch numband stores all payloads that it has received to
a-broadcasbut not yeta-deliveredin its initiation queueZ. An element: can be appended Dby an
operationappend(x,Z), and an element that occurs anywhere ih can be removed by an operation
remove(x,Z). A party also maintains an arrdyg of size B that acts as a buffer for all payloads
to a-deliverin the current epoch. Additionally, a party stores a®edf all payloads that have been
a-deliveredso far.

We describe the optimistic phase of ProtoBABC by first detailing the normal protocol operation
when the leader functions properly, and then explaining the mechanisms that ensure that the protocol
switches to the recovery phase when the leader is not functioning properly.

Normal Protocol Operation. When a party receives a requesttbroadcast payloadn, it appends
m to Z and immediately forwards: using aninitiate message to the lead&y of the epoch, where
I = e mod n (lines 12—-14). When this happens, we g3ynitiatesthe payload.

The leader binds sequence numbers to the payloads that it receivétiaie messages, and
conveys the bindings to the other parties through strong consistent broadcast. For this purpose, all parties
execute a loop (lines 15-38) that starts with an instance of strong consistent broadcast (lines 15-26). The
leader acts as the sender of strong consistent broadcast and the tag contains theagachequence
numbers. Here,s starts from 0 in every epoch. The leaderbroadcastshe next available initiated



Protocol

PABC for party P; and tag ID

initialization:

1
2
3
4

function

5
6
7
8

9:
10:

11

e«—0
c T — 1]
D10
. init_epoch()

init_epoch():

:l— (emodn)+1

: log — ]

15— 0

. complained « false
start_recovery «— false
c+—0

S+ D

upon (ID,in ,a-broadcast ,m):

12
13
14

: send(ID, initiate ,e,m) to P,

. append(m,T)
. update g, (initiate ,m)

forever: {optimistic phasg
15: if =complained then {leaderP, is not suspected

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

function
39

40:
41:
42:

m<«— L
if 2 = [ then

if timeout(T') then
m < dummy

else
S—Su{m}
stop(T)

if start_recovery then
recovery()

else
log[s] — m
if s > 2then

deliver(log[s — 2])

start(T)
s—s+1
if s mod B = 0 then
recovery()

deliver(m):

. if m £ dummythen
remove(m,T)

D —DuU{m}
output(ID, out , a-deliver

{current epoch
{initiation queue, list ok-broadcasbut nota-deliveredpayload$
{set ofa-deliveredpayload$

{P, is leader of epoch}
{array of sizeB containing payloads committed in current epp
{sequence number of next payload within epo
{indicates if this party already complained ab&u}
{signals the switch to the recovery pha
{number ofcomplain messages received for epoch legd
{set ofa-deliveredor alreadysc-broadcaspayloads af; }

initialize an instance of strong consistent broadcast withfalipind .e.s

wait for timeout(T) or receipt of a messagédD, initiate ,e,m) suchthatn ¢ S

sc-broadcasthe message: with tag ID |bind .e.s
wait for start_recovery or sc-deliveryof somem with tag ID |bind .e.s such thatn ¢ D U log

update , (deliver , log[s — 2])

if i =1 and (log[s] # dummyor (s > 0 and log[s — 1] # dummy)) then

7m)

ch
ch

er

Figure 1: ProtocolPABC for Atomic Broadcast (Part I)



function complain():
43: send(ID,complain ,e) to all parties
44: complained «— true

upon receiving messag@D, complain , e) from P; for the first time:
45: c+—c+1
46: if (¢ =t + 1) and —complained then
47:  complain()
48: else ifc = 2t + 1 then
49:  start_recovery «— true

let @ p\watermark .. be the following predicate:
Qpwatermark .e([(81701701)7 e (STMCTHU’!L)]) =
(for at leastr — ¢ distinctj, s; # L) and
(forallj =1,...,n, eithers; = L or
(o; is a valid signature by?; on (ID, committed e, s;,C;) and
(s; = —1 or the valueC'; completes thec-broadcastith tag ID|bind .e.s;)))

Let Q;p deliver .. be the following predicate:

Q p(deliver _e([(L,al), . ,In,crn)]) = for at leastr — ¢ distinct ,

(Z; D = 0 and g, is a valid signature by; on (ID, queue , e, j,Z;))

Figure 2: ProtocolPABC for Atomic Broadcast (Part 11)

payload, and every party waits $g-deliversome payloadn. Whenm is sc-delivered P; stores it in
log, but does not yea-deliverit (line 30). At this point in time, we say tha, hascommittedsequence
numbers to payloadm in epoche. Then, P; a-deliversthe payload to which it has committed the
sequence number— 2 (if available, lines 31-33). It incremenis(line 36) and returns to the start of
the loop.

Delaying thea-deliveryof the payload committed te until sequence number+ 2 has been com-
mitted is necessary to prevent the above problem of payloads whose fate is undefined. However, the
delay results in another problem if no further payloads, those with sequence numbers higkeathan
sc-deliveredWe solve this problem by instructing the leader to seachmymessages to eject the orig-
inal payload(s) from the buffer. The leader triggers sucluammymessage whenever a corresponding
timer T" expires (lines 20-21)7 is activated whenever one of the current or the preceding sequence
numbers was committed to a nolkmmypayload (lines 34-35), and is disabled when the leader
sc-broadcasta nondummypayload (line 24). Thus, the leader sends at mostdwommypayloads to
eject a nordummypayload.

Failure Detection and Switching to the Recovery Phase. There are two conditions under which the
protocol switches to recovery phase: (1) whepayloads have been committed (line 38) and (2) when
the leader is not functioning properly. The first condition is needed to keep the hffleounded and
the second condition is needed to prevent a corrupted leader from violating liveness.

To determine if the leader of the epoch performs its job correctly, every party has access to a leader
failure detectorF;. For simplicity, Figures 1-3 do not include the pseudocodeAor The protocol
provides an interfaceomplain(), which 7; can asynchronously invoke to notify the protocol about its
suspicion that the leader is corrupted. Our protocol synchronously invokes an intepiace -, of
J1 to convey protocol-specific information (during execution of thdate r, call, ; has access to all
variables of ProtocdPABC).



function

recovery():

{Part 1: agree on watermark

50
51

52:
53:

54
55:

56:

: compute a signature on (ID, committed ,e,s — 1)
: send the messagéD, committed ,e,s — 1,C, o) to all parties, wher€' denotes
the bit string that completes tse-broadcastvith tag ID|bind .e.(s — 1)
(SJVCJVO'J’)H(L’LvL) (1§.7§n)
wait for n — ¢ message$/D, committed e, s;, C;, 0;) from distinctP; such thatC; completes
thesc-broadcasinstancelD|bind .e.s; ando; is a valid signature o/D, committed , e, s;)
W «— [(81, 01,01), ey (Sn, Cn,Jn)]
proposelV’ for MVBA with tag ID|watermark .e and predicaté);, watermark .
wait for MVBA with tag ID|watermark e to decide som&V = [(5,,C1,51), ..., (5p,Cpn, 70 )]

57: w «+— max{81,...,8,} — 1

{Part 2: synchronize up to watermayk

58: s’ +— s5—2

59: while s’ < min{s — 1,w} do

60: if s > 0then

61: deliver(log[s'])

62: s «—s+1

63: if s > w then

64. forj=1,...,ndo

65: u «— max{s;,5;}

66: M — {M,} forv = u,...,w, whereM, completes thec-broadcasinstancel/D |bind .e.v

67: send messagdD, complete , M) to P;

68: while s < w do

69:  wait for a messagélD, complete , M) such thatV, € M completesc-broadcast
with tag ID|bind .e.s

70.  useM, to sc-deliversomem with tag ID |bind .e.s

71 deliver(m)

72: s«—s+1

{Part 3: deliver some messages

73:
74
75:
76:

77:
78:
79:
80:
81:
82:
83:
84:

compute a digital signatureon (1D, queue ,e,i,7)

send the messadéD, queue , e, i,Z, o) to all parties

(Zj,05) < (L, L)  (1<j<n)

wait for n — ¢ message§ID, queue , e, j, Z;, o;) from distinctP; such that
o; is a valid signature fron®; andZ; "D = 0)

Q — [(Ilvgl)v ) (In’ Un)]

proposer for MVBA with tag ID|deliver  .e and predicaté) ;, geliver

.€

wait for MVBA with tag ID|deliver e to decide som&) = [(Z1,51), - - -, (Zn,50)]
for m € U7_, Z; \ D, in some deterministic ordeio
deliver(m)
init_epoch()
for m € 7 do

send(ID, initiate ,e,m)to P,

Figure 3: ProtocolPABC for Atomic Broadcast (Part 111)

10




An implementation ofF; can check whether the leader is making progress based on a timeout and
protocol information as follows. Recall that every party maintains a gdeoginitiated but not yet
a-deliveredpayloads. WherP; has initiated somen, it calls update £, (initiate ,m) (line 14); this
starts a timefl'z, unless it is already activated. When a payload-deliveredduring the optimistic
phase, the call tapdate -, (deliver ,m) (line 32) checks whether treedeliveredpayload is the first
undelivered payload iff, and if it is, disabledr,. WhenT, expires,F; invokescomplain().

When P; executescomplain(), it sends ecomplain - message to all parties (line 43); it also sets
the complained flag (line 44) and stops participating in tee-broadcastdy not initializing the next
instance. When a correct party receiRés- 1 complain - messages, it enters the recovery phase. There
is a complaint “amplification” mechanism by which a correct party that has receivedcomplain
messages and has not yet complained itself joins the complaining parties by sendingdtstguiain
message. Complaint amplification ensures that when some correct party enters the recovery phase, all
other correct parties eventually enter it as well.

3.2.2 Recovery Phase

The recovery phase consists of three parts: (1) determining a watermark sequence number, (2) syn-
chronizing all parties up to the watermark, and (3) delivering some payloads before entering the next
epoch.

Part 1: Agree on Watermark The first part of the recovery phase determinegsgermarksequence
numberw with the properties that (a) at least 1 correct parties have committed all sequence numbers
less than or equal tw in epoche, and (b) no sequence number higher thas 2 has been committed

by a correct party in epoch

Upon entering the recovery phase of epegla party sends out a signedmmitted message
containings — 1, the highest sequence number that it has committed in this epoch. It justifiésy
adding the bit string”’ that completes thgc-broadcasinstance with tag ands —1 (lines 50-51). Then,

a party receives —t suchcommitted messages with valid signatures and valid completion bit strings.
It collects the receivedommitted messages inwatermark proposal vectdid” and propose$l’ for
MVBA. Once the agreement protocol decides owatermark decision vectol (lines 52-56), the
watermarkw is set to the maximum of the sequence numbei#iminus 1 (line 57).

Consider the maximal sequence numbgin W and the corresponding;. It may be thatP; is
corrupted or thaf; is the only correct party that ever committedin epoche. But the values contain
enough evidence to conclude that at least 2¢ > ¢ + 1 correct parties contributed to this instance of
strong consistent broadcast. Hence, these parties have previously consnittedd This ensures the
first property of the watermark above (see also Lemma 2).

Although one or more correct parties may have commitigdl andw+2, none of them has already
a-deliveredthe corresponding payloads, because this would contradict the definitian dfience,
these sequence numbers can safely be discarded. The discarding also ensures the second property of
the watermark above (see Lemma 5). It is precisely for this reason that we delaydtiiweryof a
payload to which sequence numbewas committed untik 4+ 2 has been committed. Without it, the
protocol could end up in a situation where upttoorrect partiesa-delivereda payload with sequence
numberw + 1 or w + 2, but it would be impossible for all correct parties to learn about this fact and to
learn thea-deliveredpayload.

Part 2: Synchronize up to Watermark The second part of the recovery phase (lines 58—-72) ensures
that all partiesa-deliverthe payloads with sequence numbers less than or equal tbdoes so in a
straightforward way using theansferabilityproperty of strong consistent broadcast.

In particular, every correct partly; that has committed sequence numbefthere must be at least
t + 1 such correct parties by the definition @) computescompleting strings\/; for s = 0,..., w

11



that complete thec-broadcasinstance with sequence number It can do so using the information
stored inlog. Potentially, P; has to sendVy, ..., M, to all parties, but one can apply the following
optimization to reduce the communication. Note tiatknows from at least — ¢ partiesP; their

highest committed sequence numbgi(either directly from ecommitted message or from the wa-
termark decision vector); iP; knows nothing from som#;, it has to assume; = 0. ThenP; simply

sends a&omplete message with\/;; 11, ..., My, to P; for j = 1,...,n. Every party receives these
completing strings until it is able ta-deliverall payloads committed to the sequence numbers up to

Part 3: Deliver Some Messages Part 3 of the recovery phase (lines 73—84) ensures that the protocol
makes progress bg-deliveringsome messages before the next epoch starts. In an asynchronous net-
work, implementing this property must rely on randomized agreement or on a failure detector [10]. This
part uses one round of MVBA and is derived from the atomic broadcast protocol of Cachin et al. [5].
Every partyP; sends a signequeue message with all undelivered payloads in its initiation queue
to all others (lines 73—-74), collects a vectrof n — ¢ such messages with valid signatures (lines 75—
77), and proposeS for MVBA. Once the agreement protocol has decided on a vegtines 78—79),
party P; delivers the payloads i@ according to some deterministic order (lines 80-81).
ThenP, increments the epoch number and starts the next epoch by re-saritlarig messages
for all remaining payloads in its initiation queue to the new leader (lines 82—84).

3.3 Optimizations

Both the BFT and KS protocols process multiple sequence numbers in parallel using a sliding window
mechanism. For simplicity, our protocol description does not include this optimization and processes
only the highest sequence number during every iteration of the loop in the optimistic phase. However,
ProtocolPABC can easily be adapted to procésgpayloads concurrently. In that case, upficsc-
broadcastinstances are active in parallel, and the delay of two sequence numbers bsbadadivery
anda-deliveryof a payload is set tas). In part 1 of the recovery phase, the watermark is set to the
maximum of the sequence numbers in the watermark decision vector fjmstead of the maximum
minus 1.

In our protocol description, the leadsc-broadcastone initiated payload at a time. However,
ProtocolPABC can be modified to processbatchof payload messages at a time by committing se-
guence numbers to batches of payloads, as opposed to single payloads. Theddadadcasta
batch of payloads in one instance, and all payloads isadeliveredbatch area-deliveredin some
deterministic order. This optimization has been shown to increase the throughput of the BFT protocol
considerably [8].

Although the leader failure detector described in Section 3.2.1 is sufficient to ensure liveness, it
is possible to enhance it using protocol information as follows. The leader in the optimistic phase
will never have tosc-broadcasmore than twodummymessages consecutively to evict ndummy
payloads from the buffer. The failure detector oracle can maintain a counter to keep track of and restrict
the number of successivRimmypayloadssc-broadcasby the leader. lin is a nondummypayload,
the call toupdater, (deliver ,m) upona-deliveryof payloadm resets the counter; otherwise, the
counter is incremented. If the counter ever exceeds 2, Hémvokes thecomplain() function.

3.4 Protocol Complexity

In this section, we examine the message and communication complexities of our protocol. We assume
that strong consistent broadcast is implemented by the echo broadcast protocol using threshold signa-
tures, and that MVBA is implemented by the protocol of Cachin et al. [5], as described in Section 2.2.

For a payloadn that isa-deliveredn the optimistic phase, the message complexit9(s), and the
communication complexity i (n(|m! +K)), where the length of a threshold signature and a signature
share are at mogt bits.

12



The recovery phase incurs higher message and communication complexities because it involves
Byzantine agreement. The MVBA protocol of Cachin et al. [5] has an expected message complexity of
O(n?). Hence, determining the watermark in part 1 of the recovery involves expégted messages.

The corresponding expected communication complexit) j8°(|m| + K)) since the proposal values
containO(n) 3-tuples of the fornis;, C;, o;), each of lengtlO(|m|+ K). Here,m denotes the longest
payload contained in the proposal.

In part 2 of the recovery phase, up @n?) complete messages are exchanged. Recall that
acomplete message may encompass all payload messages that were pregialgiyeredin the
optimistic phase of the epoch. Each of the< B completing strings in aomplete message may be
O(|m| + K) bits long, wheren denotes the longestdeliveredpayload. Hence, the communication
complexity of part 2 of the recovery phasen?B(|m| + K)).

Part 3 of the recovery phase is again dominated by the cost of the MVBA protocol. Hence, the ex-
pected message complexity of part &16:2) and the expected communication complexitig®|m|)
since the proposal values in MVBA are of lengftin|m|).

To summarize, for a payload thatasdeliveredin the recovery phase, the cost is dominated by the
MVBA protocol, resulting in an expected message complexit$?¢f2) and an expected communica-
tion complexity ofO (n?(n + B)(|m| + K)). Assuming that the protocol stays in the optimistic mode
as long as possible areddeliversB payloads before executing recovery, #aortizedexpected com-
plexities per payload over an epoch &¥én + %) messages arfd(”ifﬂm] + K)) bits. Itis reasonable
to setB > n, so that we achieve amortized expected message compteityas claimed.

4 Analysis

In this section, we prove the following theorem.

Theorem 1. Given a digital signhature scheme, a protocol for strong consistent broadcast, and a protocol
for multi-valued Byzantine agreement, ProtoBAIBC provides atomic broadcast far > 3t.

We first establish some technical lemmas that describe the properties of PRAGIO!

Lemma 2. At the point in time when the first correct party has determined the watermalking the
recovery phase of epoehat leastt + 1 correct parties have committed sequence nunmbirepoche.

Proof. First note that the lemma holds trivially i = —2, and we may assume > —1 in the rest of
the proof. Letj* denote the index of the largest sequence numaper. ., 5,, contained in the decision
vector W of the agreement with tagD|watermark .e. Note thatw = 5;« — 1 according to the
protocol. By the predicat€) ;,watermark . the stringC;- in W completes the strong consistent
broadcast with tadD|bind .e.j*. According to the strong unforgeability property of strong consistent
broadcast(;- contains evidence that at least- 2¢ distinct correct parties have participated in e
broadcastinstance with sequence numbgr According to the logic of the optimistic phase, a correct
party initializes an instance of strong consistent broadcast witti¥dgind .e.s only after committing
sequence number— 1. Hence, these — 2t > ¢ + 1 correct parties have also committed sequence
number;* — 1 = w. O

Lemma 3. If some correct party has entered the recovery phase of epottien all correct parties
eventually enter epoch+ 1.

Proof. To establish the above lemma, we prove the following two claims.

Claim 1: If some correct party has entered the recovery phase of epdhbn all correct
parties eventually enter the recovery phase of epoch

13



Claim 2: If all correct parties have entered the recovery phase of epatten all correct
parties eventually enter epoeht 1.

By the transitive application of the two claims, the lemma follows.

We first prove Claim 1. Suppose that a correct pdefyenters the recovery phase of epachp;
does so only after receivingpmplain messages frot + 1 distinct parties. At least+ 1 of these
messages must have been from correct parties. Hence, every correct party eventually teedives
complain messages and sends its osemplain message. Thus, every correct party eventually
receivesm — t > 2t + 1 complain messages and transitions to the recovery phase of epoch

To prove Claim 2, one has to show that a correct party that enters the recovery phase of epoch
eventually completes all three parts of the recovery and moves to eppdh

A correct party completes part 1 of the recovery because it eventually reeeiveslid committed
messages from all correct parties and because all correct parties eventually decide in the MVBA proto-
col, according to its termination property.

Part 2 of the recovery phase is concerned with ensuring that all correct padids/erthe set of
non-dummypayloads to which sequence numbers less than or equaltere committed. Completion
of part 2 by a correct party is guaranteed by the transferability property of strong consistent broadcast as
follows. A correct partyP; that has committed sequence numbdirst a-deliversnon-dummypayloads
committed to sequence numbess— 1 andw (if it has not already done so). Then it sends a message
with a set of completing strings&V/;| 0 < s < w} to all other parties and moves to part 3 of the recovery
phase. Here); is the string that completes tise-broadcastnstance with sequence numbemhich
can be computed from the information storedlép. A correct partyP; that has not committed alll
sequence numbers less thawaits to receive the corresponding completing stringsis guaranteed
to receive them eventually, since, by Lemma 2, there are attledstorrect parties that have committed
sequence numbes. P; thena-deliversall non-dummypayloads with sequence numbers upit@nd
moves to part 3 of the recovery phase.

Analogous to part 1, completion of part 3 of the recovery is guaranteed by the fagt-thtajueue
messages will eventually be received and by the termination property of MVBA. O

Lemma 4. Suppose* is the largest epoch number at any correct party at the point in time whemh
correct parties hava-broadcastome payloaen, and assume that some correct party did aateliver
m before entering epocki*. Then some correct party; a-deliversm before entering epochi* + 1.

Proof. The lemma is trivially satisfied if’; a-deliversm during the optimistic phase of epoeh. Oth-
erwise,m is still present in the initiation queug of at leastt + 1 correct parties. Since the initiation
queues oh — t parties are included in the decision vector of MVBA in part 3 of the recovery phase, at
least one of these queues also containgnd the lemma follows. O

Lemma 5. Letw be the watermark of epoch No correct party commits a sequence number larger
thanw + 2 in epoche, and no correct partya-deliversa payload to which a sequence number larger
thanw has been committed in epoelbefore reaching part 3 of the recovery phase.

Proof. The proof is by contradiction. Suppose that some correct partyas committed sequence
numberw’ = w + 3. Then, P; has previouslsc-deliveredsomem with tag ID|bind .e.w’, and the
strong unforgeability property of strong consistent broadcast implies that ahlea®t > ¢ + 1 correct
parties have participated in thsg-broadcastnstance. Since correct parties initialize gebroadcast
instance with tag/D|bind .e.w’ only after committing the previous sequence number, they have also
committed sequence numhbef — 1.

Therefore, these + 1 correct parties have also sent a sigmednmitted message containing
sequence number’ — 1 during recovery. Hence, the decision vecttr with n — ¢ entries signed
by distinct parties contained a trip(@;+, C;j«, 5,+) signed by one of those+ 1 correct parties with
s+ = w' — 1. By the agreement property of MVBA, every correct party must have computed the same

14



W and setw to the maximum among thg values contained ifil’ minus 1, i.ew = 5« — 1 = w' — 2.
But this contradicts our assumption thelt= w + 3.

To prove the second part of the lemma, recall thatattteliveryof the payload to which sequence
numbers — 2 has been committed is delayed until after sequence numbas been committed. But
since no correct party commits a sequence number largendhar?, as shown in the first part of the
lemma, no correct partg-deliversany payload to which a sequence number larger tharas been
committed in the optimistic phase of epoehAfter the watermark in part 1 of the recovery phase has
been determined, as can be seen from the checks in lines 59 and 68, part 2 ensures that payloads are
a-deliveredonly up to the watermark; sequence numhers 1 andw + 2 are simply discarded. [

Lemma 6. Suppose the watermark of epoeisatisfiesw > —1. Then all correct parties eventually
a-deliverall non-dummypayloads to which any correct party has committed a sequence number less
than or equal taw in epoche.

Proof. By the agreement and termination properties of MVBA, a correct parewentually determines
the watermarkw of epoche. During the optimistic phase, it hasdeliveredall non-dummypayloads
with sequence numbers less than 2.

When P; moves to part 2 of the recovery phase, the code in lines 59-62 ensurds thab a-
deliversthose hordummypayloads to which sequence numbers 2 ands — 1 have been committed.

Note thatw may be smaller or larger than— 1, the highest committed sequence numbew K s
and P; has already committed, then by the logic of the optimistic phase and the loop in lines 59-62,
P; eventuallya-deliversall non-dummypayloads to which a sequence number less than or equal to
has been committed.

On the other hand, iftv > s and P; has not yet committed, it waits to receive a string M }
that completes thec-broadcastnstance with sequence numbérfor s’ < w. Party P; is guaranteed
to receive all of them eventually, since there are at leastl correct parties that have committed all
sequence numbers updoby Lemma 2.P; thena-deliversall non-dummypayloads to which sequence
numbers betweenandw have been committed in epoeh O

Lemma 7. In every epoch, there exists a sequengeof payloads such that any correct pagydelivers
all payloads in epocla in the order ofS.

Proof. We first define a sequenc¥ for every correctP; and show that the sequences computed by
distinct correct parties are equal.

S! is defined as follows. During the optimistic phase, all payloadshat-deliversare appended
to S/ in the order of their delivery. Suppod® has entered the recovery phase and has computed the
watermarkw; note thatS; containss elements. Ifs > w + 1, thenS! is truncated to the firsty + 1
elements; ifs < w, thenS/ is extended tav + 1 elements by the payloads that aedeliveredwith
tags/D|bind .e.v forv = s, ..., w through thecomplete messages in lines 68—72. During part 3 of
the recovery phase, all payloadsu';\zlfj \ D are appended t§] according to the given deterministic
order, according to line 80.

It is easy to see that, except with negligible probabilfty— S} for any two correct partie®; and
P; from the consistency property of strong consistent broadcast and from the agreement property of
MVBA. Hence, one may think of a global sequere= S/ for all P,.

Note that every party-deliversall nondummypayloads inS] during epoche. Hence, the se-
quencesS is equal toS’ with all dummypayloads removed. O

Proof of Theorem 1We have to show that ProtocBABC satisfies the validity, agreement, total order,
and integrity properties of atomic broadcast.

Validity follows directly from Lemma 4. In fact, Lemma 4 proves a stronger version of the validity
property stated in Section 2.3. The reason is that while the validity property specifies only an “eventual

15



a-delivery for a payloadm that has been-broadcasby ¢ + 1 correct parties, Lemma 4 shows that
will be delivered relatively quickly.

To showAgreementsuppose that a correct paty hasa-deliveredsomem in epoche. We have to
show that eventually all correct partiasdeliverm.

We first distinguish two cases. In the first case, supgddeasa-deliveredm before entering part 3
of the recovery phase in epoeh Then, Lemma 5 proves that a sequence number less than or equal
to the watermarkw of epoche has been committed to:. Lemma 6 shows that all correct parties
eventuallya-deliverall nondummypayloads to which a sequence number less than or equahtas
been committed, including:. This proves that the agreement property holds for the first case.

In the second case; wasa-deliveredduring part 3 of the recovery phase, afférhad terminated
the MVBA protocol. Then the agreement and termination properties of MVBA guarantee that all correct
parties eventually terminate the MVBA protocol aadleliverthe same sequence of payloads.

Hence, we have proved thathf a-deliversm in epoche, all correct parties in epocheventually
a-deliverm. Extending the proof to the definition of agreement now only requires us to show that all
correct parties eventually reach epachLemma 3 implies exactly that. Hence, by induction on the
epoch, it can be easily seen that Protde8BC satisfies agreement.

Thetotal order property for a particular epochis proved by Lemma 7. Hence, by induction on the
epoch number, it can be easily seen that ProtBe®C satisfies total order.

For integrity, we first show that a payloadh is a-deliveredat most once by a correct parfy..
Suppose thaP; a-deliversm in epoche. Then, there are two possibilities, depending on whether the
a-deliveryhappened before or after part 3 of epethrecovery phase was entered. In the former case
(a-deliverybefore part 3 is entered), some sequence number less than or equahtst have been
committed tom. The check in line 26 ensures that a sequence number is committed to paytway
if m & D. In the latter caseaftdeliveryin part 3 of the recovery phase), payloadmust have been a
part of the decision vectap. The check in line 80 ensures that only payloadg§)ithat are not irD
area-deliveredin a deterministic order. Hence, it is clear that a payloats a-deliveredat most once
by P;. Even if corrupted partiea-broadcastpayloads that have already besulelivered they are not
a-deliveredagain.

The second part of the integrity property, i.e., that our protocol andieliverspayloads that were
previouslya-broadcasby some party if all parties are correct, is trivially satisfied by the protocal.

5 Discussion

In this section, we discuss the practical significance of our optimistic protocol and compare it with other
efficient atomic broadcast protocols.

5.1 Practical Significance

In our formal system model, the adversary controls the scheduling of messages and hence the time-
outs; thus, the adversary can cause parties to complain about a correctly functioning leader resulting in
unnecessary transitions from the optimistic phase to the recovery phase.

Unlike the adversary in our formal model, the network in a real-world setting will not always behave
in the worst possible manner. The motivation for Protd®BC — or any optimistic protocol such as
the BFT and KS protocols for that matter — is the hope that timing assumptions based on stable network
conditions have a high likelihood of being accurate. Such a hope is realistic since practical observations
show that network behavior alternates between long periods of stable conditions and relatively short
periods of instability; this indicates that unstable network conditions are the exception rather than the
norm. During periods of stability and when no new intrusions are detected, the optimistic assumption
will be satisfied and our protocol will make fast progress in the optimistic phase. However, both safety

16



Table 1: Comparison of Efficient Byzantine-Fault-Tolerant Atomic Broadcast Protocols

Protocol Synchrony for Synchrony for Publicfkey Message Complexity
Safety? Liveness? Operations?| Normal Cond. \ Worst-case
Rampart [21] yes yes yes O(n) unbounded
SecureRing [14] yes yes yes O(n) unbounded
ITUA[19] yes yes yes O(n) unbounded
Cachin et al. [5] no no yes expected)(n?) | expected)(n?)
BFT [8] no yes no O(n?) unbounded
KS [15] no no yes O(n?) expected) (n?)
ProtocolPABC no no yes O(n) expected) (n?)

and liveness are still guaranteed even if the network is unstable, as long as no mare thad parties
are actively misbehaving.

5.2 Comparison

Table 1 compares the synchrony assumptions, cryptographic requirements, and message complexity of
ProtocolPABC with the other recent Byzantine-fault-tolerant atomic broadcast protocols mentioned

in the introduction. We devote the rest of this section to a more elaborate comparison with the two
protocols closest to ours, namely the BFT protocol and the KS protocol.

Under stable network conditions and with a correct leader, all three protocols operate in their opti-
mistic phases. These conditions are likely to apply during most of the running time of the system. In this
case, the linear message and communication complexities of Pré#aB& compare favorably with
the quadratic complexities of the BFT and KS protocols.

Under unstable network conditions, the deterministic BFT protocol can generate a potentially un-
bounded number of protocol messages by repeatedly switching from one epoch to another without
making progress. This represents a violation of liveness and is prevented in the KS protocol and in Pro-
tocol PABC, since their recovery phases rely on randomized agreemerd-detiversome payloads.
Naturally, using Byzantine agreement makes our recovery phase more expensive than the one of the
BFT protocol.

The recovery phase of Protod®ABC is slightly more efficient than that of the KS protocol. The
KS protocol requires four iterations of Byzantine agreement in addition to one iteration for each concur-
rently handled reliable broadcast instance. The recovery phase of our protocol uses only two iterations
of Byzantine agreement, irrespective of the number of strong consistent broadcast instances that are
concurrently handled.

6 Conclusion

We described a protocol that, for the first time, achieves asynchronous atomic broadcaSt{mjith
amortized expected messages per payload message. The previous best soluti®riatisedssages.
Despite intrusions and instability, our protocol guarantees both safety and liveness as long as no more
thant < n/3 parties are corrupted by the adversary. Our use of strong consistent broadcast, instead of
reliable broadcast as in the BFT and KS protocols, introduces an additional digital signature computation
at each party for every delivered payload. However, the intended deployment environments for our
protocol are WANs, where message latency typically exceeds the time to perform digital signature
computations; hence, we expect our protocol to be significantly more efficient than previous protocols
in this case.

17



Acknowledgments

This work was supported in part by NSF under Grant No. CNS-0406351. We are grateful to Bill Sanders
for support, interesting discussions, and comments on improving the quality of the paper. We also thank
Jenny Applequist for her editorial comments.

References

[1] P. Berman and A. A. Bharali, “Quick Atomic Broadcast,”roc. 7th International Workshop on
Distributed Algorithms (WDAG)vol. 725 of Lecture Notes in Computer Sciengg. 189-203,
Springer, 1993.

[2] P. Berman and J. A. Garay, “Randomized Distributed Agreement RevisiteBfon 23th Inter-
national Symposium on Fault-Tolerant Computing (FTCS-gp) 412—419, 1993.

[3] G. Bracha, “An Asynchronougn — 1)/3]-Resilient Consensus Protocol,”froc. 3rd ACM Sym-
posium on Principles of Distributed Computing (POD@p. 154-162, 1984.

[4] C. Cachin, “Distributing Trust on the Internet,” roc. International Conference on Dependable
Systems and Networks (DSN-2004p. 183-192, June 2001.

[5] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and Efficient Asynchronous Broad-
cast Protocols (Extended Abstract),” Avances in Cryptology: CRYPTO 20QL Kilian, ed.),
vol. 2139 ofLecture Notes in Computer Scienpp. 524-541, Springer, 2001.

[6] C. Cachin, K. Kursawe, and V. Shoup, “Random Oracles in Constantinople: Practical Asyn-
chronous Byzantine Agreement using Cryptograpbgrirnal of Cryptologyvol. 18, no. 3, 2005.

[7] R. Canetti and T. Rabin, “Fast Asynchronous Byzantine Agreement with Optimal Resilience,” in
Proc. 25th Annual ACM Symposium on Theory of Computing (ST@C%2-51, 1993.

[8] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance and Proactive RecoveDyyl
Transactions on Computer Systems (TQ@8)) 20, pp. 398—-461, Nov. 2002.

[9] Y. Desmedt, “Society and Group Oriented Cryptography: A New Concepftvances in Cryp-
tology: CRYPTO '87C. Pomerance, ed.), vol. 293loécture Notes in Computer Scienpp. 120—
127, Springer, 1988.

[10] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of Distributed Consensus with One
Faulty ProcessJournal of the ACMvol. 32, pp. 372-382, Apr. 1985.

[11] O. GoldreichFoundations of Cryptographyol. | & Il. Cambridge University Press, 2001-2004.

[12] S. Goldwasser, S. Micali, and R. L. Rivest, “A Digital Signature Scheme Secure Against Adaptive
Chosen-Message Attack§1AM Journal on Computingol. 17, no. 2, pp. 281-308, 1988.

[13] V. Hadzilacos and S. Toueg, “Fault-Tolerant Broadcasts and Related Probl@istsputed Sys-
tems (2nd Ed,)pp. 97-145, 1993.

[14] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, “The SecureRing Protocols for Securing
Group Communication,” irProc. 31st Annual Hawaii International Conference on System Sci-
ences (HICSSpp. 317-326, Jan. 1998.

18



[15] K. Kursawe and V. Shoup, “Optimistic Asynchronous Atomic Broadcast?roc. 32nd Interna-
tional Colloguium on Automata, Languages and Programming (ICALPLaires, G. F. Italiano,
L. Monteiro, et al., eds.), vol. 3580 ofecture Notes in Computer Scienpp. 204-215, Springer,
2005.

[16] L. Lamport, “The Part-Time ParliamentACM Transactions on Computer Systersl. 16,
pp. 133-169, May 1998.

[17] D.Malkhi, M. Merritt, and O. Rodeh, “Secure Reliable Multicast Protocols in a WANstributed
Computingvol. 13, pp. 19-28, Jan. 2000.

[18] M. O. Rabin, “Randomized Byzantine Generals,’Hroc. 24th IEEE Symposium on Foundations
of Computer Science (FOCS$)p. 403—409, 1983.

[19] H. V. Ramasamy, P. Pandey, J. Lyons, M. Cukier, and W. H. Sanders, “Quantifying the Cost of Pro-
viding Intrusion Tolerance in Group Communication SystemsPrioc. International Conference
on Dependable Systems and Networks (DSN-2@@R229-238, June 2002.

[20] M. Reiter, “Secure Agreement Protocols: Reliable and Atomic Group Multicast in Rampart,” in
Proc. 2nd ACM Conference on Computer and Communications Seqpit8—80, 1994.

[21] M. K. Reiter, “The Rampart Toolkit for Building High-Integrity Services, Timeory and Practice
in Distributed Systemsvol. 938 of Lecture Notes in Computer Scienggp. 99-110, Springer,
1995.

[22] F. B. Schneider, “Implementing Fault-Tolerant Services using the State Machine Approach: A
Tutorial,” ACM Computing Surveysol. 22, pp. 299-319, Dec. 1990.

[23] F. B. Schneider and L. Zhou, “Distributed Trust. Supporting Fault-Tolerance and Attack-
Tolerance,” Tech. Rep. TR 2004-1924, Cornell Computer Science Department, Jan. 2004.

[24] V. Shoup, “Practical Threshold Signatures,” Atdvances in Cryptology: EUROCRYPT 2000
(B. Preneel, ed.), vol. 1087 dkecture Notes in Computer Scienpp. 207-220, Springer, 2000.

[25] S. A. Vanstone, P. C. van Oorschot, and A. Meneksdbook of Applied CryptographyCRC
Press, 1996.

19



