
Parsimonious Asynchronous Byzantine-Fault-Tolerant
Atomic Broadcast

HariGovind V. Ramasamy∗ Christian Cachin†

August 19, 2005

Abstract

Atomic broadcast is a communication primitive that allows a group ofn parties to deliver a common
sequence of payload messages despite the failure of some parties. We address the problem of asyn-
chronous atomic broadcast when up tot < n/3 parties may exhibit Byzantine behavior. We provide
the first protocol with an amortized expected message complexity ofO(n) per delivered payload.
The most efficient previous solutions are the BFT protocol by Castro and Liskov and the KS pro-
tocol by Kursawe and Shoup, both of which have message complexityO(n2). Like the BFT and
KS protocols, our protocol is optimistic and uses inexpensive mechanisms during periods when no
faults occur; when network instability or faults are detected, it switches to a more expensive recovery
mode. The key idea of our solution is to replace reliable broadcast in the KS protocol by consistent
broadcast, which reduces the message complexity fromO(n2) toO(n) in the optimistic mode. But
since consistent broadcast provides weaker guarantees than reliable broadcast, our recovery mode
incorporates novel techniques to ensure that safety and liveness are always satisfied.

1 Introduction

Atomic broadcast is a fundamental communication primitive for the construction of fault-tolerant dis-
tributed systems. It allows a group ofn parties to agree on a set of payload messages to deliver and
also on their delivery order, despite the failure of up tot parties. A fault-tolerant service can be con-
structed using the state machine replication approach [22] by replicating the service on alln parties and
propagating the state updates to the replicas using atomic broadcast.

In this paper, we present a new message-efficient atomic broadcast protocol that is suitable for
building highly available and intrusion-tolerant services in the Internet [4][23]. Since the Internet is an
adversarial environment where an attacker can compromise and completely take over nodes, we allow
the corrupted parties to deviate arbitrarily from the protocol specification thereby exhibiting so-called
Byzantine faults. We work in an asynchronous system model for two reasons: (1) it best reflects the
loosely synchronized nature of nodes in the Internet, and (2) not relying on synchrony assumptions for
correctness also eliminates a potential vulnerability of the system that the adversary can exploit, for
example, through denial-of-service attacks.

Though the problem of Byzantine-fault-tolerant atomic broadcast and the equivalent problem of
Byzantine agreement have been widely studied for over two decades, the applicability of many of the
previous works for our purpose is quite limited. Any asynchronous atomic broadcast protocol must use
randomization, since deterministic solutions cannot be guaranteed to terminate [10]. Early work fo-
cused on the polynomial-time feasibility of randomized agreement [18][7][2] and atomic broadcast [1],
but such solutions are too expensive to use in practice. Many protocols have followed an alternative
approach and avoided randomization completely by making stronger assumptions about the system

∗H. V. Ramasamy is with the University of Illinois, Urbana-Champaign. Email:ramasamy@crhc.uiuc.edu .
†C. Cachin is with the IBM Zurich Research Laboratory. Email:cca@zurich.ibm.com .

model, in particular by assuming some degree of synchrony (like Rampart [21], SecureRing [14], and
ITUA [19]). However, most of these protocols have an undesirable feature that makes them inapplicable
for our purpose: they may violate safety if synchrony assumptions are not met.

Only recently, Cachin et al. proposed practical asynchronous agreement [6] and atomic broadcast [5]
protocols that have optimal resiliencet < n/3. Both protocols rely on a trusted initialization process
and on public-key cryptography. Cachin et al.’s atomic broadcast protocol proceeds in rounds, with
each round involving a randomized Byzantine agreement and resulting in the atomic delivery of some
payload messages.

The BFT protocol by Castro and Liskov [8] and the protocol by Kursawe and Shoup [15] (hereafter
referred to as the KS protocol) take an optimistic approach for providing more efficient asynchronous
atomic broadcast while never violating safety. The motivation for such optimistic protocols is the ob-
servation that conditions arenormalduring most of a system’s operation. Here, normal conditions refer
to a stable network and no intrusions. Both protocols proceed inepochs, where an epoch consists of an
optimistic phaseand arecovery phase, and expect to spend most of their time operating in the optimistic
phase, which uses an inexpensive mechanism that is appropriate for normal conditions. The protocol
switches to the more expensive recovery phase under unstable network or certain fault conditions. In
every epoch, a designated party acts as aleaderfor the optimistic phase, determines the delivery order
of the payloads, and conveys the chosen delivery order to the other parties through Bracha’s reliable
broadcast protocol [3], which guarantees delivery of a broadcast payload with the same content at all
correct parties. Bracha’s protocol is deterministic and involvesO(n2) protocol messages; it is much
more efficient than the most efficient randomized Byzantine agreement protocol [5], which requires ex-
pensive public-key cryptographic operations in addition. Consequently, both the BFT and KS protocols
communicateO(n2) messages per atomically delivered payload under normal conditions, i.e., they have
message complexityO(n2).

No protocol for asynchronous atomic broadcast with message complexity less thanΘ(n2) was
known prior to our work. Our protocol for asynchronous atomic broadcast is the first to achieve op-
timal resiliencet < n/3 andO(n) amortized expected message complexity. We call our protocol
parsimoniousbecause of this significant reduction in message complexity. Linear message complexity
appears to be optimal for atomic broadcast because a protocol needs to send every payload to each party
at least once and this requiresn messages (assuming that payloads are not propagated to the parties in
batches). Like the BFT and KS protocols, our protocol isoptimisticin the sense that it progresses very
fast during periods when the network is reasonably behaved and a party acting as designatedleader is
correct. Unlike the BFT protocol (and just like the KS protocol), our protocol guarantees bothsafety
and livenessin asynchronous networks by relying on randomized agreement. The reduced message
complexity of our protocol comes at the cost of introducing a digital signature computation for every
delivered payload. But in a wide-area network (WAN), the cost of a public-key operation is small com-
pared to message latency. And since our protocol is targeted at WANs, we expect the advantage of lower
message complexity to outweigh the additional work incurred by the signature computations.

The key idea in our solution is to replace reliable broadcast used in the optimistic phase of the
BFT and KS protocols withconsistent broadcast, also known asecho broadcast[20], the standard
implementation of which needs onlyO(n) messages. Consistent broadcast is a weaker form of reliable
broadcast that guarantees agreement only among those correct parties that actually deliver the payload,
but it is possible that some correct parties do not deliver any payload at all. But the replacement also
complicates the recovery phase, since a corrupted leader might cause the payload to be consistently
delivered at only a single correct party with no way for other correct parties to learn about this fact. Our
protocol provides mechanisms to address such complications.

Our protocol is related to the reliable broadcast protocol of Malkhi et al. [17] in its use of consistent
broadcast as a building block. Their protocol addresses reliable broadcast over a WAN, but provides no
total order.

The rest of the paper is organized as follows. Section 2 describes the formal system model, the

2

protocol primitives on which our algorithm relies, and the definition of atomic broadcast. The protocol
is presented in Section 3 and analyzed in Section 4. Section 5 discusses the practical significance of our
parsimonious protocol and compares it with related work. Finally, Section 6 concludes the paper.

2 Preliminaries

2.1 System Model

We consider an asynchronous distributed system model equivalent to the one of Cachin et al. [5], in
which there are no bounds on relative processing speeds and message delays. The system consists of
n partiesP1, . . . , Pn and anadversary. Up to t < n/3 parties can be controlled by the adversary. We
call such partiescorrupted; the other parties are calledcorrect. We use astaticcorruption model, which
means that the adversary must pick the parties it corrupts once and for all before starting the protocol.
There is also an initialization algorithm that is run by some trusteddealer that performs system setup
before the start of the protocol. All computations by the parties, the adversary, and the trusted dealer
are probabilistic, polynomial-time algorithms. The parametersn andt are given as input to the dealer,
which then generates the state information that is used to initialize each party. Note that after the initial
setup phase, the protocol has no need for the dealer.

Each pair of parties is linked by anauthenticated asynchronous channelthat provides message
integrity (e.g., using message authentication codes [25]). The adversary determines the scheduling of
messages on all the channels. Timeouts are messages that a party sends to itself; hence, the adversary
controls the timeouts as well.

We restrict the adversary such that every run of the system iscomplete, i.e., every message sent by a
correct party and addressed to a correct party is delivered unmodified before the adversary terminates1.
We refer to this property in liveness conditions when we say that a message iseventuallydelivered or
that a protocol instanceeventuallyterminates.

There may be multiple protocol instances that are concurrently executing at each party. A protocol
instance is invoked either by a higher-level protocol instance or by the adversary. Every protocol instance
is identified by a unique stringID , called thetag, which is chosen by the entity that invokes the instance.
By convention, the tag of a sub-protocol instance contains the tag of the calling instance as a prefix.

A correct party is activated when the adversary delivers a message to the party; the party then updates
its internal state, performs some computation, and generates a set of response messages, which are given
to the adversary. There may be several threads of execution for a given party, but only one of them is
allowed to be active at any one time. When a party is activated, all threads are inwait states, which
specify a condition defined on the received messages contained in the input buffer, as well as on some
local variables. In the pseudocode presentation of the protocol, we specify a wait state using the notation
wait for condition. There is a global implicitwait for statement that every protocol instance repeatedly
executes: it matches any of theconditionsgiven in the clauses of the formupon condition block. If
one or more threads that are in wait states have their conditions simultaneously satisfied, one of these
threads is scheduled (arbitrarily), and this thread runs until it reaches another wait state. This process
continues until no more threads are in a wait state whose condition is satisfied. Then, the activation of
the party is terminated, and control returns to the adversary.

There are three types of messages that appear in the interface to our protocols, namely (1)input
actions, which are messages of the form(ID , in , type, . . .); (2) output actions, which are messages
of the form(ID , out , type, . . .); and (3)protocol messages, which are ordinary protocol messages to
be delivered to other parties (of the form(ID , type, . . .)). Note that input actions and output actions
are local events within a party. Before a party starts to process messages that are tagged withID ,

1A more restrictive formalization of liveness conditions for environments with a computationally bounded scheduler is
provided by Cachin et al. [5] through the notion ofprobabilistically uniformly bounded statistics; this notion can be easily
applied to our protocol with some modifications, but we refrain from using it for the sake of readability.

3

the instance must beinitialized by a special input action of the form(ID , in , open , type), wheretype
denotes the protocol type and/or its implementation. Such an action must precede any other input action
with tagID . We usually assume that it occurs implicitly with the first regular input action.

To analyze a protocol, we use two measures, message complexity and communication complexity.
The message complexity of a protocol instance with tagID is defined as the total number of all protocol
messages with the tagID or any tag starting withID | . . . that correct parties generate. The commu-
nication complexity of a protocol instance with tagID is defined as the total bit length of all protocol
messages with the tagID or any tag starting withID | . . . that correct parties generate.

We make use of a digital signature scheme for our protocol. A digital signature scheme consists of
algorithms for key generation, signing, and verification. As part of the system initialization, the dealer
generates (using the key generation algorithm) the public key/private key pair for each party and gives
every party its private key and the public keys of all parties. We assume that the signature scheme is
secure in the sense of the standard security notion for signature schemes of modern cryptography, i.e.,
preventing existential forgery under adaptive chosen-message attacks [12].

Since we use the formal model of modern cryptography [11], we allow for a negligible probability
of failure in the specification of our protocols.

2.2 Protocol Primitives

Our atomic broadcast protocol relies on a consistent broadcast protocol with special properties and on a
Byzantine agreement protocol.

2.2.1 Strong Consistent Broadcast

We enhance the notion of consistent broadcast found in the literature [5] to develop the notion that we
call strong consistent broadcast. Ordinary consistent broadcast provides a way for a designated sender
Ps to broadcast a payload to all parties and requires that any two correct parties that deliver the payload
agree on its content.

The standard protocol for implementing ordinary consistent broadcast is Reiter’secho broadcast[20];
it involvesO(n) messages, has a latency of three message flows, and relies on a digital signature scheme.
The sender starts the protocol by sending the payloadm to all parties; then it waits for a quorum of
dn+t+1

2 e parties to issue a signature on the payload and to “echo” the payload and the signature to the
sender. When the sender has collected and verified enough signatures, it composes a final protocol
message containing the signatures and sends it to all parties.

With a faulty sender, an ordinary consistent broadcast protocol permits executions in which some
parties fail to deliver the payload when others succeed. Therefore, a useful enhancement of consistent
broadcast is a transfer mechanism, which allows any party that has delivered the payload to help others
do the same.

For reasons that will be evident later, we introduce another enhancement and require that when a
correct party terminates a consistent broadcast and delivers a payload, there must be a quorum of at
leastn− t parties (instead of onlydn+t+1

2 e) who participated in the protocol and approved the delivered
payload. We call consistent broadcast with such a transfer mechanism and the special quorum rule
strong consistent broadcast.

Formally, every broadcast instance is identified by a tagID . At the senderPs, strong consistent
broadcast is invoked by an input action of the form(ID , in , sc-broadcast ,m), with m ∈ {0, 1}∗.
When that occurs, we sayPs sc-broadcastsm with tag ID . Only Ps executes this action; all other
parties start the protocol only when they initialize instanceID in their role as receivers. A party
terminates a consistent broadcast ofm tagged withID by generating an output action of the form
(ID , out , sc-deliver ,m). In that case, we sayPi sc-deliversm with tagID .

For the transfer mechanism, a correct party that hassc-deliveredm with tag ID should be able to
output a bit stringMID thatcompletesthesc-broadcastin the following sense: any correct party that has

4

not yetsc-deliveredm can run avalidation algorithmonMID (this may involve a public key associated
with the protocol), and ifMID is determined to bevalid, it can alsosc-deliverm from MID .

Definition 1 (Strong consistent broadcast).A protocol for strong consistent broadcast satisfies the
following conditions except with negligible probability.

Termination: If a correct partysc-broadcastsm with tag ID , then all correct parties eventuallysc-
deliverm with tagID .

Agreement: If two correct partiesPi andPj sc-deliverm andm′ with tagID , respectively, thenm =
m′.

Integrity: Every correct partysc-deliversat most one payloadm with tagID . Moreover, if the sender
Ps is correct, thenm was previouslysc-broadcastby Ps with tagID .

Transferability: After a correct party hassc-deliveredm with tag ID , it can generate a stringMID

such that any correct party that has notsc-delivereda message with tagID is able tosc-deliver
some message immediately upon processingMID .

Strong unforgeability: For anyID , it is computationally infeasible to generate a valueM that is ac-
cepted as valid by the validation algorithm for completingID unlessn − 2t correct parties have
initialized instanceID and actively participated in the protocol.

Note that the termination, agreement, and integrity properties are the same as in ordinary consistent
broadcast [20][5].

Given the above implementation of consistent broadcast, one can obtain strong consistent broadcast
with two simple modifications. The completing stringMID for ensuring transferability consists of the
final protocol message; the attached signatures are sufficient for any other party to complete thesc-
broadcast. Strong unforgeability is obtained by setting the signature quorum ton− t.

With signatures of sizeK bits, the echo broadcast protocol has communication complexityO
(
n(|m|+

nK)
)

bits, where|m| denotes the bit length of the payloadm. By replacing the quorum of signatures
with a threshold signature [9], it is possible to reduce the communication complexity toO

(
n(|m|+K)

)
bits [5], under the reasonable assumption that the lengths of a threshold signature and a signature share
are also at mostK bits [24].

In the rest of the paper, we assume that strong consistent broadcast is implemented by applying the
above modifications to the echo broadcast protocol with threshold signatures. Hence, the length of a
completing string isO(|m|+ K) bits.

2.2.2 Multi-Valued Byzantine Agreement

We use a protocol for multi-valued Byzantine agreement (MVBA) as defined by Cachin et al. [5], which
allows agreement values from an arbitrary domain instead of being restricted to binary values. Unlike
previous multi-valued Byzantine agreement protocols, their protocol does not allow the decision to fall
back on adefaultvalue if not all correct parties propose the same value, but uses a protocol-external
mechanism instead. This so-calledexternal validity conditionis specified by a global, polynomial-time
computable predicateQID , which is known to all parties and is typically determined by an external
application or higher-level protocol. Each party proposes a value that contains certain validation infor-
mation. The protocol ensures that the decision value was proposed by at least one party, and that the
decision value satisfiesQID .

When a partyPi starts an MVBA protocol instance with tagID and an input valuev ∈ {0, 1}∗
satisfying predicateQID , we say thatPi proposesv for multi-valued agreement with tagID and predi-
cateQID . Correct parties only propose values that satisfyQID . WhenPi terminates the MVBA protocol
instance with tagID and outputs a valuev, we say that itdecidesv for ID .

Definition 2 (Multi-valued Byzantine agreement). A protocol formulti-valued Byzantine agreement
with predicateQID satisfies the following conditions except with negligible probability.

5

External Validity: Any correct party that decides forID decidesv such thatQID(v) holds.
Agreement: If some correct party decidesv for ID , then any correct party that decides forID decidesv.
Integrity: If all parties are correct and if some party decidesv for ID , then some party proposedv

for ID .
Termination: All correct parties eventually decide forID .

The MVBA protocol of Cachin et al. [5] builds upon a protocol for binary Byzantine agreement
(such as the one of Cachin et al. [6]), which relies on threshold signatures and a threshold coin-tossing
protocol (e.g., [6]). The expected message complexity of the MVBA protocol isO(n2) and the expected
communication complexity isO

(
n3 + n2(K + L)

)
, whereK is the length of a threshold signature and

L is a bound on the length of the values that can be proposed.

2.3 Definition of Atomic Broadcast

Atomic broadcast provides a “broadcast channel” abstraction [13], such that all correct parties deliver the
same set of messages broadcast on the channel in the same order. A partyPi atomically broadcasts(or
a-broadcasts) a payloadm with tagID when an input action of the form(ID , in , a-broadcast ,m)
with m ∈ {0, 1}∗ is delivered toPi. Broadcasts are parameterized by the tagID to identify their
corresponding broadcast channel. A partyatomically delivers(or a-delivers) a payloadm with tagID
by generating an output action of the form(ID , out , a-deliver ,m). A party maya-broadcastand
a-deliveran arbitrary number of messages with the same tag.

Definition 3 (Atomic broadcast). A protocol for atomic broadcast satisfies the following properties
except with negligible probability.

Validity: If t + 1 correct partiesa-broadcastsome payloadm with tag ID , then some correct party
eventuallya-deliversm with tagID .

Agreement: If some correct party hasa-deliveredm with tag ID , then all correct parties eventually
a-deliverm with tagID .

Total Order: If two correct parties botha-delivereddistinct payloadsm1 andm2 with tag ID , then
they havea-deliveredthem in the same order.

Integrity: For any payloadm, a correct partyPj a-deliversm with tagID at most once. Moreover, if
all parties are correct, thenm was previouslya-broadcastby some party with tagID .

The above properties are similar to the definitions of Cachin et al. [5] and of Kursawe and Shoup [15].
We do not formalize theirfairnesscondition, which requires that the protocol “makes progress” towards
delivering a payload as soon ast+1 correct parties havea-broadcastit. However, our protocol actually
satisfies an equivalent notion (cf., Lemma 4).

3 The Parsimonious Asynchronous Atomic Broadcast Protocol

3.1 Overview

The starting point for the development of our ProtocolPABC is the BFT protocol [8], which can be
seen as the adaptation of Lamport’s Paxos consensus protocol [16] to tolerate Byzantine faults. In the
BFT protocol, a leader determines the delivery order of payloads and conveys the order using reliable
broadcast to other parties. The parties then atomically deliver the payloads in the order chosen by the
leader. If the leader appears to be slow or exhibits faulty behavior, a party switches to the recovery
mode. When enough correct parties have switched to recovery mode, the protocol ensures that all
correct parties eventually start the recovery phase. The goal of the recovery phase is to start the next
epoch in a consistent state and with a new leader. The difficulty lies in determining which payloads
have been delivered in the optimistic phase of the past epoch. The BFT protocol delegates this task to

6

the leader of the new epoch. But since the recovery phase of BFT is also deterministic, it may be that
the new leader is evicted immediately, before it can do any useful work, and the epoch passes without
delivering any payloads. This denial-of-service attack against the BFT protocol violates liveness but is
unavoidable in asynchronous networks.

The KS protocol [15] prevents this attack by ensuring that at least one payload is delivered during
the recovery phase. It employs a round of randomized Byzantine agreement to agree on a set of payloads
for atomic delivery, much like the asynchronous atomic broadcast protocol of Cachin et al. [5]. During
the optimistic phase, the epoch leader conveys the delivery order through reliable broadcast as in BFT,
which leads to an amortized message complexity ofO(n2).

Our approach is to replace reliable broadcast in the KS protocol with strong consistent broadcast;
the replacement directly leads to an amortized message complexity of onlyO(n). But the replacement
also introduces complications in the recovery phase, since a corrupted leader may cause the fate of some
payloads to be undefined in the sense that there might be only a single correct party that hassc-delivered
a payload, but no way for other correct parties to learn about this fact. We solve this problem by delaying
the atomic delivery of ansc-deliveredpayload until more payloads have beensc-delivered. However,
the delay introduces an additional problem of payloads getting “stuck” if no further payloads arrive. We
address this by having the leader generatedummypayloads when no further payloads arrive within a
certain time window.

The recovery phase in our protocol has a structure similar to that of the KS protocol, but is simpler
and more efficient. At a high level, a first MVBA instance ensures that all correct parties agree on
a synchronization point. Then, the protocol ensures that all correct partiesa-deliver the payloads up
to that point; to implement this step, every party must store all payloads that were delivered in the
optimistic phase, together with information that proves the fact that they were delivered. A second
MVBA instance is used toa-deliver at least one payload, which guarantees that the protocol makes
progress in every epoch.

3.2 Details

We now describe the optimistic and the recovery phases in detail. The line numbers refer to the detailed
protocol description in Figures 1–3.

3.2.1 Optimistic Phase

Every party keeps track of the current epoch numbere and stores all payloads that it has received to
a-broadcastbut not yeta-deliveredin its initiation queueI. An elementx can be appended toI by an
operationappend(x, I), and an elementx that occurs anywhere inI can be removed by an operation
remove(x, I). A party also maintains an arraylog of size B that acts as a buffer for all payloads
to a-deliver in the current epoch. Additionally, a party stores a setD of all payloads that have been
a-deliveredso far.

We describe the optimistic phase of ProtocolPABC by first detailing the normal protocol operation
when the leader functions properly, and then explaining the mechanisms that ensure that the protocol
switches to the recovery phase when the leader is not functioning properly.

Normal Protocol Operation. When a party receives a request toa-broadcasta payloadm, it appends
m to I and immediately forwardsm using aninitiate message to the leaderPl of the epoch, where
l = e mod n (lines 12–14). When this happens, we sayPi initiatesthe payload.

The leader binds sequence numbers to the payloads that it receives ininitiate messages, and
conveys the bindings to the other parties through strong consistent broadcast. For this purpose, all parties
execute a loop (lines 15–38) that starts with an instance of strong consistent broadcast (lines 15–26). The
leader acts as the sender of strong consistent broadcast and the tag contains the epoche and a sequence
numbers. Here,s starts from 0 in every epoch. The leadersc-broadcaststhe next available initiated

7

Protocol PABC for party Pi and tag ID

initialization:
1: e← 0 {current epoch}
2: I ← [] {initiation queue, list ofa-broadcastbut nota-deliveredpayloads}
3: D ← ∅ {set ofa-deliveredpayloads}
4: init epoch()

function init epoch():
5: l← (e mod n) + 1 {Pl is leader of epoche}
6: log ← [] {array of sizeB containing payloads committed in current epoch}
7: s← 0 {sequence number of next payload within epoch}
8: complained ← false {indicates if this party already complained aboutPl}
9: start recovery ← false {signals the switch to the recovery phase}

10: c ← 0 {number ofcomplain messages received for epoch leader}
11: S ← D {set ofa-deliveredor alreadysc-broadcastpayloads atPl}

upon (ID , in , a-broadcast ,m):
12: send(ID , initiate , e,m) to Pl

13: append(m, I)
14: updateFl

(initiate ,m)

forever: {optimistic phase}
15: if ¬complained then {leaderPl is not suspected}
16: initialize an instance of strong consistent broadcast with tagID |bind .e.s
17: m← ⊥
18: if i = l then
19: wait for timeout(T) or receipt of a message(ID , initiate , e,m) such thatm 6∈ S
20: if timeout(T) then
21: m← dummy
22: else
23: S ← S ∪ {m}
24: stop(T)
25: sc-broadcastthe messagem with tagID |bind .e.s
26: wait for start recovery or sc-deliveryof somem with tagID |bind .e.s such thatm 6∈ D ∪ log
27: if start recovery then
28: recovery()
29: else
30: log [s]← m
31: if s ≥ 2 then
32: updateFl

(deliver , log [s− 2])
33: deliver(log [s− 2])
34: if i = l and (log [s] 6= dummyor (s > 0 and log [s− 1] 6= dummy)) then
35: start(T)
36: s← s + 1
37: if s mod B = 0 then
38: recovery()

function deliver(m):
39: if m 6= dummythen
40: remove(m, I)
41: D ← D ∪ {m}
42: output(ID , out , a-deliver ,m)

Figure 1: ProtocolPABC for Atomic Broadcast (Part I)

8

function complain():
43: send(ID , complain , e) to all parties
44: complained ← true

upon receiving message(ID , complain , e) from Pj for the first time:

45: c← c + 1
46: if (c = t + 1) and¬complained then
47: complain()
48: else ifc = 2t + 1 then
49: start recovery ← true

let QID|watermark .e be the following predicate:

QID|watermark .e

([
(s1, C1, σ1), . . . , (sn, Cn, σn)

])
≡(

for at leastn− t distinctj, sj 6= ⊥
)

and(
for all j = 1, . . . , n, eithersj = ⊥ or

(σj is a valid signature byPj on (ID , committed , e, sj , Cj) and

(sj = −1 or the valueCj completes thesc-broadcastwith tagID |bind .e.sj))
)

Let QID|deliver .e be the following predicate:

QID|deliver .e

([
(I1, σ1), . . . , In, σn)

])
≡ for at leastn− t distinctj,(

Ij ∩ D = ∅ and σj is a valid signature byPj on (ID , queue , e, j, Ij)
)

Figure 2: ProtocolPABC for Atomic Broadcast (Part II)

payload, and every party waits tosc-deliversome payloadm. Whenm is sc-delivered, Pi stores it in
log , but does not yeta-deliverit (line 30). At this point in time, we say thatPi hascommittedsequence
numbers to payloadm in epoche. Then,Pi a-deliversthe payload to which it has committed the
sequence numbers − 2 (if available, lines 31–33). It incrementss (line 36) and returns to the start of
the loop.

Delaying thea-deliveryof the payload committed tos until sequence numbers + 2 has been com-
mitted is necessary to prevent the above problem of payloads whose fate is undefined. However, the
delay results in another problem if no further payloads, those with sequence numbers higher thans, are
sc-delivered. We solve this problem by instructing the leader to senddummymessages to eject the orig-
inal payload(s) from the buffer. The leader triggers such adummymessage whenever a corresponding
timer T expires (lines 20–21);T is activated whenever one of the current or the preceding sequence
numbers was committed to a non-dummypayload (lines 34–35), andT is disabled when the leader
sc-broadcastsa non-dummypayload (line 24). Thus, the leader sends at most twodummypayloads to
eject a non-dummypayload.

Failure Detection and Switching to the Recovery Phase.There are two conditions under which the
protocol switches to recovery phase: (1) whenB payloads have been committed (line 38) and (2) when
the leader is not functioning properly. The first condition is needed to keep the bufferlog bounded and
the second condition is needed to prevent a corrupted leader from violating liveness.

To determine if the leader of the epoch performs its job correctly, every party has access to a leader
failure detectorFl. For simplicity, Figures 1–3 do not include the pseudocode forFl. The protocol
provides an interfacecomplain(), whichFl can asynchronously invoke to notify the protocol about its
suspicion that the leader is corrupted. Our protocol synchronously invokes an interfaceupdateFl

of
Fl to convey protocol-specific information (during execution of theupdateFl

call,Fl has access to all
variables of ProtocolPABC).

9

function recovery():
{Part 1: agree on watermark}
50: compute a signatureσ on (ID , committed , e, s− 1)
51: send the message(ID , committed , e, s− 1, C, σ) to all parties, whereC denotes

the bit string that completes thesc-broadcastwith tagID |bind .e.(s− 1)
52: (sj , Cj , σj)← (⊥,⊥,⊥) (1 ≤ j ≤ n)
53: wait for n− t messages(ID , committed , e, sj , Cj , σj) from distinctPj such thatCj completes

thesc-broadcastinstanceID |bind .e.sj andσj is a valid signature on(ID , committed , e, sj)
54: W ← [(s1, C1, σ1), . . . , (sn, Cn, σn)]
55: proposeW for MVBA with tag ID |watermark .e and predicateQID|watermark .e

56: wait for MVBA with tag ID |watermark .e to decide somēW = [(s̄1, C̄1, σ̄1), . . . , (s̄n, C̄n, σ̄n)]
57: w ← max{s̄1, . . . , s̄n} − 1

{Part 2: synchronize up to watermark}
58: s′ ← s− 2
59: while s′ ≤ min{s− 1, w} do
60: if s′ ≥ 0 then
61: deliver(log [s′])
62: s′ ← s′ + 1
63: if s > w then
64: for j = 1, . . . , n do
65: u← max{sj , s̄j}
66: M← {Mv} for v = u, . . . , w, whereMv completes thesc-broadcastinstanceID |bind .e.v
67: send message(ID , complete ,M) to Pj

68: while s ≤ w do
69: wait for a message(ID , complete ,M̄) such thatM̄s ∈ M̄ completessc-broadcast

with tagID |bind .e.s
70: useM̄s to sc-deliversomem with tagID |bind .e.s
71: deliver(m)
72: s← s + 1

{Part 3: deliver some messages}
73: compute a digital signatureσ on (ID , queue , e, i, I)
74: send the message(ID , queue , e, i, I, σ) to all parties
75: (Ij , σj)← (⊥,⊥) (1 ≤ j ≤ n)
76: wait for n− t messages(ID , queue , e, j, Ij , σj) from distinctPj such that

σj is a valid signature fromPj andIj ∩ D = ∅
77: Q← [(I1, σ1), . . . , (In, σn)]
78: proposeQ for MVBA with tag ID |deliver .e and predicateQID|deliver .e

79: wait for MVBA with tag ID |deliver .e to decide somēQ = [(Ī1, σ̄1), . . . , (Īn, σ̄n)]
80: for m ∈

⋃n
j=1 Īj \ D, in some deterministic orderdo

81: deliver(m)
82: init epoch()
83: for m ∈ I do
84: send(ID , initiate , e,m) to Pl

Figure 3: ProtocolPABC for Atomic Broadcast (Part III)

10

An implementation ofFl can check whether the leader is making progress based on a timeout and
protocol information as follows. Recall that every party maintains a queueI of initiated but not yet
a-deliveredpayloads. WhenPi has initiated somem, it callsupdateFl

(initiate ,m) (line 14); this
starts a timerTFl

unless it is already activated. When a payload isa-deliveredduring the optimistic
phase, the call toupdateFl

(deliver ,m) (line 32) checks whether thea-deliveredpayload is the first
undelivered payload inI, and if it is, disablesTFl

. WhenTFl
expires,Fl invokescomplain().

WhenPi executescomplain(), it sends acomplain message to all parties (line 43); it also sets
the complained flag (line 44) and stops participating in thesc-broadcastsby not initializing the next
instance. When a correct party receives2t+1 complain messages, it enters the recovery phase. There
is a complaint “amplification” mechanism by which a correct party that has receivedt + 1 complain
messages and has not yet complained itself joins the complaining parties by sending its owncomplain
message. Complaint amplification ensures that when some correct party enters the recovery phase, all
other correct parties eventually enter it as well.

3.2.2 Recovery Phase

The recovery phase consists of three parts: (1) determining a watermark sequence number, (2) syn-
chronizing all parties up to the watermark, and (3) delivering some payloads before entering the next
epoch.

Part 1: Agree on Watermark The first part of the recovery phase determines awatermarksequence
numberw with the properties that (a) at leastt+1 correct parties have committed all sequence numbers
less than or equal tow in epoche, and (b) no sequence number higher thanw + 2 has been committed
by a correct party in epoche.

Upon entering the recovery phase of epoche, a party sends out a signedcommitted message
containings− 1, the highest sequence number that it has committed in this epoch. It justifiess− 1 by
adding the bit stringC that completes thesc-broadcastinstance with tage ands−1 (lines 50–51). Then,
a party receivesn−t suchcommitted messages with valid signatures and valid completion bit strings.
It collects the receivedcommitted messages in awatermark proposal vectorW and proposesW for
MVBA. Once the agreement protocol decides on awatermark decision vector̄W (lines 52–56), the
watermarkw is set to the maximum of the sequence numbers inW̄ minus 1 (line 57).

Consider the maximal sequence numbers̄j in W̄ and the correspondinḡCj . It may be thatPj is
corrupted or thatPj is the only correct party that ever committeds̄j in epoche. But the values contain
enough evidence to conclude that at leastn − 2t ≥ t + 1 correct parties contributed to this instance of
strong consistent broadcast. Hence, these parties have previously committeds̄j − 1. This ensures the
first property of the watermark above (see also Lemma 2).

Although one or more correct parties may have committedw+1 andw+2, none of them has already
a-deliveredthe corresponding payloads, because this would contradict the definition ofw. Hence,
these sequence numbers can safely be discarded. The discarding also ensures the second property of
the watermark above (see Lemma 5). It is precisely for this reason that we delay thea-deliveryof a
payload to which sequence numbers was committed untils + 2 has been committed. Without it, the
protocol could end up in a situation where up tot correct partiesa-delivereda payload with sequence
numberw + 1 or w + 2, but it would be impossible for all correct parties to learn about this fact and to
learn thea-deliveredpayload.

Part 2: Synchronize up to Watermark The second part of the recovery phase (lines 58–72) ensures
that all partiesa-deliver the payloads with sequence numbers less than or equal tow. It does so in a
straightforward way using thetransferabilityproperty of strong consistent broadcast.

In particular, every correct partyPi that has committed sequence numberw (there must be at least
t + 1 such correct parties by the definition ofw) computescompleting stringsMs for s = 0, . . . , w

11

that complete thesc-broadcastinstance with sequence numbers. It can do so using the information
stored inlog . Potentially,Pi has to sendM0, . . . ,Mw to all parties, but one can apply the following
optimization to reduce the communication. Note thatPi knows from at leastn − t partiesPj their
highest committed sequence numbersj (either directly from acommitted message or from the wa-
termark decision vector); ifPi knows nothing from somePj , it has to assumesj = 0. ThenPi simply
sends acomplete message withMsj+1, . . . ,Mw to Pj for j = 1, . . . , n. Every party receives these
completing strings until it is able toa-deliverall payloads committed to the sequence numbers up tow.

Part 3: Deliver Some Messages Part 3 of the recovery phase (lines 73–84) ensures that the protocol
makes progress bya-deliveringsome messages before the next epoch starts. In an asynchronous net-
work, implementing this property must rely on randomized agreement or on a failure detector [10]. This
part uses one round of MVBA and is derived from the atomic broadcast protocol of Cachin et al. [5].

Every partyPi sends a signedqueue message with all undelivered payloads in its initiation queue
to all others (lines 73–74), collects a vectorQ of n − t such messages with valid signatures (lines 75–
77), and proposesQ for MVBA. Once the agreement protocol has decided on a vectorQ̄ (lines 78–79),
partyPi delivers the payloads in̄Q according to some deterministic order (lines 80–81).

ThenPi increments the epoch number and starts the next epoch by re-sendinginitiate messages
for all remaining payloads in its initiation queue to the new leader (lines 82–84).

3.3 Optimizations

Both the BFT and KS protocols process multiple sequence numbers in parallel using a sliding window
mechanism. For simplicity, our protocol description does not include this optimization and processes
only the highest sequence number during every iteration of the loop in the optimistic phase. However,
ProtocolPABC can easily be adapted to processΩ payloads concurrently. In that case, up toΩ sc-
broadcastinstances are active in parallel, and the delay of two sequence numbers betweensc-delivery
anda-deliveryof a payload is set to2Ω. In part 1 of the recovery phase, the watermark is set to the
maximum of the sequence numbers in the watermark decision vector minusΩ, instead of the maximum
minus 1.

In our protocol description, the leadersc-broadcastsone initiated payload at a time. However,
ProtocolPABC can be modified to process abatchof payload messages at a time by committing se-
quence numbers to batches of payloads, as opposed to single payloads. The leadersc-broadcastsa
batch of payloads in one instance, and all payloads in ansc-deliveredbatch area-deliveredin some
deterministic order. This optimization has been shown to increase the throughput of the BFT protocol
considerably [8].

Although the leader failure detector described in Section 3.2.1 is sufficient to ensure liveness, it
is possible to enhance it using protocol information as follows. The leader in the optimistic phase
will never have tosc-broadcastmore than twodummymessages consecutively to evict non-dummy
payloads from the buffer. The failure detector oracle can maintain a counter to keep track of and restrict
the number of successivedummypayloadssc-broadcastby the leader. Ifm is a non-dummypayload,
the call toupdateFl

(deliver ,m) upona-deliveryof payloadm resets the counter; otherwise, the
counter is incremented. If the counter ever exceeds 2, thenFl invokes thecomplain() function.

3.4 Protocol Complexity

In this section, we examine the message and communication complexities of our protocol. We assume
that strong consistent broadcast is implemented by the echo broadcast protocol using threshold signa-
tures, and that MVBA is implemented by the protocol of Cachin et al. [5], as described in Section 2.2.

For a payloadm that isa-deliveredin the optimistic phase, the message complexity isO(n), and the
communication complexity isO

(
n(|m|+K)

)
, where the length of a threshold signature and a signature

share are at mostK bits.

12

The recovery phase incurs higher message and communication complexities because it involves
Byzantine agreement. The MVBA protocol of Cachin et al. [5] has an expected message complexity of
O(n2). Hence, determining the watermark in part 1 of the recovery involves expectedO(n2) messages.
The corresponding expected communication complexity isO

(
n3(|m| + K)

)
since the proposal values

containO(n) 3-tuples of the form(sj , Cj , σj), each of lengthO(|m|+K). Here,m denotes the longest
payload contained in the proposal.

In part 2 of the recovery phase, up toO(n2) complete messages are exchanged. Recall that
a complete message may encompass all payload messages that were previouslya-deliveredin the
optimistic phase of the epoch. Each of thew ≤ B completing strings in acomplete message may be
O(|m| + K) bits long, wherem denotes the longesta-deliveredpayload. Hence, the communication
complexity of part 2 of the recovery phase isO

(
n2B(|m|+ K)

)
.

Part 3 of the recovery phase is again dominated by the cost of the MVBA protocol. Hence, the ex-
pected message complexity of part 3 isO(n2) and the expected communication complexity isO(n3|m|)
since the proposal values in MVBA are of lengthO(n|m|).

To summarize, for a payload that isa-deliveredin the recovery phase, the cost is dominated by the
MVBA protocol, resulting in an expected message complexity ofO(n2) and an expected communica-
tion complexity ofO

(
n2(n + B)(|m|+ K)

)
. Assuming that the protocol stays in the optimistic mode

as long as possible anda-deliversB payloads before executing recovery, theamortizedexpected com-
plexities per payload over an epoch areO(n+ n2

B) messages andO
(

n3

B (|m|+K)
)

bits. It is reasonable
to setB � n, so that we achieve amortized expected message complexityO(n) as claimed.

4 Analysis

In this section, we prove the following theorem.

Theorem 1. Given a digital signature scheme, a protocol for strong consistent broadcast, and a protocol
for multi-valued Byzantine agreement, ProtocolPABC provides atomic broadcast forn > 3t.

We first establish some technical lemmas that describe the properties of ProtocolPABC.

Lemma 2. At the point in time when the first correct party has determined the watermarkw during the
recovery phase of epoche, at leastt+1 correct parties have committed sequence numberw in epoche.

Proof. First note that the lemma holds trivially ifw = −2, and we may assumew ≥ −1 in the rest of
the proof. Letj∗ denote the index of the largest sequence numbers̄1, . . . , s̄n contained in the decision
vector W̄ of the agreement with tagID |watermark .e. Note thatw = s̄j∗ − 1 according to the
protocol. By the predicateQID |watermark .e, the stringC̄j∗ in W̄ completes the strong consistent
broadcast with tagID |bind .e.j∗. According to the strong unforgeability property of strong consistent
broadcast,̄Cj∗ contains evidence that at leastn− 2t distinct correct parties have participated in thesc-
broadcastinstance with sequence numberj∗. According to the logic of the optimistic phase, a correct
party initializes an instance of strong consistent broadcast with tagID |bind .e.s only after committing
sequence numbers − 1. Hence, thesen − 2t ≥ t + 1 correct parties have also committed sequence
numberj∗ − 1 = w.

Lemma 3. If some correct party has entered the recovery phase of epoche, then all correct parties
eventually enter epoche + 1.

Proof. To establish the above lemma, we prove the following two claims.

Claim 1: If some correct party has entered the recovery phase of epoche, then all correct
parties eventually enter the recovery phase of epoche.

13

Claim 2: If all correct parties have entered the recovery phase of epoche, then all correct
parties eventually enter epoche + 1.

By the transitive application of the two claims, the lemma follows.
We first prove Claim 1. Suppose that a correct partyPi enters the recovery phase of epoche. Pi

does so only after receivingcomplain messages from2t + 1 distinct parties. At leastt + 1 of these
messages must have been from correct parties. Hence, every correct party eventually receivest + 1
complain messages and sends its owncomplain message. Thus, every correct party eventually
receivesn− t ≥ 2t + 1 complain messages and transitions to the recovery phase of epoche.

To prove Claim 2, one has to show that a correct party that enters the recovery phase of epoche
eventually completes all three parts of the recovery and moves to epoche + 1.

A correct party completes part 1 of the recovery because it eventually receivesn−t validcommitted
messages from all correct parties and because all correct parties eventually decide in the MVBA proto-
col, according to its termination property.

Part 2 of the recovery phase is concerned with ensuring that all correct partiesa-deliver the set of
non-dummypayloads to which sequence numbers less than or equal tow were committed. Completion
of part 2 by a correct party is guaranteed by the transferability property of strong consistent broadcast as
follows. A correct partyPi that has committed sequence numberw first a-deliversnon-dummypayloads
committed to sequence numbersw − 1 andw (if it has not already done so). Then it sends a message
with a set of completing strings{Ms| 0 ≤ s ≤ w} to all other parties and moves to part 3 of the recovery
phase. Here,Ms is the string that completes thesc-broadcastinstance with sequence numbers, which
can be computed from the information stored inlog . A correct partyPj that has not committed all
sequence numbers less thanw waits to receive the corresponding completing strings;Pj is guaranteed
to receive them eventually, since, by Lemma 2, there are at leastt+1 correct parties that have committed
sequence numberw. Pj thena-deliversall non-dummypayloads with sequence numbers up tow and
moves to part 3 of the recovery phase.

Analogous to part 1, completion of part 3 of the recovery is guaranteed by the fact thatn− t queue
messages will eventually be received and by the termination property of MVBA.

Lemma 4. Supposee∗ is the largest epoch number at any correct party at the point in time whent + 1
correct parties havea-broadcastsome payloadm, and assume that some correct party did nota-deliver
m before entering epoche∗. Then some correct partyPi a-deliversm before entering epoche∗ + 1.

Proof. The lemma is trivially satisfied ifPi a-deliversm during the optimistic phase of epoche∗. Oth-
erwise,m is still present in the initiation queueI of at leastt + 1 correct parties. Since the initiation
queues ofn− t parties are included in the decision vector of MVBA in part 3 of the recovery phase, at
least one of these queues also containsm, and the lemma follows.

Lemma 5. Let w be the watermark of epoche. No correct party commits a sequence number larger
thanw + 2 in epoche, and no correct partya-deliversa payload to which a sequence number larger
thanw has been committed in epoche before reaching part 3 of the recovery phase.

Proof. The proof is by contradiction. Suppose that some correct partyPi has committed sequence
numberw′ = w + 3. Then,Pi has previouslysc-deliveredsomem with tag ID |bind .e.w′, and the
strong unforgeability property of strong consistent broadcast implies that at leastn− 2t ≥ t + 1 correct
parties have participated in thissc-broadcastinstance. Since correct parties initialize thesc-broadcast
instance with tagID |bind .e.w′ only after committing the previous sequence number, they have also
committed sequence numberw′ − 1.

Therefore, theset + 1 correct parties have also sent a signedcommitted message containing
sequence numberw′ − 1 during recovery. Hence, the decision vectorW̄ with n − t entries signed
by distinct parties contained a triple(s̄j∗ , C̄j∗ , σ̄j∗) signed by one of thoset + 1 correct parties with
s̄j∗ = w′ − 1. By the agreement property of MVBA, every correct party must have computed the same

14

W̄ and setw to the maximum among thēsj values contained in̄W minus 1, i.e.w = s̄j∗ − 1 = w′− 2.
But this contradicts our assumption thatw′ = w + 3.

To prove the second part of the lemma, recall that thea-deliveryof the payload to which sequence
numbers − 2 has been committed is delayed until after sequence numbers has been committed. But
since no correct party commits a sequence number larger thanw + 2, as shown in the first part of the
lemma, no correct partya-deliversany payload to which a sequence number larger thanw has been
committed in the optimistic phase of epoche. After the watermark in part 1 of the recovery phase has
been determined, as can be seen from the checks in lines 59 and 68, part 2 ensures that payloads are
a-deliveredonly up to the watermark; sequence numbersw + 1 andw + 2 are simply discarded.

Lemma 6. Suppose the watermark of epoche satisfiesw ≥ −1. Then all correct parties eventually
a-deliverall non-dummypayloads to which any correct party has committed a sequence number less
than or equal tow in epoche.

Proof. By the agreement and termination properties of MVBA, a correct partyPi eventually determines
the watermarkw of epoche. During the optimistic phase, it hasa-deliveredall non-dummypayloads
with sequence numbers less thans− 2.

WhenPi moves to part 2 of the recovery phase, the code in lines 59–62 ensures thatPi alsoa-
deliversthose non-dummypayloads to which sequence numberss− 2 ands− 1 have been committed.

Note thatw may be smaller or larger thans− 1, the highest committed sequence number. Ifw < s
andPi has already committedw, then by the logic of the optimistic phase and the loop in lines 59–62,
Pi eventuallya-deliversall non-dummypayloads to which a sequence number less than or equal tow
has been committed.

On the other hand, ifw ≥ s andPi has not yet committedw, it waits to receive a string{Ms′}
that completes thesc-broadcastinstance with sequence numbers′ for s′ ≤ w. PartyPi is guaranteed
to receive all of them eventually, since there are at leastt + 1 correct parties that have committed all
sequence numbers up tow by Lemma 2.Pj thena-deliversall non-dummypayloads to which sequence
numbers betweens andw have been committed in epoche.

Lemma 7. In every epoche, there exists a sequenceS of payloads such that any correct partya-delivers
all payloads in epoche in the order ofS.

Proof. We first define a sequenceS′
i for every correctPi and show that the sequences computed by

distinct correct parties are equal.
S′

i is defined as follows. During the optimistic phase, all payloads thatPi sc-deliversare appended
to S′

i in the order of their delivery. SupposePi has entered the recovery phase and has computed the
watermarkw; note thatS′

i containss elements. Ifs > w + 1, thenS′
i is truncated to the firstw + 1

elements; ifs ≤ w, thenS′
i is extended tow + 1 elements by the payloads that aresc-deliveredwith

tagsID |bind .e.v for v = s, . . . , w through thecomplete messages in lines 68–72. During part 3 of
the recovery phase, all payloads in∪n

j=1Īj \ D are appended toS′
i according to the given deterministic

order, according to line 80.
It is easy to see that, except with negligible probability,S′

i = S′
j for any two correct partiesPi and

Pj from the consistency property of strong consistent broadcast and from the agreement property of
MVBA. Hence, one may think of a global sequenceS′ = S′

i for all Pi.
Note that every partya-deliversall non-dummypayloads inS′

i during epoche. Hence, the se-
quenceS is equal toS′ with all dummypayloads removed.

Proof of Theorem 1.We have to show that ProtocolPABC satisfies the validity, agreement, total order,
and integrity properties of atomic broadcast.

Validity follows directly from Lemma 4. In fact, Lemma 4 proves a stronger version of the validity
property stated in Section 2.3. The reason is that while the validity property specifies only an “eventual

15

a-delivery” for a payloadm that has beena-broadcastby t + 1 correct parties, Lemma 4 shows thatm
will be delivered relatively quickly.

To showAgreement, suppose that a correct partyPi hasa-deliveredsomem in epoche. We have to
show that eventually all correct partiesa-deliverm.

We first distinguish two cases. In the first case, supposePi hasa-deliveredm before entering part 3
of the recovery phase in epoche. Then, Lemma 5 proves that a sequence number less than or equal
to the watermarkw of epoche has been committed tom. Lemma 6 shows that all correct parties
eventuallya-deliverall non-dummypayloads to which a sequence number less than or equal tow has
been committed, includingm. This proves that the agreement property holds for the first case.

In the second case,m wasa-deliveredduring part 3 of the recovery phase, afterPi had terminated
the MVBA protocol. Then the agreement and termination properties of MVBA guarantee that all correct
parties eventually terminate the MVBA protocol anda-deliverthe same sequence of payloads.

Hence, we have proved that ifPi a-deliversm in epoche, all correct parties in epoche eventually
a-deliverm. Extending the proof to the definition of agreement now only requires us to show that all
correct parties eventually reach epoche. Lemma 3 implies exactly that. Hence, by induction on the
epoch, it can be easily seen that ProtocolPABC satisfies agreement.

Thetotal orderproperty for a particular epoche is proved by Lemma 7. Hence, by induction on the
epoch number, it can be easily seen that ProtocolPABC satisfies total order.

For integrity, we first show that a payloadm is a-deliveredat most once by a correct partyPi.
Suppose thatPi a-deliversm in epoche. Then, there are two possibilities, depending on whether the
a-deliveryhappened before or after part 3 of epoche’s recovery phase was entered. In the former case
(a-deliverybefore part 3 is entered), some sequence number less than or equal tow must have been
committed tom. The check in line 26 ensures that a sequence number is committed to payloadm only
if m 6∈ D. In the latter case (a-deliveryin part 3 of the recovery phase), payloadm must have been a
part of the decision vector̄Q. The check in line 80 ensures that only payloads inQ̄ that are not inD
area-deliveredin a deterministic order. Hence, it is clear that a payloadm is a-deliveredat most once
by Pi. Even if corrupted partiesa-broadcastpayloads that have already beena-delivered, they are not
a-deliveredagain.

The second part of the integrity property, i.e., that our protocol onlya-deliverspayloads that were
previouslya-broadcastby some party if all parties are correct, is trivially satisfied by the protocol.

5 Discussion

In this section, we discuss the practical significance of our optimistic protocol and compare it with other
efficient atomic broadcast protocols.

5.1 Practical Significance

In our formal system model, the adversary controls the scheduling of messages and hence the time-
outs; thus, the adversary can cause parties to complain about a correctly functioning leader resulting in
unnecessary transitions from the optimistic phase to the recovery phase.

Unlike the adversary in our formal model, the network in a real-world setting will not always behave
in the worst possible manner. The motivation for ProtocolPABC — or any optimistic protocol such as
the BFT and KS protocols for that matter — is the hope that timing assumptions based on stable network
conditions have a high likelihood of being accurate. Such a hope is realistic since practical observations
show that network behavior alternates between long periods of stable conditions and relatively short
periods of instability; this indicates that unstable network conditions are the exception rather than the
norm. During periods of stability and when no new intrusions are detected, the optimistic assumption
will be satisfied and our protocol will make fast progress in the optimistic phase. However, both safety

16

Table 1: Comparison of Efficient Byzantine-Fault-Tolerant Atomic Broadcast Protocols

Protocol
Synchrony for

Safety?
Synchrony for

Liveness?
Public-key
Operations?

Message Complexity
Normal Cond. Worst-case

Rampart [21] yes yes yes O(n) unbounded
SecureRing [14] yes yes yes O(n) unbounded

ITUA [19] yes yes yes O(n) unbounded
Cachin et al. [5] no no yes expectedO(n2) expectedO(n2)

BFT [8] no yes no O(n2) unbounded
KS [15] no no yes O(n2) expectedO(n2)

ProtocolPABC no no yes O(n) expectedO(n2)

and liveness are still guaranteed even if the network is unstable, as long as no more thant < n/3 parties
are actively misbehaving.

5.2 Comparison

Table 1 compares the synchrony assumptions, cryptographic requirements, and message complexity of
ProtocolPABC with the other recent Byzantine-fault-tolerant atomic broadcast protocols mentioned
in the introduction. We devote the rest of this section to a more elaborate comparison with the two
protocols closest to ours, namely the BFT protocol and the KS protocol.

Under stable network conditions and with a correct leader, all three protocols operate in their opti-
mistic phases. These conditions are likely to apply during most of the running time of the system. In this
case, the linear message and communication complexities of ProtocolPABC compare favorably with
the quadratic complexities of the BFT and KS protocols.

Under unstable network conditions, the deterministic BFT protocol can generate a potentially un-
bounded number of protocol messages by repeatedly switching from one epoch to another without
making progress. This represents a violation of liveness and is prevented in the KS protocol and in Pro-
tocol PABC, since their recovery phases rely on randomized agreement anda-deliversome payloads.
Naturally, using Byzantine agreement makes our recovery phase more expensive than the one of the
BFT protocol.

The recovery phase of ProtocolPABC is slightly more efficient than that of the KS protocol. The
KS protocol requires four iterations of Byzantine agreement in addition to one iteration for each concur-
rently handled reliable broadcast instance. The recovery phase of our protocol uses only two iterations
of Byzantine agreement, irrespective of the number of strong consistent broadcast instances that are
concurrently handled.

6 Conclusion

We described a protocol that, for the first time, achieves asynchronous atomic broadcast withO(n)
amortized expected messages per payload message. The previous best solutions usedΘ(n2) messages.
Despite intrusions and instability, our protocol guarantees both safety and liveness as long as no more
thant < n/3 parties are corrupted by the adversary. Our use of strong consistent broadcast, instead of
reliable broadcast as in the BFT and KS protocols, introduces an additional digital signature computation
at each party for every delivered payload. However, the intended deployment environments for our
protocol are WANs, where message latency typically exceeds the time to perform digital signature
computations; hence, we expect our protocol to be significantly more efficient than previous protocols
in this case.

17

Acknowledgments

This work was supported in part by NSF under Grant No. CNS-0406351. We are grateful to Bill Sanders
for support, interesting discussions, and comments on improving the quality of the paper. We also thank
Jenny Applequist for her editorial comments.

References

[1] P. Berman and A. A. Bharali, “Quick Atomic Broadcast,” inProc. 7th International Workshop on
Distributed Algorithms (WDAG), vol. 725 ofLecture Notes in Computer Science, pp. 189–203,
Springer, 1993.

[2] P. Berman and J. A. Garay, “Randomized Distributed Agreement Revisited,” inProc. 23th Inter-
national Symposium on Fault-Tolerant Computing (FTCS-23), pp. 412–419, 1993.

[3] G. Bracha, “An Asynchronous[(n− 1)/3]-Resilient Consensus Protocol,” inProc. 3rd ACM Sym-
posium on Principles of Distributed Computing (PODC), pp. 154–162, 1984.

[4] C. Cachin, “Distributing Trust on the Internet,” inProc. International Conference on Dependable
Systems and Networks (DSN-2001), pp. 183–192, June 2001.

[5] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and Efficient Asynchronous Broad-
cast Protocols (Extended Abstract),” inAdvances in Cryptology: CRYPTO 2001(J. Kilian, ed.),
vol. 2139 ofLecture Notes in Computer Science, pp. 524–541, Springer, 2001.

[6] C. Cachin, K. Kursawe, and V. Shoup, “Random Oracles in Constantinople: Practical Asyn-
chronous Byzantine Agreement using Cryptography,”Journal of Cryptology, vol. 18, no. 3, 2005.

[7] R. Canetti and T. Rabin, “Fast Asynchronous Byzantine Agreement with Optimal Resilience,” in
Proc. 25th Annual ACM Symposium on Theory of Computing (STOC), pp. 42–51, 1993.

[8] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance and Proactive Recovery,”ACM
Transactions on Computer Systems (TOCS), vol. 20, pp. 398–461, Nov. 2002.

[9] Y. Desmedt, “Society and Group Oriented Cryptography: A New Concept,” inAdvances in Cryp-
tology: CRYPTO ’87(C. Pomerance, ed.), vol. 293 ofLecture Notes in Computer Science, pp. 120–
127, Springer, 1988.

[10] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of Distributed Consensus with One
Faulty Process,”Journal of the ACM, vol. 32, pp. 372–382, Apr. 1985.

[11] O. Goldreich,Foundations of Cryptography, vol. I & II. Cambridge University Press, 2001–2004.

[12] S. Goldwasser, S. Micali, and R. L. Rivest, “A Digital Signature Scheme Secure Against Adaptive
Chosen-Message Attacks,”SIAM Journal on Computing, vol. 17, no. 2, pp. 281–308, 1988.

[13] V. Hadzilacos and S. Toueg, “Fault-Tolerant Broadcasts and Related Problems,”Distributed Sys-
tems (2nd Ed.), pp. 97–145, 1993.

[14] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, “The SecureRing Protocols for Securing
Group Communication,” inProc. 31st Annual Hawaii International Conference on System Sci-
ences (HICSS), pp. 317–326, Jan. 1998.

18

[15] K. Kursawe and V. Shoup, “Optimistic Asynchronous Atomic Broadcast,” inProc. 32nd Interna-
tional Colloquium on Automata, Languages and Programming (ICALP)(L. Caires, G. F. Italiano,
L. Monteiro,et al., eds.), vol. 3580 ofLecture Notes in Computer Science, pp. 204–215, Springer,
2005.

[16] L. Lamport, “The Part-Time Parliament,”ACM Transactions on Computer Systems, vol. 16,
pp. 133–169, May 1998.

[17] D. Malkhi, M. Merritt, and O. Rodeh, “Secure Reliable Multicast Protocols in a WAN,”Distributed
Computing, vol. 13, pp. 19–28, Jan. 2000.

[18] M. O. Rabin, “Randomized Byzantine Generals,” inProc. 24th IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 403–409, 1983.

[19] H. V. Ramasamy, P. Pandey, J. Lyons, M. Cukier, and W. H. Sanders, “Quantifying the Cost of Pro-
viding Intrusion Tolerance in Group Communication Systems,” inProc. International Conference
on Dependable Systems and Networks (DSN-2002), pp. 229–238, June 2002.

[20] M. Reiter, “Secure Agreement Protocols: Reliable and Atomic Group Multicast in Rampart,” in
Proc. 2nd ACM Conference on Computer and Communications Security, pp. 68–80, 1994.

[21] M. K. Reiter, “The Rampart Toolkit for Building High-Integrity Services,” inTheory and Practice
in Distributed Systems, vol. 938 of Lecture Notes in Computer Science, pp. 99–110, Springer,
1995.

[22] F. B. Schneider, “Implementing Fault-Tolerant Services using the State Machine Approach: A
Tutorial,” ACM Computing Surveys, vol. 22, pp. 299–319, Dec. 1990.

[23] F. B. Schneider and L. Zhou, “Distributed Trust: Supporting Fault-Tolerance and Attack-
Tolerance,” Tech. Rep. TR 2004-1924, Cornell Computer Science Department, Jan. 2004.

[24] V. Shoup, “Practical Threshold Signatures,” inAdvances in Cryptology: EUROCRYPT 2000
(B. Preneel, ed.), vol. 1087 ofLecture Notes in Computer Science, pp. 207–220, Springer, 2000.

[25] S. A. Vanstone, P. C. van Oorschot, and A. Menezes,Handbook of Applied Cryptography. CRC
Press, 1996.

19

