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Abstract

Recently, the authors proposed a method for computing the Tate pairing
using a distortion map for y2 = x5 − αx (α = ±2) over finite fields of
characteristic five. In this paper, we show the Ate pairing, an invariant of
the Tate pairing, can be applied to this curve. This leads to about 50%
computational cost-saving over the Tate pairing.
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1 Introduction

As is well known, bilinear maps such as the Weil/Tate pairing give various
cryptographic applications. This makes the study on the pairings active,
for example the construction of curves suitable to the pairings and efficient
pairing computations.

In 2004, P. S. L. M. Barreto et al. [1] proposed a new bilinear map,
called the Eta pairing, for some types of curves, mainly supersingular
(hyper)elliptic curves in characteristic two and three and Duursma-Lee
type curves y2 = xp − x + d [5] in characteristic p with p ≡ 3 (mod 4).
More precisely, the pairing gives the value obtained by raising that of the
Tate pairing to the power of a certain constant. It turns out that the Eta
pairing makes a lot of computational cost-saving over the Tate pairing.
The main reason is that the computational procedure of the Eta pairing
is just a part of that of the Tate pairing with little extra task.

After the appearance of the Eta pairing, F. Hess et al. [7] simplified
the Eta pairing, called the Ate pairing, and extended it to ordinary elliptic
curves.

For y2 = x5 − αx (α = ±2) over finite fields of characteristic five,
the authors constructed a distortion map and described a computation



of the Tate pairing using the map [6]. In this paper, we show the Ate
pairing can be applied to this curve in a natural way. This leads to about
50% computational cost-saving over the Tate pairing. We remark that our
distortion map for y2 = x5−αx does not satisfy the (sufficient) condition
for the Eta pairing as it is.

2 Ate pairing for y2 = x5 − αx

In this section, we describe the Ate pairing for y2 = x5 − αx. We refer
the reader to [6] for more details on this curve.

Let p = 5, q = pr with r odd, C/Fq the curve defined by y2 =
x5 − αx (α = ±2) and id the identity element of Jac(C). Then we have
#Jac�q (C) = q2 +1 and the embedding degree is equal to 4 for every odd
prime l dividing q2 + 1.

There exists a simple quintuple operation on Jac(C) as follows, which
is a variant of [4]:

Theorem 1 ([6, Theorem 1]).

p div(x + a0, b0) = div(x − ap2

0 , αbp2

0 )+((bp
0y + (αx + ap

0)
p+1
2 )/(x − ap2

0 )),

p div(x2 + a1x + a0, b1x + b0) = div(x2 − ap2

1 x + ap2

0 , −αbp2

1 x + αbp2

0 )

+ ((γy2 + f1(x)y + f0(x))/(x2 − ap2

1 x + ap2

0 )),

where

γ := ((a0b1 − a1b0)b1 + b2
0)

p,

f1(x) := α(a1b1 − 2b0)px3 − 2(2a0b1 − a1b0)px2

+ 2α(a0a1b1 − (a2
1 − 2a0)b0)px

− ((a2
1 − 2a0)a0b1 − (a2

1 + 2a0)a1b0)p,
f0(x) := (−x2 + αap

1x + ap
0)

3.

We obtain the following result from Theorem 1, which plays an im-
portant role for an efficient computation of pairings for y2 = x5 − αx.

Proposition 1 ([6, Proposition 1]).
Let D = div(f(x), g(x)) be a reduced divisor with degf(x) = 2, and

Di the reduced divisor such that Di ∼ piD (especially D0 = D). For i ≥ 1,
we set pDi−1 = Di + (�i(x, y)/hi(x)), where �i(x, y) can be represented as



�i(x, y) = γiy
2 +(six

3 + tix
2 +uix+vi)y+(−x2 +cix+di)3 from Theorem

1. Then, for each coefficient of �i, we have

γi+1 = −γp2

i , si+1 = αsp2

i , ti+1 = −αtp
2

i , ui+1 = αup2

i ,

vi+1 = −αvp2

i , ci+1 = −cp2

i , di+1 = dp2

i .

Let πq denote the q-th power Frobenius endomorphism and ζ8 (resp.
ζ5) the morphism of C defined by (x, y) �→ (αx, α

1
2 y) (resp. (x+ α

1
4 , y)).

We shall use the same symbols for the endomorphisms of Jac(C) induced
from these morphisms.

For a divisor D =
∑

P∈C nP (P ), we write D̂ =
∑

P∈C\{(0,0),O} nP (P ),
the divisor obtained by eliminating (0, 0) and O from D.

By tl we denote the Tate pairing of order l, and by µl ⊂ Fq4 the set
of l-th roots of unity. Since gcd(q2 + 1, q) = 1, there exists an integer ρ
such that ρq ≡ 1 (mod q2 + 1).

Under the notation above, we obtain the following result.

Theorem 2 (Main Theorem: Ate pairing for y2 = x5 − αx).
We set η = (ζ5− ζ−1

5 )+ q ◦ (ζαr

5 − ζ−αr

5 ), and suppose l||q2 +1 1. Then
the pairing

t̂l : Jac�q (C)[l] × Jac�q (C)[l] −→ µl

defined by
t̂l(D, E) = tl(D, ζ8 ◦ η(E))ρ

is bilinear and has the property that t̂l(D,E) �= 1 for all D,E �= id,
namely ζ8◦η becomes a distortion map for Jac�q (C)[l]\{id}. Furthermore,
assuming (0, 0) �∈ suppD or degÊ = 2, we have

t̂l(D, E) = fq ◦ φ (Ê)2(q2−1),

where fq is a function of Fq(C) such that qD = Dq +(fq) with the reduced
divisor Dq and φ((a, b)) := (−a−5α

1
2 , −2a−15b5αα

3
4 ) for (a, b) ∈ C with

a �= 0.

Remark 1.
For the Tate pairing based on [6] (see Lemma 1), we need a function

fq2 ∈ Fq(C) such that q2D = Dq2 + (fq2) with the reduced divisor Dq2 .
This shows that the cost of the Ate pairing is about a half of that of the
Tate pairing based on [6] (see Table 4).
1 This condition seems to hold for cryptographic applications because the value of l

should be chosen so that l ≥ 2160 in view of security.



Remark 2.
If (0, 0) ∈ suppD and degÊ = 1, then t̂l(D, E) = ±fq ◦ φ (Ê)2(q2−1)

holds, where the signature is determined so that t̂l(D, E) ∈ µl [6, Theorem
7] 2.

Remark 3.
In the actual computation of fq ◦ φ(Ê)2(q2−1) for the function fq =

∏

i,j

hi(x, y)
kj(x, y)

(the product of elements of Fq(C)), we can omit hi’s and kj ’s

which belong to Fq(x), because the x-coordinate of each point of supp φ(Ê)
is an element of Fq2 .

The proof of Theorem 2 is similar to that for the supersingular elliptic
curves [7, Section 3.2]. We describe the outline.

We first have the following result:

Lemma 1 ([6, Remark 3]).
With the notation above, we have

tl(D, ζ8 ◦ η(E)) = fq2 ◦ φ (Ê)q
2−1.

Next, setting π̂q = πq◦ζ2r
8 , we have π̂q◦πq = πq◦π̂q = q from Theorem

1, namely π̂q is the dual of πq.
For the proof of Theorem 2, we need two more lemmas.

Lemma 2.
With the notation above, we have

π̂q ◦ φ (Ê) = φ(Ê).

Proof.
The equality follows from the direct computation. We note that the

form of Ê is either Ê =
∑

1≤i≤w(Pi) (w = 1 or 2) with Pi ∈ Fq(C) or
Ê = (P ) + (πq(P )) with P ∈ Fq2(C) \Fq(C) because our curve has genus
2. �

2 From Theorem 2 and this remark, the equality t̂l(D, E)2 = fq ◦ φ (Ê)4(q
2−1) holds

for all D, E ∈ Jac�q(C)[l] \ {id}. The pairing t̂ 2
l keeps the same properties as those

of t̂l described in Theorem 2.



Lemma 3.
With the notation above, we have

(h ◦ π̂q) = q(fq),

where h is a function of Fq(C) such that qDq = Dq2 + (h).

Proof.
By definition, π̂q is a bijection of degree q. Hence, by [9, Proposition

2.6. (Chapter II)], the equality π̂∗
q (

∑
P∈C nP (P )) = q(

∑
P∈C nP (π̂−1

q (P )))
holds for every divisor

∑
P∈C nP (P ) (for the definition of π̂∗

q , see [9, p. 24
and p. 33]).

Therefore we have

(h ◦ π̂q) = π̂∗
q (h) (by [9, Proposition 3.6. (Chapter II)] )

= π̂∗
q (qDq − Dq2)

= π̂∗
q (q(π̂q ◦ πq(D)) − (π̂q ◦ πq(Dq))) (by π̂q ◦ πq = q)

= q(q(πq(D)) − πq(Dq))
= q(qD − Dq) (by D, Dq ∈ Jac�q (C))
= q(fq) (by qD = Dq + (fq)). �

Proof of Theorem 2.
The bilinearity of t̂l and the property that t̂l(D, E) �= 1 follow from [6,

Theorem 4] and gcd(l, ρ) = 1. For the latter assertion, from the definition
of the functions fq, fq2, h and Lemma 1, we have

t̂l(D, E) = {(f q
q h) ◦ φ (Ê)}(q2−1)ρ

= {f q
q ◦ φ (Ê) · (h ◦ π̂q ◦ φ)(Ê)}(q2−1)ρ (by Lemma 2)

= {f2q
q ◦ φ (Ê)}(q2−1)ρ (by Lemma 3)

= fq ◦ φ (Ê)2(q2−1)

(by ρq ≡ 1 (mod q2 + 1) and fq ◦ φ (Ê) ∈ F
∗
q4). �

3 Cost of the Ate pairing

In this section, we evaluate the cost for computing the Ate pairing t̂l(D, E)
described in the previous section 3. The procedure of the Ate pairing is
described in Table 1.
3 The evaluation in this paper is more strict than that in [6].



Table 1. Ate pairing t̂l(D, E)

Input: Reduced divisors D, E ∈ Jac�q(C)[l] \ {id}
Output: Ate pairing t̂l(D, E).

Step 1: Represent q+3
8

as q+3
8

=
�

0≤i≤k rip
i

with 0 ≤ ri < p and rk > 0.

Decompose Ê =
�

1≤i≤w(Pi) (w = 1 or 2).

Step 2: Compute φ(Pi) = (αi, βi)
and α2

i , α3
i , β2

i , αiβi, α2
i βi, α3

i βi (1 ≤ i ≤ w).

Step 3: Compute the function �(x, y) ∈ �q [x, y] s.t.
pD = D′ + (�(x, y)/h(x))
with the reduced divisor D′ and h(x) ∈ �q [x].

Step 4: v ← 1, D′ ← D.

Step 5: for � = 1 to � (Recall q = pr.)
Compute the function �(x, y) ∈ �q [x, y] s.t.
pD′ = D′′ + (�(x, y)/h(x))
with the reduced divisor D′′ and h(x) ∈ �q [x].

v ← vp · �(φ(Ê)), D′ ← D′′.
end for

Step 6: v ← (vq2
/v)2, output v.

We mention that the parameters q and l should be chosen so that
q4 ≥ 21024 and l ≥ 2160 in view of security.

By M (resp. Iqk) we denote the cost of one multiplication on Fq (resp.
the cost of one inversion on Fqk). Applying the Karatsuba method, we
estimate the cost of one multiplication on Fq2 (resp. Fq4) as 3M (resp.
9M), except for some special cases. For example, the multiplication of
aα

1
2 and bα

1
2 for a, b ∈ Fq takes 1M . Note that, for the evaluation in this

paper, we ignore the cost of addition/subtraction (including doubling and
the multiplication by α(= ±2)) and the p-th power operation on Fq, Fq2

and Fq4 (e.g. using normal bases).
We assume that deg Ê = 2 and that supp Ê has no Fq-rational point,

that is, Ê = (P ) + (πq(P )) with P ∈ C(Fq2) \ C(Fq). Otherwise, the
computation of the Ate pairing is more simple.

Hereafter we use the notation “distortion map” not only for ζ8 ◦η but
also for the map φ.

3.1 Cost of the distortion map

With the notation above, we estimate the cost of the computation of φ(P )
for P ∈ C(Fq2) (Step 2 in Table 1).



Table 2. Square root(s) for �q

Input: An element A ∈ �q with q = 5r and r odd.
Output: Square root(s) of A.

Step 1: If A = 0, then output 0.

Step 2: B ← A
q+3
8 , C ← B2

(Then we have C = A
q+3
4 and A−1C ∈ �

∗
5 .)

Step 3: If C = A, then output ±B.
If C = −A, then output ±2B.

If C = αA, then output ±2Bα
1
2 .

If C = −αA, then output ±Bα
1
2 .

Before doing this, we should estimate the cost for decomposing E
(with the form div(f(x), g(x))) into E = (P ) + (πq(P )) − 2(O). This
task needs to solve a quadratic equation f(x) = 0 over Fq, whose cost is
dominated by the computation of square root(s) of the discriminant. The
assumption q ≡ 5 (mod 8) (recall q = 5r with r odd) gives an efficient
method for computing the square root(s) of a given element in Fq (Table
2), which is a special case of the method in [3]. From this, the cost for
computing the x-coordinate of the point P is regarded as that of one
q+3
4 -th power operation on Fq. The computation of the y-coordinate of P

needs one multiplication of an element of Fq and that of Fq2 .
Given a point P ∈ C(Fq2), the procedure for computing φ(P ) is de-

scribed in Table 3, which takes 1Iq + 2 · 1M + 3 · 3M = 11M + 1Iq. Here
we use the fact a−1 = f−1

0 · aq for P = (a, b) and E = div(f(x), g(x))
with f(x) = x2 + f1x + f0. Since the resulting point φ(P ) is of the form
(E1, E2α

1
4 ) with Ei ∈ F

∗
q2 (i = 1, 2), the computations of E2

1 , E3
1 , (E2α

1
4 )2

and Em
1 (E2α

1
4 ) (1 ≤ m ≤ 3) take 6 ·3M = 18M (the latter part of Step 2

in Table 1). Furthermore, if we compute φ(P ) and the associated values,
then we need not compute the values associated with φ(πq(P )) in the case
of Ê = (P )+ (πq(P )) with P ∈ C(Fq2)\C(Fq) (see Subsection 3.2 for the
detail).

3.2 Cost of substitution

In this subsection, we consider the cost of Step 5 in Table 1.
Given a function �(x, y) ∈ Fq[x, y] with the form �(x, y) = γy2+(sx3+

tx2 + ux + v)y + (−x2 + cx + d)3 (Theorem 1) and φ(P ) = (E1, E2α
1
4 )

with Ei ∈ F
∗
q2 (i = 1, 2), we estimate the cost of the computation of



Table 3. Distortion map φ

Input: A point P = (a, b) ∈ C(�q2 ) with a �= 0.
Output: The image φ(P ).

Step 1: A← a−1, B ← −Ap.

X ← Bα
1
2 .

Step 2: C ← 2αB3bpα
1
2 .

Y ← Cα
1
4 .

Step 3: Output (X, Y ).

�(φ(Ê)) = �(φ(P ) + φ(πq(P ))). We note that �(x, y) can be computed
by performing only the p-th power operations and addition/subtraction
operations on Fq if we have done Step 3 (by Proposition 1), and that we
perform Step 5 using the values obtained in Step 2. By this reason, it
costs 6 · 2M + 2 · 3M = 18M to compute �(φ(P )). After the computation
of �(φ(P )), it costs only 2 · 3M = 6M for computing �(φ(πq(P ))) because
we have �(φ(πq(P ))) = −(γB2)q + αr(−sA3B + tA2B − uAB + vB)q +
(−A2−cA+d)3q if φ(P ) = (A, B). Here we use the fact φ◦πq = ζ2r

8 ◦πq◦φ,
namely φ(πq(P )) = (−Aq, αrBq). So it takes (18 + 6)M + 9M = 33M to
compute �(φ(Ê)).

We remark that, for each reduced divisor E ∈ Jac�q (C)[l] \ {id}, we
have supp φ(Ê)∩C(Fq2) = ∅ and supp(�(x, y)) ⊂ C(Fq2) by the definitions
of φ and �(x, y). This gives supp(�(x, y)) ∩ supp φ(Ê) = ∅, which means
�(φ(Ê)) �= 0,∞.

3.3 Total cost

In this subsection, we evaluate the total cost of the computation of the
Ate pairing by applying the procedure in Table 1.

In Steps 1, 5, we set k = r = 120 (cf. �log5 2256� = 111) 4 and assume
that ri’s in Step 1 are uniformly distributed on the set {0, 1, . . . , p − 1}.

For Step 1, we estimate the cost for computing ri’s as 1M (because it
costs about (log2

q+3
8 )2 bit operations), and the cost for the decomposition

of the reduced divisor E as (3 · 1 + 120 · 9
5 + 2)M (by Subsection 3.1).

The first term 3 · 1M corresponds to the cost for the precomputation of
the repeated p-th-power-and-multiply algorithm, and the second one for
the algorithm and the last one for the computation of the y-coordinate.
Thus, Step 1 takes 222M .
4 If r = 113, then the value q2 + 1 has a 173-bit and a 348-bit prime factors.



Table 4. Cost of pairings for genus-2 hyperelliptic curves with embedding degree four

curve/�q pairing (method) cost

y2 = x5 + a, Tate ([2]) 19851M + 240Iq

q = p ≡ 2, 3 (mod 5) Tate ([8]) 11020M + 162Iq

y2 = x5 − αx, Tate (ours) 10350M + 1Iq + 1Iq4

q = 5r Ate (ours) 5319M + 1Iq + 1Iq4

For Step 2, it costs 11M + 1Iq + 18M = 29M + 1Iq by the argument
of Subsection 3.1.

For Step 3, it costs 10M from Theorem 1.
For Step 5, it costs 33M + 9M for rewriting the value v, that is, the

computation of vp · �(φ(Ê)). Therefore, Step 5 takes 120 · 42M = 5040M .
For Step 6, it costs 2 · 9M + 1Iq4 .
Consequently, we estimate the cost for computing the Ate pairing

t̂l(D, E) as 5319M + 1Iq + 1Iq4 .
We list the cost of pairings for genus-2 hyperelliptic curves with em-

bedding degree four (Table 4), which implies that the sizes of the defini-
tion fields are the same under the same level of security 5.

4 Conclusions

In this paper, we showed the Ate pairing can be applied to the curve
y2 = x5 −αx and evaluated the cost of the pairing. The resulting cost for
the Ate pairing is about 50% saving over that for the Tate pairing.
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