Password-Authenticated Group Key Establishment from
Smooth Projective Hash Functions

Jens-Matthias Bohli¢, Marfa Isabel Gonzalez Vasco’*and Rainer Steinwandt®
®Hochschule Mannheim, Germany,
j-bohli@Ghs-mannheim.de
SMACIMTE, Area de Matemética Aplicada, Universidad Rey Juan Carlos
C/ Tulipén s/n. 28933, Méstoles, Madrid, Spain
mariaisabel.vasco@urjc.es
“Department of Mathematical Sciences, Florida Atlantic University,
777 Glades Road, Boca Raton, FL 33431, USA,

rsteinwa@fau.edu

March 1, 2018

Abstract

Password-authenticated key exchange (PAKE) protocols allow users sharing a password to
agree upon a high entropy secret. In this paper, a provably secure password-authenticated pro-
tocol for group key establishment in the common reference string (CRS) model is presented. Our
protocol is quite efficient, as regardless of the number of involved participants it can be imple-
mented with only three communication rounds. We use a (by now classical) trick of Burmester
and Desmedt for deriving group key exchange protocols using a two-party construction as main
building block. In our case, the two party PAKE used as a base is a one-round protocol by
Katz and Vaikuntanatan, which in turn builds upon a special kind of smooth projective hash
functions (KV-SPHFs). As evidenced by Benhamouda et al., KV-SPHFs can be instantiated on
Cramer-Shoup ciphertexts, thus yielding very efficient (and pairing free) constructions.

Group Key Exchange, Password Authentication, Smooth Projective Hashing

1 Introduction

In distributed applications, low-entropy passwords are still a dominating tool for authentication.
Reflecting this, significant research efforts are currently devoted to the exploration of password-
authenticated key establishment protocols, through which participants sharing initially a short
password aim at agreeing upon a high entropy secret for securing subsequent communication. In
this contribution we focus on group key establishment involving n > 2 users. In the password
setting, different scenarios can be considered depending on the application context. E.g., it can be

* contact author

plausible to assume that a dedicated server is available, and each user has an individual password
shared with this server. A different scenario does not involve a server, and assumes all users involved
in the key establishment to share a common password. In this paper we consider the latter approach.
It seems well-suited for small user groups without a centralized server or for applications where the
legitimate protocol participants are devices controlled by a single human user.

Several group key establishment protocols for such a scenario have been proposed, including
[1, 2, 3, 4]. Many of these initial constructions are based on the random oracle or the ideal cipher
model, while few constructions rely on standard assumptions [5, 6]. Aiming at eluding idealized
assumptions, we presented in [7] a provably secure password-authenticated protocol for group key
establishment in the common reference string (CRS) model. This work can be considered as a
refined and corrected final version of [7], yet here we use a different 2-party protocol as main
building block. Namely, instead of using the protocol by Gennaro and Lindell from [8], we build
upon a one-round construction by Katz and Vaikuntanatan [9] that can (as proven in [10]) be
implemented from Cramer-Shoup ciphertexts.

1.1 Key establishment: from 2-party to group

The design of key establishment protocols for two participants has been extensively studied during
the last decades, both in the password setting [11, 12, 13, 14] or using stronger authentication means
(signatures) [15, 16, 17]. A standard strategy for breaking down the design task of a group key
establishment into conceptually simpler steps are protocol compilers that build on the security of a
given 2-party solution. Indeed, a number of such generic constructions have been discussed in the
literature, including [18, 19, 20]. Many of these compilers are inspired in the classical construction
of Burmester and Desmedt [18], where the trick of establishing a group key from pairwise agreed
keys among the group principals was first introduced. We sketch their idea in Figure 1, where
AKE stands for two-party authenticated key exchange protocol, and thus AKE(A, B) denotes the
execution of AKE by users A and B.

The Burmester-Desmedt trick goes as follows: assume participants to be arranged in a cycle.
In a first round, each participant exchanges two-party keys with his left and right neighbour. Once
these two-party key establishments have been completed, each participant broadcasts the XOR-
value (or the quotient) of the two keys he shares with his neighbors. This allows everyone in
the cycle to retrieve each of the 2-party keys that have been exchanged previously, from which a
shared session key may be derived. Intuitively, if an adversary has not been able to compromise
the security of any of the 2-party protocol executions involved, neither will he be able to retrieve
any information about the resulting group session key (for XORs of “randomly looking” elements
should look as well random to him), even though some precautions must be taken in order to
prevent him mixing up the messages exchanged in the last rounds.

Remarkably, whether designed following the above idea or built from scratch, most group key
exchange protocols that can be found in the literature rely on high-entropy secrets for achieving
security against active adversaries. Using instead password-based authentication, the first such
construction in the standard model is due to Abdalla et al. [21, 22] where a 2-party solution is
extended to the 3-party case. Shortly after, in [6], a group protocol is introduced. Further, in [5] a
generic compiler that enables the derivation of an authenticated group key establishment protocol
from an arbitrary authenticated 2-party key establishment is proposed. This compiler is indeed

Phase 1: Two-party key establishments.

AKE: All indices are to be taken in a cycle, i.e., U,4+1 = Uy, etc.
For i =1,...,n, execute AKE(U;,U;+1) —as a result, each user U; holds two keys
I_(>Z-, %Z shared with U, respectively U;_1.

Phase 2: Group key establishment.
Computation: Each U; computes
X; = I_(>Z © ?2
Broadcast: Each U; broadcasts (U;, X;)
Computation: Each U; sets K; := %Z and computes the n — 1 values
Kij=Ki®Xi1® - ®Xi; (G=1....n—1),

defines a master key
K :=(Ky,...,K,)

and extracts a session key sk; from K.

Figure 1: Burmester-Desmedt construction: high-level idea

inspired in the above Burmester-Desmedt rationale, but adds extra features and attains very strong
security guarantees. In particular, from a password-authenticated 2-party key establishment the
compiled protocol is a password-authenticated group key establishment, that has thus been derived
without adding idealizing assumptions or high-entropy secrets for authentication. The construction
suggested in [5] builds on the use of non-interactive and non-malleable commitments, which in the
CRS model are known to be implementable through IND-CCA2 secure encryption schemes.

1.2 Our Contribution. Paper Outline.

In our work [7], we aimed at a neat combination of the 2-party protocol of Gennaro and Lindell
[23, 8] and the compiler from [5]. The two-party protocol of Gennaro and Lindell [8, 23] stems
from an earlier proposal of Katz et al. [12] and can be proven secure in the CRS model. Their
main technical tools are a special type of smooth projective hash functions, which we will refer to
as GL-SPHFs.

Smooth projective hash functions (SPHFs) were first introduced by Cramer and Shoup in [24]
as a valuable cryptographic primitive for deriving provable secure encryption schemes, and have
later proven useful in many other scenarios. Our goal in [7] was to describe a password-based
constant-round group key establishment protocol with strong provable security properties which
neither used the random oracle nor the ideal cipher model.! Unfortunately, the security properties

'Tn independent work, Abdalla et al. [6] followed a different approach aiming at the same goal.

we aimed at in [7] cannot be achieved using the definition of smooth projective hash functions
included therein (which was the original by Cramer and Shoup, and will be later referred to as
CS-SPHFs). The technical problem from [7] can however be circumvented using a stronger type of
SPHF, introduced by Katz and Vaikuntanathan in [9] for building a one-round password based two
party key exhange protocol.? We thus propose in this work a construction that can be taken for
a generalization of Katz and Vaikuntanathan’s scheme to a group setting, compiled through the
ideas of [5] which in turn build on the Burmester-Desmedt rationale.

The three-round protocol we propose considers a fully asynchronous network with an active
adversary. The theoretical model underlying our proof is basically adapted from [12, 25], building
in turn on [26, 27]. In the subsequent section we recall the basic components of the security
framework, addressing specifics of password-based authentication. Thereafter, in Section 3 we
describe the basic tools needed for our construction: smooth projective hashing, labeled public-key
encryption and and non-malleable commitments. Finally, in Section 4 we present our password-

authenticated constant-round protocol for group key establishment along with a security proof in
the CRS model.

2 Security Model and Security Goals
We assume that a common reference string CRS is available that, similarly as in [23], encodes

i) the information needed for implementing a non-malleable commitment scheme,
ii) a uniformly at random chosen element from a family of universal hash functions,

iii) and two values v, v; that will serve as input for a pseudorandom function.

Also, a dictionary D C {0,1}* is assumed to be publicly known. We model the dictionary D to be
efficiently recognizable and of constant or polynomial size. In particular, we must assume that a
polynomially bounded adversary is able to exhaust D. The polynomial-sized set U = {Uq,...,U,}
of users is assumed to share a common password pw € D. Further users, not contained in U/ and
not knowing the shared password, can be simulated by the adversary. For the sake of simplicity, we
adopt the common assumption that pw has been chosen uniformly at random from D, therewith
slightly simplifying the formalism.

2.1 Communication Model and Adversarial Capabilities

Users are modeled as probabilistic polynomial time (ppt) Turing machines.? Each user U € U may
execute a polynomial number of protocol instances in parallel. To refer to instance s; of a user
U; € U we use the notation II]* (i € N).

Protocol instances A single instance II]* can be taken for a process executed by U;. To each
instance we assign seven variables:

ZWe will consistently refer to these functions as KV-SPHFs.
3All our proofs hold for both uniform and non-uniform machines.

used;’ indicates whether this instance is or has been used for a protocol run. The used;’ flag
can only be set through a protocol message received by the instance due to a call to the
Send-oracle (see below);

state]" keeps the state information needed during the protocol execution;
term;? shows if the execution has terminated;
sid]* denotes a possibly public session identifier that can serve as identifier for the session key sk;’;

pid;* stores the set of identities of those users that II;* aims at establishing a key with—including
U; himself;*

acc;’ indicates if the protocol instance was successful, i.e., the user accepted the session key;

ski’ stores the session key once it is accepted by II;. Before acceptance, it stores a distinguished
NULL value.

For more details on the usage of the variables we refer to the work of Bellare et al. in [27].

Communication network Arbitrary point-to-point connections among the users are assumed
to be available. The network is non-private, however, and fully asynchronous. More specifically, it
is controlled by the adversary, who may delay, insert and delete messages at will.

Adversarial capabilities We restrict to ppt adversaries. The capabilities of an adversary A are
made explicit through a number of oracles allowing A to communicate with protocol instances run
by the users:

Send(Uj, s;, M) This sends message M to the instance II* and returns the reply generated by this
instance. If A queries this oracle with an unused instance II;* and M being the string “Start”,
the used;’-flag is set, and the initial protocol message of II;* is returned.

Execute({IL,", ... ,Hit“ }) This executes a complete protocol run among the specified unused
instances of the respective users. The adversary obtains a transcript of all messages sent over
the network. A query to the Execute oracle is supposed to reflect a passive eavesdropping. In
particular, no online-guess for the secret password can be implemented with this oracle.

Reveal(Us, s;) yields the session key sk:".

Test(U;, ;) Only one query of this form is allowed for an active adversary A. Provided that sk
is defined, (i.e., acc;’ = true and sk;* # NULL), A can execute this oracle query at any time
when being activated. Then with probability 1/2 the session key sk;* and with probability
1/2 a uniformly chosen random session key is returned.

4Dealing with authentication through a shared password exclusively, we do not consider key establishments among
strict subsets of &. With pid;? := U being the only case of interest, in the sequel we do not make explicit use of pid;*
when defining partnering, integrity, etc.

2.2 Correctness, Integrity and Secrecy

Before we define correctness, integrity and secrecy, we introduce partnering to express which in-
stances are associated in a common protocol session.
8j

Partnering We adopt the notion of partnering from [28]. Namely, we refer to instances IL;", Hj

as being partnered if both sid}" = sid;j and acc]’ = acc;j = true.

To avoid trivial cases, we assume that an instance IT;* always accepts the session key constructed
at the end of the corresponding protocol run if no deviation from the protocol specification occurs.
Moreover, all users in the same protocol session should come up with the same session key, and we
capture this in the subsequent notion of correctness.

Correctness We call a group key establishment protocol P correct, if in the presence of a passive
adversary A—i.e., A must not use the Send oracle—the following holds: for all ¢,j with both
sid;" = sid}’ and acc;’ = acc;’ = true, we have sk’ = sk’ #NULL.

Key integrity While correctness takes only passive attacks into account, key integrity does
not restrict the adversary’s oracle access: a correct group key establishment protocol fulfills key
integrity, if with overwhelming probability all instances of users that have accepted with the same
session identifier sid;j hold identical session keys skj-j . Next, for detailing the security definition,
we will have to specify under which conditions a Test-query may be executed.

Freshness A Test-query should only be allowed to those instances holding a key that is not for
trivial reasons known to the adversary. To this aim, an instance II;" is called fresh if the adversary
never queried Reveal(Uj, s;) with II7* and Hjj being partnered.

The idea here is that revealing a session key from an instance II]" trivially yields the session key
of all instances partnered with II7?, and hence this kind of “attack” will be excluded in the security
definition.

Security /key secrecy Because of the polynomial size of the dictionary D, we cannot prevent an
adversary from correctly guessing the shared secret pw € D with non-negligible probability. Our
goal is to restrict the adversary A to online-verification of password guesses. For a secure group key
establishment protocol, we have to impose a corresponding bound on the adversary’s advantage:
The advantage Adv 4(¢) of a ppt adversary A in attacking protocol P is a function in the security
parameter ¢, defined as

Adv 4 :=|2 - Succ — 1].

Here Succ is the probability that the adversary queries Test on a fresh instance II]" and guesses
correctly the bit b used by the Test oracle in a moment when II7" is still fresh.

Now, to capture key secrecy we follow an approach of [23]. The intuition behind the definition is
that the adversary must not be able to test (online) more than one password per protocol instance.
This approach is stricter than the one taken in [2] in the sense that we do not tolerate a constant
number > 1 of online guesses per protocol instance:

Definition 2.1 A password-authenticated group key establishment protocol P provides key secrecy,
if for every dictionary D and every ppt adversary A querying the Send-oracle with at most q different
protocol instances, the following inequality holds for some negligible function negl({):

4

Advy <
D]

+ negl(?)

3 Smooth projective hashing and CCA-labeled encryption

Smooth projective hash functions (SPHF) were introduced by Cramer and Shoup [24], and have
resulted in a central tool for several provable secure constructions, including [24, 23, 29, 30, 31,
10, 32]. Informally, consider a family of functions {Hj : X — G}xcx indexed by a countable set
K, which acts on the elements of a set X, for a given group G, both being finite. Now, given a
distinguished language L defined over X, the above family defines a SPHF for (X, L) if there are
four efficient algorithms, which in turn allow for selecting a hashing key k, computing a projection
a(k) of it, and evaluating Hy on any = € X either from the hashing key k or from a tuple (w, a(k))
where w is a witness that evidences x € L.

As a correctness requirement, indeed whenever w is a valid L-witness for z, the hashing values
computed directly from &k and from (w,a(k)) must coincide. However, the smoothness property
implies that if = is not in L, Hy(x) must be statistically indistinguishable from an element selected
uniformly at random in the range of G even knowing the projection key «(k). There have been
different definitions for SPHF, depending essentially on:

e how the projection key a(k) is defined: adaptively (depending both on k and x) or non
adaptively (depending only on k);

e whether z may be computed adaptively from a(k).

In this work, we will stick to the definition of Katz and Vaikuntanathan [9], for which a(k) will
only depend on the hash key k and yet the word x may be chosen from «(k) in an adaptive way.
In the sequel, we introduce the main notions needed for our construction following essentially [9],
therefore not aiming at full generality. Most definitions in this section are verbatim taken from [9].

We start by stating what we mean by a labeled public-key encryption scheme, which fits ap-
plications in which both plaintexts and ciphertexts are tagged by labels in a consistent manner
(see [33]). The different security notions for public-key encryption can easily be adapted for la-
beled schemes (see, for instance [6]). Informally, the main point for adapting security definitions
is to modify the challenge construction phase assuming the adversary must provide not only two
plaintexts mg and mq, but also a label I. As a result, when considering CCA security, he will not
be allowed to query his decryption oracle on any pair (label,¢) where ¢ has been output by the
encryption oracle on an input involving the label I.

Definition 3.1 (Labeled PKE) A labeled public-key encryption scheme is a tuple of probabilistic
polynomial time algorithms (Gen, Enc, Dec) such that

o Gen, the key-generation algorithm, takes as input a security parameter 1™ and returns a pair
of (public, secret) keys (pk, sk). This is denoted by (pk, sk) < Gen(1™).

e Enc, the encryption algorithm, takes as input a public key pk, a label label and a plaintext m
and returns a ciphertext C. We write: C' <— Enc(pk,label,m), or C' < Enc(pk, label,m,r), if
we want to make explicit the randomness r possibly involved in the computation.

e Dec, the decryption algorithm, takes as input a secret key sk, a label label and a ciphertext C,
and returns a plaintext m or an error message L . In symbols; m < Dec(sk, label, C).

Moreover, we assume that for all (pk, sk) output by Gen(1™), any label, any plaintext m, and any
C output by Enc(pk,label,m), it holds Dec(sk,label, C') = m.

At this, plaintexts, ciphertexts, and labels are assumed to be bitstrings of length polynomial in n.
The plaintext and label spaces are supposed to be implicitly defined (and may depend on the public

key).

Building on a CCA-secure labeled encryption scheme, as in [9], we define a hard subset-
membership problem that will serve as a basis for the SPHF which is the main tool of our con-
struction. We refer to [8] for the general definition of hard subset-membership problems.

Let D C {0,1}* be a fixed dictionary and (Gen, Enc,Dec) a CCA-secure labeled encryption
scheme. For any given public key output by Gen, pk, we denote by Cp the set of valid pairs
(label, C') with respect to the public key pk (thus, C' is a ciphertext), and assume this set to be
efficiently recognizable. Now, consider:

e X = {(labeLCva) | (IabeI,C) S Cpk and pw € D}
e L,, = {(label, Enc(pk, label, pw), pw) where label € {0,1}*}.

Note that L = Upwep Ly, € X. As the encryption scheme is CCA, it can be proven that (X, L)
define a hard subset-membership problem: for any probabilistic polynomial-time A, he can only
win with negligible probability the following experiment:

e Phase 1: Setup. (pk,sk) < Gen(1") and b < {0,1} is selected uniformly at random. The
adversary is given the public key and is also granted access to a b-encryption oracle, which, on
any input (label, mg, m1), with mo and m; of the same bit size, will output Enc(pk, label, my).

e Phase 2: Challenge. A selects two passwords pwg and pw; from D (assumed to be of the
same bit size), and a label label. He is presented with an encryption C <— Enc(pk, label, pwy).

e Phase 3: Output. On top of the b-encryption oracle, A has now access to a decryption
oracle holding the secret key sk, which he cannot query with the input (label, C'). He outputs
a guess b’ for the bit b.

Now, the above ingredients will be used to define a KV-SPHF for any given public key pk.

Definition 3.2 (KV-SPHF) Let X be a non-empty set, G be a group and K some index set (all
finite). Consider a family H = {Hy : X — Gl}reg of mappings from X into G, and let o : K —
S be a map from K into some finite non-empty set S (which may be seen as a projection). Given
a subset L C X, we refer to the tuple H = (H, K, X, L,G, S,«), as smooth projective hash family
(SPHF) for (X, L) if there are efficient algorithms

HashKG: selects uniformly at random a hash key k € K

ProjKG(k): computes a projection key a(k),

Hash(k, x): outputs Hyp(z) computed from the hashing key k.

ProjHash(a(k), z,w): outputs Hy(x) from the projection key a(k), provided that w is a valid
witness evidencing © € L.

Moreover, for any function f : S — X\ L, the following distributions have statistical difference
negligible in the security parameter n :

{k < HashKG, s < ProjKG(k) : (s, Hr(f(s)))}

and
{k < HashKG, s <~ ProjKG(k),g < G : (s,9)}.

Remark 3.3 As neatly explained in [10], the main difference between the above definition of
smoothness and previous ones is that

o KV-SPHF [9/: the projection key does not depend on the word C and furthermore the smooth-
ness condition holds even if C is constructed knowing o(k),

e CS-SPHF[24]: the projection key a(k) does not depend on C, but C' must not depend on a(k),

e GL-SPHF/8/: a(k) may depend on C.

In [10], a new KV-SPHF is constructed from labeled Cramer-Shoup encryption. Recall that
KV-SPHFs were designed with the goal of achieving one-round PAKE. In order to do with just one
round, the ciphertext and the projection key for verifying the correctness of the partner’s ciphertext
should be sent together, and thus be independent. Moreover, the smoothness property must hold
in a scenario where the adversary can wait until it receives the partner’s projection key before
generating the ciphertext.

Let us go back to the concrete instance of a hard subset membership problem as explicited
above. At this, note that ProjHash(a(k), label, C, pw,r) will output Hy(label, C, pw) if and only if
r is a valid witness of (label, C, pw), namely, if and only if C' < Enc(pk, label, pw,). We will make
use of the following technical lemma taken from [9], which in turn is a refinement of Lemma 3.4
of [34]. It roughly states that seeing many projection keys will not help in distinguishing (properly
constructed) hashes from elements selected at random from G, if appropiate witnesses are not
known.

Lemma 3.4 Let LENC = (Gen, Enc, Dec) be a CCA-labeled public-key encryption scheme, p = p(n)
be a fized polynomial function and A a probabilistic polynomial time adversary. For b € {0,1}, we
define the experiment Exp, as

e Phase 1: Setup. FEzxecute (pk,sk) < Gen(1"), fir H = (H,K,X,L,11,S,«) a smooth
projective hash function for pk as above and forward this public key to A

e Phase 2: Challenge. Erecute HashKG p times, retrieving as output ki,...,k, which are
in turn fed to ProjKG(-). Feed the corresponding outputs sy,...,s, to A.

e Phase 3: Output. During this phase, A is granted access to two oracles:

— Ogne: a modified encryption oracle, which on input (label, pw) for any pw € D outputs
« If b=0: Hy,(label,C,pw), fori=1,...,p, where C < Enc(pk, label, pw),
x Else, if b=1: p values selected uniformly at random from G.

— Opec : a CCA-decryption oracle for LENC, namely, this oracle may not be queried with
any pair (label, C') where C' was obtained from the encryption oracle on query label, pw.

At the end of this phase, A outputs her guess .
Then, |2Pr[b = b'] — 1| is negligible in the security parameter.

The previous lemma thus states that distinguishing between the two experiments Exp, and Exp;
defined above is hard, thus hashes and random group elements are hard to distinguish even when
having access to many projections.

4 A Group Key Establishment Protocol

The protocol we propose builds on a CCA-labeled encryption scheme and a KV-SPHF H = {Hy }kex
as described in the previous section. In particular, we assume the image of the hash functions Hj
to be contained in a finite Abelian group G. Furthermore, we will use a family of universal hash
functions UM that maps elements from G™ onto a superpolynomial-sized set {0,1}*, and a family
of universal hash functions YH' that map elements from G onto a superpolynomial sized set T
of cardinality |7| < v/|G|. Similarly as Bresson et al. [1], we impose an additional restriction on
UH', saying that there are no “bad indices” into the family H'. Namely, for each UH' € UH' we
require the following to hold: any ppt algorithm having UH’ as input, has no more than a negligible
probability to predict UH'(g) for an (unknown) uniformly at random chosen g € G.

Example 1 Let G := Z/pZ be the additive group of integers modulo an £-bit prime p, and let
L' := |£/2]. Choosing T := {0,1}* to be the set of bitstrings of length L', the following family
UH' considered by Carter and Wegman [35] contains no “bad indices”:

UH =={g~[a-g+Dblosr—_1:a,b€ Z/pZ with a # 0},

where [- Jor/—1 denotes selection of the L' least significant bits (“mod oL ”). The universality of
UH' is well-known (cf., e.g., [35]). Moreover, as the case a = 0 is excluded in the affine maps
considered, for a uniformly at random chosen g € G, also a-g+0b is uniformly at random distributed
in G, and the probability of predicting the correct value UH;b(g) =la-g+blo_r—1 is negligible.

The CRS selects one universal hash function UH from the family UH.

10

A collision-resistant pseudorandom function family We use UH to select an index within a
collision-resistant pseudorandom function family F = {F*}scy as used by Katz and Shin [36]. We
assume F* = {Fg}ne{o’l}L to be indexed by {0, 1}* and denote by vg = vg(¥) a publicly known value
such that no ppt adversary can find two different indices A # X € {0,1}F with Fy(vo) = Fy (vo)
(see [36] for more details). As in [36] we use another public value v; (which, like vy can be included
in the CRS) for deriving the session key. The family UH' is used for confirming the auxiliary
two-party keys Z; ;1 in Round 2 of our protocol without jeopardizing the password pw.

Commitments Round 2 of our protocol uses another essential component already present in Gen-
naro and Lindell’s construction: non-interactive and non-malleable commitment schemes. Roughly
speaking, they should fulfill the following requirements:

1. Every commitment ¢ defines at most one value (decommit(c)) (i.e., the scheme must be
perfectly binding).

2. If an adversary receives several commitments to a value v, he must not be able to output a
commitment to a value [related to v in a known way (that is, it must achieve non-malleability
for multiple commitments).

In the common reference string model, the above commitment schemes can be constructed
from any public-key encryption scheme that is non-malleable and secure for multiple encryptions
(in particular, from any IND-CCA?2 secure public-key encryption scheme) (see, for instance, [8]).°

Now we are ready to introduce our proposed construction. Our protocol is symmetric in the
sense that all users perform the same steps. Figures 2, 3 and 4 show the three rounds of our
protocol. For the sake of readability, we do not explicitly refer to instances s; of users.

5 Design comments

The basic design of the protocol follows the Burmester-Desmedt [18] construction where the Diffie-
Hellman key exchanges are replaced by the Katz-Vaikuntanatan one-round protocol [9] key ex-
change. As in [7], a basic trick of our design is the construction of the master key as

mk = (Z12, 223, Zn—1,ns Zn,1)-

The original construction mk = Hz’:l,...,n Z; i+1 can be determined by two malicious users as pointed
out in [28]. Thus, if an adversary guesses the password, he would be able to provoke pathological be-
haviors such that each protocol run ends up with exactly the same mk (and thus, identical sid;, sk;).
Note that with the construction of mk proposed above, both sid; and sk; will be indistinguishable
from random if a sole honest user is involved in the protocol run.

Let us further comment a bit about Round 2. At this stage, the idea is to broadcast commit-
ments to the quotients X;. As in [7], this is to prevent an online attack on the protocol consisting

% Actually, the encrypted values c;it1,cii—1 from Round 1 could as well have been defined as commitments
constructed from such a commitment scheme. We preferred the encryption formulation to keep our formulation
closer to that of [9]

11

Round 1:

Broadcast: Each U;

e chooses uniformly at random k; from K;

e derives a corresponding projection key S; = a(k;);

selects random nonces r; ;41,7i—1;
defines labels Iabeli7i+1 = (Ui, Uz'-i—laSi) and Iabelm-_l = (Ui, Ui_l,SZ');
e computes

Cii+1 = Enc(pk, label; i1, pw, i i11)
and
cii—1 = Enc(pk,label; ;_1, pw,r; i—1);
e broadcasts M} := (U;, S, Ciit1,Cii1)-
Check: Each U;

e waits until messages M jl for all U; arrived,;
e checks if the values ¢;11,; and ¢;—1; are valid encryptions;*
o If any of the checks fails, set acc; := false and terminate.

“At this, valid means a valid encryption of pw with the expected pk and label

Figure 2: Round 1: A password-authenticated 3-round protocol for group key establishment.

only of Round 1 and Round 3, that allows to test two passwords using only one instance II;" (see
Section 4.1 of [7]).

Further, note that the test;-values in Round 2 addresses attacks where one party did not receive
the correct projection but rather a bogus one, inserted by the adversary. Note that this is needed
despite assumptions on the projective hash function, for we have no guarantees if projections are
not constructed from randomly selected elements k € K (for details see Game 4 and Game 5 in the
proof of Theorem 5.1). Finally, the random value X ; is needed if the check of a test;-value fails. In
this case, the true X; o must not be revealed. On the other hand, an adversary should not recognize
if the check fails, as this would give a hint if the respective hash values and therefore a password
that the adversary may have used was correct. This is again, to prevent that two passwords may
be tested with one instance running the protocol.

5.1 Security Analysis

Theorem 5.1 With the prerequisites as described above, the protocol depicted in Figures 2, 3 and
4 1is correct and achieves key secrecy and key integrity.

PROOF. It is easy to see that the above protocol fulfills correctness and integrity, and the main
part of our proof is devoted to key secrecy:

Correctness and Integrity. Owing to the collision-resistance of the family F, all oracles that
accept with identical session identifier use with overwhelming probability the same index value
UH(mk) and therewith also derive the same session key.

12

Round 2:

Computation: Each U;
e sets
label;+1i == (Uit1, Ui, Siv1)
and
label;—1; :== (Ui—1, U;, Si—1);

e derives two party keys:
Zijit1 = Hy,(labeliy 1, pw, civ1i) - Hy,,, (label; i1, pw, ¢iiv1),

Ziji—1 = Hy, (label;;_1,pw, c;i—1) - Hy,(label;_1 4, pw, c;i—1,);
1
e sets Xi,(] = Zi,i+1 . Z’i,ifl;

e chooses a random X;; € G;

e chooses random values 77, 7 ;;

e computes commitments Cp(Ui,Xi70;7’270) and C,(U;, Xz‘,l;rgg);
e chooses at random UH] € UH' and

e computes a test value test; := UH}(Z; ;_1).

Broadcast: Each user U; broadcasts for a random bit b
M} = (Ui, Cp(Us, Xi i1t), Co(Ui, Xi—uirh 1), test, UH).

Check: Each user U;

e waits until messages M]2 for all j arrived
e checks if
UH;, 1 (Ziiv1) = testiyi;

e if the check succeeds, set

(Xi,TD = (XZ'70,TZ'70> otherwise (XZ‘,Tg) = (Xi,hri,l)-

Figure 3: Round 2: A password-authenticated 3-round protocol for group key establishment.

13

Round 3:

Broadcast: Each user U; broadcasts M} := (U;, X;, 7).
Check: Each U;

e checks that X ---X,, = 1;
e checks the correctness of the commitments C,(U;, X j;r;-);
e if at least one of theses checks fails, set acc; := false and terminate.

Computation: Each U; computes the values

Zivi—2 = Zii—1/Xi1
Zi—9i-3 = Zi—1i—2/Xi2
Ziiv1 = Zit1iv2/Xit1,

a master key
mk := (212,223, Zn-1,n, Zn,1),

and sets sk; := Fup(mk)(v1), sidi := Fum(mk)(vo) and acc; := true.

Figure 4: Round 3: A password-authenticated 3-round protocol for group key establishment.

Key Secrecy. We imagine a simulator that simulates the oracles and instances for the adversary.
The proof is set up in terms of several experiments or games, where from game to game the
simulator’s behavior somehow deviates from the previous. Following standard notation, we denote
by Adv(A, G;) the advantage of the adversary when confronted with Game i. The security parameter
is denoted by ¢. Furthermore, we will index the Send oracle, denoting by Sendy the Send query
that initializes a protocol run and by Send; a Send query that delivers a message of round ¢ for
i €{1,2,3}. As we must consider the session identifiers known to the adversary, we assume them
to be part of the output of the final Sends query.

For the sake of readability, we start by sketching an informal proof roadmap here:

— Game 0 is, as usual, modelling the real experiment faced by the adversary.

— Game 1 to Game 3 deal with the case of passive adversaries; thus, they progressively modify the
Execute oracle: in Game 1 the two-party keys Z; ; are replaced by random bitstrings, then
in Game 2 the “real” password is substituted by another one and finally the session key is
chosen in Game 3 uniformly at random. The adversary is unable to notice these steps, due
to the hiding property of the commitment scheme, the semantic security of the encryption
scheme and the fact that the values Z; ; and X; look anyway random to him.

Games 4 to 8 deal with adversaries that modify messages in Round 1. For all possible modi-
fications, the recipient of the bogus message will randomize its value X;, or the game is aborted.
Also for correct messages, the values Z; ;1 and Z; ;41 are randomized. Table 1 gives an overview
which game deals with which modifications caused by the adversary A.

14

’ Game H Si—1 Sit1 Ci-1 Cit1
4 replaced * oracle-generated | oracle-generated
) * replaced | oracle-generated | oracle-generated
6 v v oracle-generated | oracle-generated
. * * invalid *
* * * invalid
8 * * valid from A valid from A

Table 1: Handling modified Round 1 messages in the proof of Theorem 5.1.

— Game 4 and 5 are concerned with the situation in which the adversary may insert projections
in the first round. A malicious insertion of S;_; results in U; choosing Z; ;1 uniformly at
random; in Game 5, if U; gets an adversarially sent S;;; the corresponding X; is chosen
uniformly at random.

The adversary will not notice these changes in the simulation. In Game 4 the argument
follows because inserting a projection will not help him distinguishing the Z; ; from values
selected independently and uniformly at random, and thus messages from Round 2 will not
help him detect the change. Furthermore, in both games the messages from Round 3 will not
help the adversary in distinguishing. The adversary cannot prevent that with overwhelming
probability the check in Round 2 will fail and thus in Round 3 uniform random values X 1
will be broadcast.

— Game 6. Once ruled out the possibility of inserted projections, the simulator will now generate
the two-party keys Z; ; independently and uniformly at random if the encryptions in round
one were oracle-generated, i.e., honestly transmitted or replayed from other instances. Dis-
tinction between this game and Game 5 reduces to distinguishing between Exp, and Exp;
from Lemma 3.4.

In the sequel, we will speak of “valid encryptions” to refer to encryptions of the correct pw
with the public key and label as expected.

— Game 7 deals with the case in which the adversary may insert an invalid encryption in Round 1.
The simulator, detecting an invalid encryption, will choose X; o at random. This modifica-
tion is due to the smoothness property not detectable by the adversary from the messages
exchanged.

— Game 8 deals with the case of valid encryptions ¢; generated by the adversary, in which case he
wins. This corresponds to a correct guess for the password.

— Game 9 aborts in case any encryption, commitment, projection or X;-value is inserted by the
adversary. The advantage of the adversary can only vary negligibly, as due to the non-
malleability of the commitment scheme and the condition X --- X, = 1, the protocol would
anyway abort with overwhelming probability.

15

— Game 10 and 11 argue similarly as in the passive case, once all malicious Send-queries are
ruled out. First, in Game 10, encryptions from Round 1 are constructed using a randomly
selected password. To conclude, the key generation is modified in Game 11 in that the session
key is chosen uniformly at random. The adversary can only win by having inserted a valid
commitment he constructed; otherwise he will not be able to tell the difference, given that UH
is a universal hash function and (at least) one of its inputs Z; is a random group element.
This concludes the proof.

Having outlined the structure of the proof, we are left to fill in the details:
Game 0. All oracles are simulated as defined in the model. Thus, Adv(A, Gy) is exactly Adv(.A).

Game 1. In this game, the simulation of the Execute oracle is modified. Instead of computing the
values Z; ;_1, Z; ;41 fori = 1,...,n as specified in the protocol, they are chosen uniformly at random
from G. As a result, also the values X; will be random though fulfill the property X;--- X, =1
and the master key mk will be a randomly selected element from G".

Let us now reason that the probability an adversary has of distinguishing between the values
X; generated in Game 0 and the ones generated in Game 1 is no greater than the probability
he has of distinguishing the experiments Exp, and Exp; from Lemma 3.4. Indeed, for a fixed
common reference string and password the adversary cannot distinguish between Exp, and Expq,
for i = 1,...,n. That means, seeing values ¢;;_1, ¢;i+1 and the projection a(k;), he cannot tell
Hy, (labeliyq i, pw,cii—1) and Hy, (labeli_q, pw,ci—1) apart from independent random values, thus,
the same applies to each element X; generated in Game 0.

Therefore, having a negligible probability of distinguishing between the two experiments we

have
|Adv(A, G1) — Adv(A, Go)| < negl(¥).

Game 2. At this, the Execute oracle is again modified, so that a password pw is chosen uniformly
at random from D. Further, each ¢; ;41 and ¢; ;1 are computed consistently. Due to the semantic
security of the encryption scheme ENC, we again have

|Adv(A, G2) — Adv(A, G1)| < negl(¥).

Game 3. Let us consider a further modification of the Execute oracle. Namely, the simulator will
assign to the instances a session key sk;* € {0, 1}¢, chosen uniformly at random.

Note that even knowing all values X;, still the value of at least one of the two-party keys Z ; is
indistinguishable from a random group element. Thus, with the leftover hash lemma, we see that
the master key mk = (Z; 2, ..., Z,,1) has sufficient entropy so that the output of the pseudorandom
function Fyp(mk) is distinguishable from a random sk’ with negligible probability only.

|Adv(A, G3) — Adv(A, G2)| < negl(¥).

By now the Execute oracle returns only random values, independent of the password, and
instances used by an Execute-query hold only random session keys. The following games will deal
with the Send oracle.

16

We will in the following call an encryption that was generated by the simulator oracle-generated
and in accordance an encryption that was generated by the adversary adversary-generated. This
can be checked efficiently by keeping a list of all encryptions the simulator generates. Furthermore,
we call the encryption valid if it is indeed an encryption for the password pw and invalid otherwise.
Note that also encryptions that are replayed by the adversary are oracle-generated.

Game 4. In this experiment all encryptions are oracle-generated and the simulator will keep a
list for the projections S; he generated for each user U; in Round 1. Once an instance II; has
got all messages of the first round, the simulator checks if the received S;_1 is consistent with the
one generated for the U;_;. In case S;_1 was replaced and one of the respective ¢;;—1 or ¢;—1; is
oracle-generated, the corresponding key Z; ;1 is replaced by a random group element. If Z; ;_; was
replaced, U;_1 will use X;_1 1 in Round 3.

The replacement of Z;; 1 was caused by a replaced projection S;_; and hence the value
Hy, (labelij_1, pw, ¢; ;1) may be known to the adversary. However, as k; was honestly generated,
ci—1,; oracle-generated, and the projective hash function is smooth the hash Hy, (labeli_1 ;, pw, ¢;—1)
computed by U; is indistinguishable from an element chosen independently and uniformly in the
group. Therefore Z;;_1 computed by U; is for the adversary indistinguishable from an indepen-
dently uniformly at random chosen element. This holds of course only, if U; 1 does not release any
information about Hy, (labeli_1 i, pw, ci—1;). Therefore U;_; will use X;_1; in Round 3.

It is left to show that U;_;’s check of test; will indeed fail. U; will randomly choose UH, €
UH' and compute and broadcast test; = UH}(Z;;—1). Neither can the adversary recognize the
replacement of Z;; 1 from test; nor can he produce a test; that will be accepted by U;_;.

e Even with knowledge of all test;, j = 1...n, the value Z; ;1 remains indistinguishable from
an independently and uniformly at random chosen element in G, because the test; carry only
a negligible amount of information due to |T'| < /|G]|.

e The adversary cannot produce test, that would be accepted by U;_1: As UH; is chosen inde-
pendent at random it is independent from Z;_;; and the adversary has no prior information
on the test;-value expected by U;_1, because Z; ;1 is indistinguishable from random for him.
Suppose the adversary tries to insert both test, and UH/. He will only succeed if he is able
to find h and UH/ so that h = UH/(Z,;_1,), where Z;_1; is indistinguishable from random
for him. By our assumption on the hash family /M that there are no “bad indices” into
UH', this is not possible, however. Thus, in either case, the adversary has only a negligible
probability of success.

Therefore we have
|Adv(A, G4) — Adv(A, G3)| < negl(¥).

Game 5. Again, the commitments are oracle-generated, but this experiment deviates from the
previous one in that the simulator also checks if S;y1 is consistent with the one generated for the
Uit1. In case S;41 was replaced and c¢; ;41 is oracle-generated, U; will continue with X; ; in Round 3.

We show that U;’s check of test;1 1 would indeed fail, so that this replacement makes no difference
for the adversary. The argument is analogous as above: when Uj;1 chooses UH; ; € UH', the
adversary is unable to produce a test;y; that will be accepted by U;, as again the value Z; ;11
computed by U;y; is indistinguishable from random for the adversary. Neither will the adversary

17

succeed in computing a pair (UHJ, ;, test] ;) that will convince U;: due to our assumption on the
hash family UH’, the adversary has no a priori information on the test; 1 value expected by Us;.
Therefore we have

|Adv(A, G5) — Adv(A, Ga)| < negl(¥).

Game 6. In this experiment, if the commitments were oracle-generated the simulator chooses the
values Z; ;1 and Z; ;11 independently and uniformly at random from the group G. The simulator
keeps a list for entries of the form

(Cisim1,Si-1,Ci—1,i, i) = Ziji-1,

(Ciit1, 54, Cit1,i, Sig1) = Ziig1-

The simulator behaves as in Game 5, except for the answer following a Send; query that delivers
the last first round message to an instance II.

Once an instance II7* has received all messages of the first round, the simulator checks if ¢;—1;
and c;y1,; were both oracle-generated (but all projections were unmodified). In this case, the
simulator checks if (61'72'_1,51'_1,01'_171',51') — Zi,i—l or (Ci7i+1,si,ci+17i,si+1) — Zz',i+1 are already
in the list, and uses the according values Z; ;1 respectively Z; ;1 for further computations. The
values Z; ;1 or Z; ;+1 that are not yet determined by the list are chosen at random from the group G
and the assignment (Ci,i—h Si—17 Ci—1,i» Sl) — Zi,i—l or (Ci,i—i-ly Si, Cit1,i5 Si—i—l) — Zi7i+1a respectively,
is stored in the list to assure consistency between neighbored instances.

Given an adversary A able to distinguish between Game 5 and Game 6 we can construct a
distinguisher D between Exp, and Exp;. Thus, from Lemma 3.4 we can conclude that A’s advantage
between the two games differs at most negligibly.

The distinguisher D is either facing Exp, or Exp; from Lemma 3.4. D is constructed so that it
will behave like the simulator from Game 5, except:

e commitments ¢ are not computed but obtained by the Og,. oracle from Lemma 3.4 on input
rw,

e if a Send-query of the adversary requires D to compute values Z; ;1 respectively Z;;i1, D
will output hashes/random values from the respective values ¢;;—1,¢i—1; and ¢; 41, Cip1,4 if
both were oracle-generated.

Now the view of A will be exactly as in Game 5 if D is facing Exp, and exactly as in Game 6
if D is facing Exp;.

|Adv(A, Gg) — Adv(A, Gs)| < negl(¥).

For the following games, the simulator is given an Extract oracle, that checks if a given encryption
is valid, i.e., an encryption of the password pw.

This can be done because the password is information-theoretically contained in the encryption.
On input a value ¢, the Extract oracle exhausts all possible random choices r to check whether c is
a commitment to pw or not. Indeed, the set of possible values r is of superpolynomial size in the
security parameter; this is however allowed for the Extract oracle.

18

Game 7. In this experiment, the simulator behaves as in Game 6, except that in Round 2’s com-
putation phase, following a Send; query, the received ¢;_1; and c;y1; are checked by the simulator
w.r.t. the password using the Extract oracle. Then, those instances II* that received an invalid
encryption will choose a random group element for Xj g.

By a statistical argument, we see that the probability for the adversary to distinguish between
Game 7 and Game 6 is negligible. If in Round 1 an invalid encryption ¢ to a wrong password pw
(that is, (¢,pw) ¢ L,,) was sent, then by the smoothness property of the hash proof system the
distribution of (¢, pw, a(k), Hy(label, pw, c)) is statistically close to the distribution of (¢, pw, a(k), g)
for a random group element g € G. Thus, the respective Z; ;1 or Z; ;41 and therefore X; o will
look like a random group element for the adversary, who thus has only a negligible chance to detect
the difference.

As a result,

|Adv(A, G7) — Adv(A, Gg)| < negl(f).

By now, only such executions of Round 2 following a Send; query are unchanged where the en-
cryptions from the neighboring users are both valid and at least one was adversary-generated. The
following experiments will also modify this situation.

Game 8. Now the simulator will abort the game with a win of the adversary, if an instance
Hfi received from a Sendi-query wvalid commitments ¢;—1; and c;+1,; of which at least one was
adversary-generated.

This will only increase the success probability of the adversary, therefore:

Adv(A, Gs) > Adv(A, G7).

Game 9. In this game, the simulation aborts if the adversary has inserted commitments, projections
or X;-values in Round 3:

Note that in Game 9, if a message in Round 1 to an instance of U; was modified, as a result
U; individually chooses Z;;_1 or Z;;.1, respectively, uniformly at random. Therefore, U; holds
X; unknown to anyone and expects commitments to values X; such that X;--- X, = 1. Now,
in Round 2, U; outputs a commitment C,(U;, X;;77) to a value X; that only with negligible prob-
ability fulfills X7 --- X, = 1. To avoid users Uy, ...,U;—1,Ui+1,...,U, from aborting, therefore,
the adversary needs to be able to construct a commitment C,(U;, X;r*) to a value X such that
X1+ XX, = 1. Again, as all X; are unknown to the adversary, this can only succeed with
negligible probability. Note that moreover, X; is a random value and only C,(U;, X;;r;) contains
information about X;. Thus, the non-malleability of the commitment scheme gives the adversary
only a negligible probability to insert values X7 with j =1,...,¢—1,4+1,...,n which would be
accepted by II7" in Game 8. The above argument also demonstrates that the adversary cannot
insert any value X; in Round 3 without resulting in an abort (with overwhelming probability).
Therefore,

|Adv(A, Gg) — Adv(A, Gg)| < negl(f).

At this point, we have excluded all situations in which the adversary may have inserted encryp-
tions, commitments, projections or X;-values in Round 3: either he has guessed the password and
inserted valid commitments to it (Game 8) or his attempts to insert rogue messages resulted in a

19

protocol abortion before the computation of a session key. Thus the only situation left to handle
is that all queries to the Send-oracle contain messages faithfully constructed following the protocol
specification. Here we can mimic the reasoning for the passive case.

Game 10. Now the simulation changes in that, for constructing the encryptions from Round 1,
a password pw is chosen uniformly at random from D. This does not change anything, as in the
previous game, these values were not used in any projective hash function anymore. All information
about the password, which was available to the adversary, were encryptions sent in the first round.
Due to the semantic security of the encryption scheme, the adversary detects the use of pw instead
of pw with negligible probability only. Now the adversary does not have any correct encryption of
the password as input. But, due to the non-malleability of the encryption scheme, the adversary’s
probability to succeed in producing a new valid encryption of pw drops at most negligibly.

|Adv(A, G19) — Adv(A, Gyg)| < negl(¥).

Game 11. We modify now the computation of the session key. The simulator keeps a list of
assignments (Z12,..., Zn,l,skfi). Once an instance receives the last Sends-query, the simulator
computes Z12,..., 2,1 and checks if for the sequence (Zy2,...,Z, 1) a master key was already
issued and assigns this key to the instance. If no such entry exists in the list, the simulator chooses
a session key sk’ € {0, 1}* uniformly at random.

The adversary can only detect the difference, if he knows the master key mk = (Z12,...,Zp1).
The master key has once the X; are public, sufficient entropy because knowing all quotients X, still
the value of at least one of the two-party keys Z, ; is indistinguishable from a random group element.
Therefore the output of the function Fyyg(mk) is only with negligible probability distinguishable from
a random sk’

|Adv(A, G11) — Adv(A, Gio)| < negl(¥).

Now the session keys are randomly distributed and independent from the password and the
messages. Instances that hold the same master key computed the same UH(mk) and therefore hold
identical session identifiers. Thus, those instances are partnered and the freshness definition renders
the Reveal-oracle useless because instances that are not partnered have independently uniformly
at random chosen session keys. Besides the 1/2 probability of guessing the bit b right, the only
way for the adversary to win is having sent a valid adversary-generated encryption to a neighbored
instance that did not get an invalid commitment from the other neighbor. Thus, the adversary has
just one try per instance to guess a password and the probability to win in Game 11 is

g 1 q

Succ(A,G11) = — + = (1 —) + negl(?),
D 2 D]

giving an advantage of

Adv(A, G11) = % + negl(0).

Remember, that ¢ only counts the number of different instances that were addressed by a Send-

query.
Putting everything together, we have

q
Adv(A) < — + negl(¥).
(4) < A+ negl()

20

6 Conclusion

We bring together the design ideas depicted in [5] and [7], to come up with an implementation of
a group PAKE building on the two-party protocol of Katz et al. [9]. Following [10], this scheme can
be implemented from Cramer-Shoup CCA-encryption, resulting in a very efficient (pairing free)
design. Our construction can be proven secure in the standard model, and provides quite strong
guarantees; in particular, we evidence that adversaries can only perform one online password test
per instance.

Acknowledgments

We are indebted to Michel Abdalla for numerous valuable comments and discussions. Moreover,
we would like to thank an anonymous referee of [7] for insightful and valuable comments.

Funding

M.I. Gonzalez Vasco is partially supported by research projects MTM2013-41426-R,, and MTM2016-
77213-R, both funded by the Spanish MINECO.

References

[1] E. Bresson, O. Chevassut, D. Pointcheval, Group Diffie-Hellman Key Exchange Secure Against
Dictionary Attacks, in: Advances in Cryptology — Proceedings of ASTACRYPT ’02, Vol. 2501
of Lecture Notes in Computer Science, Springer, 2002, pp. 497-514.

[2] M. Abdalla, E. Bresson, O. Chevassut, D. Pointcheval, Password-based Group Key Exchange
in a Constant Number of Rounds, in: M. Yung, Y. Dodis, A. Kiayias, T. Malkin (Eds.), Public
Key Cryptography — PKC 2006, Vol. 3958 of Lecture Notes in Computer Science, Springer,
2006, pp. 427-442.

[3] R. Dutta, R. Barua, Password-Based Encrypted Group Key Agreement, International Journal
of Network Security 3 (1) (2006) 23-34.

[4] M. C. Gorantla, C. Boyd, J. M. Gonzalez Nieto, M. Manulis, Generic One Round Group Key
Exchange in the Standard Model, in: Information, Security and Cryptology — ICISC 2009:
12th International Conference, Seoul, Korea, December 2-4, 2009, Revised Selected Papers,
Vol. 5984 of Lecture Notes in Computer Science, Springer, 2010, pp. 1-15.

[5] M. Abdalla, J.-M. Bohli, M. I. Gonzalez Vasco, R. Steinwandt, (Password) Authenticated Key
Establishment: From 2-Party to Group, in: S. P. Vadhan (Ed.), Theory of Cryptography
Conference — TCC 2007, Vol. 4392 of Lecture Notes in Computer Science, Springer, 2007, pp.
499-514.

21

[6]

[14]

[15]

[16]

M. Abdalla, D. Pointcheval, A Scalable Password-based Group Key Exchange Protocol in the
Standard Model, in: X. Lai, K. Chen (Eds.), Proceedings of ASTACRYPT 2006, Vol. 4284 of
Lecture Notes in Computer Science, Springer, 2006, pp. 332-347.

J.-M. Bohli, M. I. G. Vasco, R. Steinwandt, Password-authenticated constant-round group key
establishment with a common reference string, Cryptology ePrint Archive, Report 2006/214,
http://eprint.iacr.org/2006/214, last revised 27 Apr 2009 (2006).

R. Gennaro, Y. Lindell, A Framework for Password-Based Authenticated Key Exchange (Ex-
tended Abstract), in: E. Biham (Ed.), Advances in Cryptology — EUROCRYPT 2003, Vol.
2656 of Lecture Notes in Computer Science, Springer, 2003, pp. 524-543.

J. Katz, V. Vaikuntanathan, Round-optimal password-based authenticated key exchange, J.
Cryptology 26 (4) (2013) 714-743.

F. Ben Hamouda, O. Blazy, C. Chevalier, D. Pointcheval, D. Vergnaud, New smooth projective
hash functions and one-round authenticated key exchange, ITACR Cryptology ePrint Archive
2013 (2013) 34.

URL http://eprint.iacr.org/2013/034

V. Boyko, P. MacKenzie, S. Patel, Provably secure password-authenticated key exchange using
diffie-hellman, in: B. Preneel (Ed.), Advances in Cryptology — EUROCRYPT 2000: Interna-
tional Conference on the Theory and Application of Cryptographic Techniques Bruges, Bel-
gium, May 14-18, 2000 Proceedings, Vol. 1807 of Lecture Notes in Computer Science, Springer,
2000, pp. 156-171.

J. Katz, R. Ostrovsky, M. Yung, Efficient Password-Authenticated Key Exchange Using
Human-Memorable Passwords, in: B. Pfitzmann (Ed.), Advances in Cryptology — EURO-
CRYPT 2001, Vol. 2045 of Lecture Notes in Computer Science, Springer, 2001, pp. 475-494.

M. Abdalla, D. Pointcheval, Simple password-based encrypted key exchange protocols, in:
A. Menezes (Ed.), Topics in Cryptology — CT-RSA 2005: The Cryptographers’ Track at the
RSA Conference 2005, San Francisco, CA, USA, February 14-18, 2005. Proceedings, Vol. 3376
of Lecture Notes in Computer Science, Springer, 2005, pp. 191-208.

M. Abdalla, F. Benhamouda, P. MacKenzie, Security of the J-PAKE password-authenticated
key exchange protocol, in: 2015 IEEE Symposium on Security and Privacy, SP 2015,
San Jose, CA, USA, May 17-21, 2015, IEEE Computer Society, 2015, pp. 571-587.
doi:10.1109/SP.2015.41.

URL https://doi.org/10.1109/SP.2015.41

S. Blake-Wilson, A. Menezes, Authenticated Diffie-Hellman Key Agreement Protocols, in:
Proceedings of the Selected Areas in Cryptography, SAC ’98, Springer-Verlag, London, UK,
UK, 1999, pp. 339-361.

URL http://dl.acm.org/citation.cfm?id=646554.694440

M. Bellare, R. Canetti, H. Krawczyk, A modular approach to the design and analysis of authen-
tication and key exchange protocols (extended abstract), in: J. S. Vitter (Ed.), Proceedings

22

[17]

[18]

[19]

[20]

[21]

22]

23]

of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA,
May 23-26, 1998, ACM, 1998, pp. 419-428. doi:10.1145/276698.276854.
URL http://doi.acm.org/10.1145/276698.276854

J. Katz, M. Yung, Scalable protocols for authenticated group key exchange, J. Cryptology
20 (1) (2007) 85-113.

M. Burmester, Y. Desmedt, A Secure and Efficient Conference Key Distribution System, in:
A. D. Santis (Ed.), Advances in Cryptology — EUROCRYPT"94, Vol. 950 of Lecture Notes in
Computer Science, Springer, 1995, pp. 275-286.

A. Mayer, M. Yung, Secure Protocol Transformation via “Expansion”: From Two-party to
Groups, in: Proceedings of the 6th ACM conference on Computer and Communications Secu-
rity CCS 799, ACM Press, 1999, pp. 83-92.

J. Y. Hwang, S.-M. Lee, D. H. Lee, Scalable key exchange transformation: from two-party to
group, Electronic Letters 40 (12) (2004) 728-729.

M. Abdalla, P.-A. Fouque, D. Pointcheval, Password-Based Authenticated Key Exchange in
the Three-Party Setting, in: S. Vaudenay (Ed.), Public Key Cryptography — PKC 2005, Vol.
3386 of Lecture Notes in Computer Science, Springer, 2005, pp. 65-84.

M. Abdalla, P.-A. Fouque, D. Pointcheval, Password-Based Authenticated Key Exchange in
the Three-Party Setting, IEE Proceedings — Information Security 153 (1) (2006) 27-39.

R. Gennaro, Y. Lindell, A Framework for Password-Based Authenticated Key Exchange, Cryp-
tology ePrint Archive: Report 2003/032, available at http://eprint.iacr.org/2003/032
(2003).

R. Cramer, V. Shoup, Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext
Secure Public-Key Encryption, in: L. Knudsen (Ed.), Advances in Cryptology - EUROCRYPT
2002, Vol. 2332 of Lecture Notes in Computer Science, Springer, 2002, pp. 45—64.

J. Katz, R. Ostrovsky, M. Yung, Efficient and Secure Authenticated Key Exchange Using
Weak Passwords, at the time of writing available online at http://www.cs.umd.edu/~jkatz/
papers/password.pdf (2006).

M. Bellare, P. Rogaway, Entitiy Authentication and Key Distribution, in: D. R. Stinson (Ed.),
Advances in Cryptology — CRYPTO ’93, Vol. 773 of Lecture Notes in Computer Science,
Springer, 1994, pp. 232-249.

M. Bellare, D. Pointcheval, P. Rogaway, Authenticated Key Exchange Secure Against Dictio-
nary Attacks, in: B. Preneel (Ed.), Advances in Cryptology — EUROCRYPT 2000, Vol. 1807
of Lecture Notes in Computer Science, Springer, 2000, pp. 139-155.

J.-M. Bohli, M. I. Gonzélez Vasco, R. Steinwandt, Secure Group Key Establishment Revisited,
International Journal of Information Security 6 (4) (2007) 243-254.

23

[29]

[30]

[31]

32]

[33]

[34]

[35]

M. 1. Gonzéalez Vasco, C. Martinez, R. Steinwandt, J. L. Villar, A new Cramer-Shoup like
methodology for group based provably secure schemes, in: J. Kilian (Ed.), Proceedings of the
2nd Theory of Cryptography Conference TCC 2005, Vol. 3378 of Lecture Notes in Computer
Science, Springer, 2005, pp. 495-509.

Y. T. Kalai, Smooth Projective Hashing and Two-Message Oblivious Transfer, in: R. Cramer
(Ed.), Advances in Cryptology — EUROCRYPT 2005, Vol. 3494 of Lecture Notes in Computer
Science, Springer, 2005, pp. 78-95.

K. Kurosawa, Y. Desmedt, A New Paradigm of Hybrid Encryption Scheme, in: M. Franklin
(Ed.), Advances in Cryptology — CRYPTO 2004, Vol. 3152 of Lecture Notes in Computer
Science, Springer, 2004, pp. 426—442.

0. Blazy, C. Chevalier, Generic Construction of UC-Secure Oblivious Transfer, in: T. Malkin,
V. Kolesnikov, A. B. Lewko, M. Polychronakis (Eds.), Applied Cryptography and Network
Security: 13th International Conference, ACNS 2015, New York, NY, USA, June 2-5, 2015,
Revised Selected Papers, Vol. 9092 of Lecture Notes in Computer Science, Springer, 2015, pp.
65-86.

V. Shoup, An emerging standard for public-key encryption, ISO ISO 18033-2, International
Organization for Standardization, Geneva, Switzerland, http://www.shoup.net/iso/std6.pdf
(2006).

R. Gennaro, Y. Lindell, A framework for password-based authenticated key exchange!, ACM
Trans. Inf. Syst. Secur. 9 (2) (2006) 181-234. doi:10.1145/1151414.1151418.
URL http://doi.acm.org/10.1145/1151414.1151418

L. Carter, M. N. Wegman, Universal classes of hash functions (extended abstract), in: J. E.
Hopcroft, E. P. Friedman, M. A. Harrison (Eds.), Proceedings of the 9th Annual ACM Sym-
posium on Theory of Computing, May 4-6, 1977, Boulder, Colorado, USA, ACM, 1977, pp.
106-112.

J. Katz, J. S. Shin, Modeling Insider Attacks on Group Key-Exchange Protocols, Cryptology
ePrint Archive: Report 2005/163, available at http://eprint.iacr.org/2005/163 (2005).

24

