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Abstract

We present a novel approach for proving secrecy properties of security protocols by mecha-
nized flow analysis. In contrast to existing tools for proving secrecy by abstract interpretation,
our tool enjoys cryptographic soundness in the strong sense of blackbox reactive simulatabil-
ity/UC which entails that secrecy properties proven by our tool are automatically guaranteed
to hold for secure cryptographic implementations of the analyzed protocol, with respect to the
more fine-grained cryptographic secrecy definitions and adversary models.

Our tool is capable of reasoning about a comprehensive language for expressing protocols, in
particular handling symmetric encryption and asymmetric encryption, and it produces proofs for
an unbounded number of sessions in the presence of an active adversary. We have implemented
the tool and applied it to a number of common protocols from the literature.

1 Introduction

Security proofs of cryptographic protocols are known to be difficult and the automation of such
proofs has been studied soon after the first protocols were developed. From the start, the actual
cryptographic operations in such proofs were idealized into so-called Dolev-Yao models, follow-
ing [21, 22, 39], e.g., see [30, 47, 1, 37, 44, 12]. This idealization simplifies proof construction by
freeing proofs from cryptographic details such as computational restrictions, probabilistic behavior,
and error probabilities. Conducting secrecy proofs by typing based on these abstractions has shown
to be a particularly salient technique as it allowed for elegant and fully automated proofs, often
even for an unbounded number of sessions.

A type system was recently presented in [34] that combines the conciseness of language-based
reasoning in Dolev-Yao models with strong computational soundness guarantees, i.e., if an abstract
protocol typechecks then its cryptographic realization provably keeps the quantities handed to it
by the protocol users secret in the computational sense. Such computational soundness guarantees
of abstract proofs have recently been identified as central for gaining trustworthy guarantees of
security protocols: the computational model strives for stronger, more fine-grained security notions
and furthermore considers a more realistic adversary that is allowed to perform arbitrary bitstring
manipulations as long as they can be performed in probabilistic polynomial-time. However, despite

1



being the first type system that allows for abstract, computationally sound reasoning under active
attacks, the major drawback of [34] was that type inference was not considered. As a consequence,
this work did not entail an automated procedure for analyzing secrecy aspects of cryptographic
protocols with cryptographic soundness guarantees, which arguably is the central goal of unifying
the advantages of both approaches.

We remedy this shortcoming by presenting a mechanized approach for soundly proving secrecy
properties of cryptographic protocols by analysing the possible flows of data during the execution of
the protocol. Our approach is capable of reasoning about a comprehensive language for expressing
protocols, in particular handling symmetric encryption and asymmetric encryption, allows for more
precise analyses compared with the type system of [34], is fully automated, and produces proofs for
an unbounded number of sessions in the presence of an active adversary.

Our results (and the one of [34] as well) rely on a variant of the Dolev-Yao model of Backes,
Pfitzmann, and Waidner, henceforth called the BPW model, which has been shown to be compu-
tationally sound in the strong sense of of blackbox reactive simulatability (BRSIM). The security
notion of BRSIM means that one system (here, the cryptographic realization) can be plugged into
arbitrary protocols instead of another system (here, the BPW model) [45, 17]; it is also called UC
for its universal composition properties. While first security proofs of several common protocols
have been hand-crafted using the BPW model [7, 6], recent work has shown that the BPW model
is accessible to theorem proving techniques as well [48]. Our work shows that soundly proving
secrecy properties in a fully automated manner is possible using the BPW model, and it identifies
cryptographically sound secrecy by typing as a promising direction for future work in general. In
particular, our line complements the large number of existing works that aims at establishing com-
putational soundness of Dolev-Yao models without considering secrecy by typing, cf. the section on
related work for more details.

The analysis presented in this paper builds on the spi-calculus-style language, its deterministic
semantics and the corresponding type system from [34] and is inspired by methods from control
flow analysis. It works by collecting for each defined variable at each protocol point the possible
shapes of terms that this variable may point to, including the possible creation points of the atomic
subterms. The same information is also collected for channels between participants for encryption
keys, thus yielding information which terms may be communicated over which channel, and which
terms may be encrypted with which keys by honest participants, respectively. Finally, the same
abstraction is also collected for terms that the adversary may learn during the run of the protocol.

There are a couple of noteworthy points. First, all inputs from the adversary are modeled
using a single abstract value, thus freeing the analyser from the necessity to model every new
term that the adversary may construct. Instead, we consider explicit rules for decomposing this
abstract value, i.e., the adversary’s input, which allows us to keep the description of the adversary’s
knowledge finite. Secondly, parts of the protocol statically following a public-key decryption are
analysed twice — once assuming that the ciphertext was created by an honest participant and
once assuming that it was created by the adversary. The distinction of these two cases (which was
already present in [3] and also in [34]) is important for the precision of the analyser. Thirdly, we
collect not only the possible values of variables but also relationships between them. Whenever
certain operations restrict the set of possible values of some variables, we exploit these recorded
relationships in order to restrict the set of values of related variables as well. This collection of
relationships is reminiscent of shape analysis [50], although our task is considerably simpler here
than a full shape analysis because we do not have destructive updates. We record the relationships
between variables by collecting a set of constraints that their abstractions must satisfy.
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Our prover (consisting of constraint generator and solver) has been implemented in O’Caml and
can be downloaded at http://www.ut.ee/∼peeter l/research/brsiman.

Related Work Early work on linking Dolev-Yao-style symbolic models and cryptography [5,
27, 31, 28] only considered passive attacks, and therefore cannot make general statements about
protocols.

The security notion of BRSIM was first defined generally in [45], based on simulatability def-
initions for secure (one-step) function evaluation. It was extended in [46, 17], the latter with
somewhat different details and called UC (universal composability), and has been widely applied to
prove individual cryptographic systems secure and to derive general theoretical results. In particu-
lar, BRSIM/UC allows for plugging one system into arbitrary protocols instead of another system
while retaining essentially arbitrary security properties [45, 17, 9].

A cryptographic justification of a Dolev-Yao model in the sense of BRSIM/UC was first given
in [10] with extensions in [11, 8]. Later papers [40, 33, 18] considered to what extent restrictions to
weaker security properties or less general protocol classes allow simplifications compared with [10]:
Laud [33] has presented cryptographic foundations for a Dolev-Yao model of symmetric encryption
but specific to certain confidentiality properties where the surrounding protocols are restricted to
straight-line programs. Warinschi et al. [40, 19] have presented cryptographic underpinnings for a
Dolev-Yao model of public-key encryption, yet for a restricted class of protocols and protocol prop-
erties that can be analyzed using this primitive. Baudet, Cortier, and Kremer [13] have established
the soundness of specific classes of equational theories in a Dolev-Yao model under passive attacks.
Canetti and Herzog [18] have shown that a Dolev-Yao-style symbolic analysis can be conducted
using the framework of universal composability for a restricted class of protocols, namely mutual
authentication and key exchange protocols with the additional constraint that the protocols must be
expressible as loop-free programs using public-key encryption as their only cryptographic operation.
We stress that none of these works build on type inference for proving secrecy properties of security
protocols.

The work that comes closest to our work is the work of Laud [34] who designed a type system for
proving secrecy aspects of security protocols based on the BPW model. He shows that if an abstract
protocol typechecks in his system, then its cryptographic realization provably keeps the quantities
handed to it by the protocol users secret in the computational sense. The proof of this fact exploits
the BRSIM/UC soundness result of [10, 8, 9] for carrying over symbolic proofs of secrecy in the
BPW model to the actual cryptographic realization, similar to the present paper. However, type
inference has not been implemented yet in this paper so that the paper did not entail a mechanized
procedure for soundly proving secrecy aspects of security protocols.

Efforts are also under way to formulate syntactic calculi with a probabilistic, polynomial-time
semantics, including approaches based on process algebra [41, 36], security logics [29, 20] and cryp-
tographic games [14]. In particular, Datta et al. [20] have proposed a promising logical deduction
system to prove computational security properties. We are not aware of any implementations of
these frameworks, except for Blanchet’s [14], who has recently presented an automated tool for
proving secrecy properties of security protocols based on transforming cryptographic games. This
line of work is orthogonal to the work of justifying Dolev-Yao models, which offer a higher level of
abstractions and thus much simpler proofs where applicable, so that proofs of larger systems can
be automated.

Let us also mention some of the work in the area of type systems for cryptographic protocol
analysis. The first type system of this kind was proposed by Abadi [2], it could be used for verifying
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the secrecy of payloads or nonces in the protocols using only symmetric encryption. This type
system, as well as all the remaining ones that we describe work in the Dolev-Yao model. The type
system was extended to cope with asymmetric encryption by Abadi and Blanchet [3]. Abadi and
Blanchet [4] further generalized this type system to handle generic cryptographic primitives. The
type system of Abadi has also been extended by Gordon and Jeffrey [24, 25, 26] to check for integrity
properties. Finally, a static program analysis [32] and a type system [35] exist that work directly
in the computational model, handling programs containing symmetric encryption, both for passive
adversaries only.

Abstract interpretation, which is in most cases automatable using data flow analysis, has also
been considered for the analysis of cryptographic protocols within the Dolev-Yao model. See for
example [15] and the references contained therein.

Structure of the paper We start by describing our (machine-based) execution model and the
language used to program these machines for expressing security protocols in Sec. 2. We continue
in Sec. 3 with the description of the analysis. In particular, we give the correctness theorem
stating under which conditions the results of the abstract analysis entail computational security of
a cryptographic protocol. Sec. 4 describes the implementation of our tool and its applicability to
common security protocols from the literature. In Sec. 5 we give the main technical lemma, similar
to subject reduction, used to prove the previously given correctness theorem.

2 Execution Model

We use the same setup of a system as in [34]. In short, the BPW model (sometimes also called
abstract cryptographic library in the following corresponding to the original title of [10]) for n honest
users is implemented by a machine THn which has input ports inui

? to receive commands from the
i-th user, output ports outui

! to return the results of commands and (handles of) received messages,
ports ina? and outa! for the communication with the adversary, and a database of terms. The
database records the structure of messages and the knowledge of messages by the parties (n users
and the adversary). The users and the adversary access messages through handles, the transmission
of messages involves the translation of handles. The possible commands are the construction, taking
apart, and sending of messages. The protocol logic for the i-th user is implemented by a machine
Pi that connects to the ports inui

? and outui
! and offers the ports pinui

? and poutui
! to the user

through which it may send and receive data. An execution step of a machine Pi consists of receiving a
message (either from THn or the user), performing some computations on the terms, and optionally
sending a message. The machines Pi are programmed in a language resembling the spi-calculus,
defined below.

e ::= n | keypairℓ | store(x) | retrieve(x) | list(x1, . . . , xk)

| x | pubkey(x) | pubencℓ(xk, xt) | privencℓ(xk, xt) | π
j
i (x)

| gen symenc key(i)ℓ | pubdec(xk, xt) | privdec(xk, xt) | gen nonceℓ

SIP ::= receiveℓ
c[xp](x)

IP ::= SIP | !SIP
I ::= IP .P

I∗ ::= 0 | I | I∗

P ::= I∗

| II

| sendc[xp](x).I∗

| letℓ x := e in P else P ′

| if ℓ x = x′ then P else P ′
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Here x-s are variables, e-s are expressions, I-s are input processes, P -s are output processes, and ℓ-s
are labels for program points and expressions of interest. No label may occur twice in the protocol
text, nor can a variable be defined twice or used before being defined. The language contains public-
key and symmetric-key encryption as the cryptographic primitives (as well as nonces). A public and
secret key pair is created by the expression keypair, the public key is extracted by pubkey. A level i is
associated with each symmetric key to prevent encryption cycles (and make the proof relating THn

and its concrete implementation go through); a symmetric key may only encrypt keys of lower level.
The store- and retrieve-expressions are used to convert payloads (data that can be communicated
with the user) to handles and back. The expression π

j
i (x) extracts the i-th component from the list

of length j pointed to by x. In receivec[xp](x) and sendc[xp](x), the variable x is the message and
xp is the identity of the other party. The channel for the message is given by the constant abstract
channel c. An abstract channel is used to group messages sent between protocol participants, as
well as between the protocol user and participant (although the abstract channel does not alone
determine the sender and the receiver of a message). Furthermore, the set of abstract channels
Chan is partitioned into four parts, denoted Chanx, where x ∈ {s, a, i, u}. If a message is sent
on an abstract channel from Chans [resp. Chana, Chani] then it means that the message travels
between protocol participants over a secure (resp. authentic, insecure) channel. If a message is
sent on an abstract channel from Chanu then it travels between the protocol user and the protocol
participant (i.e. over one of the concrete channels pinui

or poutui
). The variables x and xp are bound

in a receive-statement. The variable x is also bound in the default-branch of a let-statement, but
not in the else-branch, which is taken upon a failure of evaluating e.

The internal state of an inactive (i.e. not currently running) Pi consists of a list of input
processes together with their execution environments, giving values to already defined variables.
The “program” (or initial state) of each Pi is a list of input processes. An active Pi additionally
contains the received message (together with the apparent sender and the name of the channel
it was received on) and the currently running (output) process (together with its environment).
When Pi receives the message, it is handed over to the first input process (!)receivec[xp](x).P with
matching channel name c in its list of processes. The variables x and xp are bound to the message
and the apparent sender and the process executes until it has become II or a list of input processes
I∗. The value II means rejecting the message — the list of input processes of Pi is not changed, the
currently executing process and its environment are discarded (thereby forgetting all references to
any new terms that may have been created since receiving that message) and the message is handed
over to the next input process with the matching channel name in the list of input processes of Pi.
When a process accepts the message, it executes until it has become a list of input processes I∗.
All processes in this list I∗, together with the environment of the output process, are put to the list
of input processes of Pi instead of or in addition of (depending on the presence of replication) the
original process. When no process accepts the message, it is simply lost.

Security

The security property we are interested in is the secrecy of payloads [9]. The same property was
also considered in [34] and our treatment here does not differ from theirs. In short, we want the
system implementing the protocol (consisting of the machines P1, . . . ,Pn and THn) to retain the
secrecy of any payloads handed to it by the users over the ports pinui

?. The secrecy of payloads
means that the user and the adversary together cannot figure out whether the system implementing
the protocol is really computing with the values received from the user or with some other values;
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the scrambling is done on the channels pinui
and descrambling on the channels poutui

. A precise
definition can be found in [9] and a concise description in [34]. In [34] the following five properties
were stated to be sufficient for the secrecy of payloads and for the simulatability of the machine
THn:

(I) the bit-strings that the machines Pi receive from the ports pinui
? do not affect the control flow

of Pi, i.e. this data is not used in the if -statements;

(II) the machines Pi may pass the bit-strings received from the user to the cryptographic library
only in store-commands;

(III) the terms resulting from these store-commands will not become available to the adversary, i.e.
the adversary does not get handles for these terms.

(IV) symmetric keys of order i only encrypt terms of order less than i (note that symmetric keys
created by the adversary have no order and are thereby not restricted by this condition);

(V) if a symmetric key unknown to the adversary (i.e. the adversary does not have a handle to
it) is used for encryption then this key will never become known to the adversary.

The analysis presented in this paper verifies that these five properties hold.

3 Analysis

3.1 Abstract Domain

The possible values of protocol variables are abstracted by sets of the following abstract values AV :

AV ::= AV I | AV H | seckey(ℓ, b) AV I = XP | XS

AV H ::= store(AVI ) | nonce(ℓ, b) | symkey(i, ℓ, b) | symkeyname(ℓ, b)
| AnyPubVal | pubkey(ℓ, b) | (AV H , . . . ,AV H) | pubenc(AV H ,AV H , ℓ, b)

| symenc(AV H ,AV H , ℓ, b)
(1)

Here AV I contains the possible abstractions of payloads — they may be either public (XP) or
secret (XS). The addresses of the communication partners (variable xp in send- and receive-
commands) are public. Data received from the protocol users are secret. The terms AV H are the
possible abstractions of terms in the database of THn. They should be mostly self-descriptive. The
arguments ℓ refer to program points (labels at expressions) where these values have been created.
The arguments b also resemble program points — we have mentioned before that we analyse the
parts of the protocol following a public-key decryption twice — once assuming that the ciphertext
was generated by a protocol participant and once assuming that it was generated by the adversary.
Hence, if n public-key decryptions occur before the program point ℓ then this point really counts as
2n different program points for the analysis. If ℓ is a program point following n decryptions then b is
a bit-string of length n where i-th bit records the assumed creator of the i-th decrypted ciphertext
(1 — some honest participant; 0 — the adversary). We call b the decryption context.

The argument i in symkey(i, ℓ, b) records the level of the symmetric key. The abstract value
symkeyname(ℓ, b) corresponds to the identities of the symmetric keys created at the program point
ℓ (with the decryption context b). According to THn, the adversary is able to find the identities of
symmetric keys from the ciphertexts created with them. The abstract value AnyPubVal denotes any
value that the adversary knows and may have constructed. All other AV H denote values constructed
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by protocol participants. The secret decryption keys seckey(ℓ, b) are not listed as a possible case for
AV H because THn puts severe restrictions on their use — they may only be used for decrypting
ciphertexts; they cannot appear as subterms of more complex terms.

3.2 Constraint Variables

Given a protocol ℘ with its set of labels, we generate a constraint system with the following con-
straint variables:

• Sb
ℓ for all statement labels ℓ occurring in the protocol (here we only consider the labels of if -,

let- and receive-statements, not the labels occurring in expressions). Here b is a bit-string
whose length equals the number asymmetric decryption operations that occur in the protocol
before and including the point labeled with ℓ. Hence for a program point ℓ that is preceded
by n asymmetric decryptions we have 2n different variables Sb

ℓ.

Let Var◦ℓ be the set of variables defined before the protocol point ℓ. Let Var•ℓ be the union of
Var◦ℓ with the set of protocol variables that are assigned a value at ℓ (depending on whether
ℓ labels an if -, let- or receive-statement, this set has 0, 1 or 2 elements). The possible values
for Sb

ℓ are mappings from Var•ℓ to sets of abstract values AV .

The variable Sb
ℓ records the possible values of protocol variables after a successful completion

of the operation at program point ℓ. A let- or if -statement is successful if the default-/true-
branch was taken. A receive-statement is always successful.

• Rb
ℓ for all statement labels ℓ occurring in the protocol and b having the same possible values

as for Sb
ℓ. These constraint variables are introduced to ease the presentation of the constraint

system. Namely, the handling of a statement (if it succeeds) proceeds in two steps: first the
constraints giving the abstraction(s) of the newly defined variable(s) are evaluated, followed
by the evaluation of constraints describing the relationships between the values of different
variables. The constraint variable Sb

ℓ contains the result of these two steps. The constraint
variable Rb

ℓ contains the result of the first step only.

• Cc for all abstract channels c ∈ Chans∪Chana occurring in the protocol. The possible values
of these variables are sets of abstract values AV H . These variables will record an abstraction
of the possible messages sent over the abstract channel c.

• P. This will record the values that the adversary knows. The possible values of this variable
are sets of abstract values AV .

• Eb
ℓ for a label ℓ occurring at a key generation. This set records all abstract values that

are encrypted with the key generated at ℓ for the preceding asymmetric decryption results
described by b. The bit-string b has the same meaning as for the variables Sb

ℓ (the point of
interest is the occurrence of ℓ in the protocol). The possible values of these variables are sets
of abstract values AV H .

• Lb
ℓ,true and Lb

ℓ,false for labels ℓ at let- and while-statements. They denote whether the true-
(default-) and false-branch of the statement are alive or not. The bit-string has the same
meaning as before. The possible values of these variables are false and true.
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3.3 Constraints

A constraint states that a constraint variable introduced above has to be greater than or equal
to a monotone expression over constraint variables. For this to make sense, a partial order has
to be defined on the possible values of constraint variables. For applying standard algorithms for
constraint solving, the orders thus defined must have the structure of upper semilattice.

We order booleans by false ≤ true. The sets of abstract values are ordered by subset inclusion.
The mappings to sets of abstract values are ordered pointwise.

There are two sources for constraints — the protocol and the adversary. The first describes the
movement of values during the computations performed by the protocol, while the second describes
the capabilities of the adversary in decomposing messages. This second set of constraints is quite
straightforward:

store(AV ) ∈ P ⇒ AV ∈ P

(AV 1, . . . ,AV j) ∈ P ⇒ AV i ∈ P

symenc(AV k,AV t, ℓ, b) ∈ P ⇒ (∃AV ′ ∈ P : AV k
∼=P AV ′) ⇒ AV t ∈ P

pubenc(AnyPubVal,AV t, ℓ, b) ∈ P ⇒ AV t ∈ P

pubenc(AV k,AV t, ℓ, b) ∈ P ⇒ AV k ∈ P

symenc(symkey(i, ℓ, b),AV t, ℓ
′, b′) ∈ P ⇒ symkeyname(ℓ, b) ∈ P

{XP,AnyPubVal} ⊆ P

The first two constraints are obvious — the adversary can retrieve stored payloads and decompose
lists. The third constraint states that the adversary can decrypt a symmetric encryption if it has
the key. The relation ∼=P relates two abstract values if the sets of terms they correspond to may
intersect. Because the meaning of AnyPubVal depends on the adversary’s knowledge, this relation
must also depend on it. The relation ∼=P is the least reflexive, symmetric and structure-respecting
relation on abstract values that satisfies

AV ∈ P ⇒ AV ∼=P AnyPubVal

store(XP) ∼=P AnyPubVal
(
∀i : AV i

∼=P AV ′
i

)
∧ (AV ′

1, . . . ,AV ′
j)

∼=P AnyPubVal ⇒ (AV 1, . . . ,AV j) ∼=P AnyPubVal

(AnyPubVal, . . . ,AnyPubVal) ∼=P AnyPubVal

AV k
∼=P AV ′

k∧AV t
∼=P AV ′

t∧pubenc(AV ′
k,AV ′

t, ℓ, b) ∈ P ⇒ pubenc(AV k,AV t, ℓ, b) ∼=P AnyPubVal

AV k
∼=P AV ′

k∧AV t
∼=P AV ′

t∧symenc(AV ′
k,AV ′

t, ℓ, b) ∈ P ⇒ symenc(AV k,AV t, ℓ, b) ∼=P AnyPubVal

XS
∼=P XP

The fourth constraint for the adversary’s capabilities states that if the public key used for public
encryption may have been created by the adversary (which means that the secret key was also
created by the adversary) then the adversary may find out the plaintext. The fifth and sixth
constraints state that the adversary is capable of determining the identity of the key used to produce
the ciphertext. For asymmetric encryption, this identity is the public key itself, while for symmetric
encryption, it is the symkeyname. Finally, the public values XP and AnyPubVal may be known to
the adversary.

The set of constraints generated by an input or output process P is given by the mapping 〈〈〈P 〉〉〉
that we are going to define below. For defining it, we also define the following mappings.
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• 〈〈e〉〉(I, b) gives the set of abstract values for the result of evaluating the expression e when the
decryption context (after evaluating e) is b and the abstractions of already defined variables
are given by the mapping I.

• 〈〈e〉〉s(I) and 〈〈e〉〉f(I) give some necessary conditions for the evaluation of e to succeed or fail.

• 〈〈e〉〉E(I,L) gives the set of constraints for the variables Eb
ℓ, as generated by e. Here L is a

boolean showing whether this expression is live code.

• ⌊⌊x := e⌋⌋(b,X, y), where X gives the abstractions of variables defined before the assignment
x := e, and y is either x or a variable occurring in e gives a set of abstract values that certainly
abstracts the value of y after the successful evaluation of e. The mapping ⌊⌊x := e⌋⌋ is used
to collect the relationships between values of variables.

The relationships between variables allow us to make the analysis more precise and when taking
them into account, we need to form greatest lower bounds of pairs of sets of abstract values. While
the least upper bound may be just the union of sets, the greatest lower bound cannot be simply
the intersection. This reason for this is, that when two sets of abstract values A and B are both
valid abstractions of some concrete value then we want their greatest lower bound A ∩̇B be a valid
abstraction of that value as well. But certain concrete values may correspond to several different
abstract values, for example a nonce that has become known to the adversary may occur in our
abstractions either as nonce(ℓ, b) for some ℓ and b or as AnyPubVal.

For defining ∩̇, we first define a partial binary operation ⊓ on abstract values as the smallest
(i.e. defined for as few arguments as possible) idempotent symmetric structure-preserving operation
that satisfies AV H ⊓ AnyPubVal = AV H for any abstract value AV H defined in (1). Now we can
just define A ∩̇ B = {AV ⊓ AV ′ |AV ∈ A,AV ′ ∈ B}. We also define A ⊆̇ B iff A ∩̇ B = A.

The mappings 〈〈e〉〉, 〈〈e〉〉s, 〈〈e〉〉f and 〈〈e〉〉E are the following. If we have left out the definition of
〈〈e〉〉s or 〈〈e〉〉f for some e then it is true. If we have left out the definition of 〈〈e〉〉E for some e then
it is ∅. Let La [resp. Ls] be the set of all labels ℓ occurring in the protocol in the positions keypairℓ

[resp. gen symenc key(i)ℓ].
〈〈n〉〉(I, b) = {XP}

〈〈n〉〉f(I) = false

〈〈x〉〉(I, b) = I(x)

〈〈f〉〉x(I) = false

〈〈keypairℓ〉〉(I, b) = {seckey(ℓ, b)}

〈〈keypairℓ〉〉f(I) = false

〈〈store(x)〉〉(I, b) = {store(AV ) |AV ∈ I(x)}

〈〈store(x)〉〉f(I) = false

〈〈retrieve(x)〉〉(I, b) = {AV | store(AV ) ∈ I(x)} ∪ {XP |AnyPubVal ∈ I(x)}

〈〈retrieve(x)〉〉s(I) = AnyPubVal ∈ I(x) ∨ ∃AV : store(AV ) ∈ I(x)

〈〈retrieve(x)〉〉f(I) = ∃AV ∈ I(x) : AV 6= store(. . .)

〈〈list(x1, . . . , xk)〉〉(I, b) = {(AV 1, . . . ,AV k) |AV i ∈ I(xi)}
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〈〈list(x1, . . . , xk)〉〉s(I) = ∀i : ∃AV ∈ I(xi) : AV 6= seckey(. . .)

〈〈list(x1, . . . , xk)〉〉f(I) = ∃i : ∃AV ∈ I(xi) : AV = seckey(. . .)

〈〈gen symenc key(i)ℓ〉〉(I, b) = {symkey(i, ℓ, b)}

〈〈gen symenc key(i)ℓ〉〉f(I) = false

〈〈πj
i (x)〉〉(I, b) = {AV i | (AV 1, . . . ,AV k) ∈ I(x)} ∪ {AnyPubVal |AnyPubVal ∈ I(x)}

〈〈πj
i (x)〉〉s(I) = AnyPubVal ∈ I(x) ∨ ∃(AV i, . . . ,AV j) ∈ I(x)

〈〈πj
i (x)〉〉f(I) = ∃AV ∈ I(x) : AV 6= (AV 1, . . . ,AV j)

〈〈pubkey(x)〉〉(I, b) = {pubkey(ℓ, b) | seckey(ℓ, b) ∈ I(x)}

〈〈pubkey(x)〉〉s(I) = ∃ℓ, b : seckey(ℓ, b) ∈ I(x)

〈〈pubkey(x)〉〉f(I) = ∃AV ∈ I(x) : AV 6= seckey(. . .)

〈〈gen nonce〉〉(I, b) = {nonce(ℓ, b)}

〈〈gen nonce〉〉f(I) = false

〈〈pubencℓ(xk, xt)〉〉(I, b) =

{pubenc(AV k,AV t, ℓ, b) |AV k ∈ I(xk),AV t ∈ I(xt),AV k = pubkey(. . .)}∪

{pubenc(AnyPubVal,AV t, ℓ, b) |AnyPubVal ∈ I(xk),AV t ∈ I(xt)}

〈〈pubencℓ(xk, xt)〉〉s(I) = AnyPubVal ∈ I(xk) ∨ ∃ℓ′, b′ : pubkey(ℓ′, b′) ∈ I(xk)

〈〈pubencℓ(xk, xt)〉〉E(I,L) = {pubkey(ℓ′, b′) ∈ I(xk) ∧ L ⇒ I(xt) ⊆ Eb′

ℓ′ | ℓ
′ ∈ La}

〈〈privencℓ(xk, xt)〉〉(I, b) =

{symenc(AV k,AV t, ℓ, b) |AV k ∈ I(xk),AV t ∈ I(xt),AV k = symkey(. . .)}∪

{symenc(AnyPubVal,AV t, ℓ, b) |AnyPubVal ∈ I(xk),AV t ∈ I(xt)}

〈〈privencℓ(xk, xt)〉〉s(I) = AnyPubVal ∈ I(xk) ∨ ∃i, ℓ′, b′ : symkey(i, ℓ′, b′) ∈ I(xk)

〈〈privencℓ(xk, xt)〉〉E(I,L) = {symkey(i, ℓ′, b′) ∈ I(xk) ∧ L ⇒ I(xt) ⊆ Eb′

ℓ′ | ℓ
′ ∈ Ls}

〈〈privdec(xk, xt)〉〉(I, b) =

{AV p | symenc(AV k,AV p, ℓ
′, b′) ∈ I(xt),AV ′

k ∈ I(xk),AV k
∼=P AV ′

k}∪

{AnyPubVal |AnyPubVal ∈ I(xt), I(xk) ∩ P 6= ∅}∪

if AnyPubVal ∈ I(xt) then
⋃

symkey(i,ℓ,b)∈I(xk)

Eb
ℓ else ∅

〈〈privdec(xk, xt)〉〉s(I) = AnyPubVal ∈ I(xk) ∨ ∃i, ℓ′, b′ : seckey(ℓ′, b′) ∈ I(xk)

〈〈pubdec(xk, xt)〉〉(I, b1) =

{AV p | pubenc(pubkey(ℓ′′, b′′),AV p, ℓ
′, b′) ∈ I(xt), seckey(ℓ′′, b′′) ∈ I(xk)}∪

if AnyPubVal ∈ I(xt) then
⋃

seckey(ℓ,b)∈I(xk)

Eb
ℓ else ∅

〈〈pubdec(xk, xt)〉〉(I, b0) = {AnyPubVal |AnyPubVal ∈ I(xt)}
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〈〈pubdec(xk, xt)〉〉s(I) = ∃ℓ′, b′ : seckey(ℓ′, b′) ∈ I(xk)

Here we can see the special treatment of AnyPubVal — for example, payloads can be extracted from
it and projections can be taken. The result is still a public value. During encryption, AnyPubVal

may serve as the encryption key (of course, such ciphertexts can be decrypted by the adversary).
During decryption, when the ciphertext is AnyPubVal, we use the variables Eb

ℓ to determine the
possible plaintexts.

The distinction between participant-generated and adversary-generated ciphertexts in public-
key decryption can be seen in two definitions for 〈〈pubdec(xk, xt)〉〉. First of them assumes that the
ciphertext is generated by some protocol participant, while the second assumes that the adversary
is the source of the ciphertext. Both of these cases are also present in symmetric decryption, but
they have been joined together, so that the analysis does not handle them separately.

The relationships between newly defined and existing variables are given by ⌊⌊x := e⌋⌋(b,X, y).
Recall that it gives for a variable y a set of abstract values that is guaranteed to abstract its
concrete value. If the definition for some ⌊⌊x := e⌋⌋(b,X, y) is missing below, it is equal to X(y) (i.e.
no precision is gained).

⌊⌊x := list(x1, . . . , xk)⌋⌋(b,X, x) = {(AV 1, . . . ,AV k) |AV i ∈ X(xi)}

⌊⌊x := list(x1, . . . , xk)⌋⌋(b,X, xi) =

{AV i | (AV 1, . . . ,AV k) ∈ X(x)} ∪ {AnyPubVal |AnyPubVal ∈ X(x)}

⌊⌊x := π
j
i (y)⌋⌋(b,X, x) = {AV i | (AV 1, . . . ,AV k) ∈ X(y)} ∪ {AnyPubVal |AnyPubVal ∈ X(y)}

⌊⌊x := π
j
i (y)⌋⌋(b,X, y) =

{(AV ′
1, . . . ,AV ′

i−1,AV i ⊓ AV ′
i,AV ′

i+1, . . . ,AV ′
j) |AV i ∈ X(x), (AV ′

1, . . . ,AV ′
j) ∈ X(y)}∪

{(AnyPubVal, . . . ,AnyPubVal
︸ ︷︷ ︸

i−1

,AV i,AnyPubVal, . . . ,AnyPubVal
︸ ︷︷ ︸

j−i

) |AV i ∈ X(x),AnyPubVal ∈ X(y)}

⌊⌊x := y⌋⌋(b,X, x) = X(y)

⌊⌊x := y⌋⌋(b,X, y) = X(x)

⌊⌊y := pubencℓ(xk, xt)⌋⌋(b,X, y) = {pubenc(AV k,AV t, ℓ, b) |AV k ∈ X(xk),AV t ∈ X(xt)}

⌊⌊y := pubencℓ(xk, xt)⌋⌋(b,X, xk) = {AV k | pubenc(AV k,AV t, ℓ
′, b′) ∈ X(y), {AV t} ⊆̇ X(xt)}

⌊⌊y := pubencℓ(xk, xt)⌋⌋(b,X, xt) = {AV t | pubenc(AV k,AV t, ℓ
′, b′) ∈ X(y), {AV k} ⊆̇ X(xk)}

⌊⌊y := privencℓ(xk, xt)⌋⌋(b,X, y) = {symenc(AV k,AV t, ℓ, b |AV k ∈ X(xk),AV t ∈ X(xt)}

⌊⌊y := privencℓ(xk, xt)⌋⌋(b,X, xk) = {AV k | symenc(AV k,AV t, ℓ
′, b′) ∈ X(y), {AV t} ⊆̇ X(xt)}

⌊⌊y := privencℓ(xk, xt)⌋⌋(b,X, xt) = {AV t | symenc(AV k,AV t, ℓ
′, b′) ∈ X(y), {AV k} ⊆̇ X(xk)}

⌊⌊y := store(x)⌋⌋(b,X, y) = {store(AV ) |AV ∈ X(x)}

⌊⌊y := pubkey(x)⌋⌋(b,X, y) = {pubkey(ℓ, b′) | seckey(ℓ, b′) ∈ X(x)}

⌊⌊y := pubkey(x)⌋⌋(b,X, x) = {seckey(ℓ, b′) | pubkey(ℓ, b′) ∈ X(x)}

⌊⌊y := pubdec(xk, xt)⌋⌋(b1,X, y) = if AnyPubVal ∈ X(xk) then X(y) else
⋃

seckey(ℓ′,b′)∈X(xk)

Eb′

ℓ′
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⌊⌊y := privdec(xk, xt)⌋⌋(b,X, y) = if AnyPubVal ∈ X(xk) then X(y) else
⋃

symkey(i,ℓ′,b′)∈X(xk)

Eb′

ℓ′

The usage of ⌊⌊x := e⌋⌋ may become clearer when we look at the constraints generated by
processes. This generation is done by 〈〈〈P 〉〉〉(I, b,L,C) where I is a constraint variable describing
the protocol state before the execution of the process P , the bit-string b is the current decryption
context, the variable L denotes whether this process is alive, and C is a set of constraints of the form
X(x) ⊆̇ E where E is a monotone expression that may contain references to X. The constraints
in C relate the abstract values of variables that have been defined before the execution of P . If C

contains a constraint X(x) ⊆ E then the result of E is a suitable abstraction for the value of x.
Let R be a mapping from variables to sets of abstract values, and let C be a set of constraints

in the form X(x) ⊆̇ E. We let L(R,C) denote the greatest solution to the constraints C (with X as
the variable) that is less than or equal to R.

The mapping 〈〈〈P 〉〉〉 is defined as follows. If e is a not a public-key decryption then

〈〈〈letℓ y := e in P else P ′〉〉〉(I, b,L,C) = let C
′〈b〉 = C ∪ {X(y) ⊆̇ ⌊⌊e⌋⌋(b,X, y) | y ∈ Var•ℓ} in

{L ∧ 〈〈e〉〉s(I) ⇒ Lb
ℓ,true, L ∧ 〈〈e〉〉f(I) ⇒ Lb

ℓ,false, Lb
ℓ,true ⇒ Rb

ℓ ≥ I[y 7→ 〈〈e〉〉(I, b)],

Sb
ℓ ≥ L(Rb

ℓ,C
′〈b〉)} ∪ 〈〈e〉〉E(I,Lb

ℓ,true) ∪ 〈〈〈P 〉〉〉(Sb
ℓ, b,L

b
ℓ,true,C

′〈b〉) ∪ 〈〈〈P ′〉〉〉(I, b,Lb
ℓ,false,C) .

If e is a public-key decryption then we have “two different default-branches”, with decryption
contexts b1 and b0:

〈〈〈letℓ y := e in P else P ′〉〉〉(I, b,L,C) = let C
′〈b〉 = C ∪ {X(y) ⊆̇ ⌊⌊e⌋⌋(b,X, y) | y ∈ Var•ℓ} in

{L ∧ 〈〈e〉〉s(I) ⇒ Lb
ℓ,true, L ∧ 〈〈e〉〉f(I) ⇒ Lb

ℓ,false, Lb
ℓ,true ⇒ Rb1

ℓ ≥ I[y 7→ 〈〈e〉〉(I, b1)],

Lb
ℓ,true ⇒ Rb0

ℓ ≥ I[y 7→ 〈〈e〉〉(I, b0)], Sb1
ℓ ≥ L(Rb1

ℓ ,C′〈b1〉), Sb0
ℓ ≥ L(Rb0

ℓ ,C′〈b0〉)} ∪ 〈〈e〉〉E(I,Lb
ℓ,true)∪

〈〈〈P 〉〉〉(Sb1
ℓ , b1,Lb

ℓ,true,C
′〈b1〉) ∪ 〈〈〈P 〉〉〉(Sb0

ℓ , b0,Lb
ℓ,true,C

′〈b0〉) ∪ 〈〈〈P ′〉〉〉(I, b,Lb
ℓ,false,C) .

We see that the following constraints are generated. If the process is alive (L is true) and the
expression e may succeed [resp. fail] then we demand that the boolean variable reflecting that —
Lb

ℓ,true [resp. Lb
ℓ,false] is true, too. If e may succeed and hence Lb

ℓ,true is true then we let the mapping

Rb
ℓ be (at least) the mapping I, but additionally we fix the abstraction of the left-hand side y. Here

this “at least” means “equal to” because there will be no other constraints for Rb
ℓ. If Lb

ℓ,true is false

then Rb
ℓ has no constraints, hence it maps everything to ∅.

The set of constraints C
′〈b〉 includes all the relationships between variables that are defined up to

the successful execution of y := e. Note that the inequality signs in the constraints in C
′〈b〉 has the

opposite direction from the inequality signs in the constraints generated by 〈〈〈P 〉〉〉. The constraint
Sb

ℓ ≥ L(Rb
ℓ,C

′〈b〉) states that Sb
ℓ contains basically the same abstractions as Rb

ℓ, but all recorded
relationships between variables have been taken into account. As this constraint is the only one for
Sb

ℓ, the inequality Sb
ℓ ≤ Rb

ℓ always holds.
We also add the constraints for the variables Eb′

ℓ′ and we recursively invoke 〈〈〈·〉〉〉 for the default-
and the false-branch. The arguments for these recursive calls are also worth noting. We see that
as we pass through the protocol, we collect the constraints expressing the relationships between
variables. For the default-branch, Sb

ℓ is the abstraction of the initial state, while for the false-
branch, the same mapping I is used because no variable was assigned to if the evaluation of e failed.
Also we collect no new relationships between variables if e fails (although it would be possible for
some e, we have found that it does not change the precision of the analysis in practice).
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Consider now other cases for the process P :

〈〈〈if ℓ x = x′ then P else P ′〉〉〉(I, b,L,C) = let C
′ = C ∪ {X(x) ⊆̇ X(x′),X(x′) ⊆̇ X(x)} in

{L ⇒ Lb
ℓ,false, Rb

ℓ ≥ I, L ∧ (∃AV ∈ I(x)∃AV ′ ∈ I(x′) : AV ∼=P AV ′) ⇒ Lb
ℓ,true,

Sb
ℓ ≥ L(R,C′)} ∪ 〈〈〈P 〉〉〉(Sb

ℓ, b,L
b
ℓ,true,C

′) ∪ 〈〈〈P ′〉〉〉(I, b,Lb
ℓ,false,C)

Here we check whether the abstractions of x and x′ may intersect. We also add the equality of x

and x′ to the set of constraints C
′.

〈〈〈sendc[xp](x).I∗〉〉〉(I, b,L,C) = 〈〈〈I∗〉〉〉(I, b,L,C) ∪ {L ⇒ I(xp) ⊆ P,

L ∧ (c ∈ Chans ∪ Chana) ⇒ I(x) ⊆ Cc, L ∧ (c ∈ Chana ∪ Chani) ⇒ I(x) ⊆ P}

A send-command always succeeds, the intended recipient becomes known to the adversary and the
message is recorded as occurring on the channel c and/or becoming known to the adversary.

〈〈〈receiveℓ
c[xp](x).P 〉〉〉(I, b,L,C) = {L ⇒ Lℓ

b,true, Sb
ℓ ≥ Rb

ℓ} ∪ 〈〈〈P 〉〉〉(Sb
ℓ, b,L

b
ℓ,true,C)∪







{L ⇒ Rb
ℓ ≥ I[x 7→ Cc, xp 7→ {XP}]}, if c ∈ Chans ∪ Chana

{L ⇒ Rb
ℓ ≥ I[x 7→ {AnyPubVal}, xp 7→ {XP}]}, if c ∈ Chani

{L ⇒ Rb
ℓ ≥ I[x 7→ {XS}, xp 7→ {XP}]}, if c ∈ Chanu

We see that a message from the adversary is abstracted as AnyPubVal and a message from the user
as a secret payload. The sender of the message is already known to the adversary, hence xp is a
public integer. No new constraints are added, hence the invocation of L is not needed for Sb

ℓ.

〈〈〈I1 | · · · | In〉〉〉(I, b,L,C) =

n⋃

i=1

〈〈〈Ii〉〉〉(I, b,L,C) 〈〈〈II〉〉〉(I, b,L,C) = ∅ .

If Ii is the program for the machine Pi then the set of constraints for the protocol is the union of
〈〈〈Ii〉〉〉({}, ε, true, ∅) over all i, where {} is the mapping with empty domain.

Given a protocol ℘ and a label ℓ occurring in this protocol (labeling a subprocess P ), let
Ib
ℓ denote the variable Sb′

ℓ′ (or the empty mapping) that occurs as the first argument in the call
〈〈〈P ℓ〉〉〉(I, b,L,C), invoked during the construction of constraints for ℘. That is, Ib

ℓ gives the abstract
values of variables before entering the subprocess labeled with ℓ in the context b.

The following theorem states how the security of a protocol can be established using our analysis.

Theorem 1. Let ℘ be a protocol and let Let Sb
ℓ, Eb

ℓ, P, Cc, Lb
ℓ,b be such that the constraints given

above are fulfilled. If the following conditions hold then the composition of machines THn and Pi

(1 ≤ i ≤ n) preserves the secrecy of payloads, i.e., the payloads are cryptographically secret if THn

is replaced by its cryptographic realization.

(I) If the protocol contains a statement of the form if ℓ x = x′ . . . then XS 6∈ Ib
ℓ(x), XS 6∈ Ib

ℓ(x
′),

store(XS) 6∈ Ib
ℓ(x) and store(XS) 6∈ Ib

ℓ(x
′) for any b.

(II) If XS ∈ Sb
ℓ(x) for some b, x, and this x occurs as an argument to some operation where the

abstract values at entry are given by Sb
ℓ, then this operation is store or a send to a user.

(III) XS 6∈ P.

(IV) If AV ∈ Eb
ℓ and a symm. key of order i is generated at ℓ then the order of AV is less than i.
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• The order of symkey(i, ℓ, b) is i. The order of a tuple is the maximum order of its
members. The order of other abstract values is 0.

(V) symkey(i, ℓ, b) 6∈ P for any i, ℓ, b.

4 Implementation

We find the (componentwise) least solution for the aforementioned collection of inequalities. The
least fixed point is computed iteratively, using a version of the solver from [23], which is specifically
tailored to systems of constraints. The computation might not terminate but we believe that this
is not a problem for real protocols; in fact, we have never encountered this situation when we
applied our tool to common protocols of the literature. The only case in which computation is not
guaranteed to terminate is if the protocol is able to create terms of arbitrary complexity all by itself,
without the help from the adversary. We also believe that the potentially exponential number of
variables in the size of the protocol is not a problem in practice because protocol descriptions are
short.

There are ways to deal with the divergence of the fixed-point computation (add suitable widen-
ings). Also, we believe that the exponential number of sets can be represented in a more compact
way, if necessary.

The value of L(R,C) is also computed iteratively, using the same solution method. The mapping
X is initialized with R and the iteration proceeds downwards.

The constraint generator and solver have been implemented in O’Caml (version 3.09 was used
to compile it to native code). We have tested the analyser on several protocols from the literature,
namely Needham-Schroeder public key [42], its fix by Lowe [38], Otway-Rees [43], Yahalom, and its
modification by Burrows et. al [16]. The goal of all these protocols is to exchange a symmetric key
between two parties. We use our analysis to find out whether it is safe to use the exchanged key to
protect secret payloads in transit over public networks. Therefore we have added an extra message
to the end of the protocol sessions in all of these protocols. This extra message is a communication
of a secret payload from one party to another, encrypted under the freshly exchanged key. Our
analysis considers all these protocols secure, except for the original (and indeed flawed) Needham-
Schroeder protocol. If one allows old session keys to become known to the adversary then there
may be attacks which are not discovered by our analyser because the BPW model does not consider
the leakage of secret keys that have been used (this would cause a so-called commitment problem
which makes a proof of computational soundness in the sense of BRSIM/UC impossible). Attacks
against the modified Yahalom have been published [49] but these attacks did not affect message
secrecy properties — they do not allow an adversary to learn the new key or inject its own key.
The running times of the analyser on a computer with 1 GHz Intel Celeron processor and 256 MB
of main memory are between one and eight seconds for these protocols with less than two seconds
for Needham-Schroeder-Lowe and both versions of Yahalom.

5 Correctness of the Analysis

Theorem 1 is a straightforward corollary of a lemma similar to subject reduction. We are going to
give the statement of that lemma here, its proof is given in the appendix.

When arguing about the correctness, we need to distinguish public and secret payloads. Hence
we change the semantics of the system a little bit and assume that each payload is labeled with
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its secrecy level. An integer received from the protocol user is labeled as secret; a constant integer
or the apparent sender of some message is labeled as public. When the payloads are stored in the
database of terms then the labels are stored as well. They are also retrieved together with labels.
When two integers are compared their secrecy levels are ignored.

Let R be a run of the protocol (a finite sequence of steps). Let O be the state of the database of
THn at the end of this run. Let x be a protocol variable whose definition occurs under k replications.
If the variable x has been assigned a value inside the i1-th replica of the outermost replication, i2-th
replica of the next replication, etc., then we denote this value O(x, [i1, . . . , ik]). This value is either
a handle to a term in O, a secret integer, or a public integer. Similarly, if a program point ℓ inside
k replications and (syntactically) preceded by n public-key decryptions then let O(ℓ, [i1, . . . , ik]) be
the n-bit string whose bits describe the source of n ciphertexts whose decryptions are visible at the
point ℓ in the replica [i1, . . . , ik]. Note that a ciphertext is a term in the database O and its creator
is simply the first principal that had a handle to it.

For a set T of terms in the database O we let its downwards closure T be the smallest set of
terms containing T and being closed with respect to list projection, decryption with keys in T, and
extracting the public keys and symmetric key names from ciphertexts. For an abstract value AV
we define its semantics [[AV ]]O with respect to the contents of the database O. The semantics is
either a set of terms in O or a set of payloads.

• [[XP]]O = {“public n” |n ∈ N}.

• [[XS]]O = {“secret n” |n ∈ N}.

• [[store(AV )]]O is the set of all terms of type data in O whose argument belongs to [[AV ]]O.

• [[nonce(ℓ, b)]]O is the set of all terms of type nonce in O that are generated by the gen nonce-
expressions at the protocol point ℓ at replicas [i1, . . . , ik], such that b = O(ℓ, [i1, . . . , ik])

• [[symkey(i, ℓ, b)]]O, [[symkeyname(ℓ, b)]]O, [[seckey(ℓ, b)]]O, and [[pubkey(ℓ, b)]]O — defined the same
way as [[nonce(ℓ, b)]]O (only replace nonce with skse, pkse, ske, or pke).

• [[(AV 1, . . . ,AV j)]]O is the set of all terms of type list in O whose length is j and whose i-th
component term (1 ≤ i ≤ j) belongs to [[AV i]]O.

• [[pubenc(AV k,AV p, ℓ, b)]]O is the set of all terms of type enc, such that

– they have been created by the pubenc-expressions at the protocol point ℓ at replicas
[i1, . . . , ik], such that b = O(ℓ, [i1, . . . , ik]);

– the term corresponding to the public key must belong to [[AV k]]O;

– the term corresponding to the plaintext must belong to [[AV p]]O.

• [[symenc(AV k,AV p, ℓ, b)]]O is defined similarly, where enc is replaced with symenc.

• [[AnyPubVal]]O is the downwards closure of the set of all terms that the adversary knows.

Let P̃ be the largest set that P̃ ⊆ P\{AnyPubVal} and (AV 1, . . . ,AV j) ∈ P̃ implies AV i ∈ P̃

for 1 ≤ i ≤ j. Informally, P̃ is obtained from P by deleting AnyPubVal and also any abstract
value that is a list, one of whose components (after flattening lists) is AnyPubVal. The set P̃ is a
better characterization than P for the set of terms created by honest participants and learned by
the adversary.
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Definition 1 (Adversarially Well-constructed Terms). A term T from the downwards closure of
the set of all terms known to the adversary is adversarially well-constructed with respect to P if
one of the following holds:

• ∃AV ∈ P̃, such that T ∈ [[AV ]]O.

• All immediate subterms of T (the immediate subterm of a public key or a symmetric key
name is the corresponding secret key) are known to the adversary and are also adversarially
well-constructed. Also, if T is of type nonce, ske, enc, garbage, skse, symenc then T must have
been constructed by the adversary.

That is, a term is adversarially well-constructed if the adversary knows how to construct this term
from the terms that the analysis has found him to know.

Lemma 2 (Subject reduction). Let ℘ be a protocol and let Let Sb
ℓ, Eb

ℓ, P, Cc, Lb
ℓ,b be such that the

constraints given in Sec. 3.3 are fulfilled. Let R be a run of the protocol ℘. Let O be the state of the
database of THn at the end of R. The following claims hold.

P If a term T is known to adversary then it is adversarially well-constructed wrt. P.

X If O(x, [i1, . . . , ik]) = T (here T may be both a term or an immediate value) and the replica
[i1, . . . , ik] passes through the point ℓ with the operation at ℓ succeeding and the value of x

being defined, then there exists AV ∈ S
O(ℓ,[i1,...,ik])
ℓ (x), such that T ∈ [[AV ]]O.

C If a term T is communicated over an abstract channel c ∈ Chans ∪ Chana then there exists
AV ∈ Cc, such that T ∈ [[AV ]]O.

E If Tk is the term representing an asymmetric or symmetric key generated at the program point
ℓ in the replica [i1, . . . , ik]) and Tp is a term that occurs as the plaintext in an encryption
where Tk is the key, then at least one of the following holds:

– there exists AV ∈ E
O(ℓ,[i1,...,ik])
ℓ , such that Tp ∈ [[AV ]]O.

– Tk and Tp are both known to the adversary and the term representing encryption of Tp

with Tk is constructed by the adversary.

L If ℓ is a branching point in the protocol (a let- or if -statement) and if the B-branch was taken

at the replica [i1, . . . , ik] (here B is either true/default or false), then L
O(ℓ,[i1,...,ik])
ℓ,B = true.

The lemma is proved by induction over the length of R.
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A Proof of the Subject Reduction

A.1 Possible Steps of the Protocol Implementation

In the main body of the paper we mentioned that the proof of Lemma 2 is by induction over the
length of the run R. Let us give a more precise account here on what the possible steps of the
structure consisting of THn and P1, . . . ,Pn are. As we mentioned before, the internal state of each
Pi consists of a sequence of pairs (P,E) where P is a process and E is its environment, giving values
to all free variables of P . If the same variable occurs in the domains of environments of different
processes, then it must be given the same value by all these environments. The values of variables
are either integers or term handles (also represented by integers). We assume that the variables are
typed, i.e. it is statically known whether the contents of a variable is a payload or a handle. The
typing can be enforced by a trivial type system containing just two types.

At most one of the participants may be active at any time. If there exists an active participant
Pi, its state additionally contains

• the index j of the currently running process in its sequence of processes,

• the running process P together with its environment E,

• the received message m together with its channel c and apparent sender u.
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Finally, the state of the combination of THn and P1, . . . ,Pn also contains the database O of the
machine THn, and the contents of buffers of secure and authentic channels between participants.

A combination of THn and P1, . . . ,Pn with no active Pi can perform the following kinds of steps:

1. The adversary may invoke a local adversary command. This command is executed by THn,
possibly changing O, and the result is returned to the adversary. No participant is activated.

2. The adversary may invoke a send-command. All messages (in terms of THn) are pairs con-
sisting of the abstract channel name c and the “real” message m. The recipient Pi of that
message is activated, its index of the currently running process is initialized with 0, the run-
ning process P and its environment are not yet initialized, the received message m, abstract
channel c, and the apparent sender u are initialized from the received message. The message
is a handle; the apparent sender is a public integer. This step will remove a message from a
buffer of a channel between participants, if that channel was a secure or an authentic one.

3. A user may send a message to the corresponding participant. This participant will be activated
in the same way as when receiving a message from the network. The message m will be a
secret integer, the apparent sender u will be 0 (public integer), the abstract channel c will be
“the channel from/to the user”.

A combination of THn and P1, . . . ,Pn with an active Pi can perform the following kinds of steps.
Here everything is initiated by Pi.

4. If there is no running (P,E) then increment the index j of the currently running process. If
that index becomes larger than the length of the sequence of processes of Pi, then become
inactive. Otherwise consider the abstract channel mentioned in the receive-statement at the
beginning of the process pointed to by j. If it is equal to c then let the running process P and its
environment E be the j-th element of the sequence of processes (without the receive-command
in the beginning of that process). In the environment E, we additionally map the variables in
the receive-statement to m and u. If the abstract channel mentioned in the receive-statement
is not equal to c then do nothing (i.e. start the next step).

In the following we assume that the running process with its environment (P,E) is defined. The
next step depends on the first command of P .

5. If P is a parallel composition of input processes then put these processes, each of them together
with the environment E, back to the sequence of processes of Pi. Put them just before the
position j. If the process that was at the j-th position was not replicated, then remove it from
that sequence of processes. Then become inactive.

6. If P is send-command then let P ′ be the rest of the process P . The process P ′ must be a
parallel composition of input processes. First construct the outgoing message by pairing the
abstract channel and the “real” message mentioned in the send-command. Then handle P ′

(as described above). But right before becoming inactive send the outgoing message away;
the receiver was mentioned in the send-command. This step also adds to the buffer of some
channel between participants, if that channel was a secure or an authentic one.

7. If P is II then undefine P and E.
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8. If P is a let-command then evaluate the expression, possibly interacting with THn to evaluate
the expression. If successful, update the environment E. Take the default- or false-branch,
depending on the success of evaluating the expression. If the constant expression was evaluated
then the result is a public integer.

9. If P is an if-command then compare and take either the true- or false-branch.

Initially, the processes in the state of each Pi are given by the protocol specification. The envi-
ronments are empty. The database O is empty. The buffers of the channels are also empty. No
participant is active.

A.2 Relationships between variables

We will show that if some constraint variable Rb
ℓ is a valid abstraction of the values of protocol

variables after the protocol point ℓ in context b then Sb
ℓ = L(Rb

ℓ,C) is also a valid abstraction, where
C is the set of constraints describing the relations between variables collected thus far.

For the given protocol ℘, a label ℓ and a possible context b after a successful evaluation of the
command at the protocol point ℓ, let C

b
ℓ be the set of constraints used to compute Sb

ℓ from Rb
ℓ.

Lemma 3. Let T , AV 1 and AV 2 be such that T ∈ [[AV 1]]O∩ [[AV 2]]O. Then there exists AV , such
that {AV 1} ∩̇ {AV 2} = {AV } and T ∈ [[AV ]]O.

Proof. Induction over the shape of T . If T has no subterms then either AV 1 = AV 2 or one of these
two abstract values is equal to AnyPubVal. In the first case AV = AV 1 = AV 2. In the second case
AV is also equal to one of AV 1 or AV 2.

If T has subterms, but at least one of AV 1 or AV 2 is equal to AnyPubVal then AV is equal to
the other abstract value among AV 1 and AV 2 and we are done. Otherwise the types of AV 1 and
AV 2 are equal and they also correspond to the type of T . Let T ′ be an immediate subterm of T ,
let AV ′

1 and AV ′
2 be the corresponding immediate subvalues of AV 1 and AV 2. We find AV ′ so,

that {AV ′} = {AV ′
1} ∩̇ {AV ′

2} and T ′ ∈ [[AV ′]]O. Using these values AV ′ we construct the abstract
value AV with necessary properties.

Lemma 4. Let the run R be such that its last step was a successful evaluation of a let- or a if -
statement at the label ℓ in the replica [i1, . . . , ik]. Let b = O(ℓ, [i1, . . . , ik]). Assume that Lemma 2
holds for the run R without the last step. Let X be a mapping from Var•ℓ to sets of abstract values,
such that for all x ∈ Var•ℓ there exists some AV ∈ X(x) such that O(x, [i1, . . . , ik]) ∈ [[AV ]]O. Let
x ∈ Var•ℓ and let X(x) ⊆̇ E be a constraint in C

b
ℓ. Then there exists some AV ∈ E(X), such that

O(x, [i1, . . . , ik]) ∈ [[AV ]]O.

Proof. Induction over the length of the path from the beginning of the protocol to ℓ. By the
induction assumption, the claim of the lemma holds if X(x) ⊆̇ E is a constraint that has been
introduced at some ℓ′ preceding ℓ — X is also a suitable mapping at ℓ′, none of the variables
mentioned in X(x) ⊆̇ E have changed their values since ℓ′, and the lemma holds at ℓ′.

Let X(x) ⊆̇ E be introduced to the set of constraints at the protocol point ℓ. If E is X(x) then
the claim of the lemma obviously holds. Otherwise ℓ has to label either an if - or a let-statement.

If ℓ labels a statement if x = x′ . . . then E must be X(x′) (all other cases have been handled
above). The premises of the lemma state that this if -statement is successful, i.e. returns true, hence
O(x, [i1, . . . , ik]) = O(x′, [i1, . . . , ik]). Also O(x′, [i1, . . . , ik]) ∈ [[AV ]]O for some AV ∈ X(x′) by the
premises of the lemma.
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If ℓ labels a statement let y := e then the case analysis over all possible e convinces us that
E(X) must contain some AV , such that O(x, [i1, . . . , ik]) ∈ [[AV ]]O.

Lemma 5. Let the run R be such that its last step was a successful evaluation of a let- or a if -
statement at the label ℓ in the replica [i1, . . . , ik]. Let b = O(ℓ, [i1, . . . , ik]). Assume that Lemma 2
holds for the run R without the last step. If for all variables x ∈ Var•ℓ there exists AV ∈ Rb

ℓ(x),
such that O(x, [i1, . . . , ik]) ∈ [[AV ]]O, then for each variable x there also exists AV ∈ Sb

ℓ(x), such
that O(x, [i1, . . . , ik]) ∈ [[AV ]]O.

Proof. Define the mappings fi, gi, where i ∈ N, from Varb
ℓ to sets of abstract values by

g0(x) = Rb
ℓ(x)

fi(x) =
⋂̇

X(x)⊆̇E∈Cb

ℓ

E(gi−1) gi(x) = fi(x) ∩̇ gi−1(x)

By the fix-point theorems of Tarski and Kleene we know that Sb
ℓ(x) = ˙⋂

i gi(x). As the sets Rb
ℓ(x)

are finite, there exists some i that Sb
ℓ = gi.

By induction on i we can show that for each x and for each i there exists some AV ∈ fi(x)
and AV ′ ∈ gi(x), such that O(x, [i1, . . . , ik]) ∈ [[AV ]]O and O(x, [i1, . . . , ik]) ∈ [[AV ′]]O. Indeed, the
induction base (i = 0) is given by the premise of the lemma. The induction step from gi−1 to fi

follows from lemma 4 for each right hand side E of a constraint X(x) ⊆̇ E in C
b
ℓ and by lemma 3

for their intersection. The step from fi to gi follows from lemma 3.

A.3 Induction over the length of R

Induction base: the length of the run is 0. Then there are no terms, no variables with assigned
values, and no exchanged messages. All claims of lemma are thus trivially true. Induction step:
assume that the lemma holds for the run without the last step. No consider all possible last steps
and show that the claims of the lemma still continue to hold.

The last step is of the 1st kind. The adversary may either create a new term or parse
an existing term. The claims X, C and L clearly hold for the whole run, because this step does
not change anything mentioned in these claims. The command given to THn may have one of the
following effects:

• A new term is created, that is not an encryption. Then E also holds for the whole run. The
immediate subterms of this term are all adversarially well-constructed by P of the induction
assumption, hence P holds, too.

• A new term representing public- or symmetric-key encryption is created. Then P holds for
the same reasons as in the previous case. Also, the key and the plaintext are known to the
adversary, hence the second case of E holds for it.

• The command was for creating a term, but it was not created because the respective term
already existed. This term must be a payload or a list. It is still adversarially well-constructed
because it does not have to be created by the adversary in this case. Hence P holds for the
whole run. E also holds, because no new encryptions were created.
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• The command was for parsing a term T , giving its component T ′. Then E holds for the
whole run. If all subterms of T are adversarially well-constructed then T is adversarially
well-constructed and P holds for the whole run. Otherwise there exists some AV ∈ P̃ such
that T ∈ [[AV ]]O. By the definition of [[·]]O, there must exist some subterm AV ′ of AV such
that T ′ ∈ [[AV ′]]O. Indeed, AnyPubVal is the only abstract value for which [[·]]O is not defined
via structural induction, and AV 6= AnyPubVal. By the constraints representing the power
of the adversary, AV ′ ∈ P (this may need more elaboration). If AV ′ is AnyPubVal then
T ′ was already known to the adversary, hence it is adversarially well-constructed by P of
the induction assumption. Otherwise T ′ is satisfies the first bullet point of the definition of
adversarially well-constructedness. Thus P is satisfied for the whole run.

The last step is of the 2nd kind. No effect on any quantity mentioned in the lemma.
The last step is of the 3rd kind. No effect on any quantity mentioned in the lemma.
The last step is of the 4th kind. This step affects only the values of variables, hence P, E,

C and L hold for the whole run because they hold for the run without the last step. According
to the semantics of the processes, the channel c is the source of the message m. If c is a secure
or authentic channel then there exists AV ∈ Cc, such that m ∈ [[AV ]]O. By the constraints for
receive-commands, AV also belongs to Rb

ℓ(x) (for any b), where x is the variable that is going
to hold the message m. If c is an insecure channel then m is known to the adversary, implying
m ∈ [[AnyPubVal]]O, and AnyPubVal ∈ Rb

ℓ(x). If c denotes the channel from the user of the protocol
then m is a secret integer which belongs to the meaning of XS which belongs to Rb

ℓ(x). The variable
xP holding the apparent sender will get a value that is a public integer, and XP ∈ Rb

ℓ(xP).
The last step is of the 5th kind. No effect on any quantity mentioned in the lemma.
The last step is of the 6th kind. This step may add new terms to the channels, and to

the adversary’s knowledge. There is no effect on any quantity mentioned in X, E , or L . The
constraints for the send-command should make it obvious that C and P also hold for the whole
run if they held before the last step.

The last step is of the 7th kind. No effect on any quantity mentioned in the lemma.
The last step is of the 8th kind. Let letℓ y := e in P else P ′ be the process where the step

is made, let it be inside the replica [i1, . . . , ik]. Let b = O(ℓ, [i1, . . . , ik]). This step does not affect
quantities mentioned in P or C. We are evaluating an expression e and assigning the result to the
variable x at the program point ℓ. Depending on the success of evaluating e, either the default or the
false-branch is taken. By the induction assumption, L0 = true where L0 is the variable controlling
whether the program point ℓ is reached (the third argument of 〈〈〈P 〉〉〉). From the definition of 〈〈〈·〉〉〉
we see that Lb

ℓ,true [resp. Lb
ℓ,false] is true iff 〈〈e〉〉s(I

b
ℓ) [resp. 〈〈e〉〉f(I

b
ℓ)] is true. By induction assumption

X, for each variable x defined before that execution step in that replica, Ib
ℓ(x) contains some AV ,

such that O(x, [i1, . . . , ik]) ∈ [[AV ]]O. When we consider all possible cases for e and the definitions
of 〈〈e〉〉s and 〈〈e〉〉f then we see that if e succeeds [resp. fails] then 〈〈e〉〉s(I

b
ℓ) [resp. 〈〈e〉〉f (I

b
ℓ)] must be

true. Hence L holds after the last step of R.
The set of encrypted terms under some key can only be affected if e is pubenc or privenc. Again,

the induction assumption X implies that if E held before the last step of R then it continues to
hold when this last step is made.

From the definition of 〈〈〈·〉〉〉 we see that if L0 is true then we have the constraint Rb
ℓ ≥ Ib

ℓ[y 7→
〈〈e〉〉(I, b)]. Considering all possible cases for e and making use of the induction assumption X for
Ib
ℓ (and if e is decryption, then also E) we see that the result of e is a value that belongs to [[AV ]]O

for some AV ∈ 〈〈e〉〉(I, b) = Rb
ℓ(y). Such an AV ∈ Rb

ℓ(x), that the value of x is a member of [[AV ]]O,

24



also exists for all other variables x in Var•ℓ . Hence the premises of lemma 5 are fulfilled and the
same claim holds if we replace Rb

ℓ by Sb
ℓ. Hence X holds after the last step of R.

The last step is of the 9th kind. This step affects only the control flow of the protocol,
hence P, E, and C hold for the whole run because they hold for the run without the last step. The
claim X directly follows from Lemma 5. If the compared variables x and x′ are integers then XS

or XP is a member of Ib
ℓ(x) (for the correct b) by X in the induction assumption, and XS or XP is

also a member of Ib
ℓ(x

′). The comparison of these elements of Ib
ℓ(x) and Ib

ℓ(x
′) by ∼=P returns true.

Hence Lb
ℓ,true = true and L holds for the whole run. If the compared variables x and x′ are equal

term handles, both pointing to the term T , then there must exist AV ∈ Ib
ℓ(x) and AV ′ ∈ Ib

ℓ(x
′),

such that T ∈ [[AV ]]O ∩ [[AV ′]]O. Then lemma 6 states that AV ∼=P AV ′; we apply that lemma for
the run without the last step. For the run without the last step the claims of the lemma hold by
induction assumption. Hence Lb

ℓ,true = true and L holds for the whole run. �

Lemma 6. Assume that the lemma 2 holds for a certain protocol run. Let O be the database of
THn at the end of that run. Let T be a term in the database, and AV , AV ′ be two abstract values,
such that T ∈ [[AV ]]O ∩ [[AV ′]]O. Then AV ∼=P AV ′.

Proof. Induction over the structure of T . Base: If T has no subterms then there are at most
two abstract values whose semantics may contain T and one of them is AnyPubVal. The second
one has the constructor determined by the type of T and arguments (which may be only ℓ and
b (and i)) determined by the location where T was created. Hence, if neither AV nor AV ′ is
AnyPubVal then they must be equal abstract values. If one of them, say AV is AnyPubVal then
T is known to the adversary, hence by P it must be adversarially well-constructed. If AV ′ is also
equal to AnyPubVal then we are done. Otherwise consider the two possibilities in the definition of
adversarially well-constructedness. If there exist some abstract value in P̃ whose semantics contains
T , then this abstract value must equal AV ′. If there exist no such abstract value in P̃ then T must
be constructed by the adversary in which case there is no abstract value, other than AnyPubVal

whose semantics contains T .
Step: T has subterms. Its type must thus be one of data, list, pke, pkse, enc, or symenc. If

the type is pke or pkse then there also exists at most one abstract value besides AnyPubVal whose
semantics contains T , and the same argument as for the induction basis applies. Assume now that
the type of T is one of data, list, enc, or symenc.

If neither AV nor AV ′ is AnyPubVal then they must have the same outermost constructor. In-
deed, different constructors of abstract values correspond to different types of terms in the database
O. Hence AV ∼=P AV ′ iff the corresponding subvalues of AV and AV ′ are related by ∼=P. But the
semantices of these corresponding subvalues also intersect, their intersection contains at least the
corresponding subterm of T . By the induction assumption, the corresponding subterms of AV and
AV ′ are related by ∼=P.

If AV = AnyPubVal and AV ′ 6= AnyPubVal then T is known to the adversary, hence it is
adversarially well-constructed. Consider the following possibilities.

• The type of T is enc or symenc and T was constructed by one of protocol participants.
The outermost constructor of AV ′ must then be pubenc or symenc. The adversarially well-
constructedness of T must be caused by the existence of some AV ′′ ∈ P̃, such that T ∈
[[AV ′′]]O. The term AV ′′ has the same outermost constructor as AV ′. The definition of
∼=P gives us AV ′′ ∼=P AnyPubVal. The same argument as in the previous paragraph gives
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us that the corresponding subterms of AV ′ and AV ′′ are related by ∼=P. As the outer-
most constructor of AV ′ and AV ′′ is either pubenc or symenc, the definition of ∼=P gives us
AV ′ ∼=P AnyPubVal = AV .

• The type of T is enc or symenc and T was constructed by the adversary. Then the only
abstract value whose semantics contains T is AnyPubVal and T ∈ [[AV ′]]O is impossible.

• The type of T is data. Then AV ′ must be store(XP) or store(XS). By the definition of ∼=P,
store(XP) ∼=P AnyPubVal. If AV ′ = store(XS) then AV ′ ∈ P by the definition of adversarial
well-constructedness.

• The type of T is list. The outermost constructor of AV ′ must be the tuple constructor. If there
exists some AV ′′ ∈ P̃, such that T ∈ [[AV ′′]]O, then the argument is the same as for pubenc

and symenc — the outermost constructor of AV ′′ is the tuple constructor, the corresponding
components of AV ′ and AV ′′ are related by ∼=P, and AV ′′ ∼=P AnyPubVal.

If there exists no such AV ′′ then all subterms of T (call them T1, . . . , Tk) must be adversar-
ially well-constructed, i.e. the adversary must know them and therefore Ti ∈ [[AnyPubVal]]O.
If AV ′ = (AV ′

1, . . . ,AV ′
k) then Ti ∈ [[AV ′

i]]O. By the induction assumption, AV ′
i
∼=P

AnyPubVal. and AV ′ ∼=P (AnyPubVal, . . . ,AnyPubVal). By one of the properties of ∼=P,
AV ′ ∼=P AnyPubVal.

If AV 6= AnyPubVal and AV ′ = AnyPubVal then swap AV and AV ′ and apply the above argument.
If AV = AV ′ = AnyPubVal then AV ∼=P AV ′. �
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