Cryptography in the Multi-string Model

Jens Groth Rafail Ostrovsky

UCLA Computer Science Department
4732 Boelter Hall
Los Angeles, CA 90095-1596, USA

{ig,rafail }@cs.ucla.edu

Abstract

The common random string model permits the construction of cryptographic protocols that are prov-
ably impossible to realize in the standard model. In this model, a trusted party generates a random string
and gives it to all parties in the protocol. However, the introduction of such a third party should set alarm
bells going off: Who is this trusted party? Why should we trust that the string is random? Even if the
string is uniformly random, how do we know it does not leak private information to the trusted party? The
very point of doing cryptography in the first place is to prevent us from trusting the wrong people with
our secrets.

In this paper, we propose the more realistic multi-string model. Instead of having one trusted authority,
we have several authorities that generate random strings. We do not trust any single authority, we only
assume a majority of them generate the random string honestly. We demonstrate the use of this model
for two fundamental cryptographic taks. We define non-interactive zero-knowledge in the multi-string
model and construct NIZK proofs in the multi-string model. We also consider multi-party computation
and show that any functionality can be securely realized in the multi-string model.

Keywords: Common random string model, multi-string model, non-interactive zero-knowledge, multi-
party computation.

*Supported by NSF ITR/Cybertrust grant No. 0456717.
tSupported in part by a gift from Teradata, Intel equipment grant, NSF Cybertrust grant No. 0430254, OKAWA research award,
B. John Garrick Foundation and Xerox Innovation Group Award.

0

1 Introduction

THE PROBLEM. In the common random string model, a trusted party generates a uniformly random bit-
string and makes it available to all parties. A generalization of this model is the common reference string
(CRS) model, where the string may have a non-uniform distribution. Blum, Feldman and Micali [BFM88]
introduced the CRS model to construct non-interactive zero-knowledge (NIZK) proofs. A relaxation of the
plain model was needed, since only languageBR¥ can have non-interactive or two-round NIZK proofs

in the plain model, [GO94]. There are other examples of protocols that cannot be realized in the standard
model but are possible in the CRS model, for instance universally composable (UC) commitment [CFO1].
The CRS-model has therefore found wide-spread use in the field of cryptology.

Using the CRS-model to solve the tasks mentioned above in some sense just ignores a very real problem.
It remains to specify where the CRS comes from. One solution is to have a trusted third party that generates
the CRS, but this raises a trust-issue. It is very possible that the parties cannot find a party that they all trust.
Would Apple trust a CRS generated by Microsoft? Would US government agencies be willing to use a CRS
generated by their Russian counterparts?

Alternatively, the parties can generate the CRS themselves at the beginning of the protocol. If a majority
is honest, they could for instance use multi-party computation to generate a CRS. However, this kind of setup
makes the whole protocol much more complicated and requires them to have an initial round of interaction.
They could also trust a group of parties to jointly generate a CRS, however, this leaves them with the task
of finding a volunteer group to run a multi-party computation protocol whenever a CRS is needed. Other
relaxations of the CRS-model found in the literature, such as the registered public key model that Barak
et al.[BCNPO04] use for multi-party computation also suffer from deficiencies. In the registered key model,
parties can register correctly generated public keys, and these keys can be used for multi-party computation.
However, now we need a trusted party to perform this verification of the keys.

THE MULTI-STRING MODEL. We propose the multi-string model as a solution to the above mentioned
problems. In this model we have a number of authorities that assist the protocol execution by providing
random strings. If a majority of these authorities are honest the protocol will be secure. There are two
reasons that the multi-string model is attractive. First, the authorities play a minimal role in the protocol.
They simply publish random strings, they do not need to perform any computation, be aware of each other
or any other parties, or have any knowledge about the specifics of the protocol to be executed. This permits
easy implementation, the parties wishing to execute a protocol can for instance simply download a set of
random strings from agreed upon authorities on the internet. Second, the security of the protocols need to
rely only on a majority of the authorities being honest at the time they created the strings. No matter how
untrustworthy the other parties in your protocol are, you can trust the protocol if a majority of the authorities
are honest. In other words, the honesty of a small group of parties can be magnified and used by any set of
parties.

Now we have a new reasonable model for constructing secure protocols. The question remains, whether
we can actually securely realize protocols in this model? We answer this question in the affirmative by
defining and constructing non-interactive zero-knowledge proofs in the multi-string model and by securely
realizing general multi-party computation in the multi-string model.

1.1 Non-interactive Zero-Knowledge

A zero-knowledge proof is a two-party protocol, where a prover tries to convince a verifier about the truth
of some statement, typically membership of an NP-language. The proof should only convince the verifier if
indeed the statement is true, however, at the same time the proof should reveal no extra information to the
verifier other than the truth of the statement, in particular it should not reveal the NP-witness known to the
prover. Interactive zero-knowledge proofs are known to exist in the standard model, however, as mentioned

before non-interactive and 2-round zero-knowledge proofs only exist for trivial languages [GO94]. Instead,
much research has gone into constructing non-interactive zero-knowledge proofs in the CRS-model.

We define multi-string NIZK proofs for NP-languages in Section 2. In this definition a proof is con-
structed using: common reference strings, which we imagine to be picked from a set of strings generated
by some authorities. We further imagine that out of th&trings, a majority (or some threshold, see Section
2) of them have been honestly generated and no side-information has been stored about them. In that case
we will have completeness, soundness and zero-knowledge defined as respectively the prover being able to
convince the verifier if he knows a witness for the statement, the prover’s inability to prove a false statement
and the verifier's inability to learn anything else from the proof than the truth of the statement. We also
consider more complex notions of zero-knowledge such as simulation-soundness, proofs of knowledge and
simulation-sound extractability in the multi-string model.

We will construct multi-string NIZK proofs for any NP-language based on general cryptographic assump-
tions. This is a non-trivial task, since any of the common reference strings may be maliciously generated and
leak information, so for instance the trivial solution of concatenatiM¢JZK proofs does not work.

We also construct very efficient multi-string NI1ZK proofs for circuit satisfiability, based on specific num-
ber theoretic assumption related to groups with bilinear maps. Using groups with a bilinear map is harder
than one might expect at first glance, since all the common reference strings are generated independently and
therefore we cannot assume the existence of a commonly agreed upon group. Nonetheless, we manage to
construct such NIZK proofs and they are surprisingly efficient, a proof consist§wf+ |C|) group ele-
ments. Since in a typical setting,will be much smaller than the size of the circuit this matches the most
efficient known constructions for the single common reference string case by Groth, Ostrovsky and Sahai
[GOS06b, GOS06a] where an NIZK proof consist€4fC|) group elements.

1.2 Multi-party Computation

Canetti's UC framework [Can01] defines secure execution of a protocol under concurrent execution of arbi-
trary protocols. We refer the reader to Section 5.1 for an overview and to Canetti's paper for details, for now
let us just say that the essence of the definition is to compare a protocol executing in the real world with an
ideal process where a trusted party takes inputs from the parties and hands them their outputs. A protocol
securely realizes the ideal functionality (the trusted party’s program) if whatever the executing environment
sees in the real life execution can be simulated on top of the ideal functionality.

It is known that in the plain model, any (well-formed) ideal functionality can be securely realized if
a majority of the parties are honest. On the other hand, if a majority may be corrupt, there are certain
functionalities that are provably impossible to realize. Relaxing the setting to the CRS-model, Canetti, et al.
showed that any (well-formed) ideal functionality can be securely realized in the CRS-model, even against
adversaries that can adaptively corrupt arbitrary parties and where parties are not assumed to be able to
securely erase any of their data. However, it is an open question where this CRS should come from, since
the parties provably cannot compute it themselves and it may be undesirable to trust one single authority to
create a CRS, and risk the compromise of all your confidential data if the trust turns out to be unwarranted.

In this paper, we will show that any well-formed functionality can be securely realized in the multi-string
model. This is a significant step forward, since even mutually distrustful parties may still agree on a set
of authorities where they trust that some subset will be honest enough to generate good common reference
strings. Also, there is now much less incentive for any given authority to cheat since to learn anything from
the protocol it would need to risk cooperation with other authorities and face a higher risk of being caught.
For instance the honest-but-curious system administrator who in the single authority setup might generate
a common reference string that permitted decryption of the parties’ secrets, no longer learns anything and
therefore has less incentive to generate a fake common reference string.

2 Definitions

Let R be an efficiently computable binary relation. For pditsw) € R we callz the statement ana the
witness. Letl be the NP-language consisting of statementg.in

A multi-string proof system for a relatioR consists of probabilistic polynomial time algorithii’s P, V,
which we will refer to as respectively the key generator, the prover and the verifier.

The key generation algorithm can be used to produce common reference stringfie present paper,
we can implement our protocols with a key generator that outputs a uniformly random string of polynomial
length¢(k), however, for the sake of generality, we include a key generator in our definitions. Please note,
the key generator takes only the security parameter as input, we do not assume that the key generator has any
knowledge of the circumstances in which the common reference string is going to be used.

The prover takes as input.,ts,t.,d,z,w), whered is a set onn common reference strings and
(z,w) € R, and produces a proof. The verifier takes as input,, ts,t.,5,z,7) and outputs 1 if the
proof is acceptable and O if rejecting the proof. We ¢&ll, P, V') a (., ts,t,,n)-NIZK proof system for
R if it has the completeness, soundness and zero-knowledge properties described below. We remark that
(1,1,1,1)-NIZK proof systems correspond closely to the standard notion of NIZK proofs in the CRS-model.

(te,ts,t,,m)-COMPLETENESS For all non-uniform polynomial time adversaridswve have

Pr|S :=0;(7,z,w) — AX;7 — P(te,ts,t., 7, 2, w) :

V(te,ts, tz,0,2,m) =0and(z,w) € Rand|5 \ S| > t.| =0,

whereK on queryi outputss; « K (1%) and setsS := S U {o;}.

Our protocols will have perfect., ts, t., n)-completeness for all < t. < n. In other words, even if the
adversary chooses all common reference strings itself, we still have probability 1 of outputting an acceptable
proof.

(te,ts,t»,n)-SOUNDNESS The goal of the adversary in the soundness definition is to forge a proof using

n common reference strings, event jfof them are honestly generated. The adversary gets to see possible

choices of correctly generated common reference strings and can adaptively cluddisem, it may also in

thesen common reference strings include upite- t; fake common reference strings that it chooses itself.
We say(K, P, V) is (t¢,ts, t.,n)-sound if for all non-uniform polynomial time adversaridsve have

Pr[S = 0; (7,0, m) — A V(te, o, t2, 5,0, m) = Lande ¢ Land|7\ S| > t,] ~ 0,
whereK is an oracle that on quedyoutputso; < K (1¥) and setsS = S U {o;}.

(te,ts,t,,m)-ZERO-KNOWLEDGE. We wish to formulate that if, common reference strings are correctly
generated, then the adversary learns nothing from the proof. As is standard in the zero-knowledge literature,
we will say this is the case, when we can simulate the proof. Let thersfobe an algorithm that outputs
(o, 7), respectively a simulation reference string and a simulation trapdoor. Let furterffyobe, an algo-
rithm that takes inputt., ts, t., o, 7, z,w) and simulates a proof if 7 containst, simulation trapdoors for
common reference strings i

We will strenghten the standard definition of zero-knowledge, by splitting the definition into two parts.
The first part simply says that the adversary cannot distinguish real common reference strings from simulation
reference strings. The second part, saysdtiah with access to the simulation trapdotbrs adversary cannot
distinguish the prover from the simulator on a set of simulated reference strings. This kind of definition was

considered by Groth in [Gro06] in the common reference string model and was proven to imply adaptive
multi-theorem zero-knowledge.

We say(K, P, V) is (t.,ts,t.,n)-composable zero-knowledge if there exiSts Sz such that we have
both reference string indistinguishability and simulation indistinguishability as described below. Either of
these come in computational, statistical and perfect flavors. We describe the computational flavor, since that
is the most relevant in this paper.

REFERENCE STRING INDISTINGUISHABILITY For all non-uniform polynomial time adversaridswve have
Pr |:0' — K(1%): A(o) = 1] ~ Pr [(J,) — S1(1%) : A(o) = 1/.

(tests,ts,m)-SIMULATION INDISTINGUISHABILITY . For all non-uniform interactive polynomial time ad-
versaries4 we have

Pr [S =0; (0, x,w) «— Asl(lk);ﬂ — P(te,ts,t,,0,z,w) : A(w) =1 and(z,w) € Rand|5 \ S| > tz}
~ Pr {S = 0; (¢, x,w) — A5 (1%); 1 — Sy(te, ts,t., 8,7, 2) : A(m) = 1and(z,w) € Rand|&\ S| > tz},
where7 contains the simulation trapdoors corresponding;t® generated by .

LOWER BOUNDS FOR MULT+STRING NIZK PROOFS Soundness and zero-knowledge are complementary.
The intuition is that if an adversary controls enough strings to simulate a proof, then he can prove anything
and we can no longer have soundness.We capture this formally in the following theorem.

Theorem 1 If L is a language with a proof systefi’, P, V) that has(¢, ts, ¢, n)-completeness, soundness
and zero-knowledge theh € P /poly or ts + t, > n.

Proof. Assume we have aft.,ts,t.,n)-NIZK proof system forR defining L andt¢s + ¢, < n. Given an
elementz, we wish to decide whether € L or not. We simulateé, common reference strinds;, 7;) <
S1(1%) and generate — t, common reference strings < K (1%) settingr; = L. We then simulate the
proof «— Sy(&, 7, x). OutputV (7, z, 7).

Let us analyze this algorithm. W € L, then by(¢.,ts,t.,n)-completeness a prover with access to
a witnessw would output a proof that the verifier accepts if all common reference strings are generated
correctly. By reference string indistinguishability, we will therefore also accept the proof when some of
the common reference strings are simulated (Byt, ¢, n)-simulation indistinguishability, where we give
(z,w) as non-uniform advice tgl, we will output 1 with overwhelming probability on € L.

On the other hand, it ¢ L, then by the(¢.,ts,t,,n)-soundness we output O with overwhelming
probability, sincen — t, > t, common reference strings have been generated correctly. This shows that
L € BPP/poly. By [AdI78] we haveP /poly = BPP /poly, which concludes the proof. O

In general, we wish to minimizé, to make it more probable that the protocol is sound, and at the same
time we wish to minimize, to make it more probable that the protocol is zero-knowledge. In many cases,
choosingn odd, and setting, = ¢, = ”T“ will be a reasonable compromise. However, there are also cases
where it might be relevant to have an eskewed setting. Consider the case, where Alice wants to e-mail a NIZK
proof to Bob, but does not know Bob’s preferences with respect to common reference strings. She may pick
a set of common reference strings and make a multi-string proof. Bob did not participate in deciding which
common reference strings to use, however, if they came from trustworthy authorities he may be willing to
accept that probably one of the authorities is honest. On the other hand, Alice gets to choose the authorities,
so she may be wiling to believe that all of them are honest. The appropriate choice in this situation, is a
multi-string proof witht;, = 1,¢, = n.

(te,ts,t,,m)-KNOWLEDGE. Strenghtening the definition of soundness, we ¢&ll P, V) a (t.,ts,t.,n)
proof of knowledge forR if there exists a knowledge extractdr = (E;, E») with the properties described
below.

For all non-uniform polynomial time adversaridswe have

Pr {a — K1k : A(o) = 1} ~ Pr {(0,5) — FE(1%): A(o) = 1].
For all non-uniform polynomial time adversaridswe have

Pr {S =0; (0, x,m) — AEl(lk);w — Eg(tc,ts,tz,(?,g,x,ﬂ) :

V(te,ts ts,é,2,m) = 1and|é \ S| > t, and(z, w) ¢ R} ~ 0,

whereE; is an oracle that returns, £) < E; and setsS := S U {c}, and¢ is then element vector that
contains at least; £'s corresponding to the’s in & generated by, .

(te,ts,t,m)-SIMULATION-SOUNDNESS In security proofs, it is often useful to simulate a proof for a false
statement. However, seeing a simulated proof for a false statement might enable an adversary to generate
more proofs for false statements. We say an NIZK prodtists, t.,n)-simulation-sound if an adversary
cannot prove any false statement even after seeing simulated proofs of arbitrary statements.

More precisely, dt., ts, t,,n)-NIZK proof system(K, P,V, S, S2) is (t, ts, t., n)-simulation-sound if
for all non-uniform polynomial time adversaries we have

Pr|Si=0:Q = 0; (7,2, m) — ABSI (1)

(z,7) ¢ Q andz ¢ L andV (&, z,7) = 1 and|& \ S| > ts] ~ 0,

whereS; returns(o,7) « S1(1%) and setsS := S U {o}, andS5(#, z) returnst «— So(te, ts, t., G, 7, x)
with 7 containing simulation trapdoors for thes generated by; and set%) := Q U {x, 7}.

(te,ts,ts,m)-SIMULATION-EXTRACTABILITY. Since we are working in the multi-string model, we assume
strings can be set up and used by anybody who comes along. Knowledge extraction and zero-knowledge may
both be very desirable properties, however, we may also imagine security proofs where we at the same time
need to extract withesses from some proofs and simulate other proofs. This joint simulation/extraction is for
instance often seen in security proofs in the UC framework.

Combining simulation soundness and knowledge extraction, we may therefore require that even after
seeing many simulated proofs, whenever the adversary makes a new proof we are able to extract a witness. We
call this property simulation-extractability. Simulation-extractability implies simulation-soundness, because
if we can extract a witness from the adversary’s proof, then obviously the statement must belong to the
language in question.

Consider dt., ts,t,,n)-NIZK proof of knowledge(K, P, V, Sy, So, F1, E2). Let SE; be an algorithm
that outputy o, 7, £) such that it is identical t&; when restricted to the first two parts, 7). We say the
NIZK proof is (t.,ts,t,, n)-simulation-extractable if for all non-uniform polynomial time adversaries we
have

Pr|S:= Q’Q = (Z); (6,$,7T) — ASE{7S2(.7.)(1k);w — Eg(tc,ts,tz,ﬁ,él‘,ﬂ) :

(z,7m) ¢ Qand(z,w) ¢ RandV (t.,ts,t,,0,z,7) =1and|g\ S| > ts| =0,

where SE! outputs (c,¢) from (o,7,6) « SE;(1%) and setsS = S U {o}, S> outputs 7 «
Sa(te, ts, tz, 0, T, x), Wherer containg , 7's corresponding te’s generated by £, and sets) = QU{z, 7},
and¢ is a vector containing at least£’s generated by 4 corresponding to’s in &.

(te,ts,t.,n)-EXTRACTION ZERO-KNOWLEDGE. Combining simulation soundness and knowledge extrac-
tion, we may also require that even after seeing many extractions, it should still be hard to distinguish real
proofs and simulated proofs from one another. This definition resembles the definition of chosen ciphertext
attack secure public key encryption.

Consider dt., ts,t,,n) NIZK proof of knowledge(K, P,V, S, S2, E1, Es). Let SE; be an algorithm
that outputgo, 7,) such that it is identical t&; when restricted to the first two parts, 7). We say the
NIZK proof is (t.,ts,t,, n)-extraction zero-knowledge if for all non-uniform interactive polynomial time
adversaries we have

Pr [S = 0; (&, 2, w) — ASPLEC)(1R) 0 Pt b, b0, G2, w)
AP2() (1) = 1 and(z, w) € R and|¢ \ S| > tz} ~
Pr [5 = 0; (&, 2, w) — ASPLEC) (1R) 0 Syt b, b, G, T,) -
)

APH)() = 1 and(e,w) € Rand|a \ S| > 1.].

where SE/| outputs (o,7) from (o,7,&) « SE;(1¥) and setsS = S U {o}, E, outputsw «
Es(te, ts, ts, T, 5, x), when the query contairtg o’'s generated by F; andr is not the challenge proof.

3 Multi-string NIZK Proofs based on General Assumptions

MuULTI-STRING NIZK PROOFS We start out with a simple construction of a multi-string NIZK proof that
works fort. = 0 and all choices of,,¢,,n sots + ¢, > n. We use two tools in this construction, a
pseudorandom generator and a zap. Recall, a zap is a two-round public coin withess-indistinguishable proof,
where the verifier's first message is chosen at random and can be fixed once and for all and be reused in
subsequent zaps.

A common reference string will consist of a random vatuend an initial message for the zap. Given
a statement € L, the prover makes zaps for

x €L or thereareg, common reference strings wherés a pseudorandom value

In the simulation, we create simulation reference strings-asprg(7) enabling the simulator to make zaps
without knowing a witness for z € L.

Common reference string: Generate < {0, 1}2%; 0 « {0, 1}%=»(*) Qutput® := (r,).

Proof: Given inputt., (24,...,3,), a statement and a witness so(z,w) € R, we wish to prover € L.
Using NP-reductions, we create a polynomial size cir€Uihat is satisfiable if and only if

zeL or [{r)3n : r, =PRG(n)| > t..

Chosen appropriately, NP-reductions are witness preserving, so we also tetlueewitnesdV’ for
C being satisfiable. For alt common reference strings, generate— P,,,(0;, C,W). Return the
proofIl := (7y,..., 7).

Verification: Givenn common reference string&, ..., %,), a statement and a proofl = (7y,...,m,)
returnl if and only if all of them satisfy,., (04, C, m;) = 1, whereC'is generated as in the proof.

Simulated reference string: Selectr — {0,1}*;r := PRG(7) ando — {0, 1}%=r(%)_ Output((r, o), 7).

Simulated proof: Given input (X%4,...,%,),(m1,...,7,),x SO we have fort, reference strings; =
PRG(7;) we wish to simulate a prodfl. As in a proof, use NP-reductions to get a cirodiitthat
is satisfiable if and only it € L or [{r;|3r; : r;, = PRG(m;)| > t,. Pick the firstt, common
reference stringz;, wherer; = PRG(7;), and reduce this to a witned¥ for the satisfiability of
C. For alln common reference strings, generaie— P,.,(0;, C, W). Return the simulated proof
I:=(my,...,m).

Theorem 2 The existence of one-way functions and zaps with perfect completeness imply the existence of
(0,ts,t,,m) NIZK proofs for anyl < t¢,t, < n with ¢; + ¢, > n in the common random strings model

with statistical(0, ¢, ., n)-soundness. In particular, enhanced trapdoor permutations imply the existence of
NIZK proofs in the common random string model, which in turn implies the existence of zaps.

Proof. Trapdoor permutations imply one-way functions, which in turn imply the existence of pseudorandom
generators [HILL99]. Dwork and Naor [DNO2] construct zaps from NIZK proofs in the random string
model, which can be built from trapdoor permutations. There are a few details that are easy to resolve,
but worth mentioning. First, they allow completeness error in the zaps, however, it is easy to see that their
construction is actually perfectly complete if one uses an NIZK proof with perfect completeness in their
construction. Second, their construction uses an inital message that is polynomial in the statement size,
whereas we want the authorities to generate common reference strings without knowing the statement size in
advance. Plugging in any NIZK with common random string size that is independent of the statement size
circumvents this problem.

Direct verification reveals that we have perfect completeness, even fer0. Let us prove that we
have(0, ts, t.,n)-soundness. Any honestly generated common reference string has negligible probability of
containing a pseudorandom valueWith ¢, honestly generated strings ahd> n — ¢, there is negligible
probability that(>;,...,3,) havet, or more pseudorandom values. adf¢ L, the resulting circuiC' is
unsatisfiable. Also, at least one of the common reference strings has a correctly generated initial message
for the zap. By the statistical soundness of this zap it is thus hard to construct a valid proof, even for an
unbounded adversary 6f being satisfiable.

We now turn to the question @b, ¢, t.,n)-zero-knowledge. Computational reference string indistin-
guishability follows from the pseudorandomnessP@G. With at leastt, simulated reference strings the
only difference between proofs using the witness:af L and simulated proofs using the simulation trap-
doors is the withesses we are using in the zaps. Computational simulation indistinguishability follows from
a standard hybrid argument using the witness indistinguishability of the zaps. O

(0,ts,t,,n)-SIMULATION-EXTRACTABLE NIZK PROOF More advanced proofs, such as multi-string NIZK
proofs of knowledge that are simultaneouélyt,, ¢., n)-simulation-extractable and, ¢, ¢, n)-extraction
zero-knowledge can also be constructed in the multi-string model.

To permit the extraction of witnesses, we include a public key for a CCA2-secure cryptosystem in the
common reference strings. In a proof, the prover will make,an)-threshold secret sharing of the witness
and encrypt the shares under thpublic keys. To extract the witness, we will decrypbf these ciphertexts
and combine the shares to get the witness.

To avoid tampering with the proof, we will use a strong one-time signature scheme. The prover generates
a key (vksots, sksots) — Ksots(1%) that he will use to sign the proof. The implication is that the adversary,
who sees simulated proofs, must still use a differéfts in his forged proof, because he cannot forge the
strong one-time signature.

The common reference string will contain a value, which in a simulation string will be pseudorandom.
The prover will prove that he encryptedia, n)-secret sharing of the witness, or that he knows how to eval-
uatet, pseudorandom functions irk..s USing the seeds of the respective common reference strings. On a
real common reference string, this seed is not known and therefore he cannot make such a proof. On the other
hand, in the simulation the simulator does know these seeds and can therefore simulate without knowing the
witness. Simulation soundness follows from the adversary’s inability to guess these pseudorandom functions
onvkss, €ven if it knew the evaluations on many other verification keys.

Zero-knowledge under extraction attack follows from the CCA2-security of the cryptosystem. Even after
having seen many extractions, the ciphertexts reveal nothing about the witness, or even whether the trapdoor
has been used to simulate a proof.

Common reference string/simulation string: Generate (pki, dk1), (pka, dks) — Keeaa(1%);7
{0,1}%%: 5 — {0,1}t=2» (%) ReturnX. := (pky, pko, 7, 0).

The simulators and extractoff, F1, SE; will generate the simulated reference strings in the same
way, except for choosing < {0, 1}* andr := PRF,(0). We use the simulation trapdoorand the
extraction key := dk;.

Proof: P(0,ts,t,,(X1,...,%,),z,w) where(x,w) € R runs as follows. First, generate a key pair for a
strong one-time signature scheféxs, sksots) < Ksots(1¥). Use(ts, n)-threshold secret sharing to
get sharesuy, ..., w, of w. Encrypt the shares as = E,,, (w;, Vksots; 751). AlSO encrypt dummy
valuesciy «— Ep,(0). Consider the statement:y, ..., c,1 all encryptvksqs, and furthermore
c11, - - -, Cp1 @re encryptions of shares ofia, n)-secret sharing of a witnessso(z, w) € R or at least
t, of ther;’s on the common reference strings are on the forem PRF ., (0) and the corresponding,
is an encryption oPRF ., (vksots). We can reduce this statement to a polynomial size ciiCund a
satisfiability witnesdV. For alli’'s we create a zap; <« P,ap (04, C, W). Finally, we sign everything
using the strong one-time signatusey « Signg . (vVksots, 21, C11, €12, T1, - - - , 2, Cln, C2ns Ty).
The proof isll = (vksots, C115C12, s Ty - - « s Cln, C2ns T, S1G).

Verification: To verify II on the form described above, verify the strong one-time signature and verify the
Zapsmy, ..., Tp.

Extraction: To extract a witness check that the proof is valid. Next, use thetfirsttraction keys irf to
decrypt the corresponding ciphertexts. Use Lagrange interpolation on the plaintexts to recover the
withessw.

Simulated proof. To simulate a proof, pick the first, simulation trapdoors inF. These arer; so
r; = PRF.,(0). As in the proof generat@uksos, sksots) «— Ksots(1¥). Createt, pseudorandom
valuesv; := PRF, (vksts). Encrypt the values as, — E,,,(v;). For the other reference strings,
just letcio — Ep,,(0). Letw,...,w, be a(ts,n)-threshold secret sharing of 0. We encrypt also
these values ag; «— E,,, (w;, vksos). Let C be the circuit corresponding to the statement that
C11, - - -, Cn1 CONtaiNvkgots, and alsaeyy, . . ., ¢y contains a'ts, n)-threshold secret sharing of a wit-
nessw so(z,w) € R or there are at leasgt of the ciphertextss, . . ., ¢,2 that contain pseudorandom
function evaluations onk,.is. From the creation of the ciphertexts andc;> we have a witnesd’ for
C being satisfiable. Create zaps«— P,.,(0;, C, W) for C being satisfiable. Finally, make a strong
one-time signature on everythisgg « Sign,, (vksots, X1, €11, €12, T1, - - -, Xy Cnls Cn2, T). The
simulated proof id1 := (vksots, C11, €12, T15 - - - » Cnls Cn2, Tn,y Sig)-

Theorem 3 The above protocol is &0, t,,t,,n)-NIZK proof for all choices of + ¢, > n. It can be
securely implented if trapdoor permutations exist, and it can be implemented with random strings if dense
cryptosystems and enhanced trapdoor permutations exist.

8

Proof. Let us start with the latter part. Enhanced trapdoor permutations, imply the existence of zaps with
perfect completeness and pseudorandom functions and strong one-time signatures. Enhanced trapdoor per-
mutations also imply the existence of CCA2-secure public key encryption with errorless decryption. In case
dense public key cryptosystems and enhanced trapdoor permutations exist, CCA2-secure encryption with
random strings as public keys exist.

Perfect completeness follows by direct verification. Common reference strings and simulated reference
strings are indistinguishable by the pseudorandomness of the pseudorandom fBRdfion

Let us consider extraction-sound zero-knowledge. The adversary knows the simulation trapdouls
has access to an extraction oracle. He selects a stateraadta witness and has to distinguish a proof on
a simulated reference string using respectively the witness or the simulator. We consider a series of hybrid
experiments.

Hybrid 1. This is the experiment, where we run the adversary on a simulated reference string and make
proofs using the real prover and witness

Hybrid 2. We modify hybrid 1 by encrypting., pseudorandom values ifs, . . ., c 2. We knowt, seeds;
such that; = PRF,(0). Instead of setting;» < E,,(0), we encrypt;s <« E,, (PRF;, (vksots).

By the semantic security of the cryptosystem, hybrid 1 and hybrid 2 are computationally indistinguish-
able.

Hybrid 3: We modify hybrid 2, by reducing the pseudorandom values and the randomness used in forming
the ciphertexts:o, . .., c,2 to form a withesg¥V for C being satisfiable. We use this witness in the
zaps, instead of the witness

By the witness-indistinguishability of the zaps, hybrid experiments 2 and 3 are indistinguishable.

Hybrid 4. We modify hybrid 3 such that if the adversary ever recycles one of the cipheftefkom the
challenge proof in one of the encryption queries and this is a valid proof, then we abort.

There is negligible probability of aborting. To make a valid proof, the adversary has to sign the proof
using a verification keyk. ... By the existential forgeability of the strong one-time signature scheme,
this verification key has to differ from the verification ke¥s.is used in the challenge. This means,

¢;1 contains the wrong verification key. However, in the zaps, of which at least one is made using a
correctly generated initial message, the adversary proves;ttddes contaimk, ... By the soundness

of the zap, there is negligible probability of the adversary succeeding in this.

Hybrid 5: We modify hybrid 4 by making dts, n)-threshold secret sharings, . . ., w, of 0 instead of
secret sharingy. We encrypt these sharesdpn «— E,,, (w;, vksots). This hybrid is identical to the
simulation process.

Hybrid 4 and hybrid 5 are indistinguishable. We have ruled out that the adversary ever makes an extrac-
tion query, recycling &;; from the challenge. Using a hybrid argument on the chosen ciphertext attack
security of the cryptosystems, the adversary cannot distinguish encryptions of shares of a threshold
secret sharing ofy from shares of a threshold secret sharin@.oThe remaining: — ¢, < t, shares

do not reveal anything.

Next, let us consider simulation-sound extractability. Here the adversary sees extraction keys, but not
the simulation trapdoors of the common reference strings generat8d’hy It has access to a simulation
oracle, and in the end it outputs a statement and a proof. By the unforgeability of the strong one-time
signature scheme, it cannot reuse a strong verificationkgy; used in a simulated proof. Let us look at an
honestly generated simulated common reference string. Since it does not know the seed for the pseudorandom
function, it cannot encrypt a pseudorandom function evaluationtQfs. The zaps, of which at least one

uses a correctly generated initial message, then tells ugithat ., c,; contain a(¢s, n)-threshold secret
sharing ofw. Decryptingt, of these ciphertexts, permits us to reconstruct the witness

A similar proof, shows that we hawatistical(0, ¢, ¢, n)-knowledge extraction. The point in this proof
is that with overwhelming probability a random string does not contain a pseudorandom vaduberefore
11, - - -, Cp1 MUst encrypt dtg, n)-threshold secret sharing of a witness foe L. O

4 Multi-string NIZK Proofs from Groups with a Bilinear Map

SETUP. We use group$s, G of orderp, wherep is a k-bit prime. We make use of a bilinear map:
G x G — Gr. le., forallu,v € G anda,b € Z we havee(u®,v®) = e(u,v)®. We require that(g, g)
is a generator ofs if ¢ is a generator ofs. We require that group operations, group membership, and the
bilinear map be efficiently computable. Such groups have been widely used in cryptography in recent years.
Let G be an algorithm that takes a security parameter as input and o(ip@sGr, e, g) such thatp
is prime,G, G are descriptions of groups of ordgre : G x G — Gy is an admissible bilinear map as
described above angis a random generator @.
We use the decisional linear assumption introduced by Boneh, Boyen and Shacham [BBS04].

Definition 4 (Decisional Linear Assumption (DLIN)) We say the decisional linear assumption holds for
the bilinear group generatog if for all non-uniform polynomial time adversarie$ we have

Pr {(p,G, Gr,e,9) «— G(1F);2,y,7, 5 — Z, : A(p,G,Gr,e,9,9%, 9%, 9", g%, 9" %) = 1}
~ Pr [(p,G, Gr,e,9) « G(1%);2,y,7,8,d — Z,, : Alp,G,Gr,e,9,9", 9%, 9", g"*, g%) = 1}-

Throughout the paper, we work over a bilinear grogpsG, Gr,e,g) < G(1*) generated such that the
DLIN assumption holds fo§. Honest parties always check group membershi @& when relevant and
halt if an element does not belong to a group that it was supposed to according to the protocol.

We will make some further assumptions on the groups that we use. Given a description of a group
(p,G,Gr, e, g) it should be possible to verify that indeed it is a group. Moreover, we will require that there
is a decoding algorithm that given a random stringrof- 1)k bits interprets it ag random group elements.

The decoding algorithm should be reversible, such that givgmoup elements we can create a random
(n + 1)k-bit string that will decode to the group elements.

When working in the random strings model, we will also require that the group can be sampled from a

random string ofk-bit length?!

Example. We will offer a class of candidates for DLIN groups as described above. Consider the elliptic

curvey? = 23 + 1 mod ¢, whereq = 2 mod 3 is a prime. It is straightforward to check that a paint y)
. .. . 1 .
is on the curve. Furthermore, pickinge Z, at random and computing = (y* — 1)% mod ¢ gives

us a random point on the curve. The curve has a total-gfl points, including the point at infinity. When
generating such groups, we will pipkas a randonk-bit prime. We then le be the smallest prime g9q+ 1
and definés to be the ordep subgroup of the curve. The target groufis = IF;2 and the bilinear map is the
modified Weyl-pairing. Verification ofp, G, G, e, g) being a group with bilinear maps is straightforward,
since it corresponds to checking that; are primes s@|q + 1 andg = 2 mod 3 andg is an ordep element
on the curve.

PSEUDORANDOM GENERATORS FROM THIDLIN AssuMPTION. Consider a DLIN grougp, G, Gr, e, g).
Chooser, y « Z; at random and set = g*,h = ¢g¥. Given random elements v < G, we can compute

Y1t is easy to modify our scheme to work with any group that can be specified &) /anbit random string.

10

w = u!/"v1/¥. The DLIN assumption says théf, k, u, v, w) is indistinguishable frontf, h, u, v, r), where
r is a random group elements fraéh In other words, we can create a pseudorandom funétion, u, v) —
(g%, g¥,u,v,u/"v/¥) that strecthes our randomness with an extra group element. We will need to create
random looking strings that have hidden structure, this construction gives us exactly that. However, we need
to stretch our random group elements into more group elements.

Let us pickm pairs(z;,y;) < Z;, x Z,, and create correspondirfg= g*, h; = g¥. We can now stretch

2n group elements,, vy, . .., uy,, v, With mn extra group elements by computing; := ujl./“v;/y".
It turns out that if then pairs of group elementsu;,v;) are chosen at random, then
(f1,h1, -y fons By U1, 015+ oy Uy Upy W1, - - - Winy) |OOKS like @ randon®m + 2n + mn-tuple of group

elements. To see this, consider the following hybrid experirignt where we picko;; at random for pairs
(i,7) wherei < IV (i = I A j < J) and compute the rest of the;;'s according to the method described
above. We need to prove that tg;’s generated in respectively;; andE,, 41 are indistinguishable.

Consider first experimentBr ;, Ey 41 for1 < I < m,1 < J < n. In case there is a non-uniform
adversaryA that can distinguish these two experiments, then we can break the DLIN assumption as follows.
We have a challengéf, h,u,v,w) and wish to know whethew = uwl/*vYY or w is random. We let
fr := f,h; := h and generate all the othgy, h;'s according to the protocol. We sefy := u,vy := v
andwyy = w. Fori < I we pickw;; at random. Also, foi = 1,5 < J we pickw;; at random. For
i = 1,5 > J we pickr;, s; at random and setu;, v;, wr;) = (f"7,h%,g""5%). Forj < J we select
(uj,v;) at random. Finally, foi > I we compute alkv;; according to the protocol. Ifu, v, w) is a linear
tuple, we have the distribution from experimefit ;, whereas if(u, v, w) is a random tuple we have the
distribution from experimenk’; ;1. An adversary distinguishing these two experiments, therefore permits
us to distinguish linear tuples from random tuples. We conclude the proof by obséfxing = Ey ,41.

Observe, itis straightforward to provide a witness(ferv, w) being a linear tuple. The witness consists
of 1 = w¥/*. (u,v,w) is a linear tuple if and only it(u, h) = e(f,n) ande(g, 7v) = e(w, h). In other
words, we can provide? proofsm;; for w;; being correct. Furthermore, all these proofs consist of group
elements and can be verified by checking a set of pairing product equations. It follows from Groth [Gro06]
that there exists a (simulation-sound) NIZK proof of si2émn) group elements for the;;'s having been
computed correctly.

MULTI-STRING NIZK PROOFS FROMDLIN GRouPs We will construct a protocol that is@, ¢s,t.,n)-
simulation-sound NIZK proof for circuit satisfiability consisting 6f(n + |C|)k) bits, where|C| is the
number of gates in the circuit arkdis the security parameter. Typically,will be much smaller thaf'|, so

the complexity matches the best known NIZK proofs for circuit satisfiability in the single common reference
string model [GOS06b, GOS06a] that have proofs of g |k).

One could hope that the construction from the previous section could be implemented efficiently using
groups with a bilinear map. This strategy does not work because each common reference string is generated
at random and independently of the others. This means that even if the common reference strings contain
descriptions of groups with bilinear maps, most likely they are different and incompatible groups.

In our construction, we accept that all the common reference strings describe different groups and we also
let the prover pick a group with a bilinear map. Our solution to the problem described above, is to translate
simulation reference strings into simulation reference strings in the prover’'s group. Consider a common
reference string with grou@;, and the prover’s grouf. We will let the common reference string contain a
random string-,.. From the earlier discussion, we know that we can build pseudorandom generators in each
group. Consider now the pair of strings, @ s, si). Since strings can be interpreted as group elements,
we have corresponding sets of group elements in respectielgnd G. However, since; is chosen at
random it is unlikely that both; @ s, corresponds to a pseudorandom valu&ijnand at the same time,
corresponds to a pseudorandom valué&inOf course, the prover has some degree of freedom in choosing
the groupG, but if one is careful and chooses sulfficient stretching length in the pseudorandom function one

11

can use an entropy argument for it being unlikely that both strings are pseudorandom values.

Now we use non-interactive zaps and NIZK proofs to hop accross the bridge between the two groups.
The prover will select,. sor, @ si, is a pseudorandom value @y, specified by the common reference string
and give an NIZK proof for this using that common reference string. In his own group, he galsies
s1,-.., 8, and proves that, of those are pseudorandom@ris satisfiable. In the simulation, on the other
hand he knows the simulation trapdoors foreference strings and he can therefore simulate NIZK proofs
of ri. @ s; being pseudorandom. This means, he can select the correspepdiag a pseudorandom values
and use this to prove that there are at leagtseudorandom values in his own group, so he does not need to
know the satisfiability witness to carry out the proof in his own group.

There are more technical details to consider. We want to contruction to be efficientTiherefore,
instead of proving directly that there arepseudorandom values 6tis satisfiable, we use a homomaorphicly
encrypted counter. In the simulation, we set the counter to foe each pseudorandom value and totbe
for the rest of the values in the prover’s group. The homomorphic property enables us to multiply these
ciphertexts and get an encrypted counttaf It is straightforward to prove that the counttisor C' is
satisfiable. As a further twist, we can set up the common reference strings such that they enable us to make
simulation-sound NIZK proofs. This way, with a few extra tweaks we actually getsa, ¢, n)-simulation-
sound NIZK proof for circuit satisfiability whety + ¢, > n.

Common reference string/simulation reference string: Generate a DLIN group(p,G,Gr,e,g9) <«
G(1%). Generate a common reference string for a simulation-sound NIZK proof on basis of this group
Y — Kgm—souna(p, G, G, e, g) as in [Gro06]. Also, pick a random string— {0, 1}%65(). Output
¥ = (p,G,Grp,e,g,0,7).

Provided one can sample groups and group elements from random strings, this can all be set up in the
random string model.

When generating a simulation reference string, use the simulator for the simulation-sound NIZK proof
to generatéo, 7) «— Ssim—sound(Ps G, G, €, g). Outputy as described above and simulation trapdoor
T.

Proof: Given common reference string¥,...,%,), a circuitC' and a satisfiability witness) do the
following. Pick a group(p,G,Gr,e,g) «— G(1¥). Pick also keys for a strong one-time signature
schemevksots, Sksots) < Ksots(1¥). Encodevks,s as a tuple of)(1) group elements fror.?

For each common reference striig do the following. Pick a pseudorandom value with 6 key pairs,
6 input pairs and 36 structured elements. This gives us 60 group element&fro@oncatenate the
tuple of 60 group elements witkks to getO(1) group elements frory;,. Make a simulation-sound
NIZK proof, usingoy, for theseO(1) group elements being of a form such that the first 60 of them
constitute a pseudorandom value. From [Gro06] we know that the size of this pré@i jsgroup
elements fronG,. Defines;, € {0,1}%°* to be a random string such that @ s, parses to the 60
elements from the pseudorandom value.

From now on we will work in the grougp, G, Gr, e, g) chosen by the prover. Pigkt := (f, h) as

two random group elements. This gives us a CPA-secure cryptosystem, encrypting a messéye
with randomness, s € Z, as E,;(m;r,s) := (f",h*,g""*m). For eachk = 1,...,n we encrypt
1 =¢"asc, — E,i(1). Also, we takes;, and parse it as 60 group elements. Call this tuple

Make a non-interactive zapusing the grougp, G, G, e, g) and combining techniques of [GOS06a]

20Observe, in DLIN groups the discrete logarithm problem is hard and therefore we can construct collision-free hash-functions,
so there is no loss of generality in assuming the strong one-time signature scheme consists of a constant number of group elements.

12

and [Gro06] for the following statement:

C satisfiable v (]] e« encryptsy’
k=1
AVE : ¢, encryptsg” or g A (2, is a pseudorandom structurec; encryptsg”)).

The zap consists @ (n + |C|) group elements and has perfect soundness.
Sign everythingsig < Sign,,,

S

Ots(vksot& Ca Elv 51,71,C15 - -+, Env Sny Ty Cny Dy G7GT7 €9, fa hvﬂ)'
The proof islI := (Uksot57 81,T1,C1s -+« Sny Ty Cns D, G, Gy e, g, f by, Sig)-

Verification: Given common reference string@ls, . . ., X, a circuitC and a proof as described above, do the
following. For allk check the simulation-sound NIZK proofg for r;, & s encoding a pseudorandom
structure inGy, using common reference string. Verify (p, G, Gr, e, g) is a group with a bilinear
map. Verify the zapr. Verify the strong one-time signature on everything. Output 1 if all checks are
ok.

Simulated proof: We are given reference stringds, ..., X,. t, of them are simulation strings, where we
know the simulation trapdoors, for the simulation-sound NIZK proofs. We wish to simulate a proof
for a circuitC being satisfiable.

We start by choosing a group, G, Gr, e, g) < G(1¥) and public keyf, h < G. We create ciphertexts
Cp — Epk(gl) for thet, simulation reference strings, where we know the trapdgpand set;, «

Epk(go) for the rest. We also choose a strong one-time signature keyuysaiks, sksots) — K 1%).

sots

Fort, of the common reference strings, we know the simulation7geyrhis permits us to choose an
arbitrary strings; and simulate a proaf;, thatr; @ s, encodes &0 element pseudorandom structure.
This means, we are free to choose so it encodes a pseudorandom strutyrein G°°. For the
remainingn — t, < ts reference strings, we selegt sor;, @ s, does encode a pseudorandom struture
in G, and carry out a real simulation-sound NIZK progf for it being a pseudorandom structure
concatenated withks.

For allk we haver;, encryptingg®, whereb € {0, 1}. We have[[;_, cx encryptingg’. We also have for
thet, simulation strings, where we knowy thats; encodes a pseudorandom structure, whereas for the
other common reference strings we hayencryptsg®. This means we can create the non-interactive
zap~ without knowingC’s satisfiability witness.

Slgn eVerything?ig — Sign (Uksotsa C, Ela S1,71,Cly -y Ena Sny TTny Cn,y P,y G7 GT> €9, fa h> 77)'

sksots

The simulated proof i8I := (vksots, S1,71,Cl, - - - s Spy Ty Cny D, G, Gy €, g, f, h, T, sig).

Theorem 5 Assuming we have a DLIN group as described above, then the construction above gives us a
(0,ts,t,,n)-simulation-sound NIZK proof for circuit satisfiability, where the proofs have@ide. + |C|)k)

bits. The proof has statisticdD, ¢, t.,n)-soundness. The scheme can be set up in the common random
string model if we can sample groups with bilinear maps and group elements from random strings.

Proof. We have already argued in the construction that if we can sample groups and group elements from
random strings and vice versa given groups and group elements sample random strings that yield these group
elements, then the common reference strings can be set up in the random strings model. Perfect completeness
follows by straightforward verification.

Let us prove that we have statisticé,ts,t.,n)-soundness. Consider first an arbitrary group
(p,G,Gr,e,g) chosen by the prover. By assumption, it can be verified that this describes a group with
a bilinear map.

13

We will now bound the probability of both; & s; and s, specifying pseudorandom values in their
respective groups for a random choicergf Consider first the probability that a random stringspecifies
a pseudorandom value ®%. There are at mo*** pseudorandom strings, since the 12 péjish;) and
the 12 pairg(u;,v;) fully define the pseudorandom value. 60 random group elements h&ge &its of
entropy, so we get a probability of at mastc—59% = 235 of g, specifying a pseudorandom value in
G50, Similarly, for a random choice of, we have at most probability—3°* thatr;, @ s;, is a pseudorandom
value in the group specified by the common reference string. Witk both chosen at random, we have
a total maximal probability o2~7°% of bothr;, @& s;, ands;, specifying pseudorandom values. The prover
can choose the group freely, giving him at m@%t different choices for the grou@ andg. He can also
chooses;, freely, giving him25°% possibilities. Since, is chosen at random, there is at most probability
92k+65k—70k — 9-3k of jt being possible to choose, and the groupG so bothr, @ s;, ands; specify
pseudorandom values. With overwhelming probability, we can therefore assume that no honestly generated
common reference string exists such that bgtkd s, and sy, specify pseudorandom values in respectively
G, andG.

Any common reference string;, that is honestly generated has overwhelming probability of having a
common reference string;, for the simulation-sound NIZK with perfect soundness. Whenever the prover
makes a proof using this string, he must therefore pijckor; @ s is pseudorandom. Consequently,
does not specify a pseudorandom value in the gfeujphe zap has perfect soundness, so it showsitiat
satisfiable or;, containsg®. Similarly, for any strings;, that is not honestly generated, the zap demonstrates
thatC is satisfiable or;, containsg® or g'. Since at least, > n — ¢, strings are honestly generated, we see
that if C is unsatisfiable, thef[;;_, c, contains one of the valug8, ..., g*==!. The zap therefore shows us
thatC' must be satisfiable.

To argue computationdl, ¢, ¢, n)-simulation-soundness, observe that simulated proofs are signed with
a strong one-time signature. Since the signature scheme has existential unforgeability, the adversary must
choose a differentk,.is that it has not seen in a simulation. Recall, whenever we make a simulation-sound
NIZK using a particular common reference striig, we concatenatek,.s 10 r & si to get the statement
we wish to prove. By the simulation-soundness of the NIZK proofs on honestly generated strings, we can
not forge such a proof even though we have already seen simulated proofs. Thetefpre, must be a
pseudorandom string. We can now ardQet,, ¢, n)-simulation-soundness just as we argied., t.,n)-
soundness.

It remains to prove computationé, ¢, t,, n)-zero-knowledge. Reference string indistinguishability
follows from the reference string indistinguishability of the simulation-sound NIZK proofs. We will now
consider simulation indistinguishability, so consider a case where the adversary sees simulated reference
strings and gets the simulation trapdoors that allow the simulation of proofs for the reference strings. The
adversary, chooses a set of common reference strings and receives a proof generated with the satisfiability
witness forC' or alternatively a simulated proof and wants to distinguish between the two possibilities.

Let us start with a simulated proof and compare it with a hybrid experiment, where we use the satisfiability
witness forC' in the non-interactive zap. By the computational witness-indistinguishability of the zap, the
adversary cannot tell these two experiments apart. Next, let us choasgsalls encryptions of". By
the semantic security of the cryptosystem, the adversary cannot detect this change. We alreagyselect
r, @ si specifies a pseudorandom value for the reference strings not generaiedlst us switch to also
selectings;, sor, @ s, specify a pseudorandom value in the common reference strings where we do know
the simulation trapdoor. By the pseudorandomness of the strings, the adversary cannot detect this change
either. Finally, instead of simulating the proofs for& s; specifying a pseudorandom valueGh,, let us
make a real proof. By the composable zero-knowledge property of the simulated reference strings for the
simulation-sound NIZK proofs, the adversary cannot distinguish here either. With this last modification, we
have actually ended up constructing proofs exactly as a real prover with access to a satisfiability witness does,
so we have0, ¢, t,,n) composable zero-knowledge. O

14

5 Multi-party Computation

5.1 The UC Framework

The universal composability (UC) framework, see [Can01] for a detailed description, is a strong security
model capturing security of a protocol under concurrent execution of arbitrary protocols. We model every-
thing not directly related to the protocol through an environni&nthe environment can at its own choosing

give inputs to the parties running the protocol, and according to the protocol specification, the parties can give
outputs to the environment. In addition, there is an adverdahat attacks the protocad can communicate

freely with the environment. It can aadaptively corrupt parties, in which case it learns the entire history of
that party and gains complete control over the actions of this party. The environment learns whenever a party
is corrupted.

To model security we use a simulation paradigm. We specify the functiofalityat the protocol should
realize. The functionality® can be seen as a trusted party that handles the entire protocol execution and tells
the parties what they would output if they executed the protocol correctly. In the ideal process, the parties
simply pass on inputs from the environmentA@and whenever receiving a message frérthey output it to
the environment. In the ideal process, we have an ideal process aduw®rsagoes not learn the content of
messages sent frorf to the parties, but is in control of when, if ever, a message ffoim delivered to the
designated partyS can corrupt parties, at the time of corruption it will learn all inputs the party has received
and all outputs it has sent to the environment. As the real world adve&aan freely communicate with
the environment.

We now compare these two models and say that the protocol securely rgalizae environment can
distinguish between the two worlds. This means, the protocol is secure, if for any polynomial tinmeing
in the real world, there exists a polynomial tirfferunning in the ideal process with, so no non-uniform
polynomial time environment can distinguish between the two worlds.

Our goal in this section is to show that any well-formed functionality can be securely realized in the
multi-string model. By well-formed functionality, we mean a functionality that is oblivious of corruptions
of parties, runs in polynomial time, and in case all parties are corrupted it reveals the internal randomness
used by the functionality is revealed to the ideal process adversary. This class contains all functionalities, we
can reasonably expect to implement with multi-party computation, because an adversary can always corrupt
a party and just have it follow the protocol, in which case the other parties in the protocol would never learn
that it was corrupted.

5.2 Tools

This section will present a number of tools we will need in our constructions.

PSEUDORANDOM CRYPTOSYSTEM WITH PSEUDORANDOM KEY.S A cryptosystem(K seudo, £, D) has
pseudorandom ciphertexts of lendth(k) if for all non-uniform polynomial time adversarie$ we have

Pr [(ph, dB) — Kpseuto(1%) : AZ40) (k) = 1]
~ Pr(ph, dk) — Kpseuao(1%) : A%+O (pk) = 1], (1)

whereR,;(m) runsc « {0, 1}¢£(%) and returng:. We require that the cryptosystem have errorless decryp-
tion.

Trapdoor permutations imply pseudorandom cryptosystems, since we can use the Goldreich-Levin hard-
core bit [GL89] of a trapdoor permutation to make a one-time pad. For setting up our scheme in the common
random string model, we will require that the cryptosystem has a pseudorandom public key as well. Pseu-
dorandom cryptosystems with pseudorandom keys can be built from various assumption such as RSA, DDH
and DLIN.

15

TAG-BASED SIMULATION-SOUND TRAPDOOR COMMITMENT A tag-based commitment scheme has four
algorithms. The key generation algorithf,, —.om pProduces a commitment ke as well as a trapdoor key
tk. There is a commitment algorithm that takes as input the commitmentikey message: and any tag
tag and outputs a commitment= Com,x(tag; m;r). To open a commitmentwith tagtag we reveam
and the randomness Anybody can now verify: = Comg(tag; m;r). As usual, the commitment scheme
must be both hiding and binding.

In addition, to these two algorithms there are also a couple of trapdoor algorithous, Topen that
allow us to create an equivocal commitment and later open this commitment to any value we prefer. We
create an equivocal commitment and an equivocation kdy,a%) <« Tcomy(tag). Later we can open it
to any message: asr < Topen, (tag; m), such that = Com,(tag; m;r).

We require that equivocal commitments and openings are indistinguishable from real openings. For all
non-uniform polynomial time adversarigswe have

Pr [(ck,tk) — King—com(1%) : ARC) (k) = 1]
~ Pr [(ck,tk) — Kiag—com(1F) : AP0 (ck) = 1},)

where R(m,tag) returns a randomly selected randomizer a6dm,tag) computes (c,ek) <«
Tcomyy (tag, m);r «— Topen,,(tag, m) and returng-. Both oracles ignore tags that have already been
submitted once.

The tag-based simulation-soundness property means that a commitmentagsiamains binding even
if we have made equivocations for commitments using different tags. For all non-uniform polynomial time
adversariesA we have

Pr | (ck, tk) — Ktag—com<1k); (tag7 ¢, Mo, T0, M1, 7T1) AO()(Ck) :tag ¢ Q and (3)

¢ = Comgg(tag; mo; o) = Comeg(tag; my;ry) andmg # my | =~ 0,

where O(Com, tag) computes (c,ek) <« Tcomy(tag), returns ¢ and stores(c,tag,ek), and
O(Open, ¢, m, tag) returnsr «— Topen,,(tag, ek,c,m) if (c,tag, ek) has been stored, and whefkeis
the list of tags for which equivocal commitments have been mad®.by

The term tag-based simulation commitment comes from Garay, MacKenzie and Yang [GMY03], while
the definition presented here is from MacKenzie and Yang [MYO04]. The latter paper offers a construction
based on one-way functions. In addition, since we are working over random strings, w&want,,, to
output public keys that are random or pseudorandom, i.e., we capkuse {0, 1}‘=z—com to generate the
public key.

EXTRACTABLE TRAPDOOR COMMITMENT SCHEME We will need something that is stronger than tag-
based simulation-sound commitments, namely a tag-based simulation-extractable commitment. This is a
tag-based simulation-sound trapdoor commitment scheme with an additional algBsitirazt that given

the trapdoor is able to extract the message inside the commitment. More precisely, with the trapdoor we can
make trapdoor commitments, however, for all other tags, the adversary will end up making unconditionally
binding commitments.

A tag-based simulation-extractable commitment scheme consists of five polynomial time algorithms
(Kse—com, Com, Tcom, Topen, Extract), such that the first 4 constitute a tag-based trapdoor commitment
scheme, and such th&is._com, Com, Extract) is a semantically secure cryptosystem. It will have the
property that a non-uniform adversary with access to trapdoor openings of commitments and the extraction
key, still cannot create a new commitment and opening thereof, such that the message it opens to differs from
the extracted message.

16

For all non-uniform polynomial time adversarigswe have

Pr[Q :=0; (0, 7,) < Ksefcom(lk% (m,r) AO(')Q ¢ := Come (tag;m;r) :
Extracte(tag, c) # m andtag ¢ Q] ~ 0,

whereQ is an oracle that on inpytag, m) runs(c, ek) < Tcom,(tag);r < Topen,,(tag, m), returnsr
and sets) := Q U {tag}.

We will construct a tag-based simulation-extractable commitment scheme from the tools in this section.
We use a tag-based simulation-sound trapdoor commitment scheme to commit to each bif of has
length/ this gives us commitments, . . . , ¢,. When making trapdoor commitments, we can use the trapdoor
key tk to create equivocal commitments, . . ., ¢, that can be opened to any bit we like.

We still have an extraction problem, we may be unable to extract a message from tag-based commitments
created by the adversary. To solve this problem we choose to encrypt the openings of the commitments. Now
we can extract messages, but we have reintroduced the problem of equivocation. In a trapdoor commitment
we may know two different openings of a commitmento respectively 0 and 1, however, if we encrypt the
opening then we are stuck with one possible opening. This is where the pseudorandomness property of the
cryptosystem comes in handy. We can simply make two encryptions, one of an opening to 0 and one of an
opening to 1. Since the ciphertexts are pseudorandom, we can open the ciphertext containing the opening we
want and claim that the other ciphertext was chosen as a random string. To recap, the idea so far to commit
to a bitb is to make a tag-based simulation-sound trapdoor commitmeatthis bit, and create a ciphertext
c;,» containing an opening af; to b, while choosing:; 1, as a random string.

These are the main ideas, we now present the protocol in Figure 1.

Theorem 6 Tag-based simulation-extractable commitment schemes exist with pseudorandom keys if pseu-
dorandom cryptosystems with pseudorandom keys exist.

Proof. Tag-based simulation-sound trapdoor commitments with pseudorandom keys can be built from one-
way functions, so we have the tools needed in the construction. This also shows that we have pseudorandom
keys for the tag-based simulation-extractable commitment scheme.

We now need to prove that even after seeing trapdoor commitments and openings, it is hard to come up
with a commitment with a different tag, where the opening and extraction are different. Consider first the
case, where the adversary for some indexeates:;, c;o, ¢;1 S0 bothe;g andce;; decrypt to valid openings
of ¢; to respectivelyd and1. Sincetag has not been used before, we have not usedi in any com-
mitment we have trapdoor opened before, so we have broken the simulation-sound binding property of the
tag-based simulation-sound trapdoor commitment. The errorless decryption property of the pseudorandom
cryptosystem now tells us that if the adversary opens all trigleso, ¢;1 succesfully, then so must we get
these openings when decrypting.

We also need to prove that we have the trapdoor property. We will modify the trapdoor oracle in several
steps and show thad cannot tell the difference. Let us start with the oracle that on ifiaut, m) returns
a randomly chosen randomizer, R1 p,,, ¢1,1—mys - - - s 7¢, Remy, €1,1—m, - INStead of making commitments
c; := Comey(tag, i;my; 1), we may instead ruf;, ek;) < Tcomyy(tag,i); r; < Topen,,, (m;) and user;
as the randomizer. By the trapdoor property of the tag-based simulation-sound commitment the two oracles
are indistinguishable tgal.

Next, consider the trapdoor oracle, where we make trapdoor openings to-pahd r;; soc¢; =
Comgy(tag, i;b;7p) for bothd = 0 andb = 1. We encrypt(b, r; ;) with randomness; ,. We then return
i, Rim,, Ci,1—m,. By the pseudorandomness of the ciphertexts, this is indistinguishable from the previous
oracle. O

STRONG ONETIME SIGNATURES. We remind the reader that strong one-time signatures allow a non-
uniform polynomial time adversary to ask an oracle for a signature on one arbitrary message. Under this

17

Random key: Returno := (ck, pk) «— {0, 1}fag—com(k) 5 [(), 1}pseudo(k)
Simulation-extraction key:

1. (ck,tk) — Ktag_com(lk)
2. (pk:,a:k) — pseudo(lk)
3. Returno = (ck, pk), 7 = (o, tk), £ = (0, xk)

Commitment: On input(o, tag, m) and randomizers as described below do

1. Fori = 1to/ selectr; at random and lat; := Comc(tag, i; m;; ;)

2. Fori = 1to/ selectR; ,,, at random and sef ,,,, = Ep,(m;, r;; R; m,) and choose; ;1 _,,
as a random string.

3. Returnc := (c1, ¢10, €11, - - -, Coy Co0, Co1)
Opening: On input(tag,c,m,r1, Rim,,--.,7e, Rem,) dO
1. Verify that for alli we havec; = Com(tag, i; m;;r;)

2. Verify that for alli we havec; ,,, = Epr(mi, 745 Rim,;)
3. Returnl if all checks work out, else return O

Trapdoor commitment: On inputr = (tk, pk) do

1. Fori = 1to/let(c;, e;) « Tcomy(tag,i) and letr; o, r; 1 be equivocations so
¢; = Comey(tag, ;b7 p) for b € {0, 1}.
2. Fori = 1to/ select randomnes3,; , and set; ;, := Ep,; (b, 7;p; R;p).
3. Returnc := (Cl, C10,C11, - - - 5 C¢, Cp0, Cgl) andek = (U, 1, leo, Rl,la o,y RE»O’ Rg’l).

Trapdoor opening: On input(tag, ek, c, m) return(ri, Rim,,--.,7¢, Roem,)-

Extraction: On input(tag, (o, dk), c) use the decryption key to decrypt the ciphertexsin case, we
for i have exactly one ciphertexy, that decrypts té, r;;, soc; = Com, (tag, i; b;), we set
m; := b. In case all these processes succeed, we return the concatenaétse we returnL.

Figure 1: Tag based simulation-extractable commitment.

attack, it must be infeasible to forge a signature on any different message and infeasible to come up with
a different signature on the same message. Strong one-time signatures can be constructed from one-way
functions.

5.3 Multi-party Computation in the Multi-string Model

We will demonstrate that any well-formed functionalifycan be securely realized in the multi-string model.
In this proof, we build on a result by Canetti et al. [CLOS02], which demonstrates that for any well-formed
functionality F there is a non-trivial protocol that securely realizes it in the common random string model.
Our task can therefore be simplified to securely realiziags in the multi-string model.

Let us first formalize the multi-string model in the UC framework. Figure 2 gives an ideal multi-string
functionality Fyvicrs. We will construct universally composable commitments, see Figure 3, in the multi-
string model. Next, we will show that the ideal common random string genefates, see Figure 4, can be

18

securely realized in theF}i))},)-hybrid model.

Functionality Fyicrs

Parametrized by polynomid},..s, and running with partie®’, ..., Py and adversang.

String generation: On input(crs, sid) from S, pick o « {0, 1}%mers(¥) and store it. Senéers, sid, o)
to A.

String selection: On input(vector, sid, o1, .. .,0,) whereoy, ..., o, € {0,1}mer=(%) from S check
that more than half of the strings, . . . , o,, match stored strings. In that case output
(vector, sid, o1, ...,0y,) to all parties and halt.

Figure 2: The ideal multi-string generator.

Functionality FE5,

Parametrized by polynomid) and running with partie#”, . . ., Py and adversang.

Commitment: On input(commit, sid, m) from party P; check thatn € {0, 1}“*) and in that case
store(sid, P;,m) and sendcommit, sid, P;) to all parties and. Ignore future
(commit, sid, -) inputs fromP;.

(open, sid, P;,m) to all parties and>.

Opening: On input(open, sid) from P, check thatsid, P;, m) has been stored, and in that case sel

nd

Figure 3: The ideal commitment functionality.

Functionality Fcgrs

Parameterized with polynomiéland running with partie$, . .., P, and adversang.

CRS generation: Generate random — {0, 1}*(*) and output(crs, sid, o) to all parties ands. Halt.

Figure 4: The ideal common random string generator.

We will assume the parties can broadcast messages, i.e., have access to an ideal broadcast functionallity
Fsc, see Figure 5. We note that broadcast can be securely realized in a constant number of rounds if au-
thenticated communication is available [GLO5]. Furthermore, authenticated communication can be securely
realized using digital signatures, so one possible setup is that the parties somehow have managed to exchange

verification keys for the digital signature scheme.

Functionality Fgc

Running with partied,, . .., P, and adversang.

Broadcast: On input(broadcast, sid, ssid, m) from P;, send(broadcast, sid, ssid, P;, m) to all
parties andS. Ignore future(broadcast, sid, ssid, -) inputs fromP;.

Figure 5: The ideal authenticated broadcast fucntionality.

19

5.4 Universally Composable Commitment in the Multi-string Model

In our security proof, the ideal process adversawill interact with]—“é:éVM and make a black-box simulation

of A running with Fyicrs @and Py, . .., Py. There are two general types of issues that can come up in the
ideal process simulation. First, whefi)}, tells S a party has committed to some messageloes not

know which message itis. Therefore, we want to be able to make trapdoor commitments and later open them
up. Second, when a corrupt party sends a commitment,§heeeds to input some messageAg’};. In

this case, we therefore need to have an extractable commitment to the message. The tag-based simulation-
extractable commitments presented in Section 5.2 come close to fitting this description.

Our idea is to use each of thecommon random strings output Bhcrs as a public key for such a
commitment scheme. This gives us a set @ommitment schemes, of which at least (”7“1 are secure.

Without loss of generality, we will from now on assume we have exaabBcure commitments. In the ideal
process, the simulator gets to pick these keys and can therefore pick them as simulation-extractable keys.

To commit to a message:, a party makes &, n)-threshold secret sharing of it and commits to each
secret share using a different commitment scheme. When making a trapdoor commitment, we make honest
commitments tow — ¢t random shares for the adversarial keys, and trapdoor commitments with the simulation-
extractable keys. Since the adversary knows at mostt < ¢ shares, we can later open the commitment
to any message we want by fitting the remainirghares and trapdoor opening the commitments to these
shares. To extract a messagewe extractt shares from the simulation-extractable commitments. We can
now combine the shares to get the adversarial message.

One remaining issue is when the adversary recycles a commitment or parts of it. This way, we may risk
that it uses a trapdoor commitment made by an honest party, in which case we are unable to extract a message.
To guard against this problem, we will let the tag for the simulation-extractable commitment scheme contain
the identity of the senddf;, forcing the adversary to use a different tag, which in turn enables us to extract.

Another problem arises, when the adversary corrups a party, which enables it to send messages on behalf
of this party. At this point, however, we learn the message so we just need to force it to reuse the same message
if it reuses parts of the trapdoor commitment. We therefore introduce a second trapdoor commitment scheme,
use this trapdoor commitment scheme to commit to the shares of the message, and insert it in the tag as well.
Therefore, if reusing a tag, the adversary must also reuse the same share given by this tag.

Commitment: On input(vector, sid, (ck1,01), ..., (ckn,0r)) from Fycrs and (commit, sid, m) from
Z, the party P; does the following. He makes @, n)-threshold secret sharing, ..., s, of m.
He picks randomizers; and makes commitments := Com.(s;;7;). He also picks random-

izers R; and makes tag-based commitments := Com((F;, ¢j); s5; R;). The commitment is
¢:=(c1,Ch,...,cn, Cy). He broadcastébroadcast, sid, c).

Receiving commitment: A party on input (vector, sid, (cki,01),...,(ckn,,0p)) from Fycrs and
(broadcast, sid, P;, c) from Fpc broadcast$broadcast, sid, P;, ¢).

Once it receives similar broadcasts from all parties, all containing the s@&me it outputs
(commit, sid, P;) to the environment.

Opening commitment; Party P, wishing to open the commitment broadcasts
(open, sid, s1,71, R1, ..., Sn,"n, Ryn).

Receiving opening: A party receiving an openinfopen, sid, P;, s1,,71, R1, ..., Sn,Tn, Ry) from Fpc
to a commitment it earlier received, checks that all commitments are correctly formes
Comeg, (s5;75) andCy = Comy, (P, ¢j); s5;75). It also checks that, ldots, s, all are valid shares
of a (¢, n)-threshold secret sharing of some messagén that case it output®pen, sid, P;, m).

20

Theorem 7 The protocol securely realizeg. 3}, in the (Fpc, Facrs)-hybrid model, assuming simulation-
extractable commitment schemes exist in the common random string model.

Sketch of proofWe describe the ideal-process adversagnd sketch why it is secure along the way. It will
run a black-box simulation oft and whatA sees. In particular, it will simulate the partiés, ..., Py and

the ideal functionalitieshicrs and Fgc. The dummy parties that are actually involved in the protocol and
communicate withZ are written ad;, . . ., Py.

Communication: Forward all communication betweehand Z. Also, whenever4 delivers a message to a
party P;, simulate this delivery.

Common random strings: WheneverA asks Fycrs for a common random string, selegtk, tk) «—
Kirapdoor(1¥) and (0,7,€) «— Ksm—com(1¥) and return (crs, sid, (ck,o)), while storing

(ck,tk,o,71,8).

When A inputs (vector, sid, (cki,01),...,(ck,,0n)) to Fyucrs check that more than half
the pairs (cki,01),...,(ckn,0,,) match the stored public keys. In that case, send
(vector, sid, (cki,01),...,(ck,,0,)) to all parties and halt the simulation dfyicrs. Note, we

only need stored keys, so if there are more thamonest key pairs, we just act as if we only kneof
the trapdoors.

Commitment by honest party: On receiving(commit, sid, P;) from]—"ééVM we learn thatP; has made a
commitment, albeit we do not know the message. We wait uhtias submitted reference strings to
Fumcrs and delivers them t@;.

We select gt, n)-threshold secret sharing, . .., s, of 0. For then — ¢ reference strings where we
do not know the keys, including the ones where we do not know the secret keys, we conamit to
asc; := Comy(sj;rj) andC; = Com,, (P, cj; 555 R;). For the remaining reference strings, we
make trapdoor commitments;, ek;) — Tcom(tk) and(C}, EK}) < Topen, (F;,c;). We simulate
broadcastingbroadcast, sid, ¢, C1, . . ., cp, Cp).

The process for receiving a commitment is exactly the same as in the protocol, when simulated parties
see the commitments they broadcast it. When everybody has broadcast, they are supposed to output
(commit, sid, P;) to the environmentS therefore delivers the corresponding commitment message
from FLJ}, to the dummy party.

Opening: WhenS receives(open, sid, P;, m) from fééVM it means thatP; has been instructed to open
the commitment, and it was a commitment;ta We recall then — ¢ shares that we committed
to honestly, and fit them into &, n)-threshold secret sharing, ..., s, of m. We open then — ¢
commitments:;, C; correctly. We then trapdoor open theommitments:;, C; where we know the
corresponding equivocation keys as «— Topen, (s;) and R; « Topengg, ((F;,¢;),s;). We
broadcastbroadcast, sid, s1,71, Ri, ..., Sn,Tn, Rp)-

Receiving an opening:On receiving an opening of an earlier received commitment, we check that the
commitments contains a consistéhtn)-threshold secret sharing 6f, ..., s, of a messagen and
for all j we havec; = Come(sj;7;) andC; = Comg, (P, cj; 855 R;). In that case, we deliver
(open, sid, P;, m) from fé%VM to our dummy party that outputs the openingdo

Commitment by corrupt party: When a corrupt party makes a commitméat, C1, ..., c,, C,) with a
valid signature so our simulated party would outpttmmit, sid, P;), we need to input some mes-
sage tQFé:éVM so we can make the correspodning dummy party output this in the ideal process.

We use the extraction keys, to extracommitted values; < Extracte, ((F;, ¢;), C;). The only case,
where we cannot do this is when the @8, ¢;) has been used before By, because then it may be

21

a trapdoor commitment we are looking at. However, this can only happ@nuged(P;, ¢;) as a tag
when it was honest, and then upon corruption we have made a trapdoor opeajrtg sbmes; and
therefore do not need to do any extraction.

We then reconstruct: from these shares and inp(tommit, sid, m) to F&dy, on behalf of the
dummy party. In case we did not manage to extract a message, wernnpub to]—“é’éVM, which is ok

as long as we do not end up in a situation, where we need t6&§k; to open the commitment. This
causegfé:éVM to send oufcommit, sid, P;) messages to all dummy parties that we can deliver when
needed in the simulation.

Opening by corrupt party: When a corrupt party wants to open a commitment, we check the opening and
if acceptable we inputopen, sid) to J—"é:éVM. If any honest party receives the opening, we deliver the
messag¢open, sid, P;, m) to the corresponding dummy parf that outputs it to the environment.

Corruption: In case a party?; is corrupted, we corrupt the corresponding dummy patty We need to
simulate the history of this party. If the party has not yet made a commitment, this is easy since there
is no history to simulate. If the party has already opened the commitment, we just need to reveal the
randomness used in generating the one-time signature.

If the party has made a commitment but not yet opened it, we must simulate an opening of it. On
corrupting P;, we learn the message it committed to, so we can use the opening simulation for honest
parties described earlier.

To see that this gives us a good simulation, consider the following hybrid experiments for advé ady
environmentz.

Hybrid 1: This is the protocol executed with and environmeng.

Hybrid 2: This is the protocol, where we stofek, tk, o, 7,£) and return(ck, o), wheneverA queries
Fumcrs for a common reference string.

Since both commitment scheme have pseudorandom keys, hybrid 1 and 2 cannot be distinguished.

Hybrid 3: This is hybrid 2 modified such that honest paftyfor ¢ commitments where it knows the key,
creates equivocal commitments using the trapdoor keys, instead of making real commitments. To
produce the openings, it then uses the equivocation keys to generate randomizers so the commitments
open to the relevant shares.

Hybrid 2 and hybrid 3 are indistinguishable due to the trapdoor properties of the commitment schemes.

Hybrid 4: We modify hybrid 3 such that when an honest paftymakes a commitment, it uses(an)-
threshold secret sharing ofinstead of a threshold secret sharingmef In the opening phase, it
opens then — t pairs(c;, C;) where it does not know the trapdoors honestly to 4hé& committed
to. It reconstructs shares for thet equivocal commitments sq, .. ., s, is a(t, n)-threshold secret
sharing ofm. It then opens the equivocal commitments to these values.

Hybrid 3 and hybrid 4 are perfectly indistinguishable, sincet < ¢ shares in &t, n)-threshold secret
sharing scheme do not reveal anything about

Hybrid 5: We now turn to modify the way we handle corrupt parties. Whenever a corrupt Bastybmits
a commitmentcy, C4, ..., ¢, Cy) to Fpc, We want to extract a message.

For any of thet C;’s where we know the key, there are two cases to consider. One case is where
(P, c;) has been used as a tag whigrwas still honest. In this case, we learned an opeging; of

22

¢; upon corruption, and will therefore considgrthe share. The second case is wh&n ¢;) has not
been used as a tag in a simulation-extractable commitment. In that case, we can extract a share

We now havet shares, so we can recombine them to get a possible messageNVe input
(commit, sid, m) on behalf ofP;. In case anything fails, we input := 0 on behalf ofP;.

Hybrid 4 and hybrid 5 are indistinguishable. The problem arises if the extractukes not match the
opening. There are two ways this could happen. One possibility is:flaeated by an honest party
that is later corrupted is opened to a different share than in the simulation. However, this would imply
a breach of the binding property of the commitment scheme. Another possibility is that the extraction
fails. However, this would imply breaking the simulation-extractability of the commitment scheme.

We conclude the proof by observing that hybrid 5 is identical to the simulation.

5.5 Coin-Flipping
We will now generate a common random string. The parties will the following natural coin-flipping protocol.

Commitment: P; chooses at random «— {0, 1}(%). It submits(commit, sid, ;) to FEh. FEQL on
this input send$commit, sid, P;) to all parties.

Opening: OnceP; sees(commit, sid, ssid, P;) for all j, it sends(open, sid, ssid, ;) t0 FEd . FEX
on this input sendéopen, sid, ssid, P;, r;) to all parties.

Output: OnceP; seescommit, sid, ssid, P;,r;) for all j, it outputs(crs, sid, @j-vzlrj) and halts.

Theorem 8 The protocol securely realizes (perfectly) the ideal common reference string genéatoiin
the L5}, hybrid model.

Proof. Consider the following ideal process advers&ryvorking in the Fcrs-hybrid model, giving it a
common reference string. It runs a simulated copy of, a simulated copy QFé:éVM and simulated parties

Py, ..., Py, notto be confused with the dummy partigs . . ., Py that interact withZ andFcrs. Whenever

A communicates with the environmesitit simply forwards those messages. We now list the events that can
happen in the protocol.

On activation of P;, it simulates]—"é:gM receiving a commitment fromP; by outputting
(commit, sid, P;) to all parties and4.

On delivery of commitments from all parties to an honest pattyit selectsr; at random, subject to the
continued satisfiability of condition = @, ; and stores it. It then simulategj, receiving an opening
of P;’s commitment tor;.

In caseA corrupts a partyP;, we corrupt the corresponding dummy pafly If P, has made a com-
mitment but it has not yet been opened, we setgat random, subject to the continued satisfiability of the
conditiono = @évzlrj, and simulate that this was the commitméhimade. In all other cases of corruption,
eitherr; has not yet been selected, or the commitment has already been openédlaeady knows:;. The
two experimentsA running with parties, . .., Py in the]—"égvM-hybrid model, and running with dummy
partiesP, ..., Py in the Fcrs-hybrid model are perfectly indistinguishable #o To see this, consider a
hybrid experiment, where we run the simulation and choose;’allat random and then set := @f\im-
Inspection shows that this gives a perfect simulatioZsfview of the protocol in ther {4} ,-hybrid model.
At the same time, also here we get a uniform random distribution and ther;’s subject to the condition
o= @aévzlrj. g

23

5.6 Multi-party Computation

We are now ready to prove that any well-formed ideal functionality can be securely realized in the multi-string
model.

Theorem 9 For any well-formed functionality” there is a non-trivial protocol that securely realizes it in
the (Fsc, Fmcrs)-hybrid model, provided enhanced trapdoor permutations, augmented non-committing
encryption and dense cryptosystems exists.

Proof. Canetti et al. [CLOS02] show that assuming the existence of enhanced trapdoor permitation, dense
cryptosystems and augmented non-committing encryption, there is a non-trivial protocol that securely real-
izesF in the (Fpc, Fcrs)-hybrid model.

Theorem 8 shows that we can securely realfzes in the F),-hybrid model. Therefore, by the
universal composability theorem [Can01], we can securely redlizethe (Fpc, J—“COM) hybrid model.

Theorem 7 shows that we can securely reaﬁ%%’M in the (Fpc, Fuvcrs)-hybrid model assuming the
existence of extractable trapdoor commitments. Recall from Theorem 6 that dense cryptosystems imply the
existence of extractable trapdoor commitments. By the universal composability theorem we get#rmat
be securely realized in tHeFs ¢, Favcrs)-hybrid model under these assumptions. O

References

[AdI78] Leonard M. Adleman. Two theorems on random polynomial timeprbteedings of FOCS '78
pages 75-83, 1978.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signaturggodeedings of
CRYPTO '04, LNCS series, volume 31pdges 41-55, 2004.

[BCNPO4] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable proto-
cols with relaxed set-up assumptions.phoceedings of FOCS 'Q¢ages 186-195, 2004.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its appli-
cations. Inproceedings of STOC '8®ages 103112, 1988.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In proceedings of FOCS ’'Qlpages 136-145, 2001. Full paper available at
http://eprint.iacr.org/2000/067

[CFO1] Ran Canetti and Marc Fischlin. Universally composable commitments. prdoeedings
of CRYPTO '01, LNCS series, volume 213&ges 19-40, 2001. Full paper available at
http://eprint.iacr.org/2001/055

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-
party and multi-party secure computation. groceedings of STOC 'Q0dages 494-503, 2002.
Full paper available dittp://eprint.iacr.org/2002/140

[DNO2] Ivan Damgrd and Jesper Buus Nielsen. Perfect hiding and perfect binding univer-
sally composable commitment schemes with constant expansion factoprodeedings of
CRYPTO ’'02, LNCS series, volume 244ihges 581-596, 2002. Full paper available at
http://www.brics.dk/RS/01/41/index.html

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In
proceedings of STOC '8pages 25-32, 1989.

24

[GLOS]

Shafi Goldwasser and Yehuda Lindell. Secure multi-party computation without agredmant.
nal of Cryptology 18(3):247-287, 2005.

[GMYO03] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-knowledge protocols

[GO94]

using signatures. Iproceedings of EUROCRYPT '03, LNCS series, volume ,At&ges 177—
194, 2003. Full paper available lattp://eprint.iacr.org/2003/037 .

Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems.
Journal of Cryptology7(1):1-32, 1994.

[GOS06a] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques for nizk.

In proceedings of CRYPTO '06, LNCS series, volume 4idges 97-111, 2006.

[GOSO06b] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero-knowledge for np. In

[Gro06]

proceedings of EUROCRYPT '06, LNCS series, volume 48diges 339—-358, 2006.

Jens Groth. Simulation-sound nizk proofs for a practical language and constant size group
signatures. Improceedings of ASIACRYPT '06, LNCS seri2806. Full paper available at
http://www.brics.dk/ ~jg/NIZKGroupSignFull.pdf

[HILL99] Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom gen-

[MY04]

erator from any one-way functioi®IAM Journal of Computatiqr28(4):1364—1396, 1999.

Philip D. MacKenzie and Ke Yang. On simulation-sound trapdoor commitmentwolteedings
of EUROCRYPT '04, LNCS series, volume 3Q2ages 382—-400, 2004. Full paper available at
http://eprint.iacr.org/2003/252

25

