
> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 1

The REESSE1+ Public Key Cryptosystem v 2.21
*

Shenghui Su 1 and Shuwang Lü 2
1 College of Computers, Beijing University of Technology, Beijing 100124, P.R.China

2 Graduate School, Chinese Academy of Sciences, Beijing 100039, P.R.China

Abstract: In this paper, the authors give the definitions of a coprime sequence and a lever
function, and describe the five algorithms and six characteristics of a prototypal public key
cryptosystem which is used for encryption and signature, and based on three new problems and
one existent problem: the multivariate permutation problem (MPP), the anomalous subset
product problem (ASPP), the transcendental logarithm problem (TLP), and the polynomial root
finding problem (PRFP). Prove by reduction that MPP, ASPP, and TLP are computationally at
least equivalent to the discrete logarithm problem (DLP) in the same prime field, and
meanwhile find some evidence which inclines people to believe that the new problems are
harder than DLP each, namely unsolvable in DLP subexponential time. Demonstrate the
correctness of the decryption and the verification, deduce the probability of a plaintext solution
being nonunique is nearly zero, and analyze the exact securities of the cryptosystem against
recovering a plaintext from a ciphertext, extracting a private key from a public key or a
signature, and forging a signature through known signatures, public keys, and messages on the
assumption that IFP, DLP, and LSSP can be solved. Studies manifest that the running times of
effectual attack tasks are greater than or equal to O(2n) so far when n = 80, 96, 112, or 128 with
lg M ≈ 696, 864, 1030, or 1216. As viewed from utility, it should be researched further how to
decrease the length of a modulus and to increase the speed of the decryption.

Keywords: Public key cryptosystem; Coprime sequence; Lever function; Bit shadow; Digital
Signature; Double congruence theorem; Transcendental logarithm problem; Provable Security;
Polynomial time Turing reduction

1 Introduction

The trapdoor functions for RSA [1] and ElGamal [2] public key cryptosystems [3] are computationally
one-way [4][5], which indicates that there always exists one sufficiently large setting of the security
dominant parameter that makes utilization of a cryptosystem feasible and breaking of the cryptosystem
infeasible in polynomial time [6]. Taking RSA based on the integer factorization problem (IFP) as an
example, when the bit-length of a RSA modulus reaches 1024, attack is infeasible but encryption and
decryption are feasible in polynomial time. Such a security is referred to as asymptotic security, which
is distinguished from exact security or concrete security. The exact security is practice-oriented, and
aims at giving more precise estimates of time complexities of attack tasks [7].

In some public key cryptosystems, trapdoor functions can prevent a related plaintext from being
recovered from a ciphertext, but cannot prevent a related private key from being extracted from a
public key. For instance, in the MH knapsack cryptosystem [8], the subset sum problem (SSP) which
contains the trapdoor information cannot prevent a MH private key from being extracted from ci ≡ ai W
(% M) by the method of accumulating points of minima [9], and moreover, when a related knapsack
density is less than 1, the low-density SSP (LSSP) will degenerate to a polynomial time problem from a
NPC problem owing to the L3 lattice base reduction algorithm [10] [11] which is employed for finding
the shortest vector or an approximately shortest vector in a lattice [12].

Along with the elevation of a computer′s CPU speed, the security dominant parameter of a
cryptosystem becomes larger and larger. For instance, the bit-length of modulus of the ElGamal
cryptosystem based on the discrete logarithm problem (DLP) is already up to 1024. We think that there
are currently four manners of decreasing the bit-lengths of security dominant parameters and meantime
increasing the one-wayness of related trapdoor functions.

The first manner is to transplant known cryptosystems to a complex algebraic system from a simple
one ─ the elliptic curve analogue of ElGamal referable to elliptic curve cryptography (ECC) for
example. By now, any effectual algorithm which can find out generic elliptic curve discrete logarithms
in time being subexponential in the bit-length of a modulus has not been discovered yet [13].

* Manuscript received on 15 Nov 2006, and last revised 26 Dec 2012. In v2.21, the algorithms of REESSE1+ are intact, only the
computation of density of an ASSP Knapsack is corrected (Appendix B), and a reward for breaking it is offered (Appendix C).

It occurs in Theoretical Computer Science, v426-427, Apr 2012, pp. 91-117.
This work is supported by MOST with Project 2007CB311100 and 2009AA01Z441. Corresponding email: reesse@126.com.

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 2

Theoretically, almost every existing cryptosystem may have an elliptic curve analogue. However,
not every analogue can bring the same effect as the analogue of ElGamal ─ the analogue of RSA
whose security still relies on the two large prime factors [14] for example.

The second manner is to design cryptosystems over polynomial rings ─ the NTRU cryptosystem for
example. The shortest vector problem (SVP) is the security bedrock of NTRU since it is impossible to
seek an NTRU secret polynomial or an NTRU plaintext polynomial through the L3 lattice base
reduction on condition that two special parameters ch and cm are fitly selected [15].

The third manner is to construct cryptosystems based on the tame automorphism of multivariate
quadratic polynomials over a small field ─ the TTM scheme [16] and the TTS scheme [17] ordinarily
referred to as the multivariate cryptosystems for example.

The fourth manner is to devise cryptosystems over small prime fields through discovering or
constructing new one-way computational problems which should be harder than IFP, DLP, or LSSP in
light of the found evidence. Some threads of the fourth manner are given in this paper.

The paper has five novelties: Gives the definitions and properties of a coprime sequence, a lever
function, and a bit shadow; offers three new computational problems ― the multivariate permutation
problem (MPP) Ci ≡ (Ai W ℓ

(

i

))
δ (% M), the anomalous subset product problem (ASPP) Ḡ ≡ ∏

n
i=1Ci

ḅi (% M),
and the transcendental logarithm problem (TLP) y ≡ x

x (% M), proves that the three problems are
computationally at least equivalent to DLP in the same prime field each, and finds some evidence
which inclines people to believe that the three problems are separately harder than DLP; over a
prime field, designs the five algorithms of a prototypal public key cryptosystem called REESSE1+;
analyzes the security of REESSE1+; proposes and proves the double congruence theorem.

MPP which owns the indeterminacy assures the security of a private key and the signature algorithm.
ASPP as a trapdoor function which can resist the L3 lattice base reduction assures the security of a
ciphertext. TLP protects a private key against being extracted from a signature, and moreover it
concerts with a form of the polynomial root finding problem (PRFP) a x

n
 + b x

n – 1 + c x + d ≡ 0 (%)
with a ≠ 0, 1, |b| + |c| ≠ 0, and d ≠ 0 to assure the security of a signature. Provable security by reduction
is appreciable, but not sufficient, and thus the exact security of REESSE1+ should be analyzed.

It is not difficult to understand that REESSE1+ is essentially a multiproblem cryptosystem. The
security of a multiproblem cryptosystem is equivalent to the complexity of what is easiest solved in all
the problems. Additionally, MPP contains the four variables almost independent, and therefore, in a
broad sense, REESSE1+ may be regarded as multivariate. A multiproblem cryptosystem must be a
multivariate cryptosystem because only multiple variables can bring multiple problems.

REESSE1+ is different from REESSE1 which has a ciphertext Ḡ1 = ∏

n
i=1 Ci

bi % M with Ci = Ai W ℓ(i)
% M [18] and an insecure signature (U = (U Q H)S % M, V = V

T % M) [19], and also different from the
Naccache-Stern cryptosystem which has a ciphertext c = ∏

n
i=1 vi

bi % M with vi = pi
1

/

s % M [20]. It will

be significant in untouched areas.
We know that in a quantum computational model, IFP and DLP are already solved in polynomial

time [21], and naturally, whether MPP, ASPP, and TLP can be solved in polynomial time on a quantum
computer is interesting. Besides, TLP as a primitive problem cannot be converted into a discrete
logarithm problem, which indicates that one can design other signature schemes over a small prime
field by using TLP or its variety y ≡ (g x)x (% M).

Throughout the paper, unless otherwise specified, n ≥ 80 is the bit-length of a block or the item-length
of a sequence, the sign % means ‘modulo’, means ‘M – 1’ with M prime, lg x denotes the logarithm
of x to the base 2, ¬ does the opposite value of a bit, Þ does the maximal prime allowed in coprime
sequences, |x| does the absolute value of a number x, x does the order of an element x % M or the size
of a set x, and gcd(a, b) represents the greatest common divisor of two integers. Without ambiguity, ‘%
M ’ is usually omitted in expressions.

2 A Coprime Sequence, a Lever Function, and a Bit Shadow

Definition 1: If A1, …, An are n pairwise distinct positive integers such that ∀ Ai, Aj (i ≠ j), either
gcd(Ai, Aj) = 1 or gcd(Ai, Aj) = F ≠ 1 with (Ai / F) ł Ak and (Aj / F) ł Ak ∀ k ≠ i, j ∈ [1, n], these integers
are called a coprime sequence, denoted by {A1, …, An}, and shortly {Ai}.

Notice that the elements of a coprime sequence are not necessarily pairwise coprime, but a sequence
whose elements are pairwise coprime is a coprime sequence.

Property 1: Let {A1, …, An} be a coprime sequence. If randomly select m ∈ [1, n] elements from

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 3

{A1, …, An}, and construct a subsequence {Ax1, …, Axm} also called a subset, then the subset product G
= ∏

m
i=1 Axi = Ax1…Axm is uniquely determined, namely the mapping from {Ax1, …, Axm} to G is one-to-one.

Proof: By contradiction.
Presuppose that G is acquired from two different subsequences {Ax1, …, Axm} and {Ay1, …, Ayh}, namely

G = ∏

m
i=1 Axi = Ax1…Axm = ∏

h
j=1 Ayj = Ay1…Ayh.

Since the two subsequences are unequal, there must exist a certain element Az which does not belong
to the two subsequences at one time.

Without loss of generality, let Az ∈ {Ax1, …, Axm} and Az ∉ {Ay1, …, Ayh}.
By the fundamental theorem of arithmetic [14], there must exist a prime q which is a divisor of Az.
Firstly, assume that ∀ Ai, Aj ∈ {A1, …, An}, gcd(Ai, Aj) = 1, namely A1, …, An are pairwise coprime.
Then, there does not exist a common prime divisor between any two elements, which manifests that

the prime divisors of every element do not belong to any other elements.
Thus, q must be a divisor of ∏

m
i=1 Axi but not a divisor of ∏

h
j=1 Ayj, which means that the integer G has

two distinct prime factorizations, and is in direct contradiction to the fundamental theorem of
arithmetic.

Secondly, assume that ∃ As, At ∈ {A1, …, An} with gcd(As, At) ≠ 1.
According to Definition 1, ∀ Ar ∈ {A1, …, An} with r ≠ s, t, there are

(As / gcd(As, At)) ł Ar and (At / gcd(As, At)) ł Ar,
which means that both at least one divisor of As and at least one divisor of At are not contained in any
other elements.

Let z = s or t, and q be a prime divisor of Az with q ł Ar ∀ r ≠ z ∈ [1, n].
Notice that from the above assignment, we know Az ∈ {Ax1, …, Axm} and Az ∉ {Ay1, …, Ayh}.
Then, there are q | ∏

m
i=1 Axi = G and q ł ∏

h
j=1 Ayj = G, which is in direct contradiction.

In sum, the mapping between G and {Ax1, …, Axm} is one-to-one. �
Definition 2: Let b1…bn ≠ 0 be a bit string. Then ḅ i with i ∈ [1, n] is called a bit shadow if it is

produced by such a rule: ḅ i equals 0 if bi = 0, 1 plus the number of successive 0-bits before bi if bi = 1, or
1 plus the number of successive 0-bits before and after bi if bi is the rightmost 1-bit.

Fact 1: Let b1…bn ≠ 0 be a bit string. Then there is ∑

n
i=1 ḅ n = n.

Proof:
According to Definition 2, every bit of b1…bn is considered into ∑

k
i=1 ḅ xi, where ḅ x1, …, ḅ xk are 1-bit

shadows in string ḅ 1…ḅ n, and there is ∑

k
i=1 ḅ xi = n.

On the other hand, there is ∑

n−k
j=1 ḅ yj = 0, where ḅ y1, …, ḅ yn − k are 0-bit shadows.

In total, there is ∑

n
i=1 ḅ n = n. �

Property 2: Let {A1, …, An} be a coprime sequence, and b1…bn ≠ 0 be a bit string. Then the mapping
from b1…bn to G = ∏

n
i=1 Ai

ḅi is one-to-one.
Proof:
Let b1…bn and b′1…b′n be two different bit strings, and separately correspond to ḅ1…ḅ n and ḅ′1…ḅ′n.

If ḅ1…ḅ n = ḅ′1…ḅ′n, it is not difficult to understand b1…bn = b′1…b′n. So, the mapping from b1…bn to
ḅ1…ḅ n is one-to-one.

Additionally, since Ai

ḅi is not equal to 1 and contains the same prime factors as those of Ai, it is
known from the proof of Property 1 that the mapping from ḅ 1…ḅ n to ∏

n
i=1 Ai

ḅi is one-to-one.
Therefore, the mapping from b1…bn to ∏

n
i=1 Ai

ḅi is one-to-one. �
Definition 3: The secret ℓ(i) in the key transform of a public key cryptosystem is called a lever

function, if it has the following features:
 ℓ(i) is an injection from the domain {1, …, n} to the codomain Ω ⊂ {1, …, };
 the mapping between i and ℓ(i) is established randomly without an analytical expression;
 an attacker has to be faced with all the permutations of elements in Ω when extracting a related
private key from a public key;
 the owner of a private key only need to considers the accumulative sum of elements in Ω when
recovering a related plaintext from a ciphertext.

Feature and make it clear that if n is large enough, it is infeasible for an attacker to search all
the permutations of elements in Ω exhaustively while decryption is feasible in time being polynomial in
n. Thus, the amount of calculation on ℓ(.) at ‘a public terminal’ is large, and the amount of calculation

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 4

on ℓ(.) at ‘a private terminal’ is small.
Concretely to REESSE1+, ℓ(i) in the transform Ci ≡ (Ai W

ℓ

(i))

δ (% M) for i = 1, …, n is on the position
of an exponent.

Property 3 (Indeterminacy of ℓ(.)): Let δ = 1 and Ci ≡ Ai W ℓ
(i) (% M) for i = 1, …, n, where ℓ(i) ∈ Ω

= {5, …, n + 4} and Ai ∈ Λ = {2, …, Þ}. Then ∀ W ∈ [1,] with W ≠ , and ∀ x, y, z ∈ [1, n] with z
≠ x, y,

 when ℓ(x) + ℓ(y) = ℓ(z), there is ℓ(x) + W + ℓ(y) + W ≠ ℓ(z) + W (%);
 when ℓ(x) + ℓ(y) ≠ ℓ(z), there always exist

Cx ≡ A′x W ′ ℓ′(x

), Cy ≡ A′y W ′ ℓ′(y

), and Cz ≡ A′z W ′ ℓ′(z

) (% M)
such that ℓ′(x) + ℓ′(y) ≡ ℓ′(z) (%) with A′z ≤ Þ.

Proof:
 It is easy to understand that

W
ℓ(x

) ≡ W
ℓ(x

)

+

W

, W
ℓ(y

) ≡ W
ℓ(y

)

+

W

, and W
ℓ(z

) ≡ W
ℓ(z

)

+

W

 (% M).
Due to W ≠ , 2W ≠ W , and ℓ(x) + ℓ(y) = ℓ(z), it follows that ℓ(x) + W + ℓ(y) + W ≠ ℓ(z) + W

(%).
However, it should be noted that when W = , there is ℓ(x) + W + ℓ(y) + W = ℓ(z) + W (%).

 Let Ōd be an oracle on seeking a discrete logarithm from DLP.
Suppose that W ′ ∈ [1,] is a generator of (*

M , ·).
In light of group theories, ∀ A′z ∈ {2, …, Þ}, the congruence

Cz ≡ A′z W ′ ℓ′ (z

) (% M)
has a solution. Then, ℓ′(z) may be taken through Ōd.
∀ ℓ′(x) ∈ (0,), and let ℓ′(y) ≡ ℓ′(z) – ℓ′(x) (%).
Further, from Cx ≡ A′x W ′ ℓ′ (x

)
 (% M) and Cy ≡ A′y W ′ ℓ′ (y

)
 (% M), we can obtain many distinct pairs (A′x,

A′y), where A′x, A′y ∈ [1,], and ℓ′(x) + ℓ′(y) ≡ ℓ′(z) (%). �
Notice that letting Ω = {5, …, n + 4}, namely every ℓ(i) ≥ 5 makes seeking W from W ℓ

(i) ≡ Ai
–1

 Ci (%
M) face an unsolvable Galois group when Ai is guessed [22], and especially when Ω is any subset
containing n elements of {1, …, }, Property 3 still holds.

Assume that ℓ(x) + ℓ(y) = ℓ(z), and let G′ ≡ Cx Cy Cz
–1 (% M). Then

G′ ≡ Cx Cy Cz
–1 ≡ Ax Ay Az

–1 (% M),
namely

G′ / M – L / Az = (Ax Ay) / (M Az),
where L is an positive integer.

Due to M > ∏

n
i=1 Ai, Ai ≥ 2, and n > 3, there is

G′ / M – L / Az < 1 / (2n – 3
 Az

2) < 1 / (2 Az
2).

By Theorem 12.19 in Section 12.3 of [23], L / Az is a convergent of the continued fraction expansion
of G′ / M.

Property 3 illuminates that ℓ(x) + ℓ(y) = ℓ(z) is not necessary for the above discriminant. Therefore, a
continued fraction attack on Ci ≡ Ai W

ℓ

(i) (% M) according to the discriminant will be ineffectual as long

as Λ and Ω are fitly selected [24]. However, the robust Λ and Ω will make the decryption of a
ciphertext get slow. Hence, Ci ≡ Ai W ℓ

(i) (% M) is not an efficient key transform.

3 Design of the REESSE1+ Public key Cryptosystem

In essence, REESSE1+ is a prototypal cryptosystem which is used to expound some foundational
concepts, ideas, and methods.

3.1 The Key Generation Algorithm

This algorithm is employed by a certificate authority or the owner of a key pair.
Let p1, …, pn be the first n primes in the set , Λ = {2, 3, …, 1201}, and Ω = {5, 7, …, 2n + 3}.

Assume that đ, Đ, T, S are four pairwise coprime integers, where đ ∈ [5, 216], T ≥ 2
n, and Đ contains a

prime not less than 2
n.

S1: Randomly generate a coprime sequence {A1, …, An} with Ai ∈ Λ.
S2: Find a prime M > (max

1≤ i ≤ n Ai)n making (đ Đ T) | , gcd(S,) = 1,

and ∏

k
i=1 pi

ei | , where k meets ∏

k
i=1 ei ≥ 210 and pk ≈ 2n.

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 5

S3: Pick W, δ ∈ (1,) making gcd(δ,) = 1, δ = đ Đ T, and W ≥ 2n – 20.
S4: Compute α ← δ(δ

n

+ δ

W n – 1)T, β ← δW n

T, ħ ← (W ∏

n
i = 1 Ai)–

δS
 (α δ

–1) % M.
S5: Randomly produce pairwise distinct ℓ(1), …, ℓ(n) ∈ Ω.
S6: Compute Ci ← (Ai W ℓ

(i))δ % M for i = 1, …, n.
At last, regard ({Ci}, α, β) as a public key, ({Ai}, {ℓ(i)}, W, δ, Đ, đ, ħ) as a private key, and (S, T, M)

as being in common.
Notice that if REESSE1+ is pragmatized, we suggest that the set Ω = {+/−5, +/−7, …, +/−(2n + 3)},

where every sign +/− means that ‘+’ or ‘−’ is selected, and unknown to the public, which may bring
more indeterminacy, and that gcd(W, Đ) > 1, which may avoid the existence of W

–1 % Đ no matter
what the value of Đ is.

At S3, to seek δ, first let δ ≡ g / (đ
Đ

T)
 (% M), where g is a generator by Algorithm 4.80 in Section 4.6

of [25], then test δ. At S4, seeking a S-th root to x
S ≡ c (% M) is referred to Theorem 1 in Section 3.4.

Considering M > (max
1≤ i ≤ n Ai)n and the fact that the first n primes in the set can constitute a smallest

coprime sequence, we can estimate lg M ≈ 696, 864, 1030, or 1216 when n = 80, 96, 112, or 128.
Definition 4: Let {C1, …, Cn} be a non-coprime sequence, and M be a prime. Seeking the original

{A1, …, An} with Ai ∈ Λ, {ℓ(1), …, ℓ(n)} with ℓ(i) ∈ Ω, W, δ from Ci ≡ (Ai W
ℓ (i))

δ (% M) for i = 1, …, n
is called the multivariate permutation problem, shortly MPP.

3.2 The Encryption Algorithm

Assume that ({Ci}, α, β) is a public key, and b1…bn ≠ 0 is a plaintext block or a symmetric key.
S1: Set Ḡ ← 1, k ← 0, i ← 1.
S2: If bi = 0, let k ← k + 1, ḅ i ← 0;

else do ḅ i ← k + 1, k ← 0, Ḡ ← Ḡ Ci

ḅi % M.
S3: Let i ← i + 1.

If i ≤ n, go to S2.
S4: If bn = 0, do ḅ n – k ← ḅ n – k + k, Ḡ ← Ḡ (Cn – k)

k % M.
So, the ciphertext Ḡ ≡ ∏

n
i=1 Ci

ḅi (% M) is obtained.
Notice that α and β are unuseful for the encryption.
Definition 5: Let {C1, …, Cn} be a non-coprime sequence, and M be a prime. Seeking the original

b1…bn from Ḡ1 ≡ ∏

n
i=1 Ci

bi (% M) is called the (modular) subset product problem, shortly SPP.
Definition 6: Let {C1, …, Cn} be a non-coprime sequence, and M be a prime. Seeking the original

ḅ1…ḅ n, namely b1…bn from Ḡ ≡ ∏

n
i=1 Ci

ḅi (% M) is called the anomalous subset product problem, shortly
ASPP.

3.3 The Decryption Algorithm

Assume that ({Ai}, {ℓ(i)}, W, δ, Đ, đ, ħ) is a related private key, and Ḡ is a ciphertext.
Notice that because ∑

n
i=1 ḅ i = n is even, ∑

n
i=1 ḅ i ℓ(i) must be even.

S1: Compute Ḡ ← Ḡ δ

−1 % M.
S2: Compute Ḡ ← Ḡ W

–2 % M.
S3: Set b1…bn ← 0, G ← Ḡ, i ← 1, k ← 0.
S4: If Ai

k +
1

 | G, do G ← G / Ai
k +

1, bi ← 1, k ← 0;
else let k ← k + 1.

S5: Let i ← i + 1.
If i ≤ n and G ≠ 1, go to S4.

S6: If k ≠ 0 and (An – k)k | G, do G ← G / (An – k)k.
S7: If G ≠ 1, go to S2; else end.
So, the original plaintext block or symmetric key b1…bn is recovered.
Only if Ḡ is a true ciphertext, can this algorithm terminate normally. In decryption, {ℓ(i)}, Đ, đ, and

ħ are unhelpful.

3.4 The Digital Signature Algorithm

Assume that ({Ai}, {ℓ(i)}, W, δ, Đ, đ, ħ) is a private key, F is a file or message to be signed, and hash
is a one-way compression function.

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 6

S1: Let H ← hash(F), whose binary form is b1…bn.
S2: Set ḵ ← δ ∑

n
i=1 bi ℓ(i) % , G0 ← (∏

n
i=1 Ai

¬bi)δ % M.
S3: ∀ā ∈ (1,) making (đ T) ł ā and đ ł (WQ) % ,

where Q = (ā Đ + WH)δ

–1 % .
S4: Compute R ← (Q(δ ħ)–1)S −1G0

–1, Ū ← (R W ḵ – δ)Q % M,
 ← δ

ā

Đ % M, ξ ← ∑

n −1
i=0 (δ Q)n –

1

– i (HW)i % .

S5: ∀ r ∈ [1, đ 216] making đ ł (r U S + ξ) % ,
where U = Ū r % M.

S6: If đ ł ((WQ)

n

– 1 + ξ + r U S) % , go to S5; else end.

So, a signature (Q, U) on the file F is obtained, and sent to a receiver together with F.
It is known from S3, S4 that Q, R meet ā Đ ≡ δ Q – W H (%) and Q ≡ (R G0)S δ ħ (% M).
It should be noted that owing to đ ł ā, gcd(Đ, đ) = 1, and đ | , there must exist đ ł (δ Q – W H).
According to the double congruence theorem (see Section 3.6), in the signature algorithm we do not

need V = (R
–1W

δ
 G1)QU δλ % M, where G1 = (∏

n
i=1 Ai

bi)δ % M, and λ satisfies
λ S ≡ ((WQ)

n

– 1 + ξ + r U S)(δ Q – HW) (%),

which indicates (đ Đ) | λ.
At S5, the probability of finding a fit U is roughly 1 / đ. Because đ is a small number, U can be found

out at a good pace. The small đ, however, does not influence the security of REESSE1+ (see Section
6.3).

Let ∆ ≡ (WQ)

n

– 1 + ξ + r U S (%).

Due to đ | , if (WQ)

n

– 1 + ξ + r U S contains the factor đ, it must be contained in ∆ % .

Besides, due to đ ł S and đ ł (WQ)

n

– 1 (according to đ ł (WQ)), if we want to make đ | ∆, there must be

đ ł (r U S + ξ) % .
Therefore, as long as every value of r makes r U S different, đ | ∆ will holds after about đ attempts of r.

The algorithm can also terminate normally because after r traverses the interval [1, đ 216], the
probability of đ ł ∆ is (1 – 1 / đ)đ 216, and almost zero.

At S4, we derive ξ from ξ (δ Q – WH) ≡ (δ Q)n – (WH)n (%). Computing R by Q ≡ (R G0)S δ ħ (% M)
may resort to Theorem 1, where S meets gcd(S,) = 1.

Theorem 1: For the congruence x
k ≡ c (% M) with M prime, if gcd(k,) = 1, every c has just one

k-th root modulo . Especially, let µ satisfy µ k ≡ 1 (%), then c

µ % M is the k-th root.
Further, we have Theorem 2 and 3.
Theorem 2: For the congruence x

k ≡ c (% M) with M prime, if k | and gcd(k, / k) = 1, then when
c is an k-th power residue modulo M, and µ satisfies µ k ≡ 1 (% / k), c

µ % M is an k-th root.
Theorem 3: For the congruence x

k ≡ c (% M) with M prime, if k ł , let h = gcd(k,), m = k / h,
and µ satisfy µ m ≡ 1 (% / h), then x

k ≡ c (% M) is equivalent to
x

h ≡ c
µ (% M),

that is, the two congruences have the same set of solutions. Furthermore, the sufficient and necessary
condition for either congruence to have solutions is c

 / h ≡ 1 (% M).
For the proofs of Theorem 1 and 2, refer to [26], and for the proof of Theorem 3, refer to [27]. The

solution which is obtained in terms of Theorem 1 or 2, and may be written as a certain power of c
modulo M is called the trivial solution to the congruence x

k ≡ c (% M) [27].

3.5 The Identity Verification Algorithm

Assume that ({Ci}, α, β) is a related public key, and (Q, U) is a signature on the file or message F.
S1: Let H ← hash(F), whose binary form is b1…bn.
S2: Compute Ḡ1 ← ∏

n
i=1 Ci

bi % M.
S3: Compute X ← (α Q

–1)QU

T
 α Q n % M,

Y ← (Ḡ1
Q

 U

–1)U

S

T
 β H

Q n – 1 + H n % M.
S4: If X = Y, the identity is valid and F intact;

else the identity is invalid or F modified.
By running this algorithm, a verifier can judge whether a signature is genuine or fake, prevent the

signatory from denying the signature, and prevent an adversary from modifying the file.
Definition 7: Let M be a prime. Seeking x ∈ [1,] from y ≡ x

x (% M) is called the transcendental
logarithm problem, shortly TLP.

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 7

In what follows, we argue the discriminant X ≡ Y (% M) at S4.
It is known from Section 3.1 that α ≡ δ

(δ

n

+ δ

W n – 1)T ≡ δ ħ(W δ

 G0G1)S
 (% M) and β ≡ δW n

T (% M).
Let V ≡ (R

–1W
δ

 G1)

QU δλ (% M).
Since λ meets λ S ≡ ((WQ)

n

– 1 + ξ + r U S)(δQ – HW) (%), let λ = k đ Đ, where k is a integer, and

then
Q

QU
 V

S ≡ (R G0)

S

Q

U
 (δ ħ)QU

 (R

–1W
δ G1)Q

U S δλ S
≡ (W

δ G0G1) QU S (δ ħ)QU
 δλ

S
≡ α QU δ

((W
Q)n – 1 + Σ

n - 1

i=0

(δ

Q)

n – 1 – i (WH)

i + r

U

S

) (δ
Q –

WH)
≡ α QU δ

δ

W n – 1Q

n

–

W nH

Q
n – 1

+

(δ

Q)n
 – (WH)n +

(δ

Q – WH)

r

U

S
≡ α QU δ

(δn

+

δ

W n – 1)Q

n δ

–W n(H

Q

n – 1

+

H n)

 δ
ā

Đ

r

US (% M).
Transposition yields

V
S ≡ (α Q

–1)QU δ(δ

n

+ δ

W n – 1)Q

n
 δ

–W n(H

Q

n – 1

+

H n)

 δ
ā

Đ

r

US (% M).
Therefore, we have

V
ST ≡ (α Q

–1)QUT δ(δ

n

+

δ

W n – 1)T

Q

n
 δ

–T

W n(H

Q

n – 1

+

H n)

 δ

ā

Đ

r

US

T
≡ (α Q

–1)QU

T
 α Q n

 β –
(H

Q

n – 1

+

H n)
 δ

ā

Đ

r

UST
≡ X β –

(H

Q

n – 1

+

H n)
 δ
ā

Đ

r

U

ST (% M).
In addition,

U

U

T

 V
T ≡ (RW

ḵ – δ
)QUT(δ

ā

Đ

r)U

T(R

–1W δ G1)QU

T

 δ

λ

T

≡ (W

ḵ
 G1)QU

T
 δ

ā

Đ

rU

T
 δ

λ

T

≡ Ḡ1
QU

T
 δ

ā

Đ

r

U

T
 δ

k đ Đ
T

≡ Ḡ1
QU

T
 δ

ā

Đ

r

U

T (% M).
Transposition yields

V T ≡ (Ḡ1
Q U –1)U

T
 δ

ā

Đ

r

U

T (% M).
Hence

V S T ≡ (Ḡ1
Q U –1)U

S

T δ

ā

Đ

r

U

S

T (% M).
By the double congruence theorem (Theorem 4), there is

V S T ≡ X β – (H

Q

n – 1

+

H n)
 δ

ā

Đ

r

U

ST
≡ (Ḡ1

Q
 U

–1)U

S

T
 δ

ā

Đ

r

U

S

T (% M).
Namely, X ≡ (Ḡ1

Q
 U

–1)U

S

T
 β

H

Q

n – 1

+

H n ≡ Y (% M).

3.6 The Double Congruence Theorem

Theorem 4 (The Double Congruence Theorem): Assume that M is a prime, and that s and t
satisfying gcd(s, t) = 1 are two constants, then simultaneous equations

x s ≡ a (% M)
x t ≡ b (% M)

have the unique solution if and only if a
t ≡ b

s (% M).
Proof:
Necessity:
Assume that the simultaneous equations x s ≡ a (% M) and x t ≡ b (% M) have solutions.
Let x0 be a solution to the two equations, then x0

s ≡ a (% M) and x0
t ≡ b (% M).

Further, x0
s

t ≡ a

t (% M) and x0
t s ≡ b

s (% M) can be obtained.
Therefore, x0

s t ≡ a
t ≡ b

s (% M).
Sufficiency:
Assume that a

t ≡ b
s (% M).

By the greatest common divisor theorem [14], there exists a pair of integers u and v making u s + v t =
1. Thus, there is

x u s ≡ a
u (% M)

x v t ≡ b
v (% M).

The above two equations multiplying yields
x u s + v t ≡ x ≡ a

u b
v (% M).

Furthermore, we have
(a

u
 b

v) s ≡ a
u s b

v s ≡ a
u s a

v t ≡ a
u s + v t ≡ a (% M)

(a
u

 b
v) t ≡ a

u t b
v t ≡ b

u s b
v t ≡ b

u s + v t ≡ b (% M).
Accordingly, a

u b

v is a solution to the original simultaneous equations.

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 8

Uniqueness:
Let x0 ≡ a

u b
v (% M).

Assume that another value x1 meets the equations x s ≡ a (% M) and x t ≡ b (% M) at one time.
Then, it holds that

x1
s ≡ a (% M) and x1

t ≡ b (% M).
By comparison, we have x1

s ≡ x0
s and x1

t ≡ x0
t (% M). Transposing gives

(x0 x1
–1) s ≡ 1 and (x0 x1

–1) t ≡ 1 (% M).
If at least one between s and t is relatively prime to , by Theorem 1, there must be x0 x1

–1 ≡ 1 (% M),
namely x0 ≡ x1 (% M).

If neither s nor t is coprime to , may let k = gcd(s,), h = gcd(t,). Then we see gcd(s / k,) = 1
and gcd(t / h,) = 1.

Thus, there are (x0 x1
–1) k ≡ 1 and (x0 x1

–1) h ≡ 1 (% M). By Theorem 3 and gcd(s, t) = 1, we know gcd(k,
h) = 1. In terms of the group theory [22], when gcd(k, h) = 1, only the element ‘1’ belongs to two
different subgroup at the same time. Therefore, x0 x1

–1 ≡ 1, namely x1 = x0, and x0 bears uniqueness.
To sum up, we prove Theorem 4. �

3.7 Characteristics of REESSE1+

REESSE1+ owns the following characteristics compared with classical MH, RSA, and ElGamal
cryptosystems.

• The security of REESSE1+ is not based on a single problem, but on the four problems: MPP,
ASPP, TLP, and PRFP. Hence, it is a multiproblem public key cryptosystem.

• The key transform Ci ≡ (Ai W ℓ (i))

δ (% M) for i = 1, …, n contains 2n + 2 unknown variables, and
each equation contains four almost independent variables. Hence, REESSE1+ is multivariate.

• If any of Ai, W, and ℓ(i) is determined, the relation between the two remainders is still nonlinear,
and thus there is very complicated nonlinear relations among Ai, W, and ℓ(i).

• The indeterminacy of ℓ(.) with δ = 1. If Ci and W are determined, Ai and ℓ(i) cannot be determined,
and even have no one-to-one relation when W is a non-generator. If Ci and Ai are determined, W

and ℓ(i) cannot be determined, and also have no one-to-one relation for gcd(ℓ(i),) > 1.
• The insufficiency of the mapping. A private key includes {Ai}, {ℓ(i)}, W, δ etc, but there is only a

dominant mapping from {Ai} to {Ci}, and thus the invertibility of the transform function is poor.
• Because combinations among multiple variables may bring different hardnesses, REESSE1+ is a

self-improvable cryptosystem while its main architecture remains unchanged.

3.8 Correctness of the Decryption Algorithm

Since (*
M , ·) is an Abelian, namely commutative group, ∀ḵ ∈ [1,], there is

W

ḵ
 (W –1)ḵ ≡ W

ḵ W

–

ḵ ≡ 1 (% M).
Let b1…bn be an n-bit plaintext.
It is known from Section 3.2 that Ḡ ≡ ∏

n
i=1 Ci

ḅi (% M), where ḅ i means what the algorithm shows, and
Ci ≡ (Ai W ℓ (i))

δ % M.
Let G ≡ ∏

n
i=1 Ai

ḅi (% M), and ḵ = ∑

n
i=1 ℓ(i) ḅ i.

Then, we need to prove that Ḡ δ
−1

 (W
–1)ḵ ≡ G (% M).

Proof:
According to the key generator and the encryption algorithm, there is

Ḡ ≡ ∏
n
i=1 Ci

ḅ
 i ≡ ∏

n
i=1 ((Ai W ℓ

(i))δ)ḅi

≡ W (∑

n

i=1

ḅi
ℓ

(i))

δ
 ∏

n
i=1 (Ai)δ ḅi

≡ W

ḵ δ (∏

n
i=1 Ai

ḅi)δ (% M).
Further, raising either side of the above equation to the δ

–1-th yields
Ḡ δ

−1 ≡ (W

ḵ
δ

 (∏

n
i=1 Ai

ḅi)δ)

δ

−1
≡ W ḵ ∏

n
i=1 Ai

ḅi (% M).
Multiplying either side of the just above equation by (W

–1)ḵ yields
Ḡ δ

−1
 (W –1)ḵ ≡ W

ḵ
 ∏

n
i=1 Ai

ḅi (W
–1)ḵ

≡ W ḵ ∏

n
i=1 Ai

ḅi (W ḵ
)–1

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 9

≡ ∏

n
i=1 Ai

ḅi ≡ G (% M).
Clearly, the above process also gives a method of seeking G meantime. �
Notice that in practice, b1…bn is unknowable in advance, so we have no way to directly compute ḵ.

However, because the range of ḵ ∈ (5n, n(2n + 3)) is very narrow, we may search ḵ heuristically by
multiplying W

–2, and verify whether G = 1 after it is divided exactly by some Ai

ḅi. It is known from
Section 3.3 that the original b1…bn is acquired at the same time the condition G = 1 is satisfied.

3.9 Uniqueness of a Plaintext Solution to a Ciphertext

Because {C1, …, Cn} is a non-coprime sequence, the mapping from ∏

n
i=1 Ci

ḅi % M to Ḡ (see Section
3.2) is theoretically many-to-one. It might possibly result in the nonuniqueness of a plaintext solution
b1…bn when Ḡ is being unveiled.

Suppose that the ciphertext Ḡ can be obtained from two different anomalous subset products
corresponding to b1…bn and b′1…b′n respectively. Then,

Ḡ ≡ ∏

n
i =1 Ci

ḅi ≡ ∏

n
i =1 Ci

ḅ

′i (% M).
That is,

∏

n
i=1 (Ai W ℓ

(i))δ
ḅi ≡ ∏

n
i=1 (Ai W ℓ

(i))δ ḅ

′i (% M).
Further, there is

W ḵ δ ∏

n
i=1(Ai)δ

ḅi ≡ W ḵ ′ δ ∏

n
i=1(Ai)δ ḅ

′i (% M),
where ḵ = ∑

n
i=1 ḅ i ℓ(i), and ḵ ′ = ∑

n
i=1 ḅ ′i ℓ(i) % .

Raising either side of the above congruence to the δ

–1-th power yields
W ḵ ∏

n
i=1 Ai

ḅi ≡ W ḵ ′ ∏

n
i=1 Ai

ḅ

′i (% M).
Without loss of generality, let ḵ ≥ ḵ ′. Because (*

M , ·) is an Abelian group, there is
W ḵ – ḵ

′ ≡ ∏

n
i=1 Ai

ḅ

′i (∏

n
i=1 Ai

ḅi)–1 (% M).
Let θ ≡ ∏

n
i=1 Ai

ḅ

′i (∏

n
i=1 Ai

ḅi)–1 (% M), namely θ ≡ W ḵ – ḵ
′ (% M).

The above congruence signifies that when the plaintext b1…bn is not unique, the value of W must be
relevant to θ. The contrapositive assertion equivalent to it is that if the value of W is irrelevant to θ,
b1…bn will be unique. Thus, we need to consider the probability that W takes a value relevant to θ.

If an adversary tries to attack an 80-bit symmetric key through exhaustive search, and a computer
can verify trillion values per second, it will take 38334 years for the adversary to verify all the potential
values. Hence, currently 80 bits are quite enough for the security of a symmetric key.

b1…bn contains n bits which indicates ∏

n
i=1 Ai

ḅi has 2n potential values, and thus the number of
potential values of θ is at most 2n × 2n. Notice that because A1

–1, …, An
–1 are not necessarily coprime,

some values of θ may possibly occur repeatedly.
Because |ḵ − ḵ ′| ≤ n(2n + 3) – 5n ≤ 32512 ≈ 215 with n ≤ 128, and W has at most 215 solutions to every

θ, the probability that W takes a value relevant to θ is at most 215
 22n

 / M. When n ≥ 80, there is
215

 22n / M ≤ 2175 / 2696 = 1 / 2521
which is close to zero. The probability will further decrease when W is a prime since the solutions to θ
lean toward being composite integers averagely.

In addition, if please, resorting to ∑

n
i=1 ḅ i = n, you may exclude some unoriginal plaintext solutions.

4 Security Analysis of the Key Transform

We analyze the exact security of the REESSE1+ key transform Ci ≡ (Ai W ℓ

(i))δ (% M) for i = 1 …, n,
where W, δ ∈ [1,], ℓ(i) ∈ Ω = {5, 7, …, 2n + 3}, and Ai ∈ Λ = {2, 3, …, 1201}.

We know that when n = 80, 96, 112, or 128, there is lg M ≈ 696, 864, 1030, or 1216. In this case,
IFP and DLP can almost be solved in tolerable time, and LSSP with D ≈ n / lg M can also be solved in
tolerable time [11][28]. In addition, because the root finding problem (RFP) y ≡ x

k (% M) may be
converted into a linear congruence through a discrete logarithm, RFP can also be solved in tolerable
time when DLP can be solved in tolerable time.

‘Tolerable time’ indicates that the running time of an algorithm for solving a problem may be
accepted by a user when the time dominant parameter is relatively small. For example, when n = 80,
the time O(2n

/

2) is tolerable, and when lg M = 384, O(LM [1 / 3, 1.923]) = 256 is also tolerable [29].

A public key may be regarded as the cipher of a private key. Since a ciphertext is the mutual effect

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 10

of a public key and a plaintext, averagely the ciphertext has no direct help to inferring the private key.
Definition 8: Let A and B be two computational problems. A is said to reduce to B in polynomial

time, written as A ≤

P
T B, if there is an algorithm for solving Α which calls, as a subroutine, a

hypothetical algorithm for solving B, and runs in polynomial time, excluding the time of the algorithm
for B [25][28].

The hypothetical algorithm for solving B is called an oracle. It is easy to understand that no matter
what the running time of the oracle is, it does not influence the result of the comparison.

A ≤

P
T B means that the difficulty of A is not greater than that of B, namely the running time of the

fastest algorithm for A is not greater than that of the fastest algorithm for B when all polynomial times
are treated as being pairwise equivalent. Concretely speaking, if A cannot be solved in polynomial or
subexponential time, B cannot also be solved in corresponding polynomial or subexponential time; and
if B can be solved in polynomial or subexponential time, A can also be solved in corresponding
polynomial or subexponential time.

Definition 9: Let A and B be two computational problems. If A ≤

P
T B and B ≤

P
T A, then A and B are

said to be computationally equivalent, written as A =

P
T B [25][28].

A =

P
T B means that either if A is a hardness of a certain complexity on condition that the dominant

variable approaches a large number, B is also a hardness of the same complexity on the identical
condition; or A, B both can be solved in linear or polynomial time.

Definition 8 and 9 suggest a reductive proof method called polynomial time Turing reduction (PTR)
[25]. Provable security by PTR is substantially relative and asymptotic just as a one-way function is.
Relative security implies that the security of a cryptosystem based on a problem is comparative, but not
absolute. Asymptotic security implies that even if a cryptosystem based on a problem is proven to be
secure, it is practically secure only on condition that the dominant parameter is large enough.

Naturally, we will enquire whether A <

P
T B exists or not. The definition of A <

P
T B may possibly be

given theoretically, but the proof of A <

P
T B is not easy in practice.

Let Ĥ(y = f(x)) represent the complexity or hardness of solving the problem y = f(x) for x [30].

4.1 MPP Is at Least Equivalent to DLP

Definition 4 refers to Ci ≡ (Ai W ℓ (i))δ (% M) for i = 1, …, n as MPP. It has the following property.
Property 4: MPP is computationally at least equivalent to DLP in the same prime field.
Proof:
Firstly, systematically consider Ci ≡ (Ai W ℓ (i))δ (% M) for i = 1, …, n.
Assume that gi ≡ Ai W ℓ (i) (% M) for each i is a constant.
Let

gi ≡ g

xi (% M), and zi ≡ δ xi (%),
where g ∈ *

M be a generator.
Then, there is

Ci ≡ gi

δ ≡ g
δ

xi (% M) for i = 1, …, n.

Again let δ xi ≡ zi (%). Then
Ci ≡ g

zi (% M) for i = 1, …, n.
The above expression corresponds to the fact that in the ElGamal cryptosystem with many users

sharing a modulus and a generator, user 1 acquires the private key z1 and the public key C1, …, user n
acquires the private key zn and the public key Cn. It is well known that in this case, attack of adversaries
is still faced with DLP, namely seeking zi from Ci ≡ g

zi (% M) for i = 1, …, n is equivalent to DLP [25].
Thus, when every gi is weakened to a constant, seeking δ from Ci ≡ gi

δ (% M) for i = 1, …, n is
equivalent to DLP, which indicates that when every gi is not a constant, seeking gi and δ from Ci ≡ gi

δ
(% M) for i = 1, …, n is at least equivalent to DLP.

Secondly, singly consider a certain Ci, where the subscript i is designated.
Assume that Ōm(Ci, M, Ṟ) is an oracle on solving Ci ≡ gi

δ (% M) for gi and δ, where i is in {1, …, n},
and Ṟ is a constraint on gi such that the original gi can be found.

Let y ≡ g
x (% M) be of DLP. Then, by calling Ōm(y, M, g), x can be obtained.

According to Definition 8, there is
Ĥ(y ≡ g

x (% M)) ≤

P
T Ĥ(Ci ≡ gi

δ (% M)),
which means that when only a certain gi is known, seeking gi and δ from Ci ≡ gi

δ (% M) is at least
equivalent to DLP.

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 11

Integrally, seeking the original {Ai}, {ℓ(i)}, W, and δ from Ci ≡ (Ai W ℓ

(i))δ (% M) for i = 1, …, n is
computationally at least equivalent to DLP in the same prime field. �

Further, the following analysis will incline people to believe that MPP is harder than DLP.

4.2 Attacks by Interaction of the Key Transform Items

Every ℓ(i) ∈ {5, 7, …, 2n + 3} and every Ai ∈ {2, 3, …, 1201} are the thinness of Ci ≡ (Ai W ℓ (i))δ (%
M). Naturally adversaries will adopt combinational attack measures around the thinness.

4.2.1 Eliminating W through ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2)

∀ x1, x2, y1, y2 ∈ [1, n], assume that there is ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2).
Let Gz ≡ Cx1Cx2 (Cy1Cy2)

–1 (% M), namely
Gz ≡ (Ax1 Ax2 (Ay1 Ay2)

–1)δ (% M).
If the adversaries divine the values of Ax1, Ax2, Ay1, and Ay2, and compute u, vx1, vx2, vy1, vy2 in time of

at least LM [1 / 3, 1.923] such that
Gz ≡ g

u, Ax1 ≡ g

vx1, Ax2 ≡ g

vx2, Ay1 ≡ g

vy1, Ay2 ≡ g

vy2 (% M),
where g is a generator of (*

M , ·), then
u ≡ (vx1 + vx2– vy1 – vy2)δ (%).

If gcd(vx1 + vx2– vy1 – vy2,) | u, the congruence in δ has solutions. Because each of Ax1, Ax2, Ay1, Ay2
may traverse the interval Λ, the subscripts x1, x2, y1, y2 are unfixed, and the congruence may have n
solutions, the number of potential values of δ is about n5

 Λ4.
In succession, the most effectual approach seeking W is that for every i, divine Ai and ℓ(i), find Vi by

Ci ≡ (Ai W ℓ
(i))δ (% M), namely the value set of W, and if there exists W1 ∈ V1, …, Wn ∈ Vn being equal

pairwise, the divination of δ, {Ai}, and {ℓ(i)} is thought right. Notice that to avoid seeking ℓ(i)-th roots,
may let W = g

µ % M.
Due to ∏

k
i=1 pi

ei | , where k meets pk ≈ 2n, there is ℓ(i) | , and the size of every Vi is about n Ω Λ.
In summary, the running time of the above attack is at least

Ŧ = n Λ LM [1 / 3, 1.923] + (2 n5
 Λ4)2 lg M

2 + (2 n5
 Λ4)(n Ω Λ)n (2 lg M

2).
When n = 80 with lg M ≈ 696, Ŧ = 2110 > 2n.
When n = 96 with lg M ≈ 864, Ŧ = 2115 > 2n.
When n = 112 with lg M ≈ 1030, Ŧ = 2125 > 2n.
When n = 128 with lg M ≈ 1216, Ŧ = 2129 ≈ 2n.
Therefore, Ŧ is not less than a quantity of time exponential in n.
Clearly, the running time of attack by eliminating W through ℓ(x1) + ℓ(x2) + ℓ(x3) = ℓ(y1) is the same

as that of the attack by eliminating W through ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2).

4.2.2 Eliminating W through the W -th Power

Due to lg M ≈ 696, 864, 1030, or 1216, can be factorized in tolerable time. Again due to ∏

k
i=1 pi

ei |
 and ∏

k
i=1 ei ≥ 210, where k meets pk ≈ 2n, W can be divined in the running time of about 210.

Raising either side of Ci ≡ (Ai W ℓ

(i))

δ % M to the W-th power yields
Ci

W ≡ (Ai)δ W % M.
Let Ci ≡ g

u

i (% M), and Ai ≡ g

vi (% M), where g is a generator of (*
M , ·). Then

ui W ≡ vi W δ (%)
for i = 1, …, n. Notice that ui ≠ vi δ (%).

The above congruence looks to be the MH transform [8]. Actually, {v1 W, …, vn W} is not a super
increasing sequence, and moreover there is not necessarily lg (ui W) = lg .

Because vi W ∈ [1,] is stochastic, the inverse δ–1 % not need be close to the minimum / (ui

W), 2 / (ui W), …, or (ui W – 1) / (ui W). Namely δ–1 may lie at any integral position of the
interval [k / (ui W), (k + 1) / (ui W)], where k = 0, 1, …, ui W – 1, which illustrates the
accumulation points of minima do not exist. Further observing, in this case, when i traverses the
interval [2, n], the number of intersections of the intervals including δ–1 is likely max

2 ≤ i ≤ n {ui W} which is
promisingly close to . Therefore, the Shamir attack by the accumulation point of minima is fully
ineffectual [9].

Even if find out δ

–1 by the Shamir attack method, because each of vi has W solutions, the number of

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 12

potential sequences {gv1, …, gvn} is up to W

n. Because of needing to verify whether {gv1, …, gvn} is a
coprime sequence for each different sequence {v1, …, vn}, the number of coprime sequences is in
proportion to W

n. Hence, the initial {A1, …, An} cannot be determined in polynomial time. Further, the
value of W cannot be computed, and the values of W and δ–1 cannot be verified in polynomial time,
which indicates that MPP can also be resistant to the attack by the accumulation point of minima.

Additionally, the adversaries may divine value of Ai in running time of about Λ, where i ∈ [1, n],
and compute δ by ui W ≡ vi Wδ (%). However, because of W | , the equation will have W
solutions. Therefore, the running time of finding the original δ is at least

Ŧ = n Λ LM [1 / 3, 1.923] + 210
 Λ W

= n Λ LM [1 / 3, 1.923] + 210
 Λ 2n – 20

≈ n Λ LM [1 / 3, 1.923] + 2n > 2n.
It is at least exponential in n when 80 ≤ n ≤ 128.
Again, it is infeasible to separate ħ, δ, W, and ∏

n
i=1 Ai distinctly from α ≡ ħ δ(W ∏

n
i=1 Ai)–δ

S (% M), and

the time complexity of seeking δ, W from α ≡ δ(δ

n

+

δ

W n – 1)T and β ≡ δW n

T (% M) will be at least O(2n) (see
Section 6.3.3), so even if the three equations are considered simultaneously, it is also impossible to
determine the values of the four variables almost independent.

In summary, the time complexity of inferring a related private key from a public key is at least O(2n).

4.3 Attack by a Certain Single Ci

Assume that there is only a solitary Ci = (Ai W ℓ
(i))δ % M ─ i = 1 for example, and other Ci′s (i = 2, …,

n) are unknown for attackers.
Through divining A1 ∈ Λ and ℓ(1) ∈ Ω, the parameters W and δ ∈ (1,) can be computed. Thus, the

number of solution (A1, ℓ(1), W, δ) will be up to Ω Λ 2 > 2n, which manifests that the original (A1,
ℓ(1), W, δ) cannot be determined in time being subexponential in n [30].

Evidently, if g1 ≡ A1 W ℓ

(1) (% M) is a constant, solving C1 = g1
δ % M for δ is equivalent to DLP.

Factually, g1 is not a constant. At present, seeking the original g1, δ will take at least O(M) > O(2n) steps.

5 Security Analysis of the Encryption Algorithm

The security of the encryption algorithm is namely the security of a REESSE1+ ciphertect.

5.1 ASPP Is at Least Equivalent to DLP

Definition 5 refers to Ḡ1 ≡ ∏

n
i=1 Ci

bi (% M) as SPP. It has the following property.
Property 5: SPP is computationally at least equivalent to DLP in the same prime field.
Proof:
Let Ḡ1 ≡ ∏

n
i=1 Ci

bi (% M), where b1…bn is a plaintext block.
Especially, define Ḡ1 ≡ ∏

n
i=1 C

2n − i

bi ≡ ∏

n
i=1 (C

2n − i)
bi (% M) when C1 = … = Cn = C.

Obviously, ∏

n
i=1 Ci

bi = L M + Ḡ1. Owing to L ∈ [1,], deriving the non-modular product ∏

n
i=1 Ci

bi from
Ḡ1 is infeasible, which means inferring b1…bn from Ḡ1 is not a factorization problem.

Assume that Ōs(Ḡ1, C1, …, Cn, M) is an oracle on solving Ḡ1 ≡ ∏

n
i=1 Ci

bi (% M) for b1…bn.
Let y ≡ g x (% M) be of DLP, where g is a generator of (*

M, ·), and the binary form of x is b′1…b′n,
namely y ≡ ∏

n
i=1 (g

2n − i)
b′i (% M).

Then, by calling Ōs(y, g
2n − 1, …, g, M), x namely b′1…b′n can be found.

By Definition 8, there is
Ĥ(y ≡ g

x (% M)) ≤

P
T Ĥ(Ḡ1 ≡ ∏

n
i=1 Ci

bi (% M)),
namely SPP is at least equivalent to DLP in the same prime field in complexity. �

Definition 6 refers to Ḡ ≡ ∏

n
i=1 Ci

ḅi (% M) as ASPP. It has a similar property.
Property 6: ASPP is computationally at least equivalent to DLP in the same prime field.
Proof:
Assume that Ōa(Ḡ, C1, …, Cn, M) is an oracle on solving Ḡ ≡ ∏

n
i=1 Ci

ḅi (% M) for ḅ1…ḅn, where ḅ1…ḅn
is the bit shadow string of b1…bn.

Especially, define Ḡ ≡ ∏

n
i=1 C

nn − i

ḅi ≡ ∏

n
i=1 (C

nn − i)ḅi (% M) with the stipulation ḅi < n (namely that
b1…bn contains at least two nonzero bits) when C1 = … = Cn = C.

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 13

Let Ḡ1 ≡ ∏

n
i=1 Ci

bi (% M) be of SPP.
Due to 0 ≤ bi ≤ ḅ i, by calling Ōa(Ḡ1, C1, …, Cn, M), b1…bn can be found.
By Definition 8, there is Ĥ(Ḡ1 ≡ ∏

n
i=1 Ci

bi (% M)) ≤

P
T Ĥ(Ḡ ≡ ∏

n
i=1 Ci

ḅi (% M)).
Further by transitivity, there is

Ĥ(y ≡ g
x (% M)) ≤

P
T Ĥ(Ḡ ≡ ∏

n
i=1 Ci

ḅi (% M)),
namely ASPP is at least equivalent to DLP in the same prime field in complexity. �

It is very interesting whether ASPP is harder than DLP or not. We can find some positive evidence.
Piece 1 of evidence:
Observe an extreme case.
Assume that C1 = … = Cn = C, then we have Ḡ ≡ ∏

n
i=1 C

ḅi n
 n – i (% M) which may be written as

Ḡ ≡ C ∑

n

i = 1
ḅi n

 n – i (% M).
Let

z = ∑

n
i=1 ḅi n

n – i.
Correspondingly,

Ḡ ≡ C z (% M),
which is a form of DLP.

However, when C1, …, Cn are generated, we can check C1, …, Cn to prevent any two elements in
{C1, …, Cn} from being equal. Therefore, in practice, ASPP cannot be reduced to DLP in any time.

Piece 2 of evidence:
Assume that DLP can be solved in tolerable subexponential time.
When DLP can be solved in tolerable time, can also be factorized [14][25], so a generator can be

found through the algorithm 4.80 in Section 4.6 of [25].
Let C1 ≡ g

u1 (% M), …, Cn ≡ g
un (% M), Ḡ ≡ g

v (% M), where g is a generator of (*
M, ·).

Then, solving Ḡ ≡ ∏

n
i=1 Ci

ḅi (% M) for ḅ 1… ḅ n is equivalent to solving
ḅ 1 u1 + … + ḅ n un ≡ v (%)

which is called the anomalous subset sum problem (ASSP) due to ḅ i ≥ bi, and computationally at least
equivalent to SSP.

It has been proven that SSP is NP-complete in its feasibility recognition form, and the computational
version of SSP with the sufficiently large length and density is NP-hard [4][25]. Hence, solving ASSP
is at least NP-hard. Additionally, the density relevant to ASSP is far greater than 1 because of ḅ i ≥ bi
(see Appendix B), which indicates that the L3 lattice base reduction attack on ASSP will be ineffectual
(see Section 5.2). These two points illustrate that even although DLP can be solved, ḅ 1… ḅ n, namely
b1…bn cannot be found yet in polynomial time.

The above two pieces of evidence incline us to believe that ASPP is harder than DLP.
By the way, LSSP will degenerate to a polynomial time problem from NPC [11][31].

5.2 ASPP Can Resist L3 Lattice Base Reduction

It is known from Section 3.2 that the ciphertext Ḡ ≡ ∏

n
i=1 Ci

ḅi (% M).
Still let C1 ≡ g

u1 (% M), …, Cn ≡ g
un (% M), Ḡ ≡ g

v (% M), where g is a generator of (*
M, ·) randomly

selected.
Then, seeking ḅ 1…ḅ n from Ḡ is equivalent to solving the congruence

u1 ḅ 1 + … + un ḅ n ≡ v (%), (1)
where v may be substituted with v + k with k ∈ [0, n – 1] [32]. {u1, …, un} is called a compact
sequence due to ḅ i ∈ [0, n] and n > 1.

Recall [10] and [11]. Let {a1, …, an} be a positive integer sequence, ê = 〈ė1, …, ėn, 0〉 with ėi ∈ [0, 1]
be the solution vector, s = ∑

n
i=1 ai ėi, and t = ∑

n
i=1 ai.

In [10], there are two important conditions:
t / n ≤ s ≤ (n – 1) t / n, and ê2 ≤ n / 2,

where ê denotes the distance in l2-Norm of the vector ê, which decides the threshold density < 0.6463.
In [11], there are similar

t / n ≤ s ≤ (n – 1) t / n, and ê2 ≤ n / 4,
which decide the threshold density < 0.9408.

However, for (1), due to 0 ≤ ḅ i ≤ n, the similar conditions do not hold.

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 14

It is well understood that the L3 lattice base reduction algorithm is employed in cryptanalysis to find
the shortest vector or approximately shortest vectors in a lattice, and hence, if a solution to SSP has a
comparatively big distance, or is not unique, it will not occur in the reduced base.

Let be a lattice spanned by the vectors
〈1, 0, …, 0, N u1〉,
〈0, 1, …, 0, N u2〉,

〈0, 0, …, 1, N un〉,
〈0, 0, …, 0, N (v + k)〉

which compose a base of the lattice, where N is a positive integer greater than (n2)1

/

2 = n (but not much

greater, or else will influence speed of the L3 reduction algorithm). Notice that because g is random,
is also random.

Let Ḏ be the determinant relevant to a matrix corresponding to the lattice base. Then, by the Guassian
heurisic, the expected size of the shortest vector in of n + 1 dimensions lies between [15]

Ḏ 1

/

(n + 1)((n + 1) / (2π e))1

/

2 and Ḏ 1

/

(n + 1)((n + 1) / (π e))1

/

2,

where e ≈ 2.7182818.
In our case, there is lg M / (n + 1) ≈ 9, and the above scope is between

(N k 29(n + 1))1

/

(n + 1)((n + 1) / (2π e))1

/

2 and (N k 29(n + 1))1

/

(n + 1)((n + 1) / (π e))1

/

2.

Roughly, between
29((n + 1) / 24)1

/

2 = 27(n)1

/

2 and 27(2n)1

/

2 = 29((n + 1) / 23)1

/

2.

For (1), the largest distance of the solution vector 〈ḅ 1, …, ḅ n, 0〉 is n ∈ {80, 96, 112, 128}, and thus it
is very possible that the solution vector will not occur in the reduced base. Meanwhile, it will also be
influenced by the knapsack density relevant to (1) whether the solution vector surely occurs in the
reduced base.

To compute the density of the compact sequence, we extend {u1, …, un} into
{u1, 2u1, …, n u1, u2, 2u2, …, n u2, ……, un, 2un, …, n un}.

It is not difficult to understand that the length of the extend sequence is n2.
The density of the compact sequence {u1, …, un} is

D ≈ n2 / lg M (see Appendix B).
When n = 80 with lg M = 696, D ≈ 9.19 > 2 > 1.
When n = 96 with lg M = 864, D ≈ 10.66 > 2 > 1.
When n = 112 with lg M = 1030, D ≈ 12.18 > 2 > 1.
When n = 128 with lg M = 1216, D ≈ 13.47 > 2 > 1.
D > 2 indicates that a great many different subsets will have the identical sum, namely the solution to

(1) is not unique, and the original solution is possibly not shortest for ḅ i ∈ [0, n]. Thus, it is very likely
that the original solution does not occur in the reduced base only containing n + 1 vectors.

Further, we can estimate the time cost of the L3 lattice base attack.
Although SLLL, namely segment LLL in floating point arithmetic and L2-FP are two of currently

fast lattice base reduction algorithms [33][34], because floating point operation on integers greater than
the modulus M with lg M ≥ 696 cannot be executed directly, and even are instable under a low precision
circumstance, it is inappropriate to utilize these two algorithms to find the solution vector 〈ḅ 1, …, ḅ n, 0〉,
which manifests that the only classical L3 algorithm is appropriate.

According to [25], the running time of attack on equation (1) from ASPP by the lattice base
reduction algorithm is roughly

Ŧ ≈ O(n LM [1 / 3, 1.923] + n (n + 1)6
 (lg M 2)3)

on condition that N is slightly greater than n.
When n = 80 with lg M = 696, Ŧ ≈ 276.
When n = 96 with lg M = 864, Ŧ ≈ 280.
When n = 112 with lg M = 1030, Ŧ ≈ 282.
When n = 128 with lg M = 1216, Ŧ ≈ 286.
However, as is pointed out in the above, owing to D > 9 > 2 > 1 and ḅ i ∈ [0, n], it is almost

impossible that the solution vector 〈ḅ 1, …, ḅ n, 0〉 occurs in the final reduced base, which means that
attack by the L3 algorithm will be unavailing.

Besides, we also see that there exists an exhaustive search attack on the plaintext block b1…bn.
Clearly, the running time of such an attack is O(2n) arithmetic steps.

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 15

Hence, the security of a REESSE1+ plaintext is built on the problem Ḡ ≡ ∏

n
i=1 Ci

ḅi (% M) which
contains the trapdoor information, and means that computing an anomalous subset product from subset
elements is tractable while seeking the subset elements from the product is intractable.

5.3 Avoid Adaptive-chosen-ciphertext Attack

Theoretically, most of public key cryptosystems may probably be faced with adaptive-chosen-

ciphertext attack.
During the late 1990s, Daniel Bleichenbacher demonstrated a practical adaptive-chosen-ciphertext

attack on SSL servers using a form of the RSA encryption [35]. Almost at the same time, The
Cramer-Shoup asymmetric encryption algorithm which is extremely malleable, and an extension of the
Elgamal algorithm was proposed [36]. It is the first efficient scheme proven to be secure against the
adaptive-chosen-ciphertext attack using standard cryptographic assumptions, which implies that not all
uses of cryptographic hash functions require random oracles some require only the property of
collision resistance.

5.3.1 Different Ciphertexts of the Identical Plaintext

It is lucky that REESSE1+ can avoid the adaptive-chosen-ciphertext attack when a REESSE1+
ciphertext is produced according to the following algorithm:

Paralleling Section 3.2, assume that b1…bn is a plaintext block, and {C1, …, Cn} is a public key.
S1: Set k ← 0, i ← 1.
S2: If bi = 0, let k ← k + 1, ḅ i ← 0;

else let ḅ i ← k + 1, k ← 0.
S3: Let i ← i + 1.

If i ≤ n, goto S2.
S4: Randomly produce s1…sn ∈ {0, 1}n.
S5: If bn = 0, set d ← n – k, sd = 1, ḅ d ← ḅ d + k;

else sn = 1.
S6: Compute Ḡ ← ∏

n
i=1(Ci si + (i – ḅi + 1) ¬si)

ḅi % M with Cn + 1 = 1.
Clearly, when the identical plaintext is inputted many times, the above algorithm will return a

ciphertext different from one another every time.
It is easily understood that contrarily, a ciphertext can almost uniquely be decrypted in polynomial

time in terms of Section 3.3 and 3.9.
Paralleling Section 3.3, we design a related decryption algorithm of which the running time is

equivalent to that of the algorithm in Section 3.3.
Assume that ({Ai}, {ℓ(i)}, W, δ, Đ, đ, ħ) is a related private key, and Ḡ is a ciphertext.
Notice that because ∑

n
i=1 ḅ i = n is even, ∑

n
i=1 ḅ i ℓ(i) must be even.

S1: Compute Ḡ ← Ḡ δ

−1 % M.
S2: Compute Ḡ ← Ḡ W

–2 % M.
S3: Set b1…bn, ë, j, k ← 0, G ← Ḡ, i ← 1.
S4: If Ai

ë +

1 | G, let ë ← ë + 1, goto S4.

S5: If ë = 0,
let k ← k + 1, i ← i + 1;

else
compute G ← G / Ai

ë;
if k > 0 or i + ë – 1 = n, let bi ← 1; else bi + ë – 1 ← 1;
if k = 0, let i ← i + ë; else i ← i + 1;
if k + 1 > ë, let i ← n + 1;
set ë, k ← 0.

S6: If i ≤ n and G ≠ 1, goto S4.
S7: If G ≠ 1, goto S2; else end.
In this way, the original plaintext block b1…bn is recovered although s1…sn is introduced in

encryption. Besides, in decryption, {ℓ(i)}, Đ, đ, and ħ are unhelpful.

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 16

5.3.2 Appending of a Stochastic Binary String

Another approach to avoiding the adaptive-chosen-ciphertext attack is to append a stochastic
fixed-length binary sequence to the terminal of every plaintext block when it is encrypted. For a
concrete implementation, refer to the OAEP+ scheme [37].

6 Security Analysis of the Digital Signature

The security of the REESSE1+ signature includes three aspects: a private key cannot inferred from a
signature, a signature cannot be forged through known signatures, public keys, and algorithms, and a
message cannot be forged through a known or chosen signature.

6.1 Unforgeability of a Signature in the Random Oracle Model

Because REESSE1+ is a multiproblem cryptosystem, and MPP preventing a forged signature from
being obtained from the signature algorithm is different from TLP or PRFP preventing a forged
signature from being obtained from the verification algorithm, the proof in the random oracle model
(RO model) given below is incomplete, and only offers another piece of evidence for the security of the
REESSE1+ signature.

6.1.1 What Is a Random Oracle

An oracle is a mathematical abstraction, a theoretical black box, or a subroutine of which the running
time may not be considered [25][38]. In particular, in cryptography, an oracle may be treated as a
subcomponent of an adversary, and lives its own life independent of the adversary. Usually, the
adversary interacts with the oracle but cannot control its behavior.

A random oracle is an oracle which answers to every query with a completely random and
unpredictable value chosen uniformly from its output domain, except that for any specific query, it
outputs the same value every time it receives that query if it is supposed to simulate a deterministic
function [38].

Random oracles are utilized in cryptographic proofs for relpacing any irrealizable function so far
which can provide the mathematical properties required by the proof. A cryprosystem or a protocol that
is proven secure using such a proof is described as being secure in the RO model, as opposed to being
secure in the standard model where IFP, DLP etc are assumed to be hard. When a random oracle is
used within a security proof, it is made available to all participants, including adversaries. In practice,
random oracles producing a bit-string of infinite length which can be truncated to the length desired are
typically used to model cryptographic hash functions in schemes where strong randomness assumptions
of a hash function′s output are needed.

In fact, it draws attention that certain artificial signature and encryption schemes are proven secure in
the RO model, but are trivially insecure when any real function such as the hash function MD5 or
SHA-1 is substituted for the random oracle [39]. Nevertheless, for any more natural protocol, a proof of
security in the RO model gives very strong evidence that an attacker have to discover some unknown
and undesirable property of the hash function used in the protocol.

6.1.2 The Forking Lemma

Lemma 1 (the forking lemma): Let Â be a probabilistic polynomial time Turing machime, given
only the public data as input. If Â can find, with non-negligible probability, a valid signature (, σ1, ḥ,
σ2), then, with non-negligible probability, a replay of this machine, with the same random tape and a
different oracle, outputs two valid signatures (, σ1, ḥ, σ2) and (, σ1, ḥ′, σ2′) such that ḥ ≠ ḥ′ [40].

In [40], the forking lemma is specified in terms of an adversary that attacks a digital signature
scheme instantiated in the RO model. D. Pointcheval and J. Stern show that if an adversary can forge a
signature with non-negligible probability, then there is a non-negligible probability that the same
adversary with the same random tape can create a second forgery in an attack with a different random
oracle. The forking lemma was later generalized by M. Bellare and G. Neven [41], and has been used
to prove the security of a variety of digital signature schemes and other cryptographic constructions
based on random oracles [42].

The forking lemma is applicable to such a type of signature scheme where a signer must perform the
following steps to sign the message :

 randomly produce a promise σ1 in a large set;

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 17

 compute ḥ = hash(σ1,);
 compute σ2 by using σ1 and ḥ.

The signature output is a triple (σ1, ḥ, σ2).
For example, the Schnorr signature scheme [43] may be proven secure in the RO model according to

the forking lemma [40][42].
Assume that solving y ≡ g x (% M) for x is of DLP, where g is a generator of *

M with M prime, and
the input to an adversary Â is the public key y.

In terms of the forking lemma, the adversary can obtain two different signatures with non-negligible
probability:

(, σ1 = g r % M, ḥ, σ2 = (x ḥ + r) %), and (, σ1′ = g r′ % M, ḥ′, σ2′ = (x ḥ′ + r′) %),
where ḥ = hash(σ1,) is an oracle query of the adversary Â during his the first play, and ḥ′ = hash′(σ1′,
) is an oracle query of the adversary Â during his the second play.

The target of the adversary Â is to extract the private key x form the signatures.
Since there is σ1 = σ1′, there is r = r′. Hence, we have

(ḥ – ḥ′) x ≡ (σ2 – σ2′) (%).
Because there always exists x, the above linear congruence in x has solutions, and x can be found in

polynomial time, namely DLP can be solved in polynomial time, which is in direct contradiction to the
standard assumption. Therefore, it is infeasible to forge a Schnorr signature.

6.1.3 Proof of Unforgeability of a REESSE1+ Signature

In Section 4.1, we prove that MPP is computationally at least equivalent to DLP, and additionally at
present, a subexponential time algorithm for solving MPP is not found. Therefore, we may have a
superstandard assumption comparable to the standard assumption.

Assumption 1: MPP cannot be solved in subexponential time.
Firstly, we adapt the REESSE1+ signature algorithm to the modality outputting a triple signature.
Assume that ({Ai}, {ℓ(i)}, W, δ, Đ, đ, ħ)is a private, and F is a file or message to be signed.
Define hash′(F, ā) as hash′(F, ā) = (ā Đ + hash(F) W)δ−1 % .
S1: Let H ← hash(F), whose binary form is b1…bn.
S2: Randomly take ā ∈ (1,), compute Q = hash′(F, ā).

If (đ T) | ā or đ | (WQ) % , goto S2.
S3: Set ḵ ← δ ∑

n
i=1 bi ℓ(i) % , G0 ← (∏

n
i=1 Ai

¬bi)δ % M.
S4: Compute R ← (Q(δħ)−1)S −1G0

−1, Ū ← (RW ḵ
−

δ)Q % M,

 ← δ ā Đ % M, ξ ← ∑

n-1
i=0 (δQ)n – 1 – i

 (HW)i % .
S5: ∀r ∈ [1, đ 216] making đ ł (rUS + ξ) % ,

where U = Ū
r % M.

S6: If d ł ((WQ)n − 1 + rUS + ξ) % , goto S6, else end.
On executing this algorithm which is essentially equivalent to that in Section 3.4, one can obtain the

signature (ā, Q, U) that is sent to a receiver together with F.
Secondly, prove the unforgeability of a signature in the RO model.
Proof:
Let ā be a promise produced by the signer. In terms of the forking lemma, during the two plays of

the adversary Â, two valid signatures (ā, Q, U) and (ā′, Q′, U′) on the identical file F can be obtained.
Then, it is known from the above signature algorithm that

δQ ≡ āĐ + WH (%),
δQ′ ≡ ā′Đ + WH′ (%),
U ≡ (RW ḵ − δ)Q

 δ

ā

Đ

r (% M),

U′ ≡ (R′W ḵ

′ − δ)Q′
 δ

ā′

Đ

r′ (% M),

where ā = ā′, H = hash(F, ā), and H′ = hash′(F, ā′).
Because there always exist W, it may be obtained from the two formulas with H and H′ that

W ≡ (Q − Q′)(H − H′)–1
 δ (%). (2)

Similarly, it may be obtained from the two formulas with U and U′ that
(RQ

 R′ –Q′)(W (ḵ – δ)Q
 W –(ḵ

′ – δ)Q′) δ –ā

Đ(r – r′) ≡ U U′–1 (% M).
Multiplying either side of the above equation by G1

Q
 G1′–Q′ gives

(RQ
 R′–Q′)(W (ḵ – δ)Q

 G1
Q

 W –(ḵ

′ – δ)Q′
 G1′ –Q′) δ –ā

Đ(r

–

r′) ≡ U G1

Q
 U′–1G1′–Q′ (% M),

namely

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 18

((Q(δ ħ)−1)S −1G0
−1)Q((Q′(δ ħ)−1)S −1G0′−1)−Q′(Ḡ1

QW
−δQḠ1′−Q′W

δQ′)δ–ā

Đ(r

–

r′) ≡ UG1

QU′–1G1′–Q′ (% M),
where G0′ = (∏n

i=1 Ai
¬bi′)δ (% M) and G1′ = (∏n

i=1 Ai
bi′)δ (% M).

Further, there is
(δ ħ)−S −1(Q

−

Q′)

 QQS −1Q′−Q′S −1(G0
−1Ḡ1)Q(G0′−1Ḡ1′)−Q′(W −δ)Q

−

Q′

 δ–ā

Đ(r

–

r′) ≡ U G1

Q
 U′–1G1′–Q′ (% M).

Through transposition, we see
((δ ħ)−S −1W

−δ)Q

−

Q′δ–ā

Đ(r

–

r′) ≡ U G1

QU′–1G1′–Q′Q−Q

S −1Q′Q′S −1(G0
−1Ḡ1)−Q(G0′−1Ḡ1′)Q′ (% M).

Substituting W −δ with (ħδα –1)S −1(∏n
i=1 Ai)δ ≡ (ħδα –1)S −1G0G1 (% M) yields

((δħ)−S −1(ħδα –1)S −1G0G1)Q

−

Q′δ–ā

Đ(r

–

r′) ≡ (G0G1)Q(G0′G1′)–Q′UU′–1Q−QS −1Q′Q′S −1

Ḡ1
−QḠ1′Q′ (% M),

namely
(α –S −1G0G1)Q

−

Q′δ–ā

Đ(r

–

r′) ≡ (G0G1)Q(G0′G1′)–Q′UU′–1Q−QS −1Q′Q′S −1

Ḡ1
−QḠ1′Q′ (% M).

Again through transposition, we see
δ–ā

Đ(r

–

r′) ≡ (G0G1)Q(G0′G1′)–Q′UU′–1Q−QS −1Q′Q′S −1

Ḡ1
−QḠ1′Q′(α –S −1G0G1)Q′

−

Q (% M).

Considering G0G1 ≡ G0′G1′ ≡ (∏n
i=1 Ai)δ (% M), we have

δ–ā

Đ(r

–

r′) ≡ UU′–1Q−QS −1Q′Q′S −1

Ḡ1
−QḠ1′Q′α S −1(Q

−

Q′) (% M). (3)

In (3), the right value is known, the promise ā is also known, D, a factor of , may be separated in
subexponential time, and r, r′ ∈ [1, đ 216], (r – r′) may be found in subexponential time through a
heuristic approach, which means the integer ā Đ(r – r′) may be obtained in subexponential time.

Solving (3) for δ is of RFP of which the complexity is not greater than that of DLP. Thus, δ may be
found in subexponential time, and then according to (2), W may be found.

In addition, by using Ci ≡ (Ai W ℓ(i))δ (% M), Ai ∈ {2, 3, …, 1201}, ℓ(i) ∈ {5, 7, …, 2n + 1}, and
{A1, …, An} being a coprime sequence, the adversary may obtain {A1, …, An} and {ℓ(1), …, ℓ(n)} in
expected subexponential time.

Further, according to Ū ≡ (RW ḵ − δ)Q (% M) in the signature algorithm, where ḵ ≡ δ ∑

n
i=1 bi ℓ(i) (%),

R may be found, and according to R ≡ (Q(δ ħ)−1)S −1G0
−1 (% M), ħ may be found. In sum, the private key

({Ai}, {ℓ(i)}, W, δ, Đ, đ, ħ) is found, namely MPP is also solved in subexponential time, which is in
direct contradiction to assumption 1. Therefore, it is infeasible in subexponential time that the
adversary forge a REESSE1+ promise signature (ā, Q, U).

In practice, the promise ā is unpublicized, and therefore, it is at least the same infeasible in
subexponential time that Â forges a REESSE1+ signature (Q, U). �

Notice that the REESSE1+ verification algorithm is built on the hardnesses different from MPP, so
this proof is incomplete for the unforgeability of a REESSE1+ signature, and further security analysis
is necessary.

6.2 Extracting a Private Key from a Signature Is of TLP or the Indeterminate Problem

To analyze exact securities, we attend to the solution of x
k ≡ c (% M) with M prime called RFP for a

while. In some cases, x
k ≡ c (% M) has the trivial root which can be found in terms of Theorem 1 or 2.

At present, there should be three methods of solving x
k ≡ c (% M): 1 the algorithm through discrete

logarithms [25] whose running time is LM [1 / 3, 1.923]; 2 the probabilistic algorithm [44] whose
running time is the larger of O(2

k – 1) and O(M / k); 3 the algorithm offered by [45] whose running time
is O(k1 / 2 lg M). Obviously, when k is comparatively small, method 3 is most efficient.

In our analysis, we assume that RFP can be solved in tolerable time.
It is known from Section 3.4 that there exist

Q ≡ (R G0)S δ ħ (% M),
U ≡ (R W ḵ –

δ)Q δ

ā Đ r (% M).
Firstly, solving the two congruences separately.
According to Section 3.4, δ

ā

Đ

r % M belongs to the subgroup of order đ T. Because of T ≥ 2n, divining

the value of δ

ā

Đ

r % M is impossible.

Let ē = δ

ā

Đ

r

T % M be an element of the subgroup of order đ, then latter may be written as
U

T ≡ (R W ḵ – δ)QT ē (% M).
When an attacker attempts to seek R G0 or R W ḵ –

δ, he has to solve the equation
x

S ≡ Q δ–1
 ħ–1 (% M), (4)

or
x

Q

T ≡ U

T ē
–1 (% M). (5)

We see that the number of unknown variables in the two equations is greater than 2, and thus solving

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 19

(4) and (5) is of the indeterminate problem.
For (4), because δ, ħ are unknown, and the right of (4) is not a constant, it is impossible to solve this

equation for R G0. If δ is divined, the probability of hitting δ is 1 / δ < 1 / 2n. Similarly it is impossible to
divine ħ owing to ħ ∈ (1, M).

For (5), there is ē
–1 ≤ đ. Assume that đ is guessed out, and all the solutions to x

đ ≡ 1 (% M) can be
found out, then ē

–1 may possibly be figured.
However, even if ē

–1 is known, and the trivial root to (5) exists, the probability that the trivial root
just equals the specific R W ḵ – δ is only 1 / T ≤ 1 / 2n, and moreover due to the randomicity of R, it is
thoroughly impossible to separate δ, W, and ḵ from R W ḵ – δ.

Secondly, solving the two congruences systematically.
Substituting R in U

T
 ≡ (R W ḵ – δ)QT ē (% M) with G0

–1(Q (δ ħ)–1)S –1 derived from Q ≡ (R G0)S δ ħ (% M)
gives

U
T ≡ (G0

–1(Q(δ ħ)–1)S –1W ḵ – δ)QT ē (% M),
namely

U
T ≡ (G–1

 Ḡ1(Q(δ ħ)–1)S –1W –δ)QT ē (% M),
where G ≡ G0 G1 (% M). Since W is a function of δ in β = δW n

T % M, y = W –δ % M is of TLP.
Thus,

((GW δ)–1(δ ħ)–

S –1)QT ≡ UT

 (Ḡ1Q

S –1)–QT ē
–1 (% M).

Similarly, if ē
–1 is known, and (U

T
 (Ḡ1Q

S –1)–QT ē
–1) /

(T gcd(Q,

)) ≡ 1 (% M), through the Index-calculus

method, one may find out all the solutions to the equation
xQT

 ≡ U

T
 (Ḡ1Q

S –1)–QT ē
–1 (% M).

However, the probability that a certain solution is no other than (GW
δ)–1(δ ħ)–

S –1 is less than 1 / T ≤ 1

/ 2n. Further, the running time of distinguishing G, W, ħ, and δ from (GW
δ)–1(δ ħ)–

S –1 is at least O().

Therefore, the time complexity of extracting a related private key from a signature is at least O(δ),
O(T), or O() ≥ O(2n), which elucidates that even if each element of the subgroup of order đ is known,
it does not influence the security of the private key.

6.3 Forging a Digital Signature only from a Public Key Is a Hardness

According to Section 3.5, the discriminant X ≡ Y (% M) contains the two variables Q and U of which
one may be supposed in advance by an adversary. However, seeking the other by the supposed value is
faced with TLP.

6.3.1 TLP Is at Least Equivalent to DLP

We observe y ≡ g
x (% M) referred to as TLP by Definition 7.

Assume that g ∈ *
M is a generator, where M is prime, then

{y | y ≡ g
x (% M), x = 1, …, } = *

M [22].
Assume that k with gcd(k,) = 1 is an integer, then also

{y | y ≡ x
k (% M), x = 1, …, } = *

M [22].
Therefore, ∀x ∈ [1,], y ≡ g x (% M) or y ≡ x

k (% M) with gcd(k,) = 1 is a self-isomorph of the
group *

M.
However, for the x

x operation, {y | y ≡ x x (% M), x = 1, …, } = *
M does not hold, that is,

{y | y ≡ x x (% M), x = 1, …, } ≠ *
M.

For example, when M = 11, {y | y ≡ x x (% M), x = 1, …, } = {1, 3, 4, 5, 6}, where 33 ≡ 66 ≡ 88 ≡ 5
(% 11).

When M = 13, {y | y ≡ x x (% M), x = 1, …, } = {1, 3, 4, 5, 6, 9, 12}, where 77 ≡ 1111 ≡ 6 (% 13),
and 11 ≡ 33 ≡ 88 ≡ 99 ≡ 1212 ≡ 1 (% 13).

When M = 17, {y | y ≡ x x (% M), x = 1, …, } = {1, 2, 4, 8, 9, 10, 12, 13, 14}, where 22 ≡ 1212 ≡ 4
(% 17), 66 ≡ 1515 ≡ 2 (% 17), and 1010 ≡ 1414 ≡ 2 (% 17).

The above examples illustrate that {y ≡ x x (% M) | x = 1, …, } cannot construct a complete set for a
group. Furthermore, mapping from x to y is one-to-one sometimes, and many-to-one sometimes. That is,
inferring x from y is indeterminate, x is nonunique, and even inexistent. Thus, x

x has extremely strong
irregularity, and is essentially distinct from g

x and x k.
It should be noted that an attempt at solving y ≡ x x (% M) for x in light of the Chinese Remainder

Theorem is specious. Refer to the following example.

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 20

Observe the congruent equation 4
4 ≡ 8 ≡ 3

12 (% 31), where 3 ∈ *
31 is a generator.

Try to seek x which satisfies x ≡ 12 (% 30) and x ≡ 3 (% 31) at one time, and verify whether x ≡ 4 (%
31) or not.

In light of the Chinese Remainder Theorem [25], let m1 = 30, m2 = 31, a1 = 12, and a2 = 3. Then
M = 30 × 31 = 930,
M1 = M / m1 = 930 / 30 = 31,
M2 = M / m2 = 930 / 31 = 30.

Compute y1 = 1 such that M1 y1 ≡ 1 (% m1).
Compute y2 = 30 such that M2 y2 ≡ 1 (% m2).
Thereby,

x = a1 M1 y1 + a2 M2 y2 = 12 × 31 × 1 + 3 × 30 × 30 = 282 (% 930).
It is not difficult to verify

282 288 ≡ 8 ≠ 4 (% 31), and 282 288 ≡ 504 ≠ 8 ≠ 4 (% 930).
The integer 282 is an element of the group (*

930, ·), and the element 4 of the group (*
31, ·) cannot be

obtained from 282, which is pivotal.
So, these examples manifest that TLP seems to be harder than DLP.
Property 7: TLP is computationally at least equivalent to DLP in the same prime field.
Proof:

 Ĥ(y ≡ x x (% M)) =

P
T Ĥ(y ≡ (g x)x (% M))

Let g ∈ *
M be a generator coprime to , which does not lose generality since g may be selected in

practice.
Assume that y ∈ *

M is known, and there is
y ≡ (g x)x (% M).

Raising either side of the above equation to the g-th power gives
y

g ≡ (g x)g x (% M).
Let

z ≡ y
g (% M), and w = g x,

where the latter is not a congruence, and then
z ≡ w

w (% M).
Suppose that Ōt(y, M, X) is an oracle on solving y ≡ x

x (% M) for x, where X is the set of all the
possible values of x, and y ∈ [1,].

Its output is x ∈ X (each of solutions), or 0 (no solution).
Let X1 = {1, 2, …, }, and X2 = {1 g, 2 g, …, g}.
Clearly, by calling Ōt(y, M, X1), y ≡ x

x (% M) is solved for x.
It is easily observed that between the finite sets X1 and X2, there is a linear bijection

Γ : X1 → X2, Γ (a) = g a,
which means that the set X1 is equivalent to the set X2 [46]. Hence, substituting X1 with X2 as the
codomain of a function will not increase the running time of Ōt.

Similarly, by calling Ōt(z, M, X2), z ≡ w
w (% M) is solved for w, namely all the satisfactory values of

w are obtained.
According to w = g x and z ≡ w

w (% M), there is x ≡ w g

–1 (% M), or x ≡ w g

–1 (%).
Hence, in terms of Definition 8, there is

Ĥ(y ≡ (g x)x (% M)) ≤

P
T Ĥ(y ≡ x x (% M)),

namely the difficulty in inverting y ≡ (g x)x (% M) is not greater than that in inverting y ≡ x
x (% M).

On the other hand, suppose that Ōŧ(y, g, M) is an oracle on solving y ≡ (g x)x (% M) for x, where y, g
∈ [1,].

Its output is x ∈ [1,] (each of solutions), or 0 (no solution).
Let g = 1.
By calling Ōŧ(y, 1, M), the solution x to y ≡ x

x (% M) will be obtained.
Hence, in terms of Definition 8, there is

Ĥ(y ≡ x
x (% M)) ≤

P
T Ĥ(y ≡ (g x)x (% M)).

Combinatorially, in terms of Definition 9, we have that
Ĥ(y ≡ x x (% M)) =

P
T Ĥ(y ≡ (g x)x (% M)),

namely the difficulty in inverting y ≡ (g x)x (% M) is equivalent to that in inverting y ≡ x
x (% M).

 Ĥ(y ≡ g
x (% M)) ≤

P
T Ĥ(y ≡ (g x)x (% M))

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 21

The congruence y ≡ (g x)x (% M) may be written as y ≡ g
x

 xx (% M), where g is any element.
Change Ōŧ(y, g, M) into Ōŧ(y, g, M, ŵ), where ŵ = 0 or 1. Its structure is as follows:
S1: If ŵ = 1 and x to y ≡ g

x
 x

x (% M) inexistent, return ‘No’.
S2: If ŵ = 1,

S2.1: find y1, and compute y2 by y ≡ y1 y2 (% M);
S2.2: compute x < M by y1 ≡ g

x (% M);
S2.3: if y2 ≠ x

x (% M), goto S2.1;
else

S2.4: compute x < M by y ≡ g
x (% M).

S3: Return x.
Clearly, by calling Ōŧ(y, g, M, 0), the solution x to y ≡ g

x (% M) will be obtained.
Hence, still in terms of Definition 8, there is

Ĥ(y ≡ g x (% M)) ≤

P
T Ĥ(y ≡ g x

 x
x (% M)).

Integrating and , we have that
Ĥ(y ≡ g

x (% M)) ≤

P
T Ĥ(y ≡ g

x
 x

x (% M)) =

P
T Ĥ(y ≡ x

x (% M)),
namely inverting y ≡ x

x (% M) is at least equivalent inverting y ≡ g x (% M) for x in complexity. �
In [47], we have a similar result by the asymptotic granularity reduction (AGR).
Further discussion.
Let y ≡ g

v (% M), and x ≡ g
u (% M), and then it seems that there is g

v ≡ g
u

g u (% M).

However due to g
u (% M) ≠ g

u (%), y ≡ x
x (% M) cannot be expressed as v ≡ u g

u (%).
We can also understand that in the process of x being sought from y ≡ x

x (% M), it is inevitable that
the middle value of x is beyond M because modular multiplication, inverse, and power operations are
inevitable.

Considering the middle value of x beyond M, let
z1 = x % M with z1 < M, and z2 = x % with z2 < .

Then there are x = z1 + k1 M = z2 + k2 and z1 = (z2 – k2) % M, where k1, k2 ≥ 0 are two integers.
Ahead, we have y ≡ (g (z2 – k2))

z

2 (% M). This formula indicates that due to x % M ≠ x % with x > M
and k2 unfixable, the relation between x % and x % M is stochastic when x changes in the interval (1,
M M

), which illuminates that it is reasonable to let q ≡ g (z2 – k2) (% M), namely y ≡ q
z

 2 (% M).
If q is a constant, inverting y ≡ q

z
 2 (% M) is equivalent to DLP. However, q will not be a constant

forever. Therefore, it should be impossible anyway that Ĥ(y ≡ (g x)x (% M)) =

P
T Ĥ(y ≡ g

x (% M)).
The above evidence inclines us to believe that TLP is harder than DLP, namely on the assumption

that DLP can be solved through an oracle, TLP cannot be solved in DLP subexponential time yet.
The famous baby-step giant-step algorithm, Pollard’s rho algorithm, Pohlig-hellman algorithm, and

index-calculus algorithm for discrete logarithms [25] are ineffectual on transcendental logarithms. At
present, there is no better method for solving TLP than exhaustive search, and thus the running time of
solving x

x ≡ y (% M) may be expected to be O(M) > O(2n).
Notice that for y ≡ x

x (% M), there is no determinate relation between y and x, namely y ≥ x or
y < x. Therefore, in the case of a small modulus, x in y ≡ x

x (% M) is still secure.
In REESSE1+, the form of TLP is y ≡ (c x)

x (% M) with c known. When the bit-length of a modulus
is very small ─ 80 for example, the difference between the running times of solving y ≡ (c x)

x (% M)
and y ≡ x

x (% M) is valuable, where c x changes with c, and has more freedom than a single x, which
makes the relation between y and x be more indeterminate.

What needs to be emphasized is that TLP is more suitable for designing signature schemes due to the
non-uniqueness of its solutions.

6.3.2 Forging a Signature from the Verification Algorithm Is of TLP or PRFP

Assume that H is the output of hash on input of a file F, and (Q, U) is a signature on F. According to
the discriminant X ≡ Y (% M), namely

(α Q

–1)QU

T
 α Q n ≡ (Ḡ1

Q
 U

–1)U

S

T
 β H

Q n – 1 + H n (% M),
an adversary may seek the value of any signature variable by supposing the value of the other variable.

If suppose the value of Q, no matter whether U exists or not, seeking U is equivalent to TLP.
Similarly, if suppose the value of U, seeking Q is also equivalent to TLP.

 Faced with RFP and the tight constraint
If the adversary hits exactly the small đ, raises either side of the discriminant to the đ-th power, and

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 22

assumes that Đ | (δ Q – WH) holds, then there is
(α Q –1)đ

Q

U

T ≡ (Ḡ1

Q
 U

–1)đ
U

S

T (% M).

Further, let
(α Q –1)

đ

Q

T ≡ (Ḡ1
Q U

–1)
đ S

T (% M). (6)
Now, suppose that Q is known, and U is unknown. If the congruence

U đ

T ≡ ((α –1 Q)đ
Q

T)S –1

Ḡ1
Q

đ

T (% M)

has the trivial solution, work U out by Theorem 2; otherwise work U out by the Index-calculus method.
However, Q and U must satisfy the constraint Đ | (δQ – W H). The probability of satisfaction is at most
1 / Đ < 1 / 2n when δ and W are unknown. Notice that successive values of Q cannot guarantee the
integral succession of (δQ – WH), and (Q, U = ((α –1 Q)Q)S –1

Ḡ Q % M) does not satisfy the discriminant.
 Faced with PRFP

We observe that (α Q

nβ –(H Q n – 1 + H n))

đ ≡ 1 (% M), namely α Q

nβ –(H Q n – 1 + H n) is an element of the
subgroup of order đ.

Assume that ē is a solution to x

đ
 ≡ 1 (% M), and g is a generator of *

M . Evaluate u, v, q by the Index-

calculus such that g u ≡ α (% M), g v ≡ β (% M), and g q ≡ ē (% M) [25]. Then
g

u

Q

n
 g

–v(H Q n – 1 + H n) ≡ g
q (% M),

namely
uQ

n – vH Q
n – 1 – vH

n – q ≡ 0 (%) (7)
which is a modular polynomial equation in Q.

If this polynomial equation has solutions, and Q can be figured out, U may be evaluated according to
(6). In this wise, Q and U which likely meet the discriminant can be found.

Solving (7) for Q is of PRFP for which a generic subexponential algorithm is not found so far, and in
terms of AGR [47], PRFP is believed to be harder than RFP. Besides, because gcd(u,) > 1 is fully
possible, namely (7) is not necessarily a polynomial of which the first term coefficient is 1, and there
exists 1 / n ∈ (2696 / 80, 21216

/

128) ≈ (28.7, 29.5), attack on (7) is ineffectual by the Coppersmith reduction

which can find sufficiently small solutions, whose absolute values are less than 1
/

n, to a modular

univariate polynomial [48] if such solutions exist. Again, if the adversary solves (7) through the
probabilistic algorithm in Section 1.6 of [44], the time complexity will be O(/ n) > O(2n).

 Unmalicious subgroup of order đ
We observe from (6) that if đ is guessed accurately, and gcd(U,) = 1 holds, there is

((α Q
–1)QT

 (Ḡ1
–Q

 U)ST)đ ≡ 1, or ((α Q
–1)Q

 (Ḡ1
–Q

 U)

S)đT ≡ 1 (% M),
which implies that the element (α Q

–1)Q

T

 (Ḡ1
–Q

 U)

S

T belongs to the subgroup of order đ. Therefore, if

gather many enough signatures (Q, U), all the elements of the subgroup are likely found out. However,
the analysis in Section 6.2 shows that even if this case occurs, it does not influence the security of a
REESSE1+ signature.

Further, through gathering more enough signatures or following the Index- calculus method, all the
elements of the subgroup of order đ T are likely found out. They can be described with a general
expression in the time LM [1 / 3, 1.923], but picking out a specific element will take the time O(đ T) >
O(2n) since we must try all the elements one by one.

6.3.3 Forging a Signature from the Signature Algorithm Is of TLP or PRFP

Owing to Q ≡ (R G0)S
 δ ħ (% M), U

T ≡ (R W ḵ – δ)QT ē (% M), and V ≡ (R
–1

 W δ G1)QU δ

λ (% M) (see
Section 3.4), an adversary may attempt the following attack approach.

Let
Q ≡ a

S δ ħ (% M), U

T ≡ b
QT ē (% M), V ≡ c Q

U δ

λ (% M),
where λ meets

λ S ≡ ((W Q)n –

1 + ξ + r U S)(δQ – HW) (%).
Correspondingly, there are a c ≡ (α δ

–1
 ħ–1)S –1, and b c ≡ Ḡ1 (% M).

If ē is hit, (Q, U) is a known signature, and (U

T ē–1) / (T gcd(Q,)) ≡ 1 (% M) holds, a solution b to the
equation b

QT ≡ U

T ē–1 (% M) can be found through either the Index-calculus method or the trivial root
method. Further, c can be figured from b c ≡ Ḡ1 (% M). However, it is impossible to find a from a c ≡ (α

δ

–1
 ħ–1)S –1 (% M) since δ, ħ cannot be obtained from Q, U, and V.
If δ, ħ are found, then c, b can be evaluated on assuming a value of a. Further, if Đ is extracted from ,

W is figured, and r is guessed, the adversary may compute the values of Q and U which satisfy
Đ | (δQ – WH) (%), and đ | ((W Q)n –

1 + ξ + r U S) (%).

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 23

If δ, W can be found, ħ may possibly be computed according to α ≡ δ ħ(W δ G0G1)S (% M).
The above analysis shows that the acquiring δ and W is the key to the problem. To seek δ and W

from a known clear clue, the adversary has to try to solve the simultaneous equations
α ≡ δ

(δ

n + δ

W n – 1)T (% M)

β ≡ δ

W n

T (% M).
Obviously, the first equation is computationally at least equivalent to TLP. The second equation

contains two variables, and belongs to the indeterminate problem. Raising either side of the first to the
W-th power yields

α W ≡ δ (δ

n W + δ
W n)T ≡ δ

δ

n

W

T β δ (% M),

which is still very complicated, and the problem is not simplified.
Let g be a generator of the group (*

M , ·). By the Index- calculus for discrete logarithms [25],
evaluate u, v, and x such that g

u ≡ α, g
v ≡ β, and g

x ≡ δ (% M) (notice that the latter does not mean g
x ≡

δ (%)). Then, we have
u ≡ x T (δ

n + δW n – 1) (%)
v ≡ x T W n (%).

If x is guessed, the two values of W may possibly be obtained according to the above two equations.
Nevertheless the two values of W are not necessarily equal to each other, which indicates that the value
of x is not right.

If the inverse of W % exists, there is x T ≡ v W –n (%). Hence, we have
u ≡ v W –n

 (δ
n + δW n – 1)

≡ v ((δW –1)n + δW –1) (%)
≡ v (y

n + y) (%),
where y ≡ δW –1 (%). Notice that y is of great value to the adversary if it can be found, for the
adversary may obtain Q ≡ y –1

 H (%) as he lets δQ – WH ≡ 0 (%) according to Đ | (δQ – WH).
The above congruence is of PRFP which is very intractable, and believed to be harder than RFP [47].

Additionally, because gcd(v,) > 1 is fully possible, and there exists 1 / n ∈ (2696 / 80, 21216

/

128) ≈ (28.7,

29.5), attack on the above congruence is ineffectual by the Coppersmith reduction [48]. If you are afraid
of the Coppersmith reduction, in practice, the exponent n independent of the block length may be
substituted with a larger integer.

If is factorized, Đ is obtained, and W –1 % Đ exists, there is u ≡ v (y
n + y) (% Đ), where Đ contains

a prime not less than 2
n. When the Coppersmith reduction is useless, the adversary may attempt the

exhaustive search. Nevertheless, its running time is close to Đ ≥ 2
n.

Again it is known from the key generation algorithm that there is W ≡ (∏

n
i=1 Ai)–1(α δ

–1ħ–1)(S

δ)–1 (% M).

However, such a substitution of W will not make the simultaneous equations reduced since ∏

n
i=1 Ai is

unknown, and W(∏

n
i = 1 Ai) is the (S δ)–

1-th power of the unknown quantity (α δ

–1
 ħ–1).

6.4 Forging a Signature from Known Signatures with a Public Key Is of TLP or Hash–1

Given a file F and a signature (Q, U) on it, and assume that there exists another file F′ with the
related H′ and Ḡ1 ′. If any arbitrary (Q′, U′) satisfies

(α Q′ –1)Q′

U

′

T

 α Q′ n ≡ (Ḡ1′

Q′
 U ′

–1)U

′ S T β H

′ Q
′ n – 1 + H

′ n (% M),

it is a signature fraud on F′.
Clearly, an adversary is allowed to utilize the known values of Q and U separately.
If let Q′ = Q, Q′ does not necessarily satisfy Đ | (δ Q′ – WH′), and computing U′ is equivalent to TLP.
If let U′ = U, no matter whether the discriminant has solutions or not, seeking Q′ is also equivalent to

TLP.
If the two signatures (Q1, U1) and (Q2, U2) on the files F1 and F2 are obtained, due to Đ | (δQ1 – WH1)

and Đ | (δQ2 – WH2), we see that
Đ | (δ(Q1 + Q2) – W(H1 + H2)).

Let Q′ = Q1 + Q2, H′ = H1 + H2, then Đ | (δQ′ – WH′). However, inferring F′ from H′ is intractable
according to the properties of hash functions. In addition, finding a fit U′ from

U′ T đ ≡ ((α –1Q′)Q′ T S –1
Ḡ1′ Q′ T)đ (% M)

is also intractable since U′ has T đ values.
If many of the pair (Q, U) are gathered, because Q is random, Q and U interrelate through a

transcendental logarithm, and the value of U varies intensely between 1 and M, there is no polynomial
function or statistic regularity among different (Q, U)′s, which indicates that they are unhelpful in

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 24

solving TLP, but yet helpful in finding out the elements of the subgroup of order đ or đ T as is pointed
out in Section 6.2.

Thus, forging a signature through known signatures with a public key is of TLP or the hash

–1(H).

6.5 Adaptive-chosen-message Attack Is Faced with Indistinguishability

In accordance with Section 3.4, Q satisfies Đ | (δ Q – WH), namely Q ≡ (ā Đ – W H)δ

–1 (%), where ā
is a random integer, and meets (đ T) ł ā.

The randomness of ā leads Q to be random while U is interrelated with Q in a transcendental
logarithm, where Q ≡ (R G0)S

 δ ħ (% M), and U ≡ (R W ḵ – δ)Q
 δ
ā

Đ r (% M).

Hence, for the identical file F, there will be many different signatures on it, which manifests that the
signature (Q, U) owns indistinguishability.

In terms of [38], the signature (Q, U) on F is secure against adaptive-chosen-message attack.

6.6 Chosen-signature Attack Is Faced with PRFP

It is well understood from the discriminant that
Ḡ1

QU

S

T
 β H

Q n – 1 + H n ≡ (α Q

–1)QU

T
 α Q n

 U
U

ST (% M). (8)

If the values of Q and U are chosen in advance, an adversary may attempt to figure out H and the
corresponding file or message F.

Let Ḡ1 = f (H) = ∏

n
i=1 Ci

bi % M, where H = b1…bn = ∑

n
i=1 bi2n

– i, then (8) is an equation in b1, …, bn.

Furthermore, let g be a generator of (*
M, ·), and through the Index-calculus method, work out q1, …,

qn, v, u, w such that
g

q1 ≡ C1 (% M), …, g
qn ≡ Cn (% M), g

v ≡ β (% M),
g

u ≡ (α Q

–1)QU

T
 α Q n U U

ST (% M), w ≡ QUST (%).
Then, there is

(q1 b1 +…+ qn bn)w + v(Q

n

–

1∑

n
i=1 bi2n

– i + (∑

n
i=1 bi2n

– i)n) ≡ u (%),

which is of the multivariate polynomial root finding problem (Multivariate PRFP). Clearly, even
though H is found, it is infeasible to infer a fit F from H.

On the other hand, if there exists the inverse function H = f –1(Ḡ1), namely H in (8) is substituted with
Ḡ1, evaluating Ḡ1 from (8) is the combination of RFP, DLP and PRFP.

7 Conclusion

REESSE1+ is only a prototypal cryptosystem which is used for explaining some concepts, ideas, and
methods, so the space and time complexities of the five algorithms are not analyzed in the paper.

A REESSE1+ private key contains 2n + 5 variables, but does not contain quadratic polynomials;
thus REESSE1+ is a multivariate cryptosystem different from TTM and TTS.

In REESSE1+, not only the numerical calculation ability but also the logic judgement ability of a
computer is utilized; thus the reversibility of the functions is relatively poor.

MPP which contains indeterminacy is a composite problem integrating IFP with DLP. ASPP is also
a composite problem integrating IFP, DLP with ASSP, where ASSP can resist the L3 lattice base
reduction. TLP is a primitive problem which may be regarded as consisting of two variables. PRFP is
also a primitive problem which contains both addition and multiplication a x

n + b x
n – 1 + c x + d ≡ 0 (%

) with n ≥ 80, a ≠ 0, 1, d ≠ 0, and |b| + |c| ≠ 0 for example. So far, a generic subexponential algorithm
for solving MPP, ASPP, TLP, or PRFP is not found. Due to indeterminacy, even as lg M ≈ 80, solving
MPP, ASPP, TLP, or PRFP for the original answer is infeasible in subexponential time yet. Notice that
lg M ≈ 80 indicates that the constraint M > (max 1≤ i ≤ n Ai)n is removed from the key generator, and
REESSE1+ is only used for digital signature.

Some evidence given in the paper inclines people to believe that MPP, ASPP, and TLP are harder
than DLP in the same prime field (M) each, and the evidence given in [47] inclines people to
believe that PRFP is harder than RFP, which makes people be interested in it whether or not there
exists a polynomial time algorithm for solving MPP, ASPP, TLP, or PRFP in the quantum
computational model [21].

At present, the REESSE1+ cryptosystem is constructed in a prime field M, namely (M).
Suppose that M is still a prime number. Then M is a finite field with general addition and

multiplication, and M [x] is a Euclidean domain over M, namely a principle ideal domain and a

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 25

uniquely factorial domain [22]. Additionally, we suppose that P(x) ∈ M[x] is an irreducible
polynomial of which the coefficient of the first term is the integer 1. Then M[x] / P(x) constitutes a
polynomial ring including a congruent Abelian group. Therefore, it is feasible to transplant REESSE1+
to the ring M[x] / P(x) from the prime field M.

From the dialectical viewpoint, it is impossible that a public key cryptosystem possesses all the
merits because some merits are possibly restrained by others. Along with the development of CPU
techniques and quantum computations, what people are more concerned about are the securities of
cryptosystems, but not the lengths of parameters.

Clearly, as viewed from utility, it should be researched further how to decrease the length of a
REESSE1+ modulus and to increase the speed of a REESSE1+ decryption.

Acknowledgment
The authors would like to thank the Academicians Jiren Cai, Zhongyi Zhou, Jianhua Zheng, Changxiang Shen, Zhengyao Wei,

Andrew C. Yao, Binxing Fang, Guangnan Ni, and Xicheng Lu for their important guidance, advice, and suggestions.
The authors also would like to thank the Professors Dingyi Pei, Jie Wang, Ronald L. Rivest, Moti Yung, Dingzhu Du, Mulan

Liu, Huanguo Zhang, Dengguo Feng, Yixian Yang, Maozhi Xu, Qibin Zhai, Hanliang Xu, Xuejia Lai, Yongfei Han, Kefei Chen,
Yupu Hu, Rongquan Feng, Ping Luo, Dongdai Lin, Jianfeng Ma, Lei Hu, Lusheng Chen, Xiao Chen, Wenbao Han, Lequan Min,
Bogang Lin, Xiulin Zheng, Hong Zhu, Renji Tao, Bingru Yang, Zhiying Wang, Quanyuan Wu, and Zhichang Qi for their
important counsel, suggestions, and corrections.

References
[1] R. L. Rivest, A. Shamir, and L. M. Adleman, A Method for Obtaining Digital Signatures and Public-key Cryptosystems,

Communications of the ACM, vol. 21, no. 2, 1978, pp. 120-126.
[2] T. ElGamal, A Public-key Cryptosystem and a Signature Scheme Based on Discrete Logarithms, IEEE Transactions on

Information Theory, vol. 31, no. 4, 1985, pp. 469-472.
[3] W. Diffie and M. E. Hellman, New Directions in Cryptography, IEEE Transactions on Information Theory, vol. 22, no. 6,

1976, pp. 644-654.
[4] O. Goldreich, Foundations of Cryptography: Basic Tools, Cambridge University Press, Cambridge, UK, 2001.
[5] A. C. Yao, Theory and Applications of Trapdoor Functions, Proc. of the 23rd Annual Symposium on the Foundations of

Computer Science, IEEE, 1982, pp. 80-91.
[6] S. Vadhan, Computational Complexity (online), http://eecs.harvard.edu/~salil/papers/encyc.pdf, Jul. 2004.
[7] M. Bellare and P. Rogaway, The Exact Security of Digital Signatures ― How to Sign with RSA and Rabin, Proc. of

Advance in Cryptology: Eurocrypt ′96, Springer-Verlag, 1996, pp. 399-416.
[8] R. C. Merkle and M. E. Hellman, Hiding information and Signatures in Trapdoor Knapsacks, IEEE Transactions on

Information Theory, vol. 24, no. 5, 1978, pp. 525-530.
[9] A. Shamir, A Polynomial Time Algorithm for Breaking the Basic Merkle-Hellman Cryptosystem, Proc. of the 23th IEEE

Symposium on the Foundations of Computer Science, IEEE, 1982, pp. 145-152.
[10] E. F. Brickell, Solving Low Density Knapsacks, Proc. of Advance in Cryptology: CRYPTO ′83, Plenum Press, 1984, pp.

25-37.
[11] M. J. Coster, A. Joux, B. A. LaMacchia etc., Improved Low-Density Subset Sum Algorithms, Computational Complexity,

vol. 2, issue 2, 1992, pp. 111-128.
[12] C. P. Schnorr and M. Euchner, Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems,

Mathematical Programming: Series A and B, vol. 66, issue 2, 1994, pp. 181-199.
[13] I. F. Blake, G. Seroussi, and N. P. Smart, Elliptic Curves in Cryptography, Cambridge University Press, Cambridge, UK,

1999.
[14] S. Y. Yan, Number Theory for Computing (2nd ed.), Springer-Verlag, New York, 2002.
[15] J. Hoffstein, J. Pipher, and J. H. Silverman, NTRU: A Ring-based Public Key Cryptosystem, Proc. of the Algorithmic

Number Theory Symposium - ANTS III, Springer-Verlag, 1998, pp. 267-288.
[16] T. Moh, An Application of Algebraic Geometry to Encryption: Tame Transformation Method, Revista Matemática

Iberoamericana, vol. 19, no. 2, 2003, pp. 667-685.
[17] J. M. Chen and B. Y. Yang, A More Secure and Efficacious TTS Signature Scheme, Proc. of 6th Int. Conference on

Information Security & Cryptology, Springer-Verlag, 2003, pp. 320-338.
[18] S. Su, The REESSE1 Public-key Cryptosystem, Computer Engineering & Science (in Chinese), vol. 25, no.5, 2003,

pp.13-16.
[19] S. Liu, F. Zhang, and K. Chen, Cryptanalysis of REESSE1 Digital Signature Algorithm, Proc. of CCICS 2005, Science

Press of China, 2005, pp. 200-205.
[20] D. Naccache and J. Stern, A new public key cryptosystem, Proc. of Advances in Cryptology: EUROCRYPT ′97,

Springer-Verlag, 1997, pp. 27-36.
[21] P. W. Shor, Polynomial-time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer, SIAM

J. on Computing, vol. 26, issue 5, 1997, pp.1484-1509.
[22] T. W. Hungerford, Algebra, Springer-Verlag, New York, 1998.
[23] K. H. Rosen, Elementary Number Theory and Its Applications (5th ed.), Addison-Wesley, Boston, 2005, ch. 12.
[24] M.J. Wiener, Cryptanalysis of Short RSA Secret Exponents, IEEE Transactions on Information Theory, v36(3), 1990, pp.

553-558.
[25] A. J. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, CRC Press, London, UK, 1997.
[26] P. Garrett, Making, Breaking Codes: An Introduction to Cryptology, Prentice-Hall, New Jersey, 2001.

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 26

[27] S. Su and S. Lü, To Solve the High Degree Congruence x ^ n ≡ a (mod p) in GF(p), Proc. of Int. Conference on
Computational Intelligence and Security, IEEE press, 2007, pp. 672-676.

[28] D. Z. Du and K. Ko, Theory of Computational Complexity, John Wiley & Sons, New York, 2000.
[29] D. R. Stinson, Cryptography: Theory and Practice (2nd ed.), CRC Press, London, UK, 2002.
[30] M. Davis, The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions,

Dover Publications, Mineola, 2004.
[31] H. Ritter, Breaking Knapsack Cryptosystems by Max-Norm Enumeration, Proc. of 1st International Conference of the

Theory and Application of Cryptology, CTU Publishing House, 1996, pp. 480-492.
[32] V. Niemi, A New Trapdoor in Knapsacks, Proc. of Advances in Cryptology: EUROCRYPT ′90, Springer-Verlag, 1991, pp.

405-411.
[33] C. P. Schnorr, Fast LLL-Type Lattice Reduction, Information and Computation, vol. 204, no. 1, 2006, pp. 1-25.
[34] P. Q. Nguên and D. Stehlé, Floating-Point LLL Revisited, Proc. of Advances in Cryptology: EUROCRYPT ′05,

Springer-Verlag, 2005, pp. 215-233.
[35] D. Bleichenbacher, Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption Standard PKCS #1, Proc.

of Advance in Cryptology: Crypto ′98, Springer-Verlag, 1998, pp. 1-12.
[36] R. Cramer and V. Shoup, A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen Ciphertext

Attack, Proc. of Advance in Cryptology: Crypto ′98, Springer-Verlag, 1998, pp. 13-25.
[37] V. Shoup, OAEP Reconsidered, Proc. of Advance in Cryptology: Crypto ′01, Springer-Verlag, 2001, pp. 239-259.
[38] M. Bellare and P. Rogaway, Random Oracles are Practical: A Paradigm for Designing Efficient Protocols, Proc. of the 1st

ACM Conference on Computer and Communications Security, ACM, 1993, pp. 62-73.
[39] R. Canetti, O. Goldreich, and S. Halevi, The Random Oracle Methodology Revisited, Proc. of the 30 th Annual ACM

Symposium on Theory of Computing, New York: ACM Press, 1998, pp. 209-218.
[40] D. Pointcheval and J. Stem, Security Proofs for Signature Schemes, Proc. of Advance in Cryptology: Eurocrypt ′96, LNCS

1070, Springer-Verlag, Berlin, 1996, pp. 387~398.
[41] M. Bellare and G. Neven, Multi-Signatures in the Plain Public-Key Model and a General Forking Lemma, Proc. of the 13th

ACM Conference on Computer and Communications Security, Alexandria, Virginia, 2006, pp. 390–399.
[42] A. Young and M. Yung, Malicious Cryptography: Exposing Cryptovirology, Wiley press, 2004, pp. 344.
[43] C. Schnorr, Efficient Identification and Signature for Smart Card, Proc. of Advance in Cryptology: Crypto ′89, LNCS 435,

Springer-Verlag, Berlin, 1989, pp. 239~251.
[44] H. Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag, New York, 2000.
[45] N. A. Moldovyan, Digital Signature Scheme Based on a New Hard Problem, Computer Science Journal of Moldova, vol.

16, no. 2, 2008, pp. 163-182.
[46] R. R. Stoll, Set Theory and Logic, Dover Publications, Mineola, 1979.
[47] S. Su, S. Lü, and X. Fan, Asymptotic Granularity Reduction and Its Application, Theoretical Computer Science, vol. 412,

issue 39, Sep. 2011, pp. 5374-5386.
[48] D. Coppersmith, Small Solutions to Polynomial Equations and Low Exponent RSA Vulnerabilities, Journal of Cryptology,

vol. 10, no. 4, 1997, pp. 223-260.

Authors

Shenghui Su received a bachelor degree in computer science from National University of Defense Technology, a master
degree from Peking University, and a Ph.D. degree from University of Science and Technology Beijing. He was given the title of
a senior programmer by Ministry of Electronic Industry China in 1994, and of a professor by Academic and Technologic
Committee Beijing in 2004. He was long engaged in design of algorithms and development of software. Since 2000, he has been
indulged in designing the REESSE / JUNA cryptosystems and digital signers. He is currently with college of computers, Beijing
University of Technology. His research area covers computational complexity, cryptographic algorithms, and digital identities.

Shuwang Lü received a bachelor degree in electronics from University of Science and Technology China. He sits on the

academic committee of SKLOIS. Since 1980, he has mainly been making researches on cipher algorithms and cipher chips. He
presided over the projects supported by the national plan of high technology development, and of fundamental science researches,
and was the chief designer of the SMS4 symmetric cryptosystem, an industrial standard. He is with the School of Graduate,
Chinese Academy of Sciences, with University of Science and Technology China, and with USTB as a professor and a Ph.D.
advisor. Nowadays, his research interests are still focused on cryptographic algorithms and knowledge security.

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 27

Appendix A ― Indeterminate Encryption

Below, a small example is given.
This example is only used to explain how to encrypt a plaintext and decrypt a ciphertext through the

algorithms in Section 5.3.1, and thus the quantities ħ, S, α, β and the some constraints are not
considered.

Let n = 6 and Þ = 19.

1) Generation of a key pair
 Select đ = 21, Đ = 95, and T = 143.
 Randomly generate a coprime sequence {Ai} = {17, 10, 13, 9, 19, 7}.
 Find the prime M = 174594421 such that M > 196 and (đ Đ T) | (= 174594420).
 Pick W = 155629 and δ = 3761 making gcd(δ,) = 1 and δ = đ Đ T.
 Randomly produce pairwise distinct {ℓ(i)} = {7, 15, 5, 11, 13, 9}.
 Compute {Ci} = {116331875, 87811986, 61498911, 6213388, 8089113, 9766243}
by Ci ← (Ai W ℓ

(i))δ % M.
Regard ({Ci}, M) as a public key, and ({Ai}, W, δ) as a private key. Discard the quantities đ, Đ, {ℓ(i)}

which cannot be divulged.

2) Encryption
Assume that ({Ci}, M) is a public key. Let b1…b6 = 100110 be a plaintext.

 Obtain ḅ 1…ḅ 6 = 100310, k = 1.
 Randomly generate s1…s6 = 010001.
 Modify s5 and ḅ 5 by s5 ← 1 and ḅ 5 ← ḅ 5 + k = 2.
 Compute Ḡ ≡ (C1 × 0 + (1 – 1 + 1) ¬0)1(C2 × 1 + (2 – 0 + 1) ¬1)0(C3 × 0 + (3 – 0 + 1) ¬0)0(C4 × 0 + (4 – 3 + 1) ¬0)3

(C5 × 1 + (5 – 2 + 1) ¬1)2(C6 × 1 + (6 – 0 + 1) ¬1)0 ≡ C1
1

 C2
3

 C5
2 ≡ 116331875 × 156599315 × 124996494

≡ 75924783 (% M) by Ḡ ≡ ∏

n
i=1(Ci si + (i – ḅi + 1) ¬si)

ḅi (% M) with Cn + 1 = 1.
So, the ciphertext Ḡ = 75924783 is obtained. Notice that because s1…s6 is randomly generated, on

inputting the identical plaintext 100110 many times, we will obtain many distinct ciphertexts.

3) Decryption
Assume that ({17, 10, 13, 9, 19, 7}, 155629, 3761) is a related private key.
Let Ḡ = 75924783 be a ciphertext.

 Compute Ḡ ≡ Ḡ δ
−1 ≡ 759247833761

−1 ≡ 759247834781501 ≡ 165482231 (% M).
Compute W

–2 ≡ (W
–1)2 ≡ (1171225)2 ≡ 154229249 (% M).

Outer loop 1:
 Compute Ḡ ≡ 165482231 × 154229249 ≡ 144398410 (% M) by Ḡ ← Ḡ W

–2 % M.
 Set b1…b6 = 0…0, ë = 0, j = 0, k = 0, G = Ḡ = 144398410, i = 1.
Inner loop 1:

 Due to (A1
ë +

1 = 171) ł (G = 144398410), the next.

 Due to ë = 0,
let k = 0 + 1 = 1, i = 1 + 1 = 2.

 Due to i = 2 ≤ 6 and G ≠ 1, goto .
Inner loop 2:

 Due to (A2
ë +

1 = 101) | (G = 144398410), ë = 0 + 1 = 1, goto .

 Due to (A2
ë +

1 = 102) ł (G = 144398410), the next.

 Due to ë = 1 ≠ 0,
compute G = 144398410 / A2

1 = 14439841;
owing to k = 1 > 0, let b2 = 1;
owing to k = 1 ≠ 0, let i = 2 + 1 = 3;
owing k + 1 = 2 > ë = 1, let i = 6 + 1 = 7;
set ë = 0, k = 0.

 Due to i = 7 > 6, the next.
 Due to G = 14439841 ≠ 1, goto .

Outer loop 2:

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 28

Outer loop 39:

 Compute Ḡ ≡ 131367179 × 154229249 ≡ 6137000 (% M) by Ḡ ← Ḡ W
–2 % M.

 Set b1…b6 = 0…0, ë = 0, j = 0, k = 0, G = Ḡ = 6137000, i = 1.
Inner loop 1:

 Due to (A1
ë +

1 = 171) | (G = 6137000), ë = 0 + 1 = 1, goto .

 Due to (A1
ë +

1 = 172) ł (G = 6137000), the next.

 Due to ë = 1 ≠ 0,
compute G = 6137000 / A1

1 = 361000;
owing to k = 0 and i + ë – 1 < 6, let bi + ë – 1 = b1 = 1;
owing to k = 0, let i = 1 + ë = 1 + 1 = 2;
owing to k + 1 = 1 = ë, the next;
set ë = 0, k = 0.

 Due to i = 2 ≤ 6 and G ≠ 1, goto .
Inner loop 2:

 Due to (A2
ë +

1 = 101) | (G = 361000), ë = 0 + 1 = 1, goto .

 Due to (A2
ë +

1 = 102) | (G = 361000), ë = 1 + 1 = 2, goto .

 Due to (A2
ë +

1 = 103) | (G = 361000), ë = 2 + 1 = 3, goto .

 Due to (A2
ë +

1 = 104) ł (G = 361000), the next.

 Due to ë = 3 ≠ 0,
compute G = 361000 / A2

3 = 361;
owing to k = 0 and i + ë – 1 < 6, let bi + ë – 1 = b4 = 1;
owing to k = 0, let i = 2 + ë = 2 + 3 = 5;
owing to k + 1 = 1 < ë = 3, the next;
set ë = 0, k = 0.

 Due to i = 5 ≤ 6 and G ≠ 1, goto .
Inner loop 3:

 Due to (A5
ë +

1 = 191) | (G = 361), ë = 0 + 1 = 1, goto .

 Due to (A5
ë +

1 = 192) | (G = 361), ë = 1 + 1 = 2, goto .

 Due to (A5
ë +

1 = 193) ł (G = 361), the next.

 Due to ë = 2 ≠ 0,
compute G = 361 / A5

2 = 1;
owing to i + ë – 1 = 5 + 2 – 1 = 6, let bi = b5 = 1;
owing to k = 0, let i = 5 + 2 = 7;
owing to k + 1 = 1 < ë = 2, the next;

 Due to i = 7 > 6 or G = 1, the next.
 Due G = 1, end.

In this way, we recover the original plaintext b1…b6 = 100110.

Appendix B ― Computation of Density of a Knapsack from ASPP

1) Wrong Computation of Density in Section 5.2
It is known from Section 3.2 that a ciphertext is an ASPP Ḡ ≡ ∏

n
i=1 Ci

ḅi (% M).
Let C1 ≡ g

u1, …, Cn ≡ g
un, Ḡ ≡ g

v (% M), where g is a generator of (*
M, ·) randomly selected.

Then, seeking ḅ1…ḅn from Ḡ is equivalent to solving the congruence
u1ḅ1 + … + unḅn ≡ v (%), (1)

where {u1, …, un} is called a compact sequence (knapsack) due to ḅ i ∈ [0, n /2+1]. Seeking ḅ1…ḅn
from (1) is called the anomalous subset sum problem (ASSP).

Note that we stipulate that b1…bn ≠ 0 contains at most n /2 0-bits; if g is different, {u1, …, un}
will be different for the same {C1, …, Cn}, and thus {u1, …, un} has randomicity.

When (1) will be reduced through the LLL lattice basis reduction algorithm, it should be converted
into a non-modular form:

ḅ1u1 + … + ḅnun ≡ v + k, (2)

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 29

where k ∈ [0, n] is an integer. To seek the original solution to (2), k must traverse from 0 to n.
Let D be the density of the compact sequence {u1, …, un}. We easily see that in Section 5.2, the

formula D ≈ n2 / lg M is wrong, which is first pointed out by Xiangdong Fei (an associate professor
from Nanjing University of Technology).

2) Right Computation of Density
Considering the structure of a lattice basis from (1) and the bit-length of a bit shadow ḅ i, the right

computation of density of an ASSP knapsack should be
D = ∑ n

i=1 lg (n /2+1) / lg M = nlg (n /2+1) / lg M with ḅ i ∈ [0, n /2+1]
or

D = ∑ n
i=1 lg n / lg M = nlg n / lg M with ḅ i ∈ [0, n]

Assume that ḅ i ∈ [0, n]. Concretely speaking,
for n = 80 with lg M = 696, D = 80 × 7 / 696 ≈ 0.8046 < 1;
for n = 96 with lg M = 864, D = 96 × 7 / 864 ≈ 0.7778 < 1;
for n = 112 with lg M = 1030, D = 112 × 7 / 1030 ≈ 0.7612 < 1;
for n = 128 with lg M = 1216, D = 128 × 8 / 1216 ≈ 0.8421 < 1.
These densities mean that the original solution to (1) may possibly be found through LLL lattice

basis reduction (not certainly, and even with very low probability) because D < 1 only assure that the
shortest vector is unique, but it cannot assure that the vector of the original solution to an ASSP is just
the shortest vector in the reduced basis.

3) Bit Shadows Enhance Resistance of a Low Density ASSP Knapsack to Attacks
The LLL algorithm is to reduce a lattice basis 〈1, 0, …, 0, Ñu1〉, 〈0, 1, …, 0, Ñu2〉, …, 〈0, 0, …, 1,

Ñun〉, 〈1/2, 1/2, …, 1/2, Ñ(v + k)〉, where Ñ > 1/2(n)1/2. No matter whether (v + k) is a classical
subset sum or an anomalous subset sum, and whether the density is less than 1 or greater than 1, the
LLL algorithm runs by its inherent rules. Lastly, the n + 1 vectors 〈ê1, …, ên, ên + 1〉′s which occur in the
reduced basis are the first n + 1 approximately shortest vectors, including the shortest vector, of which
quite some satisfy ê1 u1 + … + ên un ≡ v + k (omitting the term ên + 1 = 0). If D < 1, the shortest vector
is unique; and if (v + k) is a classical subset sum, the shortest vector is just the original solution.

We know from the above discussion that it has two necessary conditions to solve a SSP or ASSP
through LLL lattice basis reduction: the vector of the original solution is the shortest; the shortest
vector in the lattice is unique. D < 1 assures that the shortest vector is unique; and a classical subset
sum assures that the vector of the original solution is just the shortest vector.

Return to (1). Even though the density of an ASSP knapsack is less than 1, the original solution is
not necessarily found since ḅ i ∈ [0, n /2+1] is a bit shadow (indicates that the original solution does
not necessarily occur in the reduced basis), and there likely exist many solutions in the lattice.

For example, let n = 4 (short but without loss of generality), M = 263, {u1, …, u4} = {48, 71, 257, 4},
and v = 261 (ui and v are obtained through the discrete logarithms of Ci and Ḡ). Here, the density of
{u1, …, u4} is D = n lg (n /2+1) / lg M = 4 × 2 / 9 = 0.8889 < 1.

Assume that a plaintext b1…b4 = 1100, and its related bit shadow string ḅ1…ḅ4 = 1300 (thus 1 × 48 +
3 × 71 = 261).

However, according to LLL lattice basis reduction, sought solution will be 0011 (notice, not the
original) because there is 1 × 257 + 1 × 4 = 261, and 〈0, 0, 1, 1〉 | (12 + 12)1 / 2 is the shortest vector in
the lattice while 〈1, 3, 0, 0〉 | (12 + 32)1 / 2 is not the shortest, and even it will not occur in the reduced
basis consisting of 5 vectors.

4) Density of an Optimized ASSP Knapsack
The modulus of prototypal REESSE1+ is relatively large, so in practice, it needs to be optimized

(optimized REESSE1+ is called JUNA).
Return to Section 6. When n = 80, 96, 112, 128, correspondingly there is lg M = 384, 464, 544, 640.

The density of an optimized ASSP knapsack is D = (3n /2)lg (n /4+1) / lg M with Ḅi ∈ [0, n /4+1]
(on the assumption that B1…Bn / 2 contains at most n /4 00-pairs).

Concretely speaking,
for n = 80 with lg M = 384, D = 120 × 5 / 384 ≈ 1.5625 > 1;
for n = 96 with lg M = 464, D = 144 × 5 / 464 ≈ 1.5517 > 1;

> http://eprint.iacr.org/2006/420.pdf (revised Dec 2012) <

 30

for n = 112 with lg M = 544, D = 168 × 5 / 544 ≈ 1.5441 > 1;
for n = 128 with lg M = 640, D = 192 × 6 / 640 ≈ 1.8000 > 1.
Under the circumstances, owing to D > 1 (indicates there will exist many solutions to the ASSP, and

even the shortest vector is also nonunique), it is impossible to find the original plaintext b1…bn through
LLL lattice basis reduction. Therefore, at present there exists no subexponential time solution to the
ASPP used in the optimized encryption scheme.

It should be noted that even if 80 ≤ n ≤ 128, the LLL lattice basis reduction algorithm right cannot
find the original solution to SSP when D > 1, which is proven by our experiments.

Appendix C ― Offering a Reward

It may be regarded as a type of proof by experiment.
Here, n ≥ 80 is the length of a binary string b1…bn≠0 of which the bit-pair string is B1…Bn / 2

containing at most n /4 00-pairs, the sign % denotes ‘modulo’, means ‘M – 1’ with M prime, and lg x
means the logarithm of x to the base 2.

The analysis in the paper shows that any effectual attack on REESSE1+ will be reduced to the
solution of four intractabilities: a multivariate permutation problem (MPP), an anomalous subset
product problem (ASPP), a transcendental logarithm problem (TLP), and a polynomial root finding
problem (PRFP) so far.

It is well known that it is infeasible in subexponential time to find a large root to the PRFP axn +

bxn – 1 + c x + d ≡ 0 (% M) with a ∉ {0, 1}, |b| + |c| ≠ 0, d ≠ 0, and n, M large enough.
Let n=80, 96, 112, 128 with lgM=384, 464, 544, 640 for the optimized REESSE1+ encryption

scheme or with lgM=80, 96, 112, 128 for the lightweight REESSE1+ signing scheme.
Assume that ({C1, …, C3n / 2}, M) is a public key, and ({A1, …, A3n / 2}, {ℓ(1), …, ℓ(3n /2)}, W, δ, M)

with W, δ ∈ (1,), Ai ∈ {2, 3, …, 1201}, and ℓ(i) ∈ {+/−5, +/−7, …, +/−(2(3n /2) + 3)} is a private key,
where the sign +/− means that the plus sign + or minus sign − is selected, and unknown to the masses.

The authors promise solemnly that
 anyone who can extract the original private key definitely from the MPP

Ci ≡ (Ai W ℓ

(i))δ (% M) for i = 1, …, 3n /2

in DLP subexponential time will be awarded $100000 when n = 80, 96, 112, 128 with lgM = 384,
464, 544, 640, or $10000 with lgM = 80, 96, 112, 128;

 anyone who can recover the original plaintext b1…bn definitely from the ASPP
Ḡ ≡ ∏ n / 2

i = 1 (C3(i – 1) + Bi
)Ḅi (% M) with C0 = 1 and Ḅ i a bit-pair shadow

in DLP subexponential time will be awarded $100000 when n = 80, 96, 112, 128 with lgM = 384,
464, 544, 640, or $10000 with lgM = 80, 96, 112, 128, where Ḅ i = 0 if Bi = 00, = 1 + the number of
successive 00-pairs before Bi if Bi ≠ 00, or = 1 + the number of successive 00-pairs before Bi + the
number of successive 00-pairs after the rightmost non-00-pair if Bi is the leftmost non-00-pair as
b1…b1 2 = 010000110100 = B1…B6 = 01 00 00 11 01 00 with Ḅ1…Ḅ6 = 2 0 0 3 1 0.

 anyone who can find the original large answer x ∈ (1,) definitely to the TLP
y ≡ (g x)

x (% M)
with known g, y ∈ (1,) in DLP subexponential time will be awarded $100000 when n = 80, 96, 112,
128 with lgM = 384, 464, 544, 640, or $10000 with lgM = 80, 96, 112, 128.

Of course, any solution must be described with a formal process, and can be verified with our examples.
The time of solving a problem should be relevant to arithmetic steps, but irrelevant to CPU speeds.

The DLP subexponential time means the running time of an algorithm for solving the DLP in the
prime field (M) through Index-calculus method at present, namely LM[1 /3, 1.923].

Note that the TLP is written as y≡(g x)

x (% M) instead of y≡x
x (% M) due to the asymptotic property

of M, and in the paper, some pieces of evidence found incline people to believe that the subset product
problem (SPP) Ḡ1 ≡ ∏

n
i=1 Ci

bi (% M) is harder than the DLP asymptotically, but due to lgM ≤ 640 and
the density of a related knapsack being low, SPP can almost be solved in DLP subexponential time.

	Introduction
	A Coprime Sequence, a Lever Function, and a Bit Shadow
	Design of the REESSE1+ Public key Cryptosystem
	The Key Generation Algorithm
	The Encryption Algorithm
	The Decryption Algorithm
	The Digital Signature Algorithm
	The Identity Verification Algorithm
	The Double Congruence Theorem
	Characteristics of REESSE1+
	Correctness of the Decryption Algorithm
	Uniqueness of a Plaintext Solution to a Ciphertext

	Security Analysis of the Key Transform
	MPP Is at Least Equivalent to DLP
	Attacks by Interaction of the Key Transform Items
	Eliminating W through ?(x1) + ?(x2) = ?(y1) + ?(y2)
	Eliminating W through the (W (-th Power

	Attack by a Certain Single Ci

	Security Analysis of the Encryption Algorithm
	ASPP Is at Least Equivalent to DLP
	ASPP Can Resist L3 Lattice Base Reduction
	Avoid Adaptive-chosen-ciphertext Attack
	Different Ciphertexts of the Identical Plaintext
	Appending of a Stochastic Binary String

	Security Analysis of the Digital Signature
	Unforgeability of a Signature in the Random Oracle Model
	What Is a Random Oracle
	The Forking Lemma
	Proof of Unforgeability of a REESSE1+ Signature

	Extracting a Private Key from a Signature Is of TLP or the Indeterminate Problem
	Forging a Digital Signature only from a Public Key Is a Hardness
	TLP Is at Least Equivalent to DLP
	Forging a Signature from the Verification Algorithm Is of TLP or PRFP
	Forging a Signature from the Signature Algorithm Is of TLP or PRFP

	Forging a Signature from Known Signatures with a
	Adaptive-chosen-message Attack Is Faced with Indistinguishability
	Chosen-signature Attack Is Faced with PRFP

	Conclusion

