
Password-Authenticated Multi-Party Key Exchange with
Different Passwords

Jeong Ok Kwon†, Ik Rae Jeong§, Kouichi Sakurai‡, and Dong Hoon Lee†

†Center for Information Security Technologies (CIST), Korea University, Korea.
{pitapat,donghlee}@korea.ac.kr

§ ETRI, 161 Gajeong-dong, Yuseoung-Gu, Daejeon, 305-700 Korea
jir@etri.re.kr

‡Department of Computer Science and Communication Engineering, Kyushu University, Japan.
sakurai@csce.kyushu-u.ac.jp

Abstract. Password-authenticated key exchange (PAKE) allows two or multiple parties to share a session key
using a human-memorable password only. PAKE has been applied in various environments, especially in the “client-
server” model of remotely accessed systems. Designing a secure PAKE scheme has been a challenging task because
of the low entropy of password space and newly recognized attacks in the emerging environments. In this paper,
we study PAKE for multi-party with different passwords which allows group users with different passwords to
agree on a common session key by the help of a trusted server using their passwords only. In this setting, the
users do not share a password between themselves but only with the server. The fundamental security goal of
PAKE is security against dictionary attacks. We present the first two provably secure protocols for this problem in
the standard model under the DDH assumption; our first protocol is designed to provide forward secrecy and to
be secure against known-key attacks. The second protocol is designed to additionally provide key secrecy against
curious servers. The protocols require a constant number of rounds.

Keywords. Provable security, group key exchange, password-based authentication, dictionary attacks

1 Introduction

Password-authenticated key exchange. To communicate securely over an insecure public
network, it is essential that secret session keys are exchanged securely. The shared secret key
may be subsequently used to achieve some cryptographic goals such as confidentiality or data
integrity. In the public-key based and symmetric-key based key exchange protocols, a party has
to keep long random secret keys. However, it is difficult for a human to memorize a long random
string; thus, a party uses an additional storage device to keep the random string. On the other
hand, password-authenticated key exchange (PAKE) protocols allow two or more specified parties
to share a secret session key using only a human-memorable. Hence, PAKE protocols do not
require that each party holds some devices such as smart cards or hardware tokens. From this
point of view, PAKE provides convenience and mobility. Protocols for PAKE can be used in
several environments, especially in networks where a security infrastructure like PKI (Public-
Key Infrastructure) is not deployed. Because PAKE protocols provide a new and unique way to
authenticate parties and derive high-quality cryptographic keys from low-grade passwords, PAKE
has received significant attention.

Multi-party PAKE with different passwords. Several multi-party PAKE protocols have
already been constructed so far. But most of those protocols assume that users of a group have a
common pre-shared password. However, a multi-party PAKE protocol using the same password is
not scalable in the sense that a user may want to communicate securely with other users who have
not shared the same password. If a user has a password for a group, the number of passwords
that the user has to memorize linearly increases depending on the number of groups. This is
impractical since it is difficult for a user to remember many passwords. Multi-party PAKE with
different passwords surmounts all the problems above. In this setting, a user shares a password
only with a trusted server and the trusted server helps any set of users share a common session
key. The main advantage of this solution is that it requires each user only to remember a single

2

password with the trusted server. This seems to be a more practical scenario in the real world
than multi-party PAKE with the same password. However, the server has to participate in the
protocol run to help users of a group authenticate each other.

Intrinsic problems with respect to the server-aided PAKE. Compared to other security
models, the most distinguishable characteristic of the PAKE security model is that the model must
incorporate protection against dictionary attacks. The dictionary attacks are possible because of
the low entropy of the password space. In practice, a password consists of 4 or 8 characters, such
as a natural language phrase, to be easily memorized. The set of these probable passwords is
small. As a consequence, there exists a relatively small dictionary. Usually dictionary attacks are
classified into two classes: on-line and off-line dictionary attacks.

The on-line dictionary attacks are always possible, but these attacks cannot become a serious
threat if the on-line attacks can be easily detected and thwarted by counting access failures. In
the server-aided PAKE protocols, however, we must more carefully consider on-line dictionary
attacks, because a malicious insider may launch on-line dictionary attacks indiscernibly using the
server as a password verification oracle. If a failed guess cannot be detected and logged by the
server, the attacks are called undetectable on-line dictionary attacks [18]. If this kind of attack
succeeds on a PAKE protocol, an adversary is able to find the correct passwords of users and
hence get everything allowed to the honest users. This, of course, breaks the overall security of
the key exchange protocol. To prevent the undetectable on-line attacks, a server-aided PAKE
protocol must provide a method by which the server can distinguish an honest request from a
malicious one.

Even if there exists a little bit of redundancy information in the protocol messages, an adver-
sary may perform an off-line dictionary attack by using the redundancy as a verifier for checking
whether a guessed password is correct or not. We also have to consider insider attacks by a ma-
licious user who attempts to perform an off-line dictionary attack on the other user’s password
using his information. The main security goal of PAKE schemes is to restrict the adversaries
to attempting detectable on-line dictionary attacks only. If a PAKE scheme is secure, then an
adversary cannot obtain any advantage in guessing the passwords and the session keys of users
through off-line dictionary attacks.

Key secrecy with respect to the server-aided PAKE. One of the most basic security
requirements of a key exchange protocol is key secrecy which guarantees that no computationally-
bounded adversary should learn anything about the session keys shared between honest users by
eavesdropping or sending messages of their choice to the users in the protocol. It is necessary
that the key secrecy be also preserved against the server which behaves honestly but in the
curious manner. That is, the server should not learn anything about the session keys of the
users by eavesdropping, even if the server helps users of a group establish a session key between
themselves. We formally define this security notion in Section 3.

Fault-tolerance in the server-aided PAKE. Secure, scalable and reliable group key exchanges
have received much attention in recent years. We concentrate on the fault-tolerance with respect
to users, where some users of a group can be disconnected by network failures caused by network
misconfigurations or router failures. We say a protocol has fault-tolerance, even though some
users of a group are disconnected by network failures, the other users of the group who execute
the protocol correctly should be able to successfully share a session key without sending any
additional message. We do not consider the fault of the server which makes the PAKE protocols
fail.

3

2 Our Work in Relation to Prior Work

Our results. In this paper, we consider multi-party PAKE with different passwords. We sum-
marize our main contributions as follows.

Constant-round PAKE protocols proven secure in the standard model. For a small
device communicating over a wireless network, it is especially important to establish a session
key with a small amount of computation, communication, and a small number of rounds. For
these wireless applications, the multi-party key exchange protocols requiring linearly increasing
round and computation complexities are not acceptable when the number of group users grows
large. The best-known provably secure solution is N-party EKE-M in [13]. This protocol requires
a constant number of rounds, however it does not have key secrecy with respect to curious servers.
This protocol was conjectured secure when the block cipher is instantiated via an “ideal cipher”
and the hash function is instantiated via an “ideal hash” (so-called the random oracle model).
The idealized oracle methodology may enable the design and security proof of cryptographic
protocols easier and more efficient. However a secure scheme in the idealized oracle model may
not be secure in the real world if an idealized random function is instantiated with real functions
[15, 30, 20, 16, 9]. Thus a scheme seems to be more reliable, if we do not use idealized random
functions. Toward this goal, we present our first provably secure protocol, called PAMKE1 in
the standard model which provides forward secrecy and security against known-key attacks but
not key secrecy with respect to curious servers. To improve key secrecy, we present the second
protocol, called PAMKE2, while enjoying all security features of PAMKE1 and still requiring
a constant number of rounds. We notice that designing of constant-round multi-party PAKE
protocols having key secrecy with respect to curious servers is not easy at all.

Our protocols combine a two-party PAKE between a user and a server. Since we use a two-
party PAKE scheme secure in the standard model, we may achieve our goal. For the two-party
PAKE, we use the efficient two-party PAKE scheme suggested by Kobara and Imai [24]. As
mentioned in [?], the security model which they used was different from the standard one and
hence their result only applied to their specific model. We note that the security result in [24]
may not be applied for a security analysis of our protocol. PAMKE1 combines a two-party key
distribution between a user and a server. Using a key distribution technique, we have the server
distributes a session key selected by himself to each user. This, of course, does not have key
secrecy with respect to servers. To solve this problem, PAMKE2 combines a different approach
with the key distribution approach, which allows all honest group users unbiasedly determine a
session key together.

The building blocks that we combine are not fully independent modules, i,e., we do not
consider a generic construction such as [6, 28, 21, 3]. The modular approach simplifies the design
for protocols and analysis of protocols. Because of the merits using this modular approach, it has
been used in the design of various key exchange protocols. However, the resulting protocols are
often less efficient than tailored protocols because each protocol module is treated as a black box.

We compare the efficiency and the security of our protocols with the previous protocols. Table
1 summarizes the comparisons in which communication cost is the total number of bits that each
user sends during a protocol run.

A mechanism for detection of un-/detectable on-line dictionary attacks. The pro-
posed schemes have a mechanism to detect undetectable on-line dictionary attacks to server-side
and a mechanism to detect detectable on-line dictionary attacks to user-side.

Related work. Several PAKE protocols in the multi-party setting have been studied [5, 11, 26,
13, 2]. Only [13] among them considers multi-party PAKE with different passwords (the others

4

Table 1. Comparisons of efficiency and security with the related protocols for multi-party with different passwords.

Scheme N-party EKE-M PAMKE1 PAMKE2

Round 2 3 5

Exponentiation (per user) 2 3 6

Communication (per user) |p| |p|+ |τ | 2|p|+ 2|τ |
Security KK KK&FS&DOD&UDOD KSS&KK&FS&DOD&UDOD

Assumption I.C.&I.H. Standard Standard

We use a group Z∗p where p is a prime and |τ | is the length of an MAC tag. An FS protocol is a forward-secure key
exchange protocol, a KK protocol is a secure key exchange protocol against known-key attacks, a KSS protocol
has key secrecy with respect to servers. A DOD protocol and a UDOD protocol have a mechanism for detection of
detectable and undetectable on-line dictionary attacks, respectively. I.C. denotes the ideal cipher model and I.H.
denotes the ideal hash model.

consider multi-party PAKE with same passwords). In [13], Byun et al. have proposed two pro-
tocols, called N-party EKE-U in unicast networks which requires O(n) rounds, where n is the
number of users of a group, and N-party EKE-M in multicast networks which requires a constant
rounds. Unfortunately, the N-party EKE-U protocol is vulnerable to off-line dictionary attacks
(an explicit attack is known [33]) and the strengthened variant of this in [14] to counter the attack
in [33] is still vulnerable an off-line dictionary attack (an explicit attack is known [31]). N-party
EKE-M has been proven secure in the ideal cipher model and the ideal hash model without
forward secrecy. N-party EKE-M does not provide key secrecy with respect to curious servers.

3 Security Model

The model defined in this section is based on Abdalla et al.’s model in [3, 4] and Katz et al.’s
model in [23] which follow closely the model established by Bellare and Rogaway [7, 8] which has
been extensively since then. We explicitly define notions of security which will be necessary for
proving the security about our schemes in later sections.

In this section, we give a definition of security, called key secrecy with respect to server. The
new definition captures the security level that the session key shared between honest group users
should be only known to these group users and no one else, including the trusted server. The
security notion can be viewed an extension of the one in the three-party setting in [3].

Networks. In the paper, we assume that there are two kinds of channel, a broadcast channel and
a peer-to-peer channel. Since the peer-to-peer channel is a duplex channel, parties can simultane-
ously send messages to each other. In the both channels, it allows that an adversary intercept the
messages and substitute their own messages for some of them. However, the broadcast network
guarantees that all users receive the identical messages.

Participants. We fix nonempty sets, G of potential users of a group and S of potential servers.
We assume the set G contains N users and the set S contains a single server. We consider a
password-authenticated multi-party key exchange protocol in which any nonempty subset of G,
Gu wants to exchange a session key and a server S ∈ S helps the users with different passwords
shares a common session key. We do not assume that the subsets are always include the same
participant or always the same size. A participant P may have many instances of the protocol,
which is either a user or a server. An instance of P is represented by an oracle P s, for any s ∈ N.

Long-term secret keys. Each user Ui ∈ G holds a password pwi obtained at the start of the
protocol using a password generation algorithm PG(1κ) which on input a security parameter 1κ

outputs a password pwi uniformly distributed in a password space Password of size PW. The
server S ∈ S holds pwS = [pwi]Ui∈G with an entry for each user.

5

Adversaries. In this model, we assume two types of malicious inside attackers: a malicious
group user1 who can deviate from the protocol to perform an off-line dictionary attack against
the other users, and the legal (trusted) server that behaves honestly but in curious manner to learn
information about a session key shared between honest users. We also assume outside attackers
who are neither a user nor the server. They are all probabilistic polynomial time Turing machines.

Queries for outside attackers and malicious users. An adversaryA including a malicious
user controls all the communications and makes queries to any oracle. The queries that A can
use are as follows:

- Execute(Gu,St): This query models passive attacks, where the adversary A gets the instances
of honest executions of a protocol by Gu and S.

- SendUser(U s
i ,m): This query is used to send message m to user U s

i and to get the response
from U s

i . Where the adversary A can intercept a message and then modify it, create a new
message, or simply send it without any manipulation. This query models an active attack
against a user.

- SendServer(St,m): This query is used to send message m to server St and to get the response
from St. This query models an active attack against a server.

- Reveal(U s
i): This query allows the adversary A to learn a particular session key established

by a user. If a session key sks
i has previously been constructed by U s

i , it is returned to the
adversary. That is, this models known-key attacks in the real system. A PAKE protocol said
to be secure against known-key attacks if compromise of multiple session keys for sessions
other than the one does not affect its key secrecy. This notion of security means that session
keys are computationally independent from each other. A bit more formally, this security
protects against “Denning-Sacco” attacks [19] involving compromise of multiple session keys
(for sessions other than the one whose secrecy must be guaranteed). Security against known-
key attacks implies that an adversary cannot gain the ability to perform the off-line dictionary
attacks on the passwords from the compromised session keys which are successfully established
between honest parties.

- Corrupt(P): This query allows the adversary A to learn the long-term keys of parties. That is,
this models forward secrecy. The adversary is assumed to be able to obtain long-term keys of
parties, but cannot control the behavior of these parties directly (because once the adversary
has asked a query Corrupt(P), the adversary may impersonate P in subsequent Send queries.)
We restrict that on Corrupt(P) the adversary only can get the long-term keys, but cannot
obtain any internal data of P .

- Test(U s
i): This query is used to define the advantage of the adversary A. This query is allowed

only once by A, and only to fresh oracles, which is defined later as freshness for Test-query.
If the intended partners of U s

i are part of the malicious set, the invalid symbol ⊥ is returned.
Otherwise, a coin b is flipped. If b = 1, the session key sks

Ui
held by U s

i is returned, and if
b = 0 a string randomly drawn from a session key distribution is returned.

A passive adversary can use the Execute, Reveal, Corrupt and Test queries while an active
adversary additionally can use the SendUser/SendServer query. Even though the Execute query
may seem to be useless since it can be simulated by repeatedly using the Send queries. Yet the
Execute query is essential to distinguish on-line dictionary attacks from off-line dictionary attacks.
1 In this paper, we do not assume the malicious insider such that a malicious user misleads other honest group

users to compute different conference keys so that the honest users can not confer correctly [25, 34, 35, 22].

6

The Send queries are directly asked by the adversary and the number of those dose not take into
account the number of Execute queries. That is, the number of undetectable on-line dictionary
attacks and detectable on-line dictionary attacks can be bounded by the number of SendUser
queries and SendServer queries, respectively.

Queries for malicious servers. A server S is allowed to access to the Execute, SendUser and
Reveal oracles but not to a SendServer oracle (because the server knows the passwords for all
users, one can easily simulate this oracle using the passwords). To emulate the server’s advantage
in learning information about a session key shared between honest group users, we define an
additional oracle, TestGroup as follows.

- TestGroup(Gu): This query is allowed only once by S, and only to fresh oracles, which is defined
later as freshness for TestGroup-query. On this query a simulator flips a coin b. If b is 1, then
the session key skGu of a group Gu is returned. Otherwise a string randomly drawn from a
session key distribution is returned.

Partnering. We define partnering for broadcast networks. We do not assume a synchronous
network, and a round number is appended to a broadcast message. We assume that a sender’s
identity is also appended to the message to indicate the sender of the message. Let the session
identifier sids

i be the concatenation of all broadcast messages that oracle U s
i has sent or received.

For the concatenation we assume that the messages are lexically ordered according to the sender’s
identity. Let a partner identifier pids

i for instance U s
i be a set of the identities of the users with

whom U s
i intends to establish a session key. pids

i includes Ui itself. The oracles U s
i and U t

j are
partnered if pids

i = pidt
j and sids

i = sidt
j .

Freshness for the Test-query. We define a notion of freshness considering forward secrecy which
means that an adversary does not learn any information about previously established session keys
when making a Corrupt query. We say an oracle U s

i is fresh if the following conditions hold:

- U s
i has computed a session key sks

i 6= NULL and neither U s
i nor one of its partners has been

not asked for a Reveal query.
- Neither any party in pids

i nor St has been not asked for a Corrupt query by the adversary
before a query of the form SendUser(U s

i , ∗) or SendServer(St, ∗).
Freshness for the TestGroup-query. We define a notion of freshness for TestGroup. An oracle
is said to be fresh, if no Reveal query is asked later to the oracle or one of its partners.

PAKE Security. Consider a game between an adversary A and a set of oracles.

Key secrecy with respect to outside/inside attackers.A is allowed to ask queries to the
Execute, Reveal, Corrupt and SendUser/Server oracles in order to defeat the security of a protocol
P, and receives the responses. At some point during the game a Test query is asked to a fresh
oracle, and the adversary may continue to make other queries. Finally the adversary outputs its
guess b′ for the bit b used by the Test oracle, and terminates. We define CG to be an event that
A correctly guesses the bit b. The advantage of adversary A must be measured in terms of the
security parameter k and is defined as follows:

AdvP,A(k) = 2 · Pr[CG]− 1.

The advantage function is defined as AdvP(k, t) = max
A {AdvP,A(k)}, where A is any adversary

with time complexity t which is polynomial in k.

Key secrecy with respect to servers. We assume A is the malicious server. A is allowed to
ask multiple queries to the Execute, SendUser and Reveal oracles. At some point during the game

7

a TestGroup query is asked to a fresh oracle. We define the advantage of A in breaking the key
privacy of the key exchange protocol P as Advkss

P,A(k) = 2 ·Pr[CG]− 1 and the advantage function
as Advkss

P (k, t) = max
A {Advkss

P,A(k)} as in the above definition.

Definition 1. We say a protocol P is a secure multi-party PAKE protocol without guarantee of
key secrecy with respect to servers if the following two properties are satisfied:

- Validity: if all oracles in a session are partnered, the session keys of all oracles are same.
- Key secrecy: AdvP(k, t) is bounded by qse/PW+ ε(k), where ε(k) is negligible, qse = qU

se + qS
se,

qU
se is the number of SendUser queries, qS

se is the number of SendServer queries, and PW is
the size of the password space.

(1) We say a protocol P is a secure pake protocol for multi-party without guarantee of key secrecy
against server if validity and key secrecy are satisfied when no Reveal and Corrupt queries are
allowed.

(2) We say a protocol P is a secure pake-kk protocol for multi-party without guarantee of key
secrecy against server for multi-party if validity and key secrecy are satisfied when no Corrupt
query is allowed.

(3) We say a protocol P is a secure pake-fs protocol for multi-party without guarantee of key
secrecy against server if validity and key secrecy are satisfied when no Reveal query is allowed.

(4) We say a protocol P is a secure pake-kk&fs protocol without guarantee of key secrecy against
server for multi-party if validity and key secrecy are satisfied.

Definition 2. We say a protocol P is a secure multi-party PAKE protocol guaranteeing key secrecy
with respect to servers if the validity and the following property is satisfied:

- Key secrecy: (1) AdvP(k, t) is bounded by qse/PW + ε(k); and (2) Advkss
P (k, t) is bounded by

ε(k).

(1) We say a protocol P is a secure pake-kss protocol for multi-party guaranteeing key secrecy
against server if validity and key secrecy are satisfied when no Reveal and Corrupt queries are
allowed.

(2) We say a protocol P is a secure pake-kss&kk protocol for multi-party guaranteeing key secrecy
against server if validity and key secrecy are satisfied when no Corrupt query is allowed.

(3) We say a protocol P is a secure pake-kss&fs protocol for multi-party guaranteeing key secrecy
against server if validity and key secrecy are satisfied when no Reveal query is allowed.

(4) We say a protocol P is a secure pake-kss&kk&fs protocol for multi-party guaranteeing key
secrecy against server if validity and key secrecy are satisfied.

4 Multi-Party PAKE Protocols

In this section, we present two protocols with implicit authentication, PAMKE1 and PAMKE2
in the multi-party setting; A key exchange protocol is said to provide implicit key authentication
if users are assured that no other users aside from partners can possibly learn the value of a partic-
ular secret key. The protocols require only a constant number of rounds, achieve forward secrecy,
and are secure against known-key attacks. PAMKE1 and PAMKE2 are designed without using
any ideal function and their security are proved under the DDH assumption. PAMKE1 does not
provide key secrecy with respect to servers, whereas PAMKE2 provides the key secrecy.

8

4.1 The PAMKE1 Protocol

PAMKE1 consists of three building blocks; two-party PAKE in which each user of a group and
the server exchange a secret key, detection of detectable/undetectable on-line dictionary attacks
in which each user and the server check whether there are malicious attempts or not to make
use of they as an oracle for on-line dictionary attacks, and key distribution in which the server
distributes randomly selected a secret key to each user using the secret key resulted in the two-
party PAKE. An example of an execution of PAMKE1 is shown in Fig. 1 in Appendix D.

Public information. Let G be a finite cyclic group of order q in Z∗p. Two primes p, q such that p = 2q +1, where
p is a safe prime such that the DDH problem is hard to solve in G. The terms, g1 and g2, are generators of G
having order q, where g1 and g2 must be generated so that their discrete logarithmic relation is unknown. Let H
be a hash function satisfying the collision-free property from {0, 1}∗ to Z∗q . We note that H is not modeled as a
random oracle but is just used for binding a user id and the password. Let M = (KEY.G, MAC.G, MAC.V) be a
message authentication code (MAC) algorithm. Mac.K generates a key kmac. Given kmac, MAC.G computes a tag
τ = Mac.genkmac

(M) for a message M . MAC.V verifies a message-tag pair using key kmac, and returns 1 if the
tag is valid or 0 otherwise. Let F be a pseudo random function family.

Initialization. We assume that each user Ui ∈ G and the server S have shared a password pwi, the public
information and the set of user identities Gu that wants to exchange a session key.

Two-party PAKE.

1. Each user Ui ∈ Gu chooses a random number xi ∈ Z∗q , computes Xi = gxi
1 · gH(Ui‖S‖pwi)

2 mod p.
2. Each user Ui sends (Ui||Xi) to S.

3. For each i ∈ Gu, S chooses a random number yi ∈ Z∗q , computes Yi = gyi
1 · gH(Ui‖S‖pwi)

2 mod p.
4. S sends (S||Yi) to each user Ui.

5. Upon receiving (S||Yi), each user Ui computes ki = (Yi/g
H(Ui‖S‖pwi)
2)xi mod p.

6. Upon receiving (Ui||Xi), S analogously computes ki.

Detection of undetectable/detectable on-line dictionary attacks.

1. Each user Ui computes τi,S = MAC.Gki(Ui‖S‖Xi‖Yi) and sends (Ui||τi,S) to S.
2. For each i ∈ Gu, S computes τS,i = MAC.Gki(S‖Ui‖Xi‖Yi) and sends (S||τS,i) to Ui.
3. Upon receiving (S||τS,i), each user Ui computes MAC.Vki(τS,i).
4. Each user Ui halts if MAC.V returns 0, or moves the next step otherwise.
5. Upon receiving (Ui||τi,S), for each i ∈ Gu, S checks the validity of τi,S using ki.
6. S sets a set of user identities G1

u that passes the MAC verification. Let G1
u = (U1, . . . , U|G1

u|).

Key distribution.

1. S chooses randomly a key K from {0, 1}l.
2. For each i ∈ G1

u, S computes Ki = K ⊕H(G1
u||ki).

3. S broadcasts (G1
u||U1||K1||...||U|G1

u|||K|G1
u|).

Key computation. Each user Ui computes the session key sk = FK(G1
u||sid), where sid = (K1|| . . . ||K|G1

u|).

Undetectable and detectable on-line dictionary attacks. PAMKE1 is designated to
be secure against undetectable and detectable on-line dictionary attacks in addition to off-line dic-
tionary attacks. If a failed guess can be detected and logged by the server or the users, the attacks
are not possible anymore. Our simple and efficient mechanism to detect the undetectable on-line
dictionary attacks requires from each user to prove to the server that it knows the knowledge of
password pre-shared with the server before getting the necessary information for key exchange
from the server. Upon receiving the messages for proof of knowledge, the server verifies whether
the knowledge proof is valid or not before responding according to the request of the user. If it is
valid, the server gives information to the user to complete the key exchange; this may be viewed
as a type of “challenge-response” mechanism. For realizing the proof of knowledge for a password,

9

we use a mechanism that authenticates an acknowledgment message using an MAC keyed by an
ephemeral Diffie-Hellman key generated by each user and the server. If the MAC verification is
failed, the server will notice that whose password isbeing a target of undetectable on-line dictio-
nary attacks and it be at a crisis. If the number of failing tries exceeds a predefined threshold, the
server reacts and informs the target user to stop any further use of the password and to change
the password into a new one. To prevent the detectable on-line dictionary attacks, PAMKE1 uses
the similar challenge-response mechanism; this can be viewed as a type of mechanisms for key
confirmation. If the MAC verification is failed, a user will notice that his/her password is being
a target of on-line dictionary attacks and it be at a crisis. After a small amount of detection of
failures the user stops any further use of the password and changes the password into a new one.

To generate a valid message-tag pair, there are only three ways: an adversary guesses success-
fully a correct password at once or after a small number of guess (but it is generally very low
according to the size of password space), solves the DDH problem or breaks the MAC algorithm.

Fault-tolerance. PAMKE1 has fault- tolerance. If some users of a group are disconnected by
network failures, the other users who execute the protocol correctly can successfully share a session
key without any additional message sending and delay. If after sending the acknowledgement τi,s,
the user Ui is still connected to the network, one can receive the message Ki from the server
and thus can derive the session key from the message. Of course, if the broadcast message of the
server is disappeared from the network, the server needs to resend the message.

4.2 Security Result

The following theorem shows that PAMKE1 is secure against off-line dictionary attacks since
an adversary’s capability to perform the off-line attacks is limited by its computational power,
while the adversary can only test one password per a message by himself.

Theorem 1. Let G be a group in which the DDH assumption holds and F be a secure pseudo ran-
dom function family. Then PAMKE1 is a secure pake-kk&fs protocol under the DDH assumption.
Concretely,

Advpake-kk&fs
PAMKE1(k, t, qex, qU

se, q
S
se) ≤ 2(Ns + 2qex + qU

se + qS
se) · |G| · Advddh

G (t)

+2(qU
se + qS

se) · |G| · Advsuf
M (k, qU

se, q
S
se) + 2Advprf

F (κ, T, q, h)

+
2(qU

se + qS
se)

PW +
|G|(qex + qU

se + qS
se)

2

q
.

where t is the maximum total game time including an adversary’s running time, and an adversary
makes qex Execute queries, qU

se SendUser queries, and qS
se SendServer queries. Ns is the upper bound

of the number of sessions that an adversary makes, and PW is the size of the password space.

Proof of Theorem 1. Because of the limitation of space, the proof of this theorem is given in
Appendix B.1. The proof of security for PAMKE1 defines a sequence of hybrid experiments,
starting with the real attack and ending up with an experiment where the adversary to break
key secrecy has no advantage. Each experiment having some modifications represents a different
security aspect.

4.3 The PAMKE2 Protocol

PAMKE2 is designed to resistant to curious servers. To achieve this goal, we use another ap-
proach called MAC key distribution and MAC-authenticated multi-party key exchange, instead

10

of the key distribution approach in PAMKE1. Through this mechanism, the session key is de-
termined not by the server but unbiasedly by all honest group users together. PAMKE2 is
still requires a constant number of rounds. PAMKE2 uses the mechanisms in PAMKE1 for
two-party PAKE and detection of undetectable/detectable on-line dictionary attacks, and the
unauthenticated Burmester and Desmedt’s group key exchange protocol (shortly, BD) in [12] for
the MAC-authenticated multi-party key exchange. An example of an execution of PAMKE2 is
shown in Fig. 2 in Appendix D. PAMKE2 is the same as in PAMKE1 except for the following
points:

Detection of undetectable/detectable on-line dictionary attacks.

1. S computes τS,i = MAC.Gki(Ui‖S‖Xi‖Yi) and sends (S||τS,i) to Ui.
2. Upon receiving (S||τS,i), each user Ui computes MAC.Vki(τS,i).
3. Each user Ui halts if MAC.V returns 0, or moves the next step.
4. Each user Ui chooses a random number ri ∈ Z∗q and computes τi,S = MAC.Gki(Ui‖S‖Xi‖Yi‖gri

1).
5. Each user Ui sends (Ui||τi,S ||gri

1) to S.
6. Upon receiving (Ui||τi,S ||gri

1), for each i ∈ Gu, S checks the validity of τi,S using ki.
7. S sets G1

u as the set that passes the MAC verification by arranging the identities in lexical order. Let |G1
u| = n

and G1
u = {U1, ..., Un}.

MAC key distribution and MAC-authenticated multi-party key exchange.

1. S chooses an MAC key kmac using KEY.G.
2. For each i ∈ G1

u, S computes Ki = kmac ⊕H(G1
u||ki) and σ1,i = MAC.Gkmac(Ui||αi) where αi = gri

1 mod p.
3. S broadcasts (G1

u||U1||K1||...||Un||Kn) and (Uj+1||Uj+(n−1)||αj ||σj,1) for 1 ≤ j ≤ n, where j = j mod n.
4. Upon receiving the broadcast message of S, each user Ui computes kmac from Ki using G1

u.
5. Each user Ui computes MAC.Vkmac(Ui−1||αi−1) and MAC.Vkmac(Ui+1||αi+1).
6. Each user Ui moves the next step if both MAC verifications are correct, or halts otherwise.
7. Each user Ui computes βi = (αi+1/αi−1)

ri mod p and broadcasts (Ui‖βi‖σ2,i = MAC.Gkmac(Ui‖βi)).
8. Upon receiving the broadcast messages form users, S checks if one receives all broadcast messages of users in
G1

u. If not, S requests owners of missing messages to resend the message.
9. Upon receiving (Uj‖βj‖σ2,j), for each Uj ∈ G1

u (j 6= i), each user Ui checks if the validity of σ2,j using kmac.
10. Each user Ui computes γi = (αi−1)

nri · βn−1
i · βn−2

i+1 · · ·βi−2 mod p if all the MAC verifications are correct or
halts otherwise.

Key computation. Each user Ui computes the session key ski = Fγi(G1
u||sid), where G1

u = (U1, . . . , Un), sid =

(K||α||σ1||β||σ2), K = (K1|| . . . ||Kn), α = (α1|| . . . ||αn), σ1 = (σ1,1|| . . . ||σ1,n), β = (β1|| . . . ||βn), and σ2 =

(σ2,1|| . . . ||σ2,n).

Completeness. If everything works correctly in PAGKE2, the session key computed by Ui is
ski = Fγi(G1

u||sid), where γi = gr1r2+r2r3+...+rnr1
1 mod p.

Fault-tolerance. PAMKE2 is not fully fault-tolerant. If someone among users of a group
receiving the broadcast messages from S is disconnected by network failures, the session key
computation would be failed. Because the session key is correctly shared between users, if and
only if the users involved in the MAC key distribution and MAC-authenticated multi-party key
exchange phase are linked in a cyclic. Until the cyclic structure are completed, the multi-party
key exchange may be delayed.

4.4 Security Result

Theorem 2. Let G be a group in which the DDH assumption holds, F be a secure pseudo
random function family and M be an unforgeable MAC algorithm. Then PAMKE2 is a secure

11

pake-kss&kk&fs protocol. Concretely,

Advpake-kss&kk&fs
PAMKE2 (k, t, qex, qU

se, q
S
se)

≤ 2(2Ns + 2qex + qU
se + qS

se) · |G| · Advddh
G (t) + 4Advprf

F (κ, T, q, h) +

2(qU
se + qS

se + 2) · |G| · Advsuf
M (k, qU

se) +
2(qU

se + qS
se)

PW +
|G|(qex + qU

se)
2

q
.

where the parameters are defined as in Theorem 1.

Proof of Theorem 2. The proof of this theorem is given in Appendix B.2. The proof of security for
PAMKE2 follows the same path as in Theorem 1 defining a sequence of hybrid experiments.

5 Concluding Remarks

This paper considers multi-party PAKE with different passwords and provides the first provably
secure two constant-round protocols without using any ideal function. The protocols introduced
here are the best solution since the security of the protocols is based on weaker and more reason-
able assumptions, and the protocols achieve constant-round complexity, yet much work remains
to be done to improve the computational efficiency and fault-tolerance of the protocols having
secrecy with respect to key secrecy, while preserving constant-round complexity.

References

1. M. Abdalla, E. Bresson, O. Chevassut, A. Essiari, B. M öller, and D. Pointcheval, Provably Secure Password-
Based Authentication in TLS, In Proc. of ASIACCS’06, ACM Press, pages 35-45, ACM Press, 2006.

2. M. Abdalla, E. Bresson, O. Chevassut, and D. Pointcheval. Password-based Group Key Exchange in a
Constant Number of Rounds, In Proc. of PKC ’06, LNCS 3958, pages 427 - 442 , 2006.

3. M. Abdalla, P.-A. Fouque, D. Pointcheval. Password-Based Authenticated Key Exchange in the Three-Party
Setting, In PKC05, LNCS 3386, pages 65-84, 2005.

4. M. Abdalla and D. Pointcheval. Interactive Diffie-Hellman Assumptions With Applications to Password-
Based Authentication, In FC05, LNCS 3570, pages 341-356, 2005.

5. N. Asokan and P. Ginzboorg. Key Agreement in Ad-hoc Networks, Journal of Computer Communications
23(17), pages 1627-1637, 2000.

6. M. Bellare, R. Canetti, and H. Krawczyk. A Modular Approach to the Design and Analysis of Authentication
and Key Exchange Protocols, In Proc. of 30th Annual ACM Symposium on Theory of Computing, ACM,
pages 419-428, 1998.

7. M. Bellare and P. Rogaway. Entity authentication and key distribution, In Proc. of CRYPTO ’93, LNCS
773, pages 232-249, Springer-Verlag, 1993.

8. M. Bellare and P. Rogaway. Provably secure session key distribution-the three party case, In Proc. of the
27th ACM Symposium on the Theory of Computing, 1995.

9. M. Bellare, A. Boldyreva and A. Palacio. An Uninstantiable Random-Oracle-Model Scheme for a Hybrid-
Encryption Problem, In Proc. of EUROCRYPT ’04, LNCS 3027, pages 171-188, 2004.

10. E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater. Provably Authenticated Group Diffie-
Hellman Key Exchange, In Proc. of the 8th ACM conference on Computer and Communications Security,
pages 255-264, 2001.

11. E. Bresson, O. Chevassut, and D. Pointcheval. Group Diffie-Hellman Key Exchange Secure Against Dic-
tionary Attacks, In Proc. of ASIACRYPT 2002, LNCS 2501, pages 497-514, Springer-Verlag, 2002.

12. M. Burmester and Y. Desmedt. A Secure and Efficient Conference Key Distribution System, In Proc. of
EUROCRYPT ’94, LNCS 950, pages 275-286, Springer-Verlag, 1995.

13. J. W. Byun and D. H. Lee. Password-Authenticated Key Exchange between Clients with Different Passwords,
In Proc. of ACNS ’05, LNCS 3531, pages 75-90, 2005.

14. J. W. Byun and D.H. Lee. Comments on Weaknesses in Two Group Diffie-Hellman Key Exchange Protocols,
IACR ePrint Archive, 2005/209, 2005.

15. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited, In Pro. of the 32nd
Annual ACM Symposium on Theory of Computing, pages 209-218, 1998.

12

16. R. Canetti, O. Goldreich and S. Halevi. On the Random-Oracle Methodology as Applied to Length-Restricted
Signature Schemes, In Pro. of 1st Theory of Cryptography Conference (TCC), LNCS 2951 , pages 40-57,
2004.

17. R. Canetti and H. Krawczyk. Universally Composable Notions of Key Exchange and Secure Channels. In
Eurocrypt ’02. Full version available at http://eprint.iacr.org/2002/059.

18. Y. Ding, P. Horster. Undetectable on-line password guessing attacks, ACM Operating Systems Review 29
(4) (1995) 77-86.

19. D. Denning and G. M. Sacco. Timestamps in Key Distribution Protocols, Communications of the ACM,
24(8), pages 533-536, 1981.

20. S. Goldwasser and Y. Taumen. On the (in)security of the Fiat-Shamir Paradigm, In Proc. of STOC ’03,
pages 102-115, IEEE Computer Society, 2003.

21. J. Katz, R. Ostrovsky, and M. Yung. Forward secrecy in Password-only Key Exchange Protocols, In Proc.
of SCN ’02, LNCS 2576, pages 29-44,Springer-Verlag, 2002.

22. J. Katz and J. S. Shin, Modeling Insider Attacks on Group Key-Exchange Protocols, In Proc. of CCS ’05,
pages 180-189, 2005.

23. J. Katz and M. Yung. Scalable Protocol for Authenticated Group Key Exchange, In Proc. of CRYPTO ’03,
LNCS 2729, pages 110-125, Springer-Verlag, 2003.

24. K. Kobara and H. Imai. Pretty-simple password-authenticated key-exchange under stan-
dard assumptions, IEICE Transactions, E85-A(10): 2229-2237, Oct. 2002. Also available at
http://eprint.iacr.org/2003/038/.

25. B. Klein, M. Otten, T. Beth, Conference Key Distribution Protocols in Distributed Systems, In Proc. of
Codes and Ciphers-Cryptography and Coding IV, IMA, page 225-242, 1995.

26. S. M. Lee, J. Y. Hwang and D. H. Lee. Efficient Password-Based Group Key Exchange, In Proc. of TrustBus
’04, LNCS 3184, pages 191-199, Springer-Verlag, 2004.

27. P. MacKenzie. More Efficient Password Authenticated Key Exchange, In Proc. of the RSA Data Security
Conference, Cryptographer’s Track (RSA CT ’01), LNCS 2020, pages 361-377, Springer-Verlag, 2001.

28. A. Mayer and M. Yung. Secure Protocol Transformation via “Expansion”: From Two- Party to Groups, In
Proc. of 6th ACM Conference on Computer and Communication Security, ACM, pages 83-92, 1999.

29. M. Naor and O. Reingold. Number-Theoretic Constructions of Efficient Pseudo-Random Functions, In
Proc. of the 38th IEEE Symposium on Foundations of Computer Science, pages 458-467, IEEE Computer
Society, 2004.

30. J. B. Nielsen. Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-Committing
Encryption Case, In Proc. of CRYPTO ’02, LNCS 2442, pages 111-126, 2002.

31. Raphael C.-W. Phan and B.-M Goi. Cryptanalysis of the N-Party Encrypted Diffie-Hellman Key Exchange
Using Different Passwords, In Proc. of ACNS ’06, LNCS ??, pages ??-??, Springer-Verlag, 2006.

32. V. Shoup. On Formal Models for Secure Key Exchange, Draft, 1999. Available at
http://eprint.iacr.org/1999/012.

33. Q. Tang and L. Chen. Weaknesses in Two Group Diffie-Hellman Key Exchange Protocols, IACR ePrint
Archive, 2005/197, 2005.

34. Wen-Guey Tzeng, A Practical and Secure-Fault-Tolerant Conferenc-Key Agreement Protocol, In Porc. of
PKC 2000, volume 1751 of Lecture Notes in Computer Science, page 1-13, Springer Verlag, 2000.

35. Wen-Guey Tzeng and Zhi-Jia Tzeng, Round-Efficient Conference Key Agreement Protocols with Provable
Security, Asiacrypt 2000, LNCS 1976, pages 614-627, 2004.

A Primitives

Decisional Diffie-Hellman Assumption. Let G = 〈g〉 be any finite cyclic group of prime order
q. The DDH problem is defined as follows: given a triple (U, V,W), determine that the triple is
a Diffie-Hellman triple (ga, gb, gab) or a random triple (ga, gb, gr). The advantage of an algorithm
A, Advddh

G,A(t), running in time t is ε, if

|Pr[a, b ← Zq : A(g, ga, gb, gab) = 1]− Pr[a, b, r ← Zq : A(g, ga, gb, gr) = 1]| ≥ ε.

We say the DDH assumption holds in G if no probabilistic polynomial time algorithm A can
solve the DDH problem with non-negligible advantage. We let Advddh

G (t) denote the maximum
advantage which is over all adversaries As running in time at most t.

13

Diffie-Hellman Random Self-Reducibility [29]. We use a multiplicative subgroup G of Z∗p,
where p is a prime, q is a prime divisor of p − 1, and g is a generator of G. We say that a
probabilistic polynomial-time algorithm R is a random self-reducing algorithm, if R on any input
〈p, q, g, ga, gb, gc〉 outputs 〈p, q, g, ga′ , gb′ , gc′〉 such that if c = a · b mod q, then c′ = a′ · b′ mod q,
otherwise a′, b′, and c′ are all random elements in Zq, where a, b and c are randomly selected from
Zq. Such R can be constructed as follows:

R chooses s1, s2 and σ uniformly in Zq, and computes

ga′ = (ga)σ · gs1 , gb′ = gb · gs2 ,

gc′ = (gc)σ · (ga)σ·s2 · (gb)s1gs1·s2

and outputs
〈p, q, g, ga′ , gb′ , gc′〉.

Pseudorandom Functions. Let F : Keys(F)×D → R be a family of functions, and g : D → R
a random function. A is an algorithm that takes an oracle access to a function and returns a bit.
We consider two experiments:

Expprf-1
F ,A Expprf-0

F ,A
K

R← Keys(F) g
R← RandD→R

d ← AFK(·) d ← Ag(·)

return d return d

The advantage of an adversary A is defined as follows:

Advprf
F ,A = Pr[Expprf-1

F ,A = 1]− Pr[Expprf-0
F ,A = 1].

The advantage function is defined as follows:

Advprf
F (κ, T, q, µ) = max

A {Advprf
AF,A},

where A is any adversary with time complexity T making at most q oracle queries and the sum
of the length of these queries being at most µ bits. The scheme F is a secure pseudo random
function family if the advantage of any adversary A with time complexity polynomial in κ is
negligible.

Message Authentication Codes. A message authentication code (MAC) algorithm consists of
three algorithm, M = (KEY.G,MAC.G, MAC.V). Mac.K generates a key kmac. Given kmac, MAC.G
computes a tag τ = MAC.Gkmac(M) for a message M . MAC.V verifies a message-tag pair using
key kmac, and returns 1 if the tag is valid or 0 otherwise.

In defining the security of an MAC we use the standard definition of strong unforgeability
under adaptive chosen-message attack. Namely, let M be an MAC scheme and A be an adversary,
and consider the following experiment:

Expsuf
A,M(k)

kmac ← {0, 1}k

(M, τ) ← AMkmac (·)(1k)
if MAC.Vkmac(M, τ) = 1 and oracle MAC.Gkmac(·)

never returned τ on input M then return 1
else return 0

14

The advantage of an adversary A is defined as: Advsuf
A,M(k) = Pr

[
Expsuf

A,M(k) = 1
]
. We say that

M is strongly unforgeable (SUF-secure) if Advsuf
A,M(k) is negligible for all ppt algorithms A. When

we are interested in a concrete security analysis, we drop the dependence on k and say that M is
(t, q, ε)-SUF-secure if Advsuf

A,M ≤ ε for all A running in time t and making at most q queries to its
M oracle. (We remark that allowing N queries to an oracle MAC.Vkmac(·, ·) cannot increase the
advantage of an adversary by more than a factor of N .)

B Proofs of Theorems

B.1 Proof of Theorem 1

Consider an adversary A attacking PAMKE1 in the sense of forward secrecy and security against
known-key attacks. In this proof, we prove that the best strategy the adversary can take is to
eliminate one password from one password dictionary per initiated session. Assume that A breaks
PAMKE1 with a non-negligible probability. The advantage of A is from the following two cases:

(Case 1) For the Test oracle U s
i , all parties in pids

i have a partner oracle.
(Case 2) For the Test oracle U s

i , there exists at least one party Uj (j 6= i ∧ Uj ∈ pids
i) such

that Uj does not have a partner oracle.

For i ∈ {1, 2}, let Advpake-kk&fs-Case i
PAMKE1 (k, t, qex, qU

se, q
S
se) be the advantage of an adversary from Case

i. Then we have

Advpake-kk&fs
PAMKE1(k, t, qex, qU

se, q
S
se) = Advpake-kk&fs-Case1

PAMKE1 (k, t, qex, qU
se, q

S
se)+Advpake-kk&fs-Case 2

PAMKE1 (k, t, qex, qU
se, q

S
se).

Case 1 measures forward secrecy of PAMKE1, which means that even with the long-term keys
of parties any adversary does not learn any information about session keys which are successfully
established between honest parties without any interruption. Consider the advantage from Case 1.

Claim 1. Advpake-kk&fs-Case 1
PAMKE1 (k, t, qex, qU

se, q
S
se) ≤ 2qex|G| · Advddh

G (t) + |G|(qex+qU
se+qS

se)
2

q .

Proof of Claim 1. If the advantage of an adversary is from Case 1, the passwords of the parties
may be revealed by Corrupt queries. Although Corrupt queries are allowed for the Test oracle Πs

i ,
all instances in pids

i are executed by Execute queries by the definition of freshness. This case can
be viewed that there are no passwords in the protocol, and thus we may ignore Corrupt queries.

A user may get information about the session key of a particular session that he did not
participate, if a random number used by he is used twice by other users or the server in other
sessions. The other case allows us to solve the DDH problem.

The advantage from Case 1 is as the follow:

Advpake-kk&fs-Case 1
PAMKE1 (k, t, qex, qU

se, q
S
se) = Advpake-kk&fs-Case 1-Col

PAMKE1 (k, t, qex, qU
se, q

S
se) +

Advpake-kk&fs-Case 1-Col
PAMKE1 (k, t, qex).

Let Col be the event that there exists a user Ui in session s such that the random number
xi used by instance U s

i is equal to the random number used by instance Uj (i 6= j) or S in
session s′. The probability that this event occurs Pr[Col] is bounded by the birthday paradox as
|G|(qex+qU

se+qS
se)

2

2q ; this immediately implies that

Advpagke-kk&fs-Case 1-Col
PAGKE1 (k, t, qex, qU

se, q
S
se) = 2Pr[CG ∧ Col]− 1 ≤ 2Pr[Col] ≤ |G|(qex + qU

se + qS
se)

2

q
,

(1)

15

where q is the size of the group G.

We consider the advantage in the case without event Col. We assume an adversary A making
only a single Execute(Gu,St) query (notice that this is sufficient for supporting Theorem 1). The
set Gu and the number of parties are chosen by A. Let Gu = G1

u = {U1, ..., Un}. The distribution
of the transcript T and the resulting session key sk of PAMKE1 is given by:

Real def=





x1, · · · , xn, y1, · · · , yn ← Z∗q ; gx1
1 , · · · , gxn

1 ; gy1
1 , · · · , gyn

1 ; K ← {0, 1}l

τ1,S = MAC.Gg
x1y1
1

(U1‖S‖gx1
1 ‖gy1

1), τ2,S = MAC.Gg
x2y2
1

(U2‖S‖gx2
1 ‖gy2

1), · · · ,

τn,S = MAC.Ggxnyn
1

(Un‖S‖gxn
1 ‖gyn

1); τS,1 = MAC.Gg
x1y1
1

(S‖U1‖gx1
1 ‖gy1

1),
τS,2 = MAC.Gg

x2y2
1

(S‖U2‖gx2
1 ‖gy2

1), · · · , τS,n = MAC.Ggxnyn
1

(S‖Un‖gxn
1 ‖gyn

1)
K1 = K ⊕H(G1

u||gx1y1
1), K2 = K ⊕H(G1

u||gx2y2
1), · · · ,Kn = K ⊕H(G1

u||gxnyn
1)

T = (gx1
1 , · · · , gxn

1 , gy1
1 , · · · , gyn

1 , τ1,S , · · · , τn,S , τS,1, · · · , τS,n,K1, · · · ,Kn)
sk = FK(G1

u||K1|| . . . ||Kn)





.

Consider the following randomized distribution:

Exp1
def=





w1, x1, · · · , xn, y1, · · · , yn ← Z∗q ; gx1
1 , · · · , gxn

1 ; gy1
1 , · · · , gyn

1 ; K ← {0, 1}l

τ1,S = MAC.Gg
w1
1

(U1‖S‖gx1
1 ‖gy1

1), τ2,S = MAC.Gg
x2y2
1

(U2‖S‖gx2
1 ‖gy2

1), · · · ,

τn,S = MAC.Ggxnyn
1

(Un‖S‖gxn
1 ‖gyn

1); τS,1 = MAC.Gg
w1
1

(S‖U1‖gx1
1 ‖gy1

1),
τS,2 = MAC.Gg

x2y2
1

(S‖U2‖gx2
1 ‖gy2

1), · · · , τS,n = MAC.Ggxnyn
1

(S‖Un‖gxn
1 ‖gyn

1)
K1 = K ⊕H(G1

u||gw1
1),K2 = K ⊕H(G1

u||gx2y2
1), · · · ,Kn = K ⊕H(G1

u||gxnyn
1)

T = (gx1
1 , · · · , gxn

1 , gy1
1 , · · · , gyn

1 , τ1,S , · · · , τn,S , τS,1, · · · , τS,n,K1, · · · ,Kn)
sk = FK(G1

u||K1|| . . . ||Kn)





.

A standard argument shows that for any probabilistic polynomial-time (ppt) algorithmA running
in time t:

|Pr[(T , sk) ← Real : A(T , sk) = 1]− Pr[(T , sk) ← Exp1 : A(T , sk) = 1]| ≤ Advddh
G (t).

Consider the following additionally randomized distribution:

Exp2
def=





w1, w2, x1, · · · , xn, y1, · · · , yn ← Z∗q ; gx1
1 , · · · , gxn

1 ; gy1
1 , · · · , gyn

1 ; K ← {0, 1}l

τ1,S = MAC.Gg
w1
1

(U1‖S‖gx1
1 ‖gy1

1), τ2,S = MAC.Gg
w2
1

(U2‖S‖gx2
1 ‖gy2

1), · · · ,

τn,S = MAC.Ggxnyn
1

(Un‖S‖gxn
1 ‖gyn

1); τS,1 = MAC.Gg
w1
1

(S‖U1‖gx1
1 ‖gy1

1),
τS,2 = MAC.Gg

w2
1

(S‖U2‖gx2
1 ‖gy2

1), · · · , τS,n = MAC.Ggxnyn
1

(S‖Un‖gxn
1 ‖gyn

1)
K1 = K ⊕H(G1

u||gw1
1), K2 = K ⊕H(G1

u||gw2
1), · · · ,Kn = K ⊕H(G1

u||gxnyn
1)

T = (gx1
1 , · · · , gxn

1 , gy1
1 , · · · , gyn

1 , τ1,S , · · · , τn,S , τS,1, · · · , τS,n, K1, · · · ,Kn)
sk = FK(G1

u||K1|| . . . ||Kn)





.

A standard argument shows that for any ppt algorithm A running in time t:

|Pr[(T , sk) ← Exp1 : A(T , sk) = 1]− Pr[(T , sk) ← Exp2 : A(T , sk) = 1]| ≤ Advddh
G (t).

Continuing in this way, we obtain the following distribution:

Expn
def=





w1, · · · , wn, x1, · · · , xn, y1, · · · , yn ← Z∗q ; gx1
1 , · · · , gxn

1 ; gy1
1 , · · · , gyn

1 ; K ← {0, 1}l

τ1,S = MAC.Gg
w1
1

(U1‖S‖gx1
1 ‖gy1

1), τ2,S = MAC.Gg
w2
1

(U2‖S‖gx2
1 ‖gy2

1), · · · ,

τn,S = MAC.Ggwn
1

(Un‖S‖gxn
1 ‖gyn

1); τS,1 = MAC.Gg
w1
1

(S‖U1‖gx1
1 ‖gy1

1),
τS,2 = MAC.Gg

w2
1

(S‖U2‖gx2
1 ‖gy2

1), · · · , τS,n = MAC.Ggwn
1

(S‖Un‖gxn
1 ‖gyn

1)
K1 = K ⊕H(G1

u||gw1
1),K2 = K ⊕H(G1

u||gw2
1), · · · ,Kn = K ⊕H(G1

u||gwn
1)

T = (gx1
1 , · · · , gxn

1 , gy1
1 , · · · , gyn

1 , τ1,S , · · · , τn,S , τS,1, · · · , τS,n,K1, · · · ,Kn)
sk = FK(G1

u||K1|| . . . ||Kn)





.

16

For any ppt algorithm A running in time t, we have via standard hybrid argument:

|Pr[(T , sk) ← Real : A(T , sk) = 1]− Pr[(T , sk) ← Expn : A(T , sk) = 1]| ≤ n · Advddh
G (t). (2)

Consider the values K, H(G1
u||gw1

1), · · · ,H(G1
u||gwn

1) in experiment Expn. They are constrained
according to the following n equations:

K1 = K ⊕ H(G1
u||gw1

1)
...

Kn = K ⊕ H(G1
u||gwn

1)

Since only n − 1 of them are linearly independent, the value of K is independent of the set of
equations, and thus about the value of sk. This implies that, for any A:

Pr[(T , sk0) ← Expn; sk1
R← {0, 1}l; b R← {0, 1} : A(T , skb) = b] = 1/2. (3)

Combining with Equations (2), (3) and the fact that n ≤ |G|, we get Advpake-kk&fs-Case 1-Col
PAMKE1 (k, t, 1)

≤ 2|G| · Advddh
G (t). We note that this immediately yields via a standard hybrid argument that

Advpake-kk&fs-Case 1-Col
PAMKE1 (k, t, qex) ≤ 2qex|G| · Advddh

G (t). (4)

This result stated in the theorem can be obtained using random self-reducibility properties of
the DDH problem following [32] and will appear in the full version.

Equations (1) and (4) yield the the desired result.

Claim 2. The advantage from Case 2 is following:

Advpake-kk&fs-Case 2
PAMKE1 (k, t, qex, qU

se, q
S
se) ≤ 2(Ns + qU

se + qS
se) · |G| · Advddh

G (t)
+2(qU

se + qS
se) · |G| · Advsuf

M (k, qU
se, q

S
se)

+2Advprf
F (κ, T, q, h) +

2(qU
se + qS

se)
PW .

Proof of Claim 2. To compute the upper bound of the advantage from Case 2, we assume that
an adversary A gets the advantage from Case 2. In this case, the passwords of the parties are not
revealed by freshness conditions. Informally, there are only two ways an adversary can get infor-
mation about a particular session key; either the adversary successfully breaks the authentication
part, which means that the adversary correctly guesses the passwords, or correctly guesses the
bit b involved in the Test query.

To evaluate this advantage, we incrementally define a sequence of hybrid experiments having
some modifications per each experiment, starting at the real experiment Exp0 and ending up
with Exp5. We simulate the experiments and then consider the adversary attacking the simulated
protocol. We denote the probability that an event E occurs in Expi as Pri[E].

Experiment Exp0. This is the real attack, in which the server and each user are given pwi for
Ui ∈ G. In this experiment, all the oracles in the game defining the advantage of an adversary in
Section 3, are allowed to the adversary. The instances of parties answer to each SendUser query
and each SendServer query with independent random exponents, respectively and the Execute
query is proceeded similarly. Thus, the instances can easily answer to the Reveal, Corrupt, and
Test queries. By definition,

Pr0[CG] = (Advpake-kk&fs
PAMKE1(k, t, qex, qU

se, q
S
se) + 1)/2. (5)

17

Experiment Exp1. We define the event AskSend-WithPW as the event that a flow m is generated
by the adversary under pw and a SendUser(U s

i ,m) query or a SendServer(St,m) query is asked.
In this experiment, we delete the executions wherein event AskSend-WithPW occurs. In these
executions, we stop choosing b′ at random:

|Pr0[CG]− Pr1[CG]| ≤ Pr1[AskSend-WithPW]. (6)

Experiment Exp2. In this experiment, we replace each of the MAC key used as input in the
detection phase of undetectable/detectable on-line dictionary attacks with a random key, using
standard hybrid arguments. We can use a standard hybrid argument because the MAC keys are
all independent ones. We show that the difference between the success probability of an adversary
in the previous and current experiments is negligible, if the DDH assumption holds and as soon
as AskSend-WithPW does not occur. Formally,

|Pr1[CG]− Pr2[CG]| ≤ Ns · |G| · Advddh
G (t).

To measure the above probability, we define a series of |Gu| + 1 games, G0
2,...,G|Gu|

2 . G0
2 is the

same with experiment Exp1. Let |Gu| = n. Gt
2 (for 1 ≤ t ≤ |Gu|) is defined as the follow:

Gt
2

1. Select the passwords for all users in G executing PG(1κ).
2. For all 1 ≤ l ≤ t, select a random number wl, and use gwl

1 (i.e., at random) instead of
kl = gxlyl

1 as the MAC key.
3. For all t < l ≤ n, use kl = gxlyl

1 (i.e., according to the protocol) as the MAC key.
4. Compute the session key as in Exp1.
5. For all oracle queries of an adversary, answer to them as in Exp1.

We construct a distinguisher Dt−1,t
2 which solves the DDH problem using a difference of the

advantages of an adversary A in Gt−1
2 and Gt

2. Dt−1,t
2 is given (g1, U, V,W) that an instance of

the DDH problem whose base is g1. Dt−1,t
2 uses the instance by the random self-reducibility of the

DDH problem. Dt−1,t
2 perfectly simulates Gt-1 or Gt depending on whether or not (g1, U, V,W) is

a DDH triple. That is, if (g1, U, V, W) is the DDH triple, Dt−1,t
2 simulates Gt-1 or Gt otherwise.

We assume A making only a single Execute query and a single SendUser or SendServer query.
Let SendUserr(U s

i ,m) be the r-th round’s SendUser query to the instance (SendServerr(St,m) is
analogously defined). The concrete description of Dt−1,t

2 is as the follow:

D0,1
2 (g1, U, V, W)

1. Select the passwords for all users in G executing PG(1κ).

2. Give A the passwords for all malicious users in G.

3. For Execute(Gu, St), SendUser1(U s
i , St) and SendServer1(St, U s

i), randomly select σ, s1, s2, and
compute U = Uσ ·gs1

1 and V = V ·gs2
1 . Compute X1 = U·gH(U1‖S‖pw1)

2 ,X2 = gx2
1 ·gH(U2‖S‖pw2)

2 ,...,
Xn = gxn

1 ·gH(Un‖S‖pwn)
2 , Y1 = V·gH(U1‖S‖pw1)

2 ,Y2 = gy2
1 ·gH(U2‖S‖pw2)

2 ,...,Yn = gyn
1 ·gH(Un‖S‖pwn)

2 .

4. For Execute(Gu, St), SendUser2(U s
i , m) and SendServer2(St,m), compute W = W σ · Uσs2 ·

V s1 · gs1s2
1 . Use W as the MAC key, τ1,S (τS,1), and use gx2y2

1 ,...,gxnyn
1 as the MAC key τ2,S

(τS,2),...,τn,S (τS,n), respectively.

18

5. Compute the session key as in Exp1.

6. For Test(U s
i), check whether all users in Gu have the same session key. If this check fails, return

the invalid symbol ⊥. If this check is correct and if U s
i is fresh, return sk without coin flipping.

7. For all oracle queries of A, answer to them following the protocol under the above restriction.

8. If A terminates with b′, D0,1
2 returns b′ and halts.

D1,2
2 (g1, U, V, W): Same as D0,1

2 except following points.

1. For Execute(Gu, St), SendUser1(U s
i , St) and SendServer1(St, U s

i), randomly select σ, s1, s2, w1,
and compute U = Uσ · gs1

1 and V = V · gs2
1 . Compute X1 = gx1

1 · gH(U1‖S‖pw1)
2 ,X2 = U ·

g
H(U2‖S‖pw2)
2 ,X3 = gx3

1 · gH(U1‖S‖pw3)
2 ,..., Xn = gxn

1 · gH(Un‖S‖pwn)
2 , Y1 = gy1

1 · gH(U1‖S‖pw1)
2 ,Y2 =

V · gH(U2‖S‖pw2)
2 ,Y3 = gy3

1 · gH(U3‖S‖pw3)
2 ,...,Yn = gyn

1 · gH(Un‖S‖pwn)
2 .

2. For Execute(Gu, St), SendUser2(U s
i ,m) and SendServer2(St,m), compute W = W σ ·Uσs2 ·V s1 ·

gs1s2
1 . Use gw1

1 as the MAC key, τ1,S (τS,1), and use W as the MAC key, τ2,S (τS,2). Use
gx3y3
1 ,...,gxnyn

1 as the MAC key, τ3,S (τ3,n),...,τn,S (τS,n), respectively.

3. If A terminates with b′, D1,2
2 returns b′ and halts.

Continuing in this way, we get the following distinguisher.

Dn−1,n
2 (g1, U, V, W) : Same as Dn−2,n−1

2 except following points.

1. For Execute(Gu, St), SendUser1(U s
i , St) and SendServer1(St, U s

i), randomly select σ, s1, s2, w1, ...,

wn, and compute U = Uσ · gs1
1 and V = V · gs2

1 . Compute X1 = gx1
1 · g

H(U1‖S‖pw1)
2 ,...,

Xn−1 = g
xn−1

1 · gH(Un−1‖S‖pwn−1)
2 , Xn = U · gH(Un‖S‖pwn)

2 , Y1 = gy1
1 · gH(U1‖S‖pw1)

2 ,...,Yn−1 =
g

yn−1

1 · gH(Un−1‖S‖pwn−1)
2 ,Yn = V · gH(Un‖S‖pwn)

2 .

2. For Execute(Gu, St), SendUser2(U s
i ,m) and SendServer2(St,m). Use gw1

1 ,...,gwn
1 as the MAC

key, τ1,S (τS,1),...,τn,S (τS,n), respectively.
3. If A terminates with b′, Dn−1,n

2 returns b′ and halts.

Consider the case that the message Xi or Yi of SendServer1(St, Xi) and SendUser1(U s
i , Yi) has

not been previously computed by Dt−1,t
2 . Even though the instance involved in the SendServer

or SendUser1(U s
i , Yi) accepts itself, its partners may not be oracle instances. Thus a Test query

involving this instance may always return the invalid symbol ⊥. Therefore the advantage of Dt,t−1
2

is as the follow (for 1 ≤ t ≤ n):

Advddh
G,Dt−1,t

2

= |Pr[u, v
R← Z∗q ; (g1, U, V, W) ← (g1, g

u
1 , gv

1 , guv
1) : D0,1

2 (g1, U, V, W) = 1]−

Pr[u, v, w
R← Z∗q ; (g1, U, V, W) ← (g1, g

u
1 , gv

1 , gw
1) : D0,1

2 (g1, U, V, W) = 1]|
= |Prt−1

2 [CG]− Prt
2[CG]|,

which leads |Pr02[CG]−Prn
2 [CG]| ≤ |G| ·Advddh

G (t). We note that the hybrid allow us to define Ns

different experiments where Ns is the upper bound of the number of sessions that an adversary
makes, and also immediately yields that |Pr02[CG]− Prn

2 [CG]| ≤ Ns · |G| · Advddh
G (t).

19

We have the desire result between Exp1 and Exp2:

|Pr1[CG]− Pr2[CG]| ≤ Ns · |G| · Advddh
G (t). (7)

Experiment Exp3. In this experiment, we replace the pseudo random function family F used
to derive a session key with a random function. That is, in Exp2, a session key is computed by
using a pseudo random function family F , while in Exp3, a session key is computed by using a
random function g. We show that the difference between the success probability of an adversary
in the previous and current experiments is negligible, if F is a secure pseudo random function
family. Formally,

|Pr2[CG]− Pr3[CG]| = Advprf
F (κ, T, q, h). (8)

Consider a distinguisher D to break pseudo randomness of a pseudo random function family F
using the difference of the advantages of an adversary A in Exp2 and Exp3. D is given an oracle
function f(·) in the experiment of pseudo randomness of the function family F . D simulates Exp2

or Exp3 depending on whether f(·) is a function from F or not. The more concrete description
of D is as the follow:

Df(·)

1. For all oracle queries of A, D answers to them as in Exp2 by using an oracle function f(·)
instead of F to make a session key.

2. If A terminates with b′, D returns b′ and halts.

The advantage of D to break a pseudo random function family (with probability related to A’s
success probability) is as the follow.

Advprf
F (κ, T, q, h) = |Pr[K R← Keys(F) : DFK(·) = 1]− Pr[g R← RandD→R : Dg(·) = 1]|

= |Pr2[CG]− Pr3[CG]|.

In Exp3, answers to the Test query are purely random. That is, this implies the the bit b used
by the Test oracle cannot be guessed by the adversary better than at random:

Pr3[CG] =
1
2
. (9)

From Equations (5), (6), (7), (8) and (9), the advantage from Case 2 is bounded as the follow:

Advpake-kk&fs-Case 2
PAMKE1 (k, t, qex, qU

se, q
S
se)

≤ 2(Pr1[AskSend-WithPW] + Ns · |G| · Advddh
G (t) + Advprf

F (κ, T, q, h)).

Probability of Event AskSend-WithPW. The security against detectable and undetectable on-
line dictionary attacks are measured by the probability that AskSend-WithPW occurs. To measure
Pr1[AskSend-WithPW], we define two auxiliary experiments Exp3′ and Exp3? similar to Exp3.

In experiment Exp3′ , we change the computation of the MAC key computaions. We replace
each of the MAC key with a random key using standard hybrid arguments. After this modification,
the probability for the adversary to see the difference between previous and current experiments
is to forge a new, valid message-tag pair, after having seen at most qU

se or qS
se valid message-tag

20

pairs. Where the message was not previously sent by a user or the server. We have via a standard
hybrid argument:

|Pr3[AskSend-WithPW]− Pr3′ [AskSend-WithPW]| ≤ (qU
se + qS

se) · |G| · Advsuf
M (k, qU

se, q
S
se).

In experiment Exp3? , the view of the adversary is perfectly independent from the password of
user. The difference between the experiments is in the way the Execute, SendUser and SendServer
queries are answered. In this experiment, on Send0(Ui, S

t) or Send0(St, Ui), Ui and S randomly
choose Xi and Yi from G, and send them, respectively. Notice that in Exp3′ , Ui and S compute
Xi = gxi

1 · gH(Ui‖S‖pwi)
2 mod p and Yi = gyi

1 · gH(Ui‖S‖pwi)
2 mod p, and send them, respectively. For

any an adversary, we have via a standard hybrid argument:

|Pr3′ [AskSend-WithPW]− Pr3? [AskSend-WithPW]| ≤ (qU
se + qS

se) · |G| · Advddh
G (t).

In Exp3? , the adversary can not get information of the passwords with instances of the
protocol by off-line manner from an information-theoretical viewpoint since the transcripts are
indistinguishable from a random transcript in G. Thus the transcripts are completely independent
from the passwords. One remarks that the passwords cannot be correctly guessed by the adversary
better than sending a message generated under a guessed password:

Pr3? [AskSend-WithPW] = (qU
se + qS

se)/PW.

The above three equations combined with Pr1[AskSend-WithPW] = Pr2[AskSend-WithPW] =
Pr3[AskSend-WithPW] lead to that

Pr1[AskSend-WithPW] =
(qU

se + qS
se)

PW + (qU
se + qS

se) · |G| · (Advsuf
M (k, qU

se, q
S
se) + Advddh

G (t)). (10)

Finally, Claim 1 and Claim 2 yield the statement of the theorem:

Advpake-kk&fs
PAMKE1(k, t, qex, qU

se, q
S
se) ≤ 2(Ns + 2qex + qU

se + qS
se) · |G| · Advddh

G (t)

+2(qU
se + qS

se) · |G| · Advsuf
M (k, qU

se, q
S
se) + 2Advprf

F (κ, T, q, h)

+
2(qU

se + qS
se)

PW +
|G|(qex + qU

se + qS
se)

2

q
.

B.2 Proof of Theorem 2

Consider an adversary A attacking PAMKE2 in the sense of forward secrecy and security against
known-key attacks. In this proof, we also consider a curious server S attacking key privacy. Assume
that A breaks PAMKE2 with a non-negligible probability.

A user may get information about the session key of a particular session that it did not
participate, if a transcript αi (in phase for MAC key distribution and MAC-authenticated multi-
party key exchange) by it is used twice by other users in other sessions; i.e., there exists a user
Ui in session s such that random number ri used by instance Ui is equal to the random number
used by instance Uj (i 6= j) in session s′. We denote this event as Repeat. The other cases allow
us to solve the DDH problem, break strong unforgeability of the underling MAC algorithm or
break pseudo randomness of a pseudo random function family (with probability related to the
adversary’s success probability). We now proceed with a more formal proof.

The advantage with event Repeat is bounded by the birthday paradox:

Advpagke-kk&fs
PAGKE2 (k, t, qex, qU

se, q
S
se) = 2Pr[CG ∧ Repeat]− 1 ≤ 2Pr[Repeat] ≤ |G|(qex + qU

se)
2

q
. (11)

21

The advantage of A without event Repeat is from Case 1 and Case 2 which are defined in the
proof of Theorem 1.

Claim 3. Advpake-kk&fs-Case 1
PAMKE2 (k, t, qex) ≤ 4qex|G| · Advddh

G (t).

Proof of Claim 3. Proving this advantage follows the same path as proving Advpake-kk&fs-Case 1-Col
PAMKE1

in Claim 1 (although Col occurs in an execution of PAMKE2, a user can not obtain information
about the session key of a particular session that it did not participate). Consider the MAC-
authenticated multi-party key exchange phase. This converts the unauthenticated BD scheme
to an authenticated protocol using the shared MAC key. Since the MAC key is not used to
derive a session key, it does not leak any information about a session key. Thus we may ignore
the authenticator using an MAC algorithm in the MAC-authenticated multi-party key exchange
phase. Therefore we can see the advantage of an adversary breaking key secrecy by attacking the
MAC-authenticated multi-party key exchange phase (i.e., the BD scheme) as the follow:

Advgke-fs
BD (k, t, qex) ≤ 2qex|G| · Advddh

G (t), (12)

which is proved in [23].

From Equation (12) and Advpake-kk&fs-Case 1-Col
PAMKE1 , we can get the desired result and hence we

omit the details.

Claim 4. The advantage from Case 2 is as the follow:

Advpake-kk&fs-Case 2
PAMKE2 (k, t, qex, qU

se, q
S
se) ≤ 2(Ns + qU

se + qS
se) · |G| · Advddh

G (t) + 2Advprf
F (κ, T, q, h) +

2(qU
se + qS

se + 2) · |G| · Advsuf
M (k, qU

se) +
2(qU

se + qS
se)

PW .

Proof of Claim 4. Proving this advantage follows the same path as that in Claim 2, until the
experiment Exp2:

Experiment Exp3. Let Forge be the event that an adversary A against key privacy outputs a
new, valid message-tag pair where the message was not previously sent by a user. In other words,
A is sending a message it has built by itself, after having seen at most qU

se valid message-tag pairs.
We construct M which breaks MAC algorithm M using A. M is given an MAC generation oracle
MAC.G(·) and an MAC verification oracle MAC.V (·). The concrete description of M is as the
follow:

MMAC.G(·),MAC.V (·)

1. Select the passwords for all users in G executing PG(1κ).
2. Select i′ from [1, |G|] and use MAC oracles to generate and verify MAC values of Ui′ .
3. For Corrupt queries, answer normally. If A queries Corrupt(Ui′), terminate with a random bit.
4. For all oracle queries of A, answer as in Exp3 under the above restriction.
5. If a forged message-tag pair (m,σ) for Ui′ is found during simulation such that MAC.V (m, σ) =

1, output (m,σ) and halt.

The success probability of M depends on whether or not A makes a forged massage-tag pair and
M correctly guesses i′. If these guesses are correct (and unless AskSend-WithPW does not occur),
the simulation is perfect. So this immediately implies that

22

|Pr2[CG]− Pr3[CG]| ≤ Pr[Forge] ≤ |G| · Advsuf
M (k, qU

se). (13)

Experiment Exp4. We replace the pseudo random function family F used to derive a session key
with a random function. This experiment is equal to Exp3 in Claim 2. Then it is straightforward
to see that

|Pr3[CG]− Pr4[CG]| = Advprf
F (κ, T, q, h). (14)

Pr4[CG] =
1
2
. (15)

Probability of Event AskSend-WithPW. The result of Pr1[AskSend-WithPW] in PAMKE2
is identical to that in PAMKE1 since the parts that the passwords are used are equal in both
protocols.

From Equations (5), (6), (7), (10), (13), (14) and (15), the advantage from Case 2 is bounded
as the follow:

Advpake-kk&fs-Case 2
PAMKE2 (k, t, qex, qU

se, q
S
se) ≤ 2(Ns + qU

se + qS
se) · |G| · Advddh

G (t) + 2Advprf
F (κ, T, q, h) +

2(qU
se + qS

se + 2) · |G| · Advsuf
M (k, qU

se) +
2(qU

se + qS
se)

PW .

Claim 5. Advkss
PAMKE2(k, t, qex, qU

se) ≤ 2Ns · |G| · Advddh
G (t) + 2Advprf

F (κ, T, q, h).

Proof of Claim 5. This claim shows that PAMKE2 provides key secrecy with respect to the
server, if the DDH assumption holds in G and if F is a secure pseudo random function family.
Assume that a curious server S breaks key privacy with a non-negligible probability. In order
to measure the advantage of S, we define a series of n + 1 experiments, Exp0,...,Expn, where
|Gu| = n. G0 is the real attack in which the server and each user are given pwi for all Ui ∈ G.
S can access to the Execute, SendUser, Reveal and TestGroup oracles. Since the instances for user
know the password, they can easily answer to the queries. By definition,

Pr0[CG] = (Advkss
PAMKE2(k, t, qex, qU

se) + 1)/2.

Exp1 : All oracle queries are answered as in Exp0 except for Execute and SendUser5(Gu,m)
queries.

1. For Execute/SendUser5(Gu,m), select w1,2 at random from Z∗q , compute β1 =
g

w1,2
1

g
rnr1
1

, β2 = g
r3r2
1

g
w1,2
1

, . . . , βn = g
r1rn
1

g
rn−1rn
1

, and return (β1, σ2,1)||...||(βn, σ2,n).

2. Compute γ1 = (grnr1
1)n · (β1)n−1 · · ·βn−1, γ2 = (gw1,2

1)n · (β2)n−1 · · ·βn, . . . , γn =
(grn−1rn

1)n · (βn)n−1 · · ·βn+2, sk1 = Fγ1(Gu||sid),..., skn = Fγ1(Gu||sid).

Exp2

1. For Execute/SendUser5(Gu,m), select w1,2,w2,3 at random from Z∗q , compute β1 =
g

w1,2
1

g
rnr1
1

, β2 = g
w2,3
1

g
w1,2
1

, . . . , βn = g
r1rn
1

g
rn−1rn
1

, and return (β1, σ2,1)||...||(βn, σ2,n).

2. Compute γ1 = (grnr1
1)n · (β1)n−1 · · ·βn−1, γ2 = (gw1,2

1)n · (β2)n−1 · · ·βn, γ3 = (gw2,3

1)n ·
(β3)n−1 · · ·β1, . . . , γn = (grn−1rn

1)n · (βn)n−1 · · ·βn+2, sk1 = Fγ1(Gu||sid),..., skn =
Fγ1(Gu||sid).

23

Continuing in this way, we get the following experiment.

Expn

1. For Execute/SendUser5(Gu,m), select w1,2, . . . , wn,1 at random from Z∗q , compute β1 =
g

w1,2
1

g
wn,1
1

, β2 = g
w2,3
1

g
w1,2
1

, . . . , βn = g
w1,n
1

g
wn−1,n
1

, and return (β1, σ2,1)||...||(βn, σ2,n).

2. Compute γ1 = (gwn,1

1)n · (β1)n−1 · · ·βn−1, γ2 = (gw1,2

1)n · (β2)n−1 · · ·βn, . . . , γn =
(gwn−1,n

1)n · (βn)n−1 · · ·βn+2, sk1 = Fγ1(Gu||sid),..., skn = Fγ1(Gu||sid).

A standard argument shows that for any ppt algorithm running in time t (for 0 ≤ i < n):

|Pri[CG]− Pri+1[CG]| ≤ Advddh
G (t).

We construct a distinguisher Di,i+1 using the difference of the advantages of an adversary S in
Expi and Expi+1 such that the following equation holds:

Advddh
G,Di,i+1

(t) = |Pr[u, v
R← Z∗q ; (g1, U, V, W) ← (g1, g

u
1 , gv

1 , guv
1) : Di,i+1(g1, U, V, W) = 1]−

Pr[u, v, w
R← Z∗q ; (g1, U, V, W) ← (g1, g

u
1 , gv

1 , gw
1) : Di,i+1(g1, U, V, W) = 1]|

= |Pri[CG]− Pri+1[CG]|.

Di,i+1 is a distinguisher of the DDH problem on an input (g1, U, V, W) whose base is g1. Di,i+1

uses the instance by the random self-reducibility of the DDH problem. Since Di,i+1 knows the
passwords of all users, it can easily answer queries made by S. Hence, Di,i+1 perfectly simulates
Expi or Expi+1 depending on whether or not (g1, U, V, W) is a DDH triple. That is, if (g1, U, V, W)
is the DDH triple, Di,i+1 simulates Expi or Expi+1 otherwise. We assume S making only a single
Execute query and a single SendUser query and show that |Pr0[CG]− Prn[CG]| ≤ |G| · Advddh

G (t).

D0,1(g1, U, V,W)

1. Select the passwords for all users in G executing PG(1κ) and give S the passwords for all users
in G.

2. For Execute/SendUser3(U s
i ,m), randomly select σ, s1, s2, and compute U = Uσ · gs1

1 , V =
V · gs2

1 . Compute τ1,S = MAC.Gk1(U1‖S‖X1‖Y1‖U), τ2,S = MAC.Gk2(U2‖S‖X2‖Y2‖V), τ3,S =
MAC.Gk3(U3‖S‖X2‖Y2‖gr3

1),...,τn,S = MAC.Gkn(Un‖S‖Xn‖Yn‖grn
1).

3. For Execute/SendUser5(Gu,m), compute W = W σ · Uσs2 · V s1 · gs1s2
1 and β1 = W

Urn , β2 =
Vr3

W , . . . , βn = Urn

g
rn−1rn
1

, and return (β1, σ2,1)||...||(βn, σ2,n).

4. Compute γ1 = (Urn)n·(β1)n−1 · · ·βn−1, γ2 = (W)n·(β2)n−1 · · ·βn, γ3 = (Vr3)n·(β3)n−1 · · ·β1, ...,
γn = (grn−1rn

1)n · (βn)n−1 · · ·βn+2.
5. For Reveal(U s

i), if U s
i is a terminated instance and has a session key ski with all other users,

return ski.
6. For TestGroup(Gu), check whether all users in Gu have the same session key. If this check fails,

return ⊥. If this check is correct and if U s
i is fresh, return sk without coin flipping.

7. If S terminates with b′, return b′ and halt.

D1,2(g1, U, V,W) : Same as D0,1 except following points.

24

1. For Execute/SendUser3(U s
i ,m), randomly select σ, s1, s2, w1,2, and compute U = Uσ · gs1

1 ,
V = V · gs2

1 . Compute τ1,S = MAC.Gk1(U1‖S‖X1‖Y1‖gr1
1), τ2,S = MAC.Gk2(U2‖S‖X2‖Y2‖U),

τ3,S = MAC.Gk3(U3‖S‖X2‖Y2‖V),...,τn,S = MAC.Gkn(Un‖S‖Xn‖Yn‖grn
1).

2. For Execute/SendUser5(Gu,m), compute W = W σ · Uσs2 · V s1 · gs1s2
1 and β1 = g

w1,2
1

g
rnr1
1

, β2 =

W

g
w1,2
1

, β3 = Vr4

W , . . . ,
g

r1rn
1

g
rn−1rn
1

, and return (β1, σ2,1)||...||(βn, σ2,n).

3. Compute γ1 = (grnr1
1)n ·(β1)n−1 · · ·βn−1, γ2 = (gw1,2

1)n·(β2)n−1 · · ·βn, γ3 = (W)n·(β3)n−1 · · ·β1

,...,γn = (grn−1rn

1)n · (βn)n−1 · · ·βn+2.
4. If S terminates with b′, return b′ and halt.

Continuing in this way, we get the following distinguisher.

Dn−1,n(g1, U, V, W) : Same as Dn−2,n−1 except following points.

1. For Execute/SendUser3(U s
i ,m), randomly select σ, s1, s2, and compute U = Uσ ·gs1

1 , V = V ·gs2
1 .

Compute τ1,S = MAC.Gk1(U1‖S‖X1‖Y1‖V),τ2,S = MAC.Gk2(U2‖S‖X2‖Y2‖gr2
1),...,τn−1,S =

MAC.Gkn−1(Un−1‖S‖Xn−1‖Yn−1‖grn−1

1),τn,S = MAC.Gkn(Un‖S‖Xn‖Yn‖U).

2. For Execute/SendUser5(Gu,m), compute W = W σ · Uσs2 · V s1 · gs1s2
1 and β1 = g

w1,2
1
W , β2 =

g
w2,3
1

g
w1,2
1

, . . . , βn = W

g
wn−1,n
1

, and return (β1, σ2,1)||...||(βn, σ2,n).

3. Compute γ1 = (W)n·(β1)n−1 · · ·βn−1, γ2 = (gw1,2

1)n·(β2)n−1 · · ·βn, ..., γn = (gw1,2

1)n·(βn)n−1 · · ·
βn+2.

4. If S terminates with b′, return b′ and halt.

Consider the case that the message αi of SendUser4(U s
i ,m) has not been previously computed

by Di,i+1. Even though the instance involved in the SendUser4 accepts itself, its partners may not
be oracle instances. Thus a TestGroup query involving this instance may always return the invalid
symbol ⊥. Finally, we have via a standard hybrid argument that

|Pr0[CG]− Prn[CG]| ≤ Ns · |G| · Advddh
G (t). (16)

In game Expn, the values w1,2, ..., wn,1 are expressed as n equations, logg1β1 = w1,2−wn,1, ...,
logg1βn = wn,1 − wn−1,n of which only n − 1 are linearly independent. The secret key γ is
equivalently expressed as logg1γ = w1,2 + w2,3 + . . . + wn,1 which is linearly independent from the
n equations. Thus the value of sk = Fγ(Gu||sid) is independent from (β1, ..., βn), i.e., this implies
that the bit b used by the Test oracle cannot be guessed by the adversary better than at random
for each attempt:

Prn[CG] =
1
2
. (17)

We define an auxiliary game Expn? similar to Expn except for the way the session keys are
computed. In Expn, the session keys are computed by using a pseudo random function family
F , while in Expn? , the session keys are computed by using a random function g.

Expn? : Same as Expn except the following points, after having chosen a random function
g.

1. Computes the session keys as sk1 = g(Gu||sid), ..., skn = g(U||sid).

25

Consider a distinguisher D to break pseudo randomness of a pseudo random function family F
using the difference of the advantages of an adversary S in Expn and Expn? . D is given an oracle
function f(·) in the experiment of pseudo randomness of the function family F . D simulates Expn

or Expn? depending on whether f(·) is a function from F or not. The more concrete description
of D is as follows:

Df(·)

1. For all oracle queries of S, answer them as in Expn by using an oracle function f(·) instead
of F to make session keys.

2. If S terminates with b′, return b′ and halt.

The advantage of D to break the pseudo random function family (with probability related to
S’ success probability) is as the follow:

Advprf
F (κ, T, q, h) =|Pr[K R← Keys(F) : FFK(·) = 1]− Pr[g R← RandD→R : Fg(·) = 1]|

=|Prn[CG]− Prn? [CG]|.
(18)

From Equations (16),(17) and (18) we get that

Advkss
PAMKE2(k, t, qex, qU

se) ≤ 2Ns · |G| · Advddh
G (t) + 2Advprf

F (κ, T, q, h).

From Equation (11), Claim 3, Claim 4 and Claim 5 yield the statement of the theorem.

C Explicit Authentication

PAMKE1 and PAMKE2 are PAKE protocols with implicit authentication. Another notion is
explicit authentication, which guarantees to each user that it actually shares the same session key
with all the others. To convert the protocols with implicit authentication into a protocol provides
explicit authentication, we use the well-known approach which generates an “authenticator” for
the other users by using a message authentication code (MAC) keyed by the shared session
key [17]. We now present the modified protocols, PAMKE1′ and PAMKE2′, providing explicit
authentication. PAMKE1′ is the protocol for PAMKE1, and PAMKE2′ is the protocol for
PAMKE2.

C.1 The PAMKE10 protocol

This protocol is executed right after the session key distribution phase of PAMKE1.

Key computation. Upon receiving (U1||K1||...||U|Gu|||K|Gu|), each user Ui ∈ Gu computes K =
Ki ⊕H(Gu||ki) and broadcasts τi = MAC.GK(Ui||Gu||K1|| . . . ||K|Gu|).

Key confirmation: Upon receiving τi, each user Ui sets Tu which is the set of reached tags,
including his tag and arranging in lexical order of the user identities. Each user Ui checks the
validity of all tags in Tu. If all in Tu are valid, each user Ui computes the session key as ski =
FK(Gu||sid), where sid = (K1|| . . . ||K|Gu|||Tu).

26

C.2 The PAMKE20 protocol

This protocol is executed right after the MAC key distribution and MAC-authenticated multi-
party key exchange phase of PAMKE2.

Key computation. Each user Ui ∈ Gu broadcasts σi,3 = MAC.Gγi(Gu||K||α||σ1||β||σ2), where
Gu = (U1, . . . , U|Gu|), K = (K1, . . . ,K|Gu|), α = (α1, . . . , α|Gu|), σ1 = (σ1,1, . . . , σ1,|Gu|), β =
(β1, . . . , β|Gu|), and σ2 = (σ2,1, . . . , σ2,|Gu|).

Key confirmation. Upon receiving σj,3 (j 6= i), each user Ui sets Tu as in PAMKE1′. Each
user Ui checks the validity of all tags in Tu. If all are valid, each user Ui computes the session key
as ski = Fγi(Gu||sid), where sid = (K||α||σ1||β||σ2||σ3) and σ3 = (σ3,1, ..., σ3,|Gu|).

D Figures

k1 = gx1y1
1

U1 (pw1)

x1 ∈R Z∗q
X1 = gx1

1 · gPW1
2

U2 (pw2)

x2 ∈R Z∗q
X2 = gx2

1 · gPW2
2

k2 = gx2y2
1

U3 (pw3)

x3 ∈R Z∗q
X3 = gx3

1 · gPW3
2

U4 (pw4)

x4 ∈R Z∗q
X4 = gx4

1 · gPW4
2

y4 ∈R Z∗q

S (PWi = H(Ui||S||pwi), for 1 ≤ i ≤ 4)

y2 ∈R Z∗q

BMS,i = (S‖Ui‖Xi‖Yi), for 1 ≤ i ≤ 4

y1 ∈R Z∗q
Y1 = gy1

1 · gPW1
2 Y2 = gy2

1 · gPW2
2

y3 ∈R Z∗q
Y3 = gy3

1 · gPW3
2 YS,4 = gy4

1 · gPW4
2

???
6Y1 X1 Y2 X2

6 Y3 X3
6 Y4 X4

?

k3 = gx3y3
1 k4 = gx4y4

1

τS,1 = MAC.Gk1 (BMS,1) τS,2 = MAC.Gk2 (BMS,2) τS,3 = MAC.Gk3 (BMS,3) τS,4 = MAC.Gk4 (BMS,4)

τ1,S = MAC.Gk1 (BM1,S)

K ∈R {0, 1}l and set G1
u = {U1, . . . , U4}

τ2,S = MAC.Gk2 (BM2.S) τ3,S = MAC.Gk3 (BM3,S) τ4,S = MAC.Gk4 (BM4,S)

BM1,S = (U1||S‖X1‖Y1) BM2,S = (U2||S‖X2‖Y2) BM3,S = (U3||S‖X3‖Y3) BM4,S = (U4||S‖X4‖Y4)

???
6τ1,S τS,1 τ2,S τS,26

?
τ3,S τS,36 τ4,S τS,46

K1 = K ⊕H(Gu||k1) K2 = K ⊕H(Gu||k2) K3 = K ⊕H(Gu||k3)

6

K4 = K ⊕H(Gu||k4)

K = K1 ⊕H(Gu||k1) K = K2 ⊕H(Gu||k2) K = K3 ⊕H(Gu||k3) K = K4 ⊕H(Gu||k4)

G1
u||K1|| . . . ||K4

?

Shared session key sk = FK(G1
u||sid), where sid = K1|| . . . ||K4

Fig. 1. An execution of PAMKE1 with Gu = {U1, U2, U3, U4}.

27

k1 = gx1y1
1 ; r1 ∈R Z∗q

U1 (pw1)

x1 ∈R Z∗q
X1 = gx1

1 · gPW1
2

U2 (pw2)

x2 ∈R Z∗q
X2 = gx2

1 · gPW2
2

k2 = gx2y2
1 ; r2 ∈R Z∗q

U3 (pw3)

x3 ∈R Z∗q
X3 = gx3

1 · gPW3
2

U4 (pw4)

x4 ∈R Z∗q
X4 = gx4

1 · gPW4
2

y4 ∈R Z∗q

S (PWi = H(Ui||S||pwi), for 1 ≤ i ≤ 4)

y2 ∈R Z∗q

BMS,i = (Ui‖S‖Xi‖Yi), for 1 ≤ i ≤ 4

y1 ∈R Z∗q
Y1 = gy1

1 · gPW1
2 Y2 = gy2

1 · gPW2
2

y3 ∈R Z∗q
Y3 = gy3

1 · gPW3
2 YS,4 = gy4

1 · gPW4
2

???
6Y1, Z1X1 Y2, Z2X2

6 Y3, Z3X3
6 Y4, Z4X4

?

k3 = gx3y3
1 ; r3 ∈R Z∗q k4 = gx4y4

1 ; r4 ∈R Z∗q

τS,1 = MAC.Gk1 (BMS,1)

(U1||S‖X1‖Y1‖Z1‖gr1) (U2||S‖X2‖Y2‖Z2‖gr2) (U3||S‖X3‖Y3‖Z3‖gr3)

τS,2 = MAC.Gk2 (BMS,2) τS,3 = MAC.Gk3 (BMS,3) τS,4 = MAC.Gk4 (BMS,4)

(U4||S‖X4‖Y4‖Z4‖gr4)

Kmac ∈R {0, 1}l and set G1
u = {U1, . . . , U4}

BM1,S = BM2,S = BM3,S = BM4,S =

6

???
τ1,S

?

τ2,S τ3,S τ4,S

K1 = Kmac ⊕H(G1
u||k1)

?

K2 = Kmac ⊕H(G1
u||k2) K3 = Kmac ⊕H(G1

u||k3) K4 = Kmac ⊕H(G1
u||k4)

β1 = (α2/α4)r1

Kmac = K1 ⊕H(Gu||k1) Kmac = K2 ⊕H(Gu||k2) Kmac = K3 ⊕H(Gu||k3) Kmac = K4 ⊕H(Gu||k4)

Shared session key sk = Fγi (G1
u||sid),

(G1
u||U1||K1||...||U4||K4) (U2||U4||α1||σ1,1||...||U3||U1||α4||σ4,1)

?

α1 = gr1
1

σ1,1 = MAC.Gkmac (U2||α1)

α2 = gr2
1

σ1,2 = MAC.Gkmac (U2||α2)

β2 = (α3/α1)r2

τ1,S = MAC.Gk1 (BM1,S) τ2,S = MAC.Gk2 (BM2.S) τ3,S = MAC.Gk3 (BM3,S) τ4,S = MAC.Gk4 (BM4,S)

??
τS,1

?
τS,2 τS,3 τS,4

α4 = gr4
1α3 = gr3

1

σ1,3 = MAC.Gkmac (U3||α3) σ1,4 = MAC.Gkmac (U4||α4)

β3 = (α4/α2)r3 β4 = (α1/α3)r4

σ2,1 = MAC.Gkmac (U1‖β1) σ2,2 = MAC.Gkmac (U2‖β2) σ2,3 = MAC.Gkmac (U3‖β3) σ2,4 = MAC.Gkmac (U4‖β4)

?
β1, σ2,1

?
β2, σ2,2

?
β3, σ2,3

?
β4, σ2,4

γ1 γ2 γ3 γ4

where γi = (αi−1)nri · βn−1
i · βn−2

i+1 · · ·βi−2 (for 1 ≤ i ≤ 4),

K = (K1|| . . . ||Kn), α = (α1|| . . . ||α4), σ1 = (σ1,1|| . . . ||σ1,4)

sid = (K||α||σ1||β||σ2),

β = (β1|| . . . ||β4), σ2 = (σ2,1|| . . . ||σ2,4)

Fig. 2. An execution of PAMKE2 with Gu = {U1, U2, U3, U4}.

