
Efficient Pairing Computation on Curves

Rongquan Feng, Hongfeng Wu
School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China

E-mail: fengrq@math.pku.edu.cn, wuhf@math.pku.edu.cn

Abstract

In this paper, a method for the efficient computation of Tate pairings on curves which
is a generalization of Barreto, etc.’s method [2] is presented. It can reduce the number
of loops in the computation of the Tate pairing. The method can be applied not only to
supersingular curves but to non-supersingular curves. An example shows the cost of the
algorithm in this paper can be reduced by 18% or 13% than the best known algorithm in
some elliptic curves.
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1 Introduction

Since Shamir [23] proposed the idea of identity-based cryptography, the pairing-based proto-
cols have been used in many application fields. Bilinear pairings present us the new crypto-
graphic applications such as identity-based encryptions [5], short signature schemes [6], etc.
For the practical applications of these systems, it is important to show efficient algorithms for
the computation of the Tate pairing. There has been a lot of works on the efficient compu-
tation of the Tate pairing. In these works, Duursma and Lee [8] presented how to reduce the
loop length in the computation of the Tate pairing for a special family of supersingular elliptic
and hyperelliptic curves. In 2004, Barreto, etc. [2] generalized the method of Duursma and
Lee and gave a more efficient computation of the Tate pairing on supersinguler curves. The
eta pairing is the best result on reducing the number of the main loop length for computing
the Tate pairing. Currently the eta pairing is one of the fastest algorithms for computing the
bilinear pairing. Under some conditions, the eta pairing is a non-degenerate bilinear pairing.
Therefore the eta pairing can be used in pairing-based cryptosystems.

In this paper, a method for the efficient computation of Tate pairings on curves which is
a generalization of Barreto, etc.’s method is presented. It can reduce the number of loops in
the computation of the Tate pairing and can be used not only on supersingular but also on
non-supersingular curves. This method is consistent with the eta pairing when the conditions
of the eta pairing are satisfied. An example shows the cost of the algorithm in this paper can
be reduced by 18% or 13% than the best known algorithm.

This paper is organized as follows. Section 2 gives a brief background on the Tate pairing
which include Barreto, etc.’s result presented in [2]. In Section 3, Barreto, etc.’s method
is generalized. Efficient computations of Tate pairings on non-supersingular curves can be
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achieved by this new method. Some examples to apply this method are discussed in Section
4. Section 5 shows some advices on the choice of parameters. Finally the conclusion is given
in Section 6.

2 Preliminaries

The terminology and notation in this paper follows that found in Barreto, etc. [2]. For more
information on the Tate pairing defined at abelian varieties and on the Miller’s algorithm,
the readers are referred to [2], [11] and [24].

Let C be a smooth, projective, and absolutely irreducible curve over a finite field K = Fqk .
Denoted by PicK

0 (C) the degree zero divisor class group of C over K. Let r be an integer
such that r | ]PicK

0 (C) and let PicK
0 (C)[r] be the divisor classes of order dividing r. Let D1

be a divisor representing a class in PicK
0 (C)[r] and D2 be a divisor on C defined over K such

that the supports of D1 and D2 are disjoint. Let f be a function whose divisor is equal to
rD1. Then the Tate pairing 〈D1, D2〉r = f(D2) is a well-defined, non-degenerate, bilinear
pairing

PicK
0 (C)[r]× PicK

0 (C)/rPicK
0 (C) → K∗/(K∗)r,

The output of this pairing is defined up to a coset of (K∗)r. Hence one defines the reduced
pairing τ(D1, D2) = 〈D1, D2〉(q

k−1)/r
r to obtain a unique value. One important property of

the reduced pairing is

τ(D1, D2) = 〈D1, D2〉(qk−1)/r
r = 〈D1, D2〉(q

k−1)/N
N

when N | (qk − 1) and N = hr for some h.
Throughout this paper, C will be an elliptic or a hyperelliptic curve and r will be a

prime with r | ]PicK
0 (C). We assume also that the curve C is a pairing-friendly curve

with embedding degree k which allows denominator elimination in the computation of Tate
pairings by using Miller’s algorithm (see [1]).

For any integer n ∈ N, let Dn be a reduced divisor equivalent to nD and let fn,D be the
function whose divisor is nD − Dn −m(∞) for some m ∈ N. When C is an elliptic curve,
then D = (P ) − (∞), where P is a point. Thus Dn = (nP ) − (∞) and fn,D is just the
Miller’s function. If n ∈ Z with n < 0 then nD = (−n)(−D). So Dn is a divisor equivalent to
(−n)(−D) and fn,D is a function with divisor (−n)(−D)− (Dn)−m(∞) for some m. Then
the Tate pairing is 〈D, D′〉n = fn,D(D′).

The following theorem is the main result in the paper [2].

Theorem 1 [2] Let C be a supersingular curve over Fq with distortion map ψ and even
embedding degree k. Let D be a divisor on C defined over Fq with order dividing N ∈ N and
let M = (qk − 1)/N . Suppose T ∈ Z is such that

1. TD ≡ γ(D) in the divisor class group where γ is an automorphism of C which is defined
over Fq.

2. γ and ψ satisfy the condition
γψq(Q) = ψ(Q)

for all points Q ∈ C(Fq).
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3. T a + 1 = LN for some a ∈ N and L ∈ Z.

4. T = q + cN for some c ∈ Z.

Then
(〈D, ψ(D

′
)〉MN )L = (fT,D(ψ(D′)))aMT a−1

.

Hess, etc. proposed the Ate pairing in [14]. Although the Tate pairing as defined above
allows arguments P ∈ E[r] and Q ∈ Fqk , one often works with specific subgroups to speed-
up the pairing computation in practice. Let πq be the Frobenius endomorphism of the
elliptic curve E, i.e., πq(x, y) = (xq, yq), then the subgroups G1 = E[r] ∩ Ker(πq − [1]) or
G2 = E[r] ∩ Ker(πq − [q]) seems to be optimal. In practice one has always used the Tate
pairing on G1 ×G2, but from a theoretical point of view, the Tate pairing on G2 ×G1 has a
much nicer structure.

Theorem 2 [14] Let E be an elliptic curve over Fq, r be a large prime with r | ]E(Fq) and
let t be the trace of the Frobenius endomorphism, i.e., ]E(Fq) = q + 1 − t. For T = t − 1,
Q ∈ G2 = E[r] ∩Ker(πq − [q]) and P ∈ G1 = E[r] ∩Ker(πq − [1]), we have the following:

1. fT,Q(P ) defines a bilinear pairing, which we call the Ate pairing.

2. Let N = gcd(T k − 1, qk − 1) and T k − 1 = LN , with k the embedding degree, then
τ(Q,P )L = fT,Q(P )c(qk−1)/N , where c =

∑k−1
i=0 T k−1−iqi ≡ kqk−1 (mod r).

3. The Ate pairing is non-degenerate when r - L.

Theorem 2 allows us to simplify the Tate pairing with a restriction. In this paper, a
different restrict way to simplify the Tate pairing on curves is used. The theorem in the next
section shows that we can also simplify the Tate pairing not only on elliptic curves but also
on hyperelliptic curves.

3 Main results

In this section, We will prove the following theorem.

Theorem 3 Let C be an elliptic or hyperelliptic curve (supersingular or non-supersingular)
over Fq with embedding degree k which allows denominator elimination. Let D be a divisor
on C defined over Fq with order dividing N ∈ N and let M = (qk− 1)/N . Let D′ be a divisor
on C defined over Fqk such that the supports of D and D′ are disjoint. Suppose T ∈ Z is
such that

1. T a + bT + c = LN for some a, b, c ∈ N and L ∈ Z.

2. Let γ be an automorphism of divisor class group of C which is defined over Fq such that
TD ≡ γ(D) in the divisor class group and let ζ be an endomorphism in divisor class
group of C which allows denominator elimination with γ ◦ ζ(D′) = D′ up to a scalar
multiple in F∗q.
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Then

(〈D, D′〉MN )L =
a−1∏

j=0

(fT,D(ζj(D′)))MT a−1−j · fbT,D · lT a,bT · fc,D(D′)M ,

where lT a,bT is the equation of the line through the points T aD and bTD.

First note that, since TD is equivalent to γ(D) we have DT i = γi(D). Write d for the
degree of the finite part of D. Then D =

∑d
j=1(Pj) − d(∞) and so DT i =

∑d
j=1(γ

i(Pj)) −
d(∞).

Lemma 1 With notation as above and D any divisor such that TD is equivalent to γ(D).
Then

fT,D(ζ(D′))M = fT,TD(D′)M .

Proof. The argument is an analogue of the method used in [2]. Since (fT,D) = TD −
DT − (T − 1)d(∞), (fT,D)T = T (fT,D) and (fT,TD) = TDT −DT 2 − (T − 1)d(∞), using the
assumption TD ≡ γ(D), we have

γ∗(fT,TD) = γ∗(TDT −DT 2 − (T − 1)d(∞))
= TD −DT − (T − 1)d(∞)
= (fT,D).

Also,
γ∗(fT,TD) = (γ∗fT,TD) = (fT,TD ◦ γ).

Hence, we have (up to a scalar multiple in F∗q)

fT,TD ◦ γ = fT,D.

Applying ζ to the above yields

fT,TD ◦ γ ◦ ζ = fT,D ◦ ζ.

From γ ◦ ζ(D′) = D′, the result follows immediately. 2

Lemma 2 [2] With notation as above, we have

(fT a,D) = (fT a−1

T,D fT a−2

T,TD · · · fT,T a−1D).

Proof. We prove only the non-supersingular case too. Note that fL
N,D = fLN,D = fT a+1,D.

Since T a + bT + c = LN , we know that (T a + bT + c)D ≡ 0, which implies (T a + bT )D ≡ −D
and so up to a scalar multiple in F∗q , we have

fT a+bT+1,D = fT a,DfbT,DlT a,bT fc,D.

Evaluating at D′ and raising to the power M we have

fT a+bT+1,D(D′) = fT a,DfbT,DlT a,bT (D′).
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By Lemma 2, this is
a−1∏

j=0

fT,T jDfbT,DlT a,bT (D′)MT a−1−j
.

Now substituting T jD for D in Lemma 1 implies that

fT,T jD(D′)MT a−1−j
= (fT,D(ζj(D′)))MT a−1−j

.

Hence the result follows. 2

Noting that (〈D, D
′〉MN )L is non-degenerate if L does not divide N .

4 Examples

In this section, some examples will be given. It is clear that the conditions in Theorem
3 are satisfied when the conditions in Theorem 1 hold. So Theorem 3 is an extension of
Theorem 1. The following first 2 examples are from [2] while Examples 3 and 4 deal with
non-supersingular curves.

Example 1 Consider the supersingular curve E : y2+y = x3+x+b over F2m, where b = 0, 1
and m is odd. The embedding degree is k = 4. The field F24m has a basis 1, s, t, st over F2m,
where s and t satisfy s2 = s + 1 and t2 = t + s. A distortion map ψ is given by

ψ(x, y) = (x + s2, y + sx + t).

Define
φ(x, y) = (x + 1, y + x).

Then φ4(P ) = P for any P = (x, y) ∈ E(F2m). Let q = 2m then [q]P = φm(P ). Set γ = φm.
Let N = ]E(F2m) = 2m ± 2(m+1)/2 + 1 and M = (24m − 1)/N . Taking T = ∓2(m+1)/2 − 1,
a = 2 and L = 2, we have T a + 1 = LN . Let ζ be the qth-power Frobenius morphism. Then
γ(ζ(ψ(Q))) = ψ(Q) for any Q ∈ E(F24m). Therefore, we have

(〈P, ψ(Q)〉MN )2 = (fT
T,P (ψ(Q)) · fT,P (ζ(ψ(Q))))M = (fT,P (ψ(Q))))2TM .

From T = q −N and fNM
T,P = 1, we have

fTM
T,P = f qM

T,P /fNM
T,P = f qM

T,P = (fT,P ◦ ζ)M .

Therefore
〈P, ψ(Q)〉MN = fT,P (ζ(ψ(Q)))M .

Example 2 Consider the supersingular curve E : y2 = x3 − x + b over F3m, where B = ±1
and gcd(m, 6) = 1. The embedding degree is k = 6. It is well-known that ]E(F3m) =
3m + 1 + B′3(m+1)/2, where B′ is defined as

B′ =
{

B if m ≡ 1 (mod 12),
−B if m ≡ 7 (mod 12).
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A distortion map ψ is given by ψ(x, y) = (ρ− x, σy), where σ2 = −1 and ρ3 = ρ + b. Let π
be the 3-power Frobenius morphism and let φ(x, y) = (x− B,−y). Set q = 3m and γ = φm.
Then

[q](x, y) = φmπ2m(x, y) = φm(x, y) = γ(x, y).

Let N = 3m ± 3(m+1)/2 + 1 and M = (36m − 1)/N = (33m − 1)(3m + 1)(3m ∓ 3(m+1)/2 + 1).
Taking T = q −N = ∓3(m+3)/2 − 1, a = 3 and L = ∓3(m+3)/2, we have T a + 1 = LN . Let ζ
be the qth-power Frobenius morphism then we have γ(ζ(ψ(Q))) = ψ(Q) for any Q ∈ E(F3m).
By Theorem 3, we have

(〈P, ψ(Q)〉MN )L = (fT 2

T,P (ψ(Q)) · fT
T,P (ζ(ψ(Q))) · fT,P (ζ2(ψ(Q))))M .

From fTM
T,P (ψ(Q)) = fM

T,P (ζ(ψ(Q)), we have

〈P, ψ(Q)〉MN = fT,P (ζ2(ψ(Q)))3M/L.

Example 3 Consider the non-supersingular curves E : y2 = x3 + dx over Fp, where p ≡
1 (mod 4) is a prime and d 6= 0. Choose suitable p and k such that the curve E is of the
pairing-friendly type. Let α ∈ Fq be an element of order 4. Then the map γ : E → E given
by (x, y) → (−x, αy) and ∞→∞ is an automorphism defined over Fp. Let P ∈ E(Fp) be a
point of prime order r with r | ]E(Fp). Then γ acts on P as a multiplication map [T ], where
T is an integer satisfying T 2 ≡ −1 (mod r). Thus there is an integer L such that T 2+1 = Lr.
Let ζ = γ3 then we have γ ◦ ζ = 1 and ζ(P ) = (x,−αy). Let N = r and M = (pk − 1)/N .
Choose Q ∈ E(Fpk) such that the denominator elimination is allowed. Therefore

(〈P, Q〉MN )L = (fT
T,P (Q) · fT,P (ζ(Q)))M ;

Noting that Q and γ(Q) have the same x-coordinate, we can save a multiplication in the
computation of evaluation of the line function in each loop. Furthermore, we can choose
suitable curves such N = r = T 2 + 1, i.e., L = 1. In this case the Tate pairing is

〈P, Q〉MN = (fT
T,P (Q) · fT,P (ζ(Q)))M .

Thus we have the following algorithm to compute the Tate pairing τ(P, Q) = 〈P, Q〉MN on
E : y2 = x3 + dx, where λR,P is the slope of the line through points R and P (or the tangent
line at R when P = R).

Algorithm 1 Computation of τ(P, Q) on E : y2 = x3 + dx.
—————————————————————————-
Input: P = (xP , yP ), Q = (xQ, yQ), T =

m∑
i=0

Ti2i, where Ti ∈ {0, 1}
Output: τ(P, Q)
—————————————————————————-
1: Begin
2: R = P , Q′ = (xQ,−αyQ), f1 = f2 = 1;
3: for i = m− 1 to 0 do
4: temp = λR,R(xQ − xR), lR,R(Q) = yQ − yR − temp, lR,R(Q′) = −αyQ − yR − temp;
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5: f1 = f2
1 · lR,R(Q), f2 = f2

2 · lR,R(Q′), R = 2R;
6: If Ti = 1 then
7: temp = λR,P (xQ − xR), lR,R(Q) = yQ − yR − temp, lR,R(Q′) = −αyQ − yR − temp;
8: f1 = f1 · lR,P (Q), f2 = f2 · lR,P (ζ(Q)), R = R + P ;
9: end for
10: f1 = fT

1 ;
11: Return τ(P, Q) = (f1f2f3)M .
—————————————————————————-

Example 4 Consider the non-supersingular curves E : y2 = x3 + B over Fp, where p is
a prime with p ≡ 1 (mod 3). We focus on pairing-friendly elliptic curves again so that
the denominator can be omitted in the Miller’s algorithm. Note that many curves that have
been suggested for practical use in pairing-based cryptography are in fact of this type. Also
we can generate the pairing-friendly curves of this type with large embedding degree such as
12 (see [3]). Let β ∈ Fp be an element of order 3. Then the map γ : E → E given by
(x, y) → (βx, y) and ∞ → ∞ is an automorphism defined over Fp. Let P ∈ E(Fp) be a
point of prime order r. Then γ acts on P as a multiplication map [T ], where T is an integer
satisfying T 2 + T ≡ −1 (mod r). Thus there is an integer L such that T 2 + T + 1 = Lr. Let
ζ(x, y) = (β2x, y) then γ ◦ ζ(P ) = (P ). Let N = r and M = (pk − 1)/N . Choose Q ∈ E(Fpk)
such that the denominator elimination is allowed. By Theorem 3, we have

(〈P, Q)〉MN )L = (fT+1
T,P (Q) · fT,P (ζ(Q)) · lT 2,T (Q))M ,

where lT 2,T (Q) = yQ− yP is the equation of the line through points T 2P and TP . Especially,
if we can generate a suitable elliptic curve such that N = r = T 2+T +1, then we can compute
the Tate pairing as

〈P, Q〉MN = (fT+1
T,P (Q) · fT,P (ζ(Q)) · lT 2,T (Q))M .

Now we have the following algorithm to compute the L-th power of the Tate pairing τ(P, Q)L =
〈P, Q〉MN on E : y2 = x3 + B, where lR,P is the equation of the line through points R and P
(or the tangent line at R when P = R).

Algorithm 2 Computation of τ(P, Q)L on E : y2 = x3 + B.
—————————————————————————-
Input: P = (xP , yP ), Q = (xQ, yQ), T =

m∑
i=0

Ti2i where Ti ∈ {0, 1}
Output: τ(P, Q)L

—————————————————————————-
1: Begin
2: R = P , f1 = f2 = 1, f3 = yQ − yP ;
3: for i = m− 1 to 0 do
4: f1 = f2

1 · lR,R(Q), f2 = f2
2 · lR,R(ζ(Q)), R = 2R;

5: If Ti = 1 then
6: f1 = f1 · lR,P (Q), f2 = f2 · lR,P (ζ(Q)), R = R + P ;
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7: end for
8: f1 = fT+1

1 ;
9: Return τ(P, Q)L = (f1f2f3)M .
—————————————————————————-

For comparing our method with the algorithm in [21], consider the elliptic curve E512 :
y2 = x3 + 5 over Fp, where

p = 1145747568399549380635317418620582531453546123676759744111
5533728505070527823154532657656991234473986641703193940343
559823628668878734326909502089393493643.

The embedding degree of E512 is k = 2. We choose T = 280 + 216 which gives a prime
N = T 2 +T +1 of 161 bits. In this case we has a very low Hamming weight of T . Choose the
points P = (xP , yP ) ∈ E512(Fp)[N ] and Q = (xQ, yQ) ∈ E512(Fp2) such that xQ ∈ Fp. Then
we have the following algorithm to compute the Tate pairing τ(P, Q) = 〈P, Q〉MN on E512.

Algorithm 3 Computation of τ(P, Q) on E512.
—————————————————————————-
Input: P = (xP , yP ), Q = (xQ, yQ), T = 280 + 216

Output: τ(P, Q)
—————————————————————————-
1: Begin
2: R = P , Q′ = (β2xQ, yQ), f1 = f2 = 1, f3 = yQ − yP ;
3: for i = 39 to 0 do
4: f1 = (f2

1 · lR,R(Q))2 · l2R,2R(Q), f1 = (f2
1 · lR,R(Q′))2 · l2R,2R(Q′), R = 4R.

5: if Ti = 1 then
6: f1 = f1 · lR,P (Q), f2 = f2 · lR,P (Q′), R = R + P ;
7: end for
8: f1 = fT+1

1 ;
9: Return τ(P, Q) = (f1f2f3)(p−1)(p+1)/N .
—————————————————————————-

Note that in this algorithms, we use the direct algorithm to compute 4R as in [10] which
cost about 25 multiplications in Fp if we assume that the computational cost of an inverse in
F∗p is 10M. We assume also one square and one multiplication in F∗p2 as 2M and 3M. For the
final power we use the method in [20]. Thus the total cost of the Algorithm 3 is 2864M while
the algorithm in [21] requires 3329M or 3163M with extra storage. Therefore the cost of this
algorithm can be reduced by 14% or 10%.

One needs to compute the scalar multiplication of a point in the computation of Tate
pairings. However in the Jacobian projective coordinates we have a more efficient method to
perform it. Let the point P = (X1, Y1, Z1) correspond to the point (X1/Z

2
1 , Y1/Z

3
1 ) in affine

coordinates. Set 2P = (X2, Y2, Z2). Then X2 = 9X4
1 −8X1Y

2
1 , Y2 = 3X2

1 (4X1Y
2
1 −X2)−8Y 4

1
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and Z2 = 2Y1Z1. According to the affine line equation, we have

lP,P (x, y) = y − Y1

Z3
1

− 3X2
1

2Y1Z1

(
x− X1

Z2
1

)
= y − 3X2

1

2Y1Z1
x− 2BZ6

1 −X3
1

2Y1Z3
1

=
Z2Z

2
1y − 2Y 2

1 − (3X2
1 )(Z2

1x−X1)
2Y1Z3

1

.

Since p ≡ 3 (mod 4), −1 ia a quadratic non-residue in Fp. Let i2 = −1 then any element in
Fp2 have a “complex number” form. Let Q = (xQ, yQ) ∈ E512(Fp2), where xQ = s + ti and
yQ = u + vi with s, t, u, v ∈ Fp. Let us restrict Q to be the form where t = u = 0. Then
we can ignore the denominator in the computation of the Tate pairing. Therefore we can let
Q = (xQ, iyQ), where xQ, yQ ∈ Fp. Hence

lP,P (Q) =
Z2Z

2
1yQi− 2Y 2

1 − (3X2
1 )(Z2

1xQ −X1)
2Y1Z3

1

.

Since Y1, Z1 ∈ Fp, we can assume that

lP,P (x, y) = Z2Z
2
1y − 2Y 2

1 − (3X2
1 )(Z2

1x−X1)

and then we have

lP,P (Q) = Z2Z
2
1yQi− 2Y 2

1 − (3X2
1 )(Z2

1xQ −X1).

Therefore we need only 11M to compute lR,R(Q) and 2R from the point R. Noting that
ζ(Q) = (β2xQ, yQi), we need 13M to compute lR,R(Q), lR,R(ζ(Q)) and 2R. Furthermore we
can let P = (xp, yP , 1), thus the point addition of R + P , lR,P (Q) and lR,P (ζ(Q)) will cost
15M. Therefore, in the Jacobian projective coordinates we need only 2739M (not forgetting
the point P = (xP , yP , 1)) to compute the Tate pairing of E512 by application of Theorem 3.
Thus the cost of our algorithm can be reduced by 18% or 13%. Also it should be pointed out
that the above method can be applied to Example 3 too.

5 What about T and ζ

In order to use Theorems 3, a main problem is to find T , γ and ζ which satisfy the conditions.
There is no general method to find them until now. Usually the automorphism γ of C will be
chosen as the T multiplications map as in above examples. In this section, some ideas and
strategies for choosing T and ζ will be proposed.

The integer T and the endomorphism ζ should be chosen so that fT (ζ(D′)) (or fT (ζj(ψ(D′))))
can be computed efficiently by fT (D′) (or fT (ψ(D′))). At first, we would like to choose T such
that the absolute value |T | is small enough to reduce the iterative numbers in the computa-
tion of the Tate pairing. By practical experiences, in order to find ζ which can correspond to
T , some special numbers, such as p, the characteristic of the field, or q, or qk, or q−]PicK

0 (C)
would be considered to be candidates for T .
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Let E be a general curve over the field K with char(K) 6= 2. For any point P = (x, y) ∈ E
and an integer T > 0, we have

[T ]P =
(

φT (x, y)
ψ2

T (x, y)
,
ωT (x, y)
ψ3

T (x, y)

)
,

where ψT (x, y) is the division polynomial. Let ζ(x, y) = (x′, y′). In order to decide the
endomorphism ζ after T is chosen, we need to solve the equations

φT (x′, y′)
ψ2

T (x′, y′)
= x and

ωT (x′, y′)
ψ3

T (x′, y′)
= y

with unknowns x′ and y′. But in general these equations can not be solved in some practical
applications. So how to choose ζ is still a difficult problem.

Generally, we have the following strategies to consider this problem.

1. Choose T , ζ so that we have fT,D(ζj(D′))M = fT,D(D′)MT j′
for some integer j′. For

general curves, this aim may be difficult to get. But at least we hope to compute
fT,D(ζj(D′))M from fT,D(D′)M more easily.

2. In the iterative procedure, we need to compute the line function value of l(x, y) =
y − y′ − λ(x − x′) at ψ(Q) or Q. We hope to choose T and ζ such that ζj(ψ(Q)) and
ψ(Q) have the same x-coordinate. Then it is free to compute l(ζj(ψ(Q)) from l(ψ(Q)).
Similarly, if they have the same y-coordinate, then we can use the projective coordinates
to simplify the computation as in Example 4.

6 Conclusion

A method for the efficient computation of Tate pairings on elliptic and hyperelliptic curves
which is a generalization of Barreto, etc.’s method [2] is presented in this paper. Our method
is different from F. Hess etc.[14]. It can reduce the number of loops in the computation of the
Tate pairing and can be used not only on supersingular but also on non-supersingular curves.
It can also be used on curves with large embedding degrees. This method is consistent with
eta pairings when the conditions of eta pairings are satisfied. An example shows the cost of
the algorithm in this paper can be reduced by 18% or 13% than the best known algorithm.
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