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Abstract

Non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable proofs
have played a significant role in the theory of cryptography. However, lack of efficiency has
prevented them from being used in practice. One of the roots of this inefficiency is that non-
interactive zero-knowledge proofs have been constructed for general NP-complete languages such
as Circuit Satisfiability, causing an expensive blowup in the size of the statement when reducing it
to a circuit. The contribution of this paper is a general methodology for constructing very simple
and efficient non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable
proofs that work directly for a wide class of languages that are relevant in practice (namely,
ones involving the satisfiability of equations over bilinear groups), without needing a reduction
to Circuit Satisfiability.

Groups with bilinear maps have enjoyed tremendous success in the field of cryptography
in recent years and have been used to construct a plethora of protocols. This paper provides
non-interactive witness-indistinguishable proofs and non-interactive zero-knowledge proofs that
can be used in connection with these protocols. Our goal is to spread the use of non-interactive
cryptographic proofs from mainly theoretical purposes to the large class of practical cryptographic
protocols based on bilinear groups.

Keywords: Non-interactive witness-indistinguishability, non-interactive zero-knowledge, com-
mon reference string, bilinear groups.

1 Introduction

Non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable proofs have
played a significant role in the theory of cryptography. However, lack of efficiency has prevented
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them from being used in practice. Our goal is to construct efficient and practical non-interactive
zero-knowledge (NIZK) proofs and non-interactive witness-indistinguishable (NIWI) proofs.

Blum, Feldman and Micali [BFM88] introduced NIZK proofs. Their paper and subsequent
work, e.g., [FLS99, Dam92, KP98, DDP02], demonstrate that NIZK proofs exist for all of NP.
Unfortunately, these NIZK proofs are all very inefficient. While leading to interesting theoretical
results, such as the construction of public-key encryption secure against chosen ciphertext attack by
Dolev, Dwork and Naor [DDN00], they have not been used in practice.

Since we want to construct NIZK proofs that can be used in practice, it is worthwhile to identify
the roots of the inefficiency in the above-mentioned NIZK proofs. One drawback is that they were
designed with a general NP-complete language in mind, e.g., Circuit Satisfiability. In practice, we
want to prove statements such as “the ciphertext c encrypts a signature on the message m” or
“the three commitments ca, cb, cc contain messages a, b, c such that c = ab”. An NP-reduction of
even very simple statements like these gives us big circuits containing thousands of gates and the
corresponding NIZK proofs become very large.

Although we want to avoid an expensive NP-reduction, it is still desirable to have a general way
to express statements that arise in practice instead of having to construct non-interactive proofs
on an ad hoc basis. A useful observation in this context is that many public-key cryptography
protocols are based on finite abelian groups. If we can capture statements that express relations
between group elements, then we can express statements that come up in practice such as “the
commitments ca, cb, cc contain messages such that c = ab” or “the plaintext of c is a signature on
m”, as long as those commitment, encryption, and signature schemes work over the same finite
group. We will therefore construct NIWI and NIZK proofs for group-dependent languages.

The next issue to address is where to find suitable group-dependent languages. We will look
at statements related to groups with a bilinear map, which have become widely used in the de-
sign of cryptographic protocols. Not only have bilinear groups been used to give new construc-
tions of such cryptographic staples as public-key encryption, digital signatures, and key agreement
(see [Pat05] and the references therein), but bilinear groups have enabled the first constructions
achieving goals that had never been attained before. The most notable of these is the Identity-
Based Encryption scheme of Boneh and Franklin [BF03] (see also [BB11, BB04, Wat05]), and there
are many others, such as Attribute-Based Encryption [SW05, GPSW06], Searchable Public-Key
Encryption [BCOP04, BSW06, BW06], and One-time Double-Homomorphic Encryption [BGN05].
For an incomplete list of papers (currently over 200) on the application of bilinear groups in cryp-
tography, see [Bar06].

1.1 Our contribution

For completeness, let us recap the definition of a bilinear group. Please note that for notational
convenience we will follow the tradition of mathematics and use additive notation1 for the binary
operations in G1 and G2. We have a probabilistic polynomial time algorithm G that takes a security
parameter as input and outputs (n, G1, G2, GT , e,P1,P2). In some cases, G1 = G2 and P1 = P2, in
which case we write (n, G,GT , e,P).

• G1, G2, GT are descriptions of cyclic groups of order n.

• The elements P1,P2 generate G1 and G2 respectively.

1We remark that in the cryptographic literature it is more common to use multiplicative notation for these groups,
since the “discrete log problem” is believed to be hard in these groups, which is also important to us. In our setting,
however, it will be much more convenient to use multiplicative notation to refer to the action of the bilinear map.
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• e : G1 × G2 is a non-degenerate bilinear map such that e(P1,P2) generates GT and for all
a, b ∈ Zn we have e(aP1, bP2) = e(P1,P2)ab.

• We can efficiently compute group operations, compute the bilinear map and decide member-
ship.

In this work, we develop a general set of highly efficient techniques for proving statements in-
volving bilinear groups. The generality of our work extends in two directions. First, we formulate
our constructions in terms of modules over commutative rings with an associated bilinear map. This
framework captures all known bilinear groups with cryptographic significance – for both supersingu-
lar and ordinary elliptic curves, for groups of both prime and composite order. Second, we consider
all mathematical operations that can take place in the context of a bilinear group - addition in G1

and G2, scalar point-multiplication, addition or multiplication of scalars, and use of the bilinear
map. We also allow both group elements and scalars to be “unknowns” in the statements to be
proven.

Since we cover all operations over the bilinear group, we can prove any statement formulated in
terms of the operations associated with the bilinear group. With our level of generality, it would for
example be easy to write down a short statement, using the operations above, that encodes “c is an
encryption of the value committed to in d under the product of the two keys committed to in a and b”
where the encryptions and commitments being referred to are existing cryptographic constructions
based on bilinear groups. Logical operations like AND and OR are also easy to encode into our
framework using standard techniques in arithmetization. The ability to encode logical operations
implies we can use our proof system for the NP-complete language Circuit Satisfiability but the main
novelty and advantage is the natural way we can directly handle statements over bilinear groups
without using NP-reductions.

The proof systems we build are non-interactive. This allows them to be used in contexts where
interaction is undesirable or impossible. We first build highly efficient witness-indistinguishable
proof systems, which are of independent interest. We then show how to, under certain conditions,
transform these into zero-knowledge proof systems. We also provide a detailed examination of the
efficiency of our constructions in various settings (depending on what type of bilinear group and
cryptographic assumption is used).

The security of constructions arising from our framework can be based on any of a variety of
computational assumptions about bilinear groups (three of which we discuss in detail here).

Informal statement of our results. We consider equations over variables from G1, G2 and Zn

as described in Figure 1. We construct efficient non-interactive witness-indistinguishable proofs for
the simultaneous satisfiability of a set of such equations. The witness-indistinguishable proofs have
perfect completeness and there are two computationally indistinguishable types of common reference
strings giving respectively perfect soundness and perfect witness indistinguishability. We refer to
Section 2 for precise definitions.

We also consider the question of non-interactive zero-knowledge. We show that we can give
zero-knowledge proofs for multi-scalar multiplication in G1 or G2 and for quadratic equations in Zn.
We can also give zero-knowledge proofs for pairing product equations with tT = 1. When tT 6= 1 we
can still give zero-knowledge proofs if we can find P1,Q1, . . . ,Pn,Qn such that tT =

∏n
i=1 e(Pi, Qi).

In the first part of the article, we give a general description of our techniques. In Section
8, Section 9 and Section 10 we then offer three concrete instantiations that illustrate the use of
our techniques. They are based on respectively the subgroup decision assumption [BGN05], the
assumption that the decision Diffie-Hellman problem is hard in both G1 and G2 (SXDH), and
the decisional linear assumption (DLIN) [BBS04]. We note that there are many other possible
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Variables: a

X1, . . . ,Xm ∈ G1 , Y1, . . . ,Yn ∈ G2 , x1, . . . , xm′ , y1, . . . , yn′ ∈ Zn.

Pairing product equation:

n∏
i=1

e(Ai,Yi) ·
m∏
i=1

e(Xi,Bi) ·
m∏
i=1

n∏
j=1

e(Xi,Yj)γij = tT ,

for constants Ai ∈ G1,Bi ∈ G2, tT ∈ GT , γij ∈ Zn.

Multi-scalar multiplication equation in G1:
b

n′∑
i=1

yiAi +
m∑
i=1

biXi +
m∑
i=1

n′∑
j=1

γijyjXi = T1,

for constants Ai, T1 ∈ G1 and bi, γij ∈ Zn.

Multi-scalar multiplication equation in G2:

n∑
i=1

aiYi +
m′∑
i=1

xiBi +
m′∑
i=1

n∑
j=1

γijxiYj = T2

for constants Bi, T2 ∈ G2 and ai, γij ∈ Zn.

Quadratic equation in Zn:

n′∑
i=1

aiyi +

m′∑
i=1

xibi +

m′∑
i=1

n′∑
j=1

γijxiyj ≡ t mod n

for constants ai, bi, γij , t ∈ Zn.

aWe list variables in Zn in two separate groups because we will treat them differently in the NIWI proofs. If
we wish to deal with only one group of variables in Zn we can add equations in Zn of the form x1 = y1, x2 = y2,
etc.

bWith multiplicative notation, these equations would be multi-exponentiation equations. We use additive
notation for G1 and G2, since this will be notationally convenient in the paper, but again stress that the discrete
logarithm problem will typically be hard in these groups.

Figure 1: Equations over groups with bilinear map.

instantiations. The instantiations illustrate the variety of ways bilinear groups can be constructed.
We can choose prime order groups or composite order groups, we can have G1 = G2 and G1 6= G2,
and we can make various cryptographic assumptions. All three security assumptions have been used
in the cryptographic literature to build interesting protocols.

For all three instantiations, the techniques presented here yield efficient witness-indistinguishable
proofs. In particular, the cost in proof size of each extra equation is constant and independent of
the number of variables in the equation. The size of the proofs can be computed by adding the cost,
measured in group elements from G1 or G2, of each variable and each equation listed in Figure 1.
We refer to Sections 8, Section 9 and Section 10 for more detailed tables. The tables should be read
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with care because the size of a group element depends on the type of bilinear group [GPS08]. We
expect the SXDH-based instantiation to yield the smallest proofs when taking the sizes of group
elements into account.

Subgroup decision SXDH DLIN

Variable in G1 or G2 1 2 3
Variable in Zn or Zp 1 2 3
Paring product equation 1 8 9
Multi-scalar multiplication in G1 or G2 1 6 9
Quadratic equation in Zn or Zp 1 4 6

Table 1: Number of group elements each variable or equation adds to the size of a NIWI proof.

1.2 Related work

As we mentioned before, early work on NIZK proofs demonstrated that all NP-languages have non-
interactive proofs, but did not yield efficient proofs. One cause for these proofs being inefficient in
practice was the need for an expensive NP-reduction to, e.g., Circuit Satisfiability. Another cause
of inefficiency was the reliance on the so-called hidden bits model, which even for small circuits is
inefficient.

Groth, Ostrovsky, and Sahai [GOS06b, GOS06a] investigated NIZK proofs for Circuit Satisfia-
bility using bilinear groups. This addressed the second cause of inefficiency since their techniques
give efficient proofs for Circuit Satisfiability, but to use their proofs one must still make an NP-
reduction to Circuit Satisfiability. We stress that while [GOS06b, GOS06a] used bilinear groups,
their application was to build proof systems for Circuit Satisfiability. Here, we devise entirely new
techniques to deal with general statements about equations in bilinear groups, without having to
reduce to an NP-complete language.

Addressing the issue of avoiding an expensive NP-reduction, we have works by Boyen and Wa-
ters [BW06, BW07] that suggest efficient NIWI proofs for statements related to group signatures.
These proofs are based on bilinear groups of composite order and rely on the subgroup decision
assumption.

Groth [Gro06] was the first to suggest a general group-dependent language and NIZK proofs for
statements in this language. He investigated satisfiability of pairing product equations and only al-
lowed group elements to be variables. He looked at the special case of prime order groups G,GT with
a bilinear map e : G×G→ GT and, based on the decisional linear assumption [BBS04], constructed
NIZK proofs for such pairing product equations. However, even for very small statements, the very
different and much more complicated techniques of Groth yield proofs consisting of thousands of
group elements (whereas ours would be in the tens). Our techniques are much easier to understand,
significantly more general, and vastly more efficient.

We summarize our comparison with other works on NIZK proofs in Table 2.
We note that there have been many earlier works (starting with [GMR89]) dealing with efficient

interactive zero-knowledge protocols for a number of algebraic relations. Here, we focus on non-
interactive proofs. We also note that even for interactive zero-knowledge proofs, no set of techniques
was known for dealing with general algebraic assertions arising in bilinear groups, as we do here.
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Inefficient Efficient

Circuit Satisfiability Example: Groth, Ostrovsky
Kilian and Petrank [KP98] and Sahai [GOS06b, GOS06a]

Group-dependent language Groth [Gro06] (restricted case) This work

Table 2: Classification of NIZK proofs according to usefulness.

1.3 New techniques

[GOS06b, GOS06a, Gro06] start by constructing non-interactive proofs for simple statements and
then combine many of them to get more powerful proofs. The main building block in [GOS06b],
for instance, is a proof that a given commitment contains either 0 or 1, which has little expressive
power on its own. Our approach is the opposite: we directly construct proofs for very expressive
languages; as such, our techniques are very different from previous work.

The way we achieve our generality is by viewing the groups G1, G2, GT as modules over the
ring Zn. The ring Zn itself can also be viewed as a Zn-module. We therefore look at the more
general question of satisfiability of quadratic equations over Zn-modules A1, A2, AT with a bilinear
map, see Section 3 for details. Since many bilinear groups with various cryptographic assumptions
and various mathematical properties can be viewed as modules we are not bound to any particular
bilinear group or any particular assumption.

Given modules A1, A2, AT with a bilinear map, we construct new modules B1, B2, BT , also
equipped with a bilinear map, and we map the elements in A1, A2, AT into B1, B2, BT . The latter
modules will typically be larger thereby giving us room to hide the elements of A1, A2, AT . More
precisely, we devise commitment schemes that map variables from A1, A2 to the modules B1, B2.
The commitment schemes are homomorphic both with respect to the module operations and also
with respect to the bilinear map.

Our techniques for constructing witness-indistinguishable proofs are fairly involved mathemati-
cally, but we will try to present some high level intuition here. (We give more detailed intuition later
in Section 6, where we present our main proof system). The main idea is the following: because
our commitment schemes are homomorphic and we equip them with a bilinear map, we can take
the equation that we are trying to prove, and just replace the variables in the equation with com-
mitments to those variables. Of course, because the commitment schemes are hiding, the equations
will no longer be valid. Intuitively, however, we can extract out the additional terms introduced
by the randomness of the commitments: if we give away these terms in the proof, then this would
be a convincing proof of the equation’s validity (again, because of the homomorphic properties).
But, giving away these terms might destroy witness indistinguishability. Suppose, however, that
there is only one “additional term” introduced by substituting the commitments. Then, because it
would be the unique value which makes the equation true, giving it away would preserve witness
indistinguishability! In general, we are not so lucky. But if there are many terms, the nice alge-
braic environment allows us to randomize the terms such that their distribution is uniform over all
possible terms satisfying the equation. We now get witness indistinguishability because all possible
witnesses after randomization yield the same uniform distribution of terms satisfying the equation.

1.4 Applications

Independently of our work, Boyen and Waters [BW07] have constructed non-interactive proofs that
they use for group signatures (see also their earlier paper [BW06]). These proofs can be seen as
examples of the NIWI proofs in instantiation 1 based on the subgroup decision problem.
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Subsequent to the announcement of our work, several papers have built upon it: Chandran,
Groth and Sahai [CGS07] have constructed ring-signatures of sub-linear size using the NIWI proofs
in the first instantiation, which is based on the subgroup decision problem. Groth and Lu [GL07]
have used the NIWI and NIZK proofs from the third instantiation to construct a NIZK proof for
the correctness of a shuffle. Groth [Gro07] has used the NIWI and NIZK proofs from the third in-
stantiation to construct a fully anonymous group signature scheme. Belenkiy, Chase, Kohlweiss and
Lysyanskaya [BCKL08] have used the second and third instantiations to construct non-interactive
anonymous credentials. Green and Hohenberger [GH08] have used the third instantiation in a
universally composable adaptive oblivious transfer protocol. Also, by attaching NIZK proofs to
semantically secure public-key encryption in any instantiation, we get an efficient non-interactive
verifiable cryptosystem. Boneh [Bon06] has suggested using this for optimistic fair exchange [Mic03],
where two parties use a trusted but lazy third party to guarantee fairness.

1.5 Roadmap

The main result is the NIWI proof that can be found in Section 7. Sections 3, 4, 5 and 6 explain the
structure of the NIWI proof, which goes through modules, commitments, a description of the com-
mon reference string, and an explanation of how the NIWI proof works. For a concrete illustration
of the steps, we refer the reader to the instantiation in Section 8. Other instantiations are given in
Section 9 and Section 10. In many cases, our NIWI proofs can also be used as NIZK proofs, which
we discuss in Section 11.

2 Non-interactive witness-indistinguishable proofs

Notation. We write y = A(x; r) when the algorithm A, on input x and randomness r, outputs
y. We write y ← A(x) for the process of picking randomness r uniformly at random and setting
y = A(x; r). More generally, we write y ← S for sampling y from the set S according to some
probability distribution on S, using the uniform distribution as the default when nothing else is
specified.

We write a ← A; b ← B(a); . . . for running the experiment where a is chosen from A, then b is
chosen from B, which may depend on a, etc. This yields a probability distribution over the outputs

and we write Pr
[
a← A; b← B(a); . . . : C(a, b, . . .)

]
for the probability of the condition C(a, b, . . .)

being satisfied after running the experiment.
The security of our schemes is governed by a security parameter k, which can be used to scale up

the security. Given two functions f, g : N→ [0, 1] we write f(k) ≈ g(k) when |f(k)−g(k)| = O(k−c)
for every constant c. We say that f is negligible when f(k) ≈ 0 and that it is overwhelming when
f(k) ≈ 1. We say that two families of probability distributions {S1(k)}k∈N, {S2(k)}k∈N are perfectly
indistinguishable when they are the same for all sufficiently large k ∈ N, and we say they are
computationally indistinguishable if for all non-uniform polynomial time adversaries A we have

Pr
[
y ← S1(k) : A(1k, y) = 1

]
≈ Pr

[
y ← S2(k) : A(1k, y) = 1

]
.

Group dependent languages. Let R be an efficiently computable ternary relation. For triplets
(gk, x, w) ∈ R we call gk the setup, x the statement and w the witness. Given some gk we let L
be the language consisting of statements x that have a witness w such that (gk, x, w) ∈ R. For a
relation that ignores gk this is of course the standard definition of an NP-language. We will be more
interested in the case where gk describes a bilinear group, though.
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Non-interactive proofs. A non-interactive proof system for a relation R with setup consists
of four probabilistic polynomial time algorithms: a setup algorithm G, a common reference string
(CRS) generation algorithm K, a prover P and a verifier V . The setup algorithm outputs a setup
(gk, sk). In our paper, gk will be a description of a bilinear group. The setup algorithm may
output some related information sk, for instance the factorization of the group order. A cleaner
case, however, is when sk is just the empty string, meaning the protocol is built on top of the
group without knowledge of any trapdoors. The CRS generation algorithm takes (gk, sk) as input
and produces a common reference string σ. The prover takes as input (gk, σ, x, w) and produces a
proof π. The verifier takes as input (gk, σ, x, π) and outputs 1 if the proof is acceptable and 0 if
rejecting the proof. We call (G,K, P, V ) a non-interactive proof system for R with setup G if it has
the completeness and soundness properties described below.

Perfect completeness. A non-interactive proof is complete if an honest prover can convince
an honest verifier whenever the statement belongs to the language and the prover holds a witness
testifying to this fact.

Definition 1 (Perfect completeness) We say (G,K, P, V ) is perfectly complete if for all adver-
saries A we have2

Pr
[
(gk, sk)← G(1k);σ ← K(gk, sk); (x,w)← A(gk, σ);π ← P (gk, σ, x, w) :

V (gk, σ, x, π) = 1 if (gk, x, w) ∈ R
]

= 1.

Perfect soundness. A non-interactive proof is sound if it is impossible to prove a false statement.

Definition 2 (Perfect soundness) We say (G,K, P, V ) is perfectly sound if for all adversaries A
we have

Pr
[
(gk, sk)← G(1k);σ ← K(gk, sk); (x, π)← A(gk, σ) : V (gk, σ, x, π) = 0 if x /∈ L

]
= 1.

Perfect culpable soundness. In the standard definition of soundness given above, the adversary
tries to create a valid proof for x ∈ L̄. Groth, Ostrovsky and Sahai [GOS06b, Gro06] generalized the
notion of soundness to disallowing false proofs of statements x ∈ Lguilt, where Lguilt is a language
that may depend on gk and σ. They call this notion culpable soundness.3 Standard soundness is
a special case with Lguilt = L̄, but the notion can be used to capture other interesting cases as
well. The instantiation in Section 8 uses groups of composite order n = pq and offers an example
where culpable soundness captures the inability of the adversary to produce convincing proofs for
statements that are false in the order p subgroups of G and GT (here Lguilt ⊆ L̄ is the language of
statements that are false in the order p subgroups).

Definition 3 (Perfect culpable soundness) We say (G,K, P, V ) has perfect Lguilt-soundness if
for all adversaries A we have

Pr
[
(gk, sk)← G(1k);σ ← K(gk, sk); (x, π)← A(gk, σ) : V (gk, σ, x, π) = 0 if x ∈ Lguilt

]
= 1.

2Since the probability is exactly 1, the definition quantifies over all gk in the support of G and all (gk, x, w) ∈ R.
3In an earlier version of their paper, Groth, Ostrovsky and Sahai [GOS06b] used the term co-soundness instead of

culpable soundness.
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Composable witness indistinguishability. A statement may have many possible witnesses. A
non-interactive proof is witness indistinguishable if the proof does not reveal which of those witnesses
the prover has used. The standard definition of witness-indstinguishability requires that proofs using
different witnesses for the same statement are computationally indistinguishable. We will obtain a
stronger definition of witness indistinguishability called composable witness indistinguishability. In
this definition there is a reference string simulator S that generates a simulated CRS and we require
that the adversary cannot distinguish a real CRS from a simulated CRS. We also require that on a
simulated CRS there is no information whatsoever to distinguish the different witnesses that might
have been used to construct the proof. The advantage of this definition is that different types of
proofs using the same type of real/simulated CRS can share the same CRS, which facilitates easier
security proofs. We will use this composability property in the instantiations in Sections 8, 9 and
10.

Definition 4 (Composable witness indistinguishability) We say (G,K, P, V ) is composable
witness indistinguishable, if there is a probabilistic polynomial time simulator S, such that for all
non-uniform polynomial time adversaries A we have

Pr
[
(gk, sk)← G(1k);σ ← K(gk, sk) : A(gk, σ) = 1

]
≈ Pr

[
(gk, sk)← G(1k);σ ← S(gk, sk) : A(gk, σ) = 1

]
,

and for all adversaries A we have

Pr
[
(gk, sk)← G(1k);σ ← S(gk, sk); (x,w0, w1)← A(gk, σ);π ← P (gk, σ, x, w0) : A(π) = 1

]
= Pr

[
(gk, sk)← G(1k);σ ← S(gk, sk); (x,w0, w1)← A(gk, σ);π ← P (gk, σ, x, w1) : A(π) = 1

]
,

where we require (gk, x, w0), (gk, x, w1) ∈ R.

Composable zero-knowledge. A zero-knowledge proof, is a proof that shows the statement
is true, but does not reveal anything else. Traditionally, this is defined by having a simulator
(S1, S2) that can simulate the CRS and the proof, resepctively. The first part of the simulator
outputs a simulated CRS and a simulation trapdoor τ , and the second part of the simulator uses the
simulation trapdoor to simulate proofs for statements without knowing the corresponding witnesses.
The standard definition of (multi-theorem) zero-knowledge then says that real proofs on a real CRS
should be computationally indistinguishable from simulated proofs on a simulated CRS.

We will obtain a strong notion of zero-knowledge, called composable zero-knowledge [Gro06].
Composable zero-knowledge implies standard zero-knowledge [Gro06] and has the advantage that it
is simpler to work with, since it separates the computational indistinguishability into two separate
parts addressing the CRS and the proofs, respectively. In composable zero-knowledge, the real CRS
and the simulated CRS are computationally indistinguishable. Moreover, the adversary, even when
it gets access to the secret simulation key τ , cannot distinguish real proofs from simulated proofs on
a simulated CRS.

Definition 5 (Composable zero-knowledge) We say (G,K, P, V ) is composable zero-knowledge
if there exists a probabilistic polynomial time simulator (S1, S2) such that for all non-uniform poly-
nomial time adversaries A we have

Pr
[
(gk, sk)← G(1k);σ ← K(gk, sk) : A(gk, σ) = 1

]
≈ Pr

[
(gk, sk)← G(1k); (σ, τ)← S1(gk, sk) : A(gk, σ) = 1

]
,
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and for all interactive adversaries A we have

Pr
[
(gk, sk)← G(1k); (σ, τ)← S1(gk, sk); (x,w)← A(gk, σ, τ);π ← P (gk, σ, x, w) : A(π) = 1

]
= Pr

[
(gk, sk)← G(1k); (σ, τ)← S1(gk, sk); (x,w)← A(gk, σ, τ);π ← S2(gk, σ, τ, x) : A(π) = 1

]
,

where A outputs (x,w) so (gk, x, w) ∈ R.

3 Modules with bilinear maps

Let (R,+, ·, 0, 1) be a finite commutative ring. Recall that an R-module A is an abelian group
(A,+, 0) where the ring acts on the group such that for all r, s ∈ R and all x, y ∈ A

(r + s)x = rx+ sx r(x+ y) = rx+ ry r(sx) = (rs)x 1x = x.

A cyclic group G of order n can in a natural way be viewed as a Zn-module. We observe that
all the equations in Figure 1 can be viewed as equations over Zn-modules with a bilinear map. To
generalize completely, let R be a finite commutative ring and let A1, A2, AT be finite R-modules
with a bilinear map f : A1 × A2 → AT . We will consider quadratic equations over variables
x1, . . . , xm ∈ A1, y1, . . . , yn ∈ A2 of the form

n∑
j=1

f(aj , yj) +

m∑
i=1

f(xi, bi) +

m∑
i=1

n∑
j=1

γijf(xi, yj) = t.

In order to simplify notation, let us for x1, . . . , xn ∈ A1, y1, . . . , yn ∈ A2 define

~x · ~y =

n∑
i=1

f(xi, yi).

The equations can now be written as

~a · ~y + ~x ·~b+ ~x · Γ~y = t,

where ~a ∈ An1 ,~b ∈ Am2 ,Γ ∈ Matm×n(R). We note for future use that due to the bilinear properties
of f , we have for any matrix Γ ∈ Matm×n(R) and for any ~x ∈ Am1 , ~y ∈ An2 that ~x · Γ~y = Γ>~x · ~y.

Let us now return to the equations in Figure 1 and see how they can be recast as quadratic
equations over Zn-modules with a bilinear map.

Pairing product equations: Define R = Zn, A1 = G1, A2 = G2, AT = GT , f(x, y) = e(x, y) and
rewrite4 the pairing product equation as ( ~A · ~Y)( ~X · ~B)( ~X · Γ~Y) = tT .

Multi-scalar multiplication in G1: Define R = Zn, A1 = G1, A2 = Zn, AT = G1, f(X , y) = yX
and rewrite the multi-scalar multiplication equation as ~A · ~y + ~X ·~b+ ~X · Γ~y = T1.

Multi-scalar multiplication in G2: Define R = Zn, A1 = Zn, A2 = G2, AT = G2, f(x,Y) = xY
and rewrite the multi-scalar multiplication equation as ~a · ~Y + ~x · ~B + ~x · Γ~Y = T2.

Quadratic equation in Zn: Define R = Zn, A1 = Zn, A2 = Zn, AT = Zn, f(x, y) = xy mod n
and rewrite the quadratic equation in Zn as ~a · ~y + ~x ·~b+ ~x · Γ~y ≡ t mod n.

We will therefore first focus on the more general problem of constructing non-interactive composable
witness-indistinguishable proofs for satisfiability of quadratic equations over R-modules A1, A2, AT
(using additive notation for all modules) with a bilinear map f : A1 ×A2 → AT .

4We use multiplicative notation here, because, usually GT is written multiplicatively in the literature. When we
work with the abstract modules, however, we will use additive notation.
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4 Commitment from modules

In our NIWI and NIZK proofs we will commit to the variables x1, . . . , xm ∈ A1, y1, . . . , yn ∈ A2.
We do this by mapping them into other R-modules B1, B2 and making the commitments in those
modules.

Let us for now just consider how to commit to elements from one R-module A. The public key
for the commitment scheme will describe another R-module B and R-linear maps ι : A → B and
p : B → A. Operations in the module and computation of the map ι will be efficiently computable
but p is hard to compute.5 The public key will also contain elements u1, . . . , um̂ ∈ B. To commit
to x ∈ A we pick r1, . . . , rm̂ ← R at random and compute the commitment

c := ι(x) +
m̂∑
i=1

riui.

Our commitment scheme will have two types of commitment keys.

Binding key: A binding key defines (B, ι, p, u1, . . . , um̂) where ∀i : p(ui) = 0 and p ◦ ι is non-
trivial. The commitment c := ι(x) +

∑m̂
i=1 riui therefore contains the non-trivial information

p(c) = p(ι(x)) about x. In particular, if p ◦ ι is the identity map on A, then the commitment
is perfectly binding to x.

Hiding key: A hiding key defines (B, ι, p, u1, . . . , um̂) where ι(A) ⊆ 〈u1, . . . , um̂〉. The commitment
c := ι(x) +

∑m̂
i=1 riui therefore perfectly hides the element x when r1, . . . , rm̂ are chosen at

random from R.

Computational indistinguishability: For security we need binding keys and hiding keys to be
computationally indistinguishable. Witness-indistinguishability of our NIWI proofs and later
the zero-knowledge property of our NIZK proofs will rely on this.

The treatment of commitments using the language of modules generalizes several previous
works dealing with commitments over bilinear groups, including [BGN05, GOS06b, GOS06a, Gro06,
Wat06].

Since we will often be committing to many elements at a time let us define some convenient
notation. Given elements x1, . . . , xm ∈ A we will write ~c := ι(~x) + R~u with R ∈ Matm×m̂(R) for
making commitments c1, . . . , cm computed as ci := ι(xi) +

∑m̂
j=1 rijuj .

5 Setup

In our NIWI and NIZK proofs the setup and the common reference string are

gk defining (R, A1, A2, AT , f),

σ together with gk defining (B1, B2, BT , F, ι1, p1, ι2, p2, ιT , pT , ~u,~v,H1, . . . ,Hη).

Part of the common reference string specifies B1, ι1, p1, u1, . . . , um̂ and B2, ι2, p2, v1, . . . , vn̂ that
are commitment keys for A1 and A2. We note that many of these components may be given implicitly
instead of being described explicitly in the common reference string.

Another part of the common reference string specifies a third R-module BT together with R-
linear maps ιT : AT → BT and pT : BT → AT and a bilinear map F : B1 × B2 → BT . We require

11



A1 × A2 AT

B1 × B2 BT

ι1 p1 ι2 p2 ιT pT

f

F

∀x ∈ A1 ∀y ∈ A2 : F (ι1(x), ι2(y)) = ιT (f(x, y))

∀x ∈ B1 ∀y ∈ B2 : f(p1(x), p2(y)) = pT (F (x, y))

Figure 2: Modules and maps between them.

that the maps are commutative as described in Figure 2 below, and with the exception of p1, p2 and
pT , that they are efficiently computable.
For notational convenience, we define for ~x ∈ Bn

1 , ~y ∈ Bn
2 that

~x • ~y =
n∑
i=1

F (xi, yi).

Due to the bilinear properties of F we have for all vectors and matrices with appropriate dimensions

~x • Γ~y = Γ>~x • ~y.

The final part of the common reference string is a set of matrices H1, . . . ,Hη ∈ Matm̂×n̂(R) that
all satisfy ~u • Hi~v = 0. The exact number of matrices H1, . . . ,Hη that is needed, depends on the
concrete setting. In many cases, we need no matrices at all and we have η = 0, but there are also
cases where they are needed as we shall see in the instantiation in Section 10.

There will be two different settings of interest to us.

Soundness setting: In the soundness setting, we have binding commitment keys. This means
p1(~u) = ~0 and p2(~v) = ~0, and the maps p1 ◦ ι1 and p2 ◦ ι2 are non-trivial. We will also want
pT ◦ ιT to be non-trivial.

Witness-indistinguishability setting: In the witness-indistinguishability setting we have hiding
commitment keys, such that ι1(A1) ⊆ 〈u1, . . . , um̂〉 and ι2(A2) ⊆ 〈v1, . . . , vn̂〉. We also require
that H1, . . . ,Hη generate the R-module of all matrices H ∈ Matm̂×n̂(R) such that ~u•H~v = 0.
As we will see in the next section, these matrices play a role in the randomization of the NIWI
proofs.

Computational indistinguishability: The (only) computational assumption this paper is based
on is that the two settings can be set up in a computationally indistinguishable way. The in-
stantiations in Sections 8, 9 and 10 show that there are many ways to get such computationally
indistinguishable soundness and witness-indistinguishability setups.

5There are scenarios where a secret key will make p efficiently computable and p ◦ ι is the identity map. In this
case the commitment scheme is a public key encryption scheme with p being the decryption operation.
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6 Proving that committed values satisfy a quadratic equation

Recall that in our setting, a quadratic equation looks like

~a · ~y + ~x ·~b+ ~x · Γ~y = t, (1)

with constants ~a ∈ An1 ,~b ∈ Am2 ,Γ ∈ Matm×n(R), t ∈ AT . We will first consider the case of a single
quadratic equation of the above form. The first step in our NIWI proof will be to commit to all the
variables ~x, ~y. The commitments are of the form

~c = ι1(~x) +R~u , ~d = ι2(~y) + S~v, (2)

with R ∈ Matm×m̂(R), S ∈ Matn×n̂(R). The prover’s task is to convince the verifier that the
commitments contain ~x ∈ Am1 , ~y ∈ An2 that satisfy the quadratic equation. (Note that for all
equations we will use these same commitments.)

Intuition. Before giving the construction let us give some intuition. In the previous sections, we
have carefully set up our commitments such that the commitments themselves also “behave” like the
values being committed to: they also belong to modules (the B modules) equipped with a bilinear
map (the map F , implicitly used in the • operation). Given that we have done this, a natural idea
is to take the quadratic equation (1), and “plug in” the commitments (2) in place of the variables;
let us evaluate

ι1(~a) • ~d+ ~c • ι2(~b) + ~c • Γ~d.

After some computations, where we expand the commitments (2), make use of the bilinearity of •,
and rearrange terms (the details can be found in the proof of Theorem 6) we get(

ι1(~a) • ι2(~y) + ι1(~x) • ι2(~b) + ι1(~x) • Γι2(~y)
)

+ι1(~a) • S~v +R~u • ι2(~b) + ι1(~x) • ΓS~v +R~u • Γι2(~y) +R~u • ΓS~v.

By the commutative properties of the maps, the first group of three terms is equal to ιT (t), if (1)
holds. Looking at the remaining terms, note that ~u and ~v are part of the common reference string
and therefore known to the verifier. Using the fact that bilinearity implies that for any ~x, ~y we have
~x • Γ~y = Γ>~x • ~y, we can sort the remaining terms so they match either ~u or ~v to get (again see the
proof of Theorem 6 for details)

ιT (t) + ~u •
(
R>ι2(~b) +R>Γι2(~y) +R>ΓS~v

)
+
(
S>ι1(~a) + S>Γ>ι1(~x)

)
• ~v. (3)

Now, for the sake of intuition, let us make some simplifying assumptions. Let us assume that we
are working in a symmetric case where A1 = A2, B1 = B2, ~u = ~v, and F is symmetric, and so, the
above equation can be simplified further to get

ιT (t) + ~u •
(
R>ι2(~b) +R>Γι2(~y) +R>ΓS~u+ S>ι1(~a) + S>Γ>ι1(~x)

)
.

Now, suppose the prover gives to the verifier as his proof ~π =
(
R>ι2(~b) +R>Γι2(~y) +R>ΓS~u+

S>ι1(~a) +S>Γ>ι1(~x)
)
. The verifier would then check that the following verification equation holds:

ι1(~a) • ~d+ ~c • ι2(~b) + ~c • Γ~d = ιT (t) + ~u • ~π.

13



Suppose further p1 ◦ ι1, p2 ◦ ι2, pT ◦ ιT are the identity maps on A1, A2, AT . It is easy to see that
the proof is convincing in the soundness setting, because in that setting we have that p1(~u) = ~0.
Then the verifier would know (but not be able to compute) that by applying the maps p1, p2, pT we
get

~a • p2(~d) + p1(~c) •~b+ p1(~c) • Γp2(~d) = t+ p1(~u) • p2(~π) = t.

This gives us soundness, since ~x := p1(~c) and ~y := p2(~d) satisfy the equations.
The remaining problem is to get witness-indistinguishability. Recall that in the witness-

indistinguishability setting, the commitments are perfectly hiding. Therefore, in the verification
equation, nothing except for ~π holds any information about ~x and ~y (except for the information
that can be inferred from the quadratic equation itself). So, let’s consider two cases:

1. Suppose that ~π is the unique value such that the verification equation is valid. In this case, we
trivially have witness indistinguishability, since the uniqueness means that any witness would
lead to the same value for ~π.

2. The simple case above might seem too good to be true, but let us see what it means if it
is not true. If two proofs ~π and ~π′ both satisfy the verification equation, then subtracting
the equations shows that ~u • (~π − ~π′) = 0. On the other hand, recall that in the witness
indistinguishability setting, the ~u vectors generate the entire space where ~π and ~π′ live, and
furthermore we know that the matrices H1, . . . ,Hη generate all H such that ~u•H~u = 0. There-
fore, let us choose r1, . . . , rη at random, and consider the distribution ~π′′ = ~π +

∑η
i=1 riHi~u.

We obtain the same distribution on ~π′′ that satisfies the verification equation regardless of
whether we started from ~π or ~π′ or any other proof.

Thus, for the symmetric case we obtain a witness indistinguishable proof system. For the general
non-symmetric case, instead of having just ~π for the ~u part of (3), we would also have a proof ~θ
for the ~v part. In this case, we would also have to make sure that this split does not reveal any
information about the witness. What we will do is to randomize the proofs such that they get a
uniform distribution on all ~π, ~θ that satisfy the verification equation. If we pick T ← Matn̂×m̂(R)
at random we have that ~θ+T~u completely randomizes ~θ. The part we add in ~θ can be “subtracted”
from ~π by observing that

ιT (t) + ~u • ~π + ~θ • ~v = ιT (t) + ~u •
(
~π − T>~v

)
+
(
~θ + T~u

)
• ~v.

By randomizing ~π this leads to a uniform distribution of proofs for the general non-symmetric case
as well.

6.1 The general case

Having explained the intuition behind the proof system, we proceed to a formal description of how
the prover handles a single equation and the security properties the procedure has.

Prover: Pick T ← Matn̂×m̂(R), r1, . . . , rη ← R at random. Compute

~π := R>ι2(~b) +R>Γι2(~y) +R>ΓS~v − T>~v +

η∑
i=1

riHi~v

~θ := S>ι1(~a) + S>Γ>ι1(~x) + T~u

and return the proof (~θ, ~π).
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Verifier: Return 1 if and only if

ι1(~a) • ~d+ ~c • ι2(~b) + ~c • Γ~d = ιT (t) + ~u • ~π + ~θ • ~v.

Perfect completeness of our NIWI proof will follow from the following theorem regardless of
whether we are in the soundness setting or the witness-indistinguishability setting.

Theorem 6 Given ~x ∈ Am1 , ~y ∈ An2 , R ∈ Matm×m̂(R), S ∈ Matn×n̂(R) satisfying

~c = ι1(~x) +R~u ~d = ι2(~y) + S~v ~a · ~y + ~x ·~b+ ~x · Γ~y = t,

we have for all choices of T, r1, . . . , rη that the proofs ~π, ~θ constructed as above will be accepted.

Proof. The commutative property of the linear and bilinear maps gives us ι1(~a) • ι2(~y) + ι1(~x) •
ι2(~b) + ι1(~x) • Γι2(~y) = ιT (t). For any choice of T, r1, . . . , rη we have

ι1(~a) • ~d+ ~c • ι2(~b) + ~c • Γ~d

= ι1(~a) •
(
ι2(~y) + S~v

)
+
(
ι1(~x) +R~u

)
• ι2(~b) +

(
ι1(~x) +R~u

)
• Γ
(
ι2(~y) + S~v)

)
= ι1(~a) • ι2(~y) + ι1(~x) • ι2(~b) + ι1(~x) • Γι2(~y)

+R~u • ι2(~b) +R~u • Γι2(~y) +R~u • ΓS~v + ι1(~a) • S~v + ι1(~x) • ΓS~v

= ιT (t) + ~u •
(
R>ι2(~b) +R>Γι2(~y) +R>ΓS~v

)
+
(
S>ι1(~a) + S>Γ>ι1(~x)

)
• ~v

= ιT (t) + ~u •
(
R>ι2(~b) +R>Γι2(~y) +R>ΓS~v

)
+

η∑
i=1

ri(~u •Hi~v)− ~u • T>~v

+T~u • ~v +
(
S>ι1(~a) + S>Γ>ι1(~x)

)
• ~v

= ιT (t) + ~u • ~π + ~θ • ~v �

Theorem 7 In the soundness setting, where we have p1(~u) = ~0 and p2(~v) = ~0, a valid proof implies

p1(ι1(~a)) · p2(~d) + p1(~c) · p2(ι2(~b)) + p1(~c) · Γp2(~d) = pT (ιT (t)).

Proof. An acceptable proof ~π, ~θ satisfies ι(a) • ~d+ ~c • ι2(~b) + ~c • Γ~d = ιT (t) + ~u • ~π + ~θ • ~v. The
commutative property of the linear and bilinear maps gives us

p1(ι1(~a)) · p2(~d) + p1(~c) · p2(ι2(~b)) + p1(~c) · Γp2(~d)

= pT (ιT (t)) + p1(~u) · p2(~π) + p1(~θ) · p2(~v) = pT (ιT (t)) �

Observe as a particularly interesting case that when p1 ◦ ι1, p2 ◦ ι2, pT ◦ ιT are the identity maps
on A1, A2 and AT , respectively, this means ~x := p1(~c) and ~y := p2(~d) give us a satisfying solution to
the equation ~a · ~y+ ~x ·~b+ ~x ·Γ~y = t. In this case, the theorem says that the proof is perfectly sound
in the soundness setting. In the case where they are not the identity maps it is still possible to have
a form of culpable soundness, see the instantiation in Section 8 for an example based on composite
order bilinear groups.

Theorem 8 In the witness-indistinguishable setting where ι1(A1) ⊆ 〈u1, . . . , um̂〉, ι2(A2) ⊆
〈v1, . . . , vn̂〉 and H1, . . . ,Hη generate all matrices H such that ~u •H~v = 0, all satisfying witnesses

~x, ~y,R, S yield proofs ~π ∈ 〈v1, . . . , vn̂〉m̂ and ~θ ∈ 〈u1, . . . , um̂〉n̂ that are uniformly distributed condi-
tioned on the verification equation ι1(~a) • ~d+ ~c • ι2(~b) + ~c • Γ~d = ιT (t) + ~u • ~π + ~θ • ~v.
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Proof. Since ι1(A1) ⊆ 〈u1, . . . , um̂〉 and ι2(A2) ⊆ 〈v1, . . . , vn̂〉 there exists A,B,X, Y such that
ι1(~a) = A~u, ι1(~x) = X~u and ι2(~b) = B~v, ι2(~y) = Y ~v. We have ~c = (X +R)~u and ~d = (Y +S)~v. The
proof is (~π, ~θ) given by

~θ = S>ι1(~a) + S>Γ>ι1(~x) + T~u =
(
S>A+ S>Γ>X + T

)
~u

~π = R>ι2(~b) +R>Γι2(~y) +R>ΓS~v))− T>~v +

η∑
i=1

riHi~v

=
(
R>B +R>ΓY +R>ΓS − T>

)
~v +

( η∑
i=1

riHi

)
~v.

We choose T at random, so we can think of ~θ being a uniformly random variable given by ~θ = Θ~v
for a randomly chosen matrix Θ. We can think of ~π as being written ~π = Π~v, where Π is a random
variable that depends on Θ.

By perfect completeness all satisfying witnesses yield proofs where ι1(~a) • ~d+~c • ι2(~b) +~c •Γ~d−
ιT (t) − ~θ • ~v = ~u • ~π = ~u • Π~v. Conditioned on the random variable Θ we therefore have that any
two possible solutions ~π, ~π′ satisfy ~u • (Π − Π′)~v = 0. Since H1, . . . ,Hη generate all matrices H
such that ~u • H~v = 0 we can write this as Π = Π′ +

∑η
i=1 r

′
iHi. In constructing ~π we form it as(

R>B+R>ΓY +R>ΓS−T>
)
~v+

(∑η
i=1 riHi

)
~v for randomly chosen r1, . . . , rη ∈ R. We therefore

get a uniform distribution over all ~π that satisfy the equation conditioned on ~θ. Since ~θ is uniformly
chosen, we conclude that for any witness we get a uniform distribution over (~θ, ~π) conditioned on it
being an acceptable proof. �

6.2 Linear equations

As a special case, we will consider the proof system when ~a = 0 and Γ = 0. In this case the equation
is simply

~x ·~b = t.

The scheme can be simplified in this case by choosing T = 0 in the proof, which gives ~θ := ~0 and
~π := R>ι2(~b) +

∑η
i=1 riHi~v. Theorem 6 still applies with T = 0, which will give us completeness.

Theorem 7 says p1(~c) · p2(ι2(~b)) = pT (ιT (t)), which will give us soundness. Finally, we have the
following theorem.

Theorem 9 In the witness-indistinguishable setting where ι1(A1) ⊆ 〈u1, . . . , um̂〉, ι2(A2) ⊆
〈v1, . . . , vn̂〉 and H1, . . . ,Hη generate all matrices H such that ~u •H~v = 0, all satisfying witnesses
~x, ~y,R, S yield the uniform distribution of the proof ~π ∈ 〈v1, . . . , vn̂〉m̂ conditioned on the verification
equation ~c • ι2(~b) = ιT (t) + ~u • ~π being satisfied.

Proof. As in the proof of Theorem 8 we can write ~π = Π~v. Any witness gives a proof that satisfies

~c • ι1(~b)− ιT (t) = ~u • ~π = ~u •Π~v.

Since H1, . . . ,Hη generate all matrices H such that ~u • H~v = 0 we have that Π has a uniform
distribution over all matrices Π satisfying the verification equation. �

6.3 The symmetric case

An interesting special case is when B := B1 = B2, m̂ ≥ n̂ with u1 = v1, . . . , un̂ = vn̂, and F is
symmetric, i.e., for all x, y ∈ B we have F (x, y) = F (y, x). We call this the symmetric case. In the
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symmetric case, we can simplify the scheme by just padding ~θ with zeroes in the end to extend the
length to m̂, call this vector ~θ′, and reveal the proof ~φ = ~π + ~θ′. In the verification, we check that

ι1(~a) • ~d+ ~c • ι2(~b) + ~c • Γ~d = ιT (t) + ~u • ~φ.

Theorem 6 gives us completeness, and Theorem 8 implies that all witnesses yield the same distru-
butions on the proofs ~π, ~θ and therefore the same distributions on the proofs ~φ. With respect to
soundness we have the following theorem.

Theorem 10 In the soundness setting, where we have p1(~u) = ~0 a valid proof implies

p1(ι1(a)) · p2(~d) + p1(~c) · p2(ι2(~b)) + p1(~c) · Γp2(~d) = pT (ιT (t)).

Proof. An acceptable proof ~φ satisfies ι1(~a) • ~d+~c • ι2(~b) +~c • Γ~d = ιT (t) + ~u • ~φ. The commutative
property of the linear and bilinear maps gives us

p1(ι1(~a)) · p2(~d) + p1(~c) · p2(ι2(~b)) + p1(~c) · Γp2(~d) = pT (ιT (t)) + p1(~u) · p2(~φ) = pT (ιT (t)). �

We can simplify the computation of the proof in the symmetric case. We have

~π := R>ι2(~b) +R>Γι2(~y) +R>ΓS~v − T>~v +

η∑
i=1

riHi~v

~θ := S>ι1(~a) + S>Γ>ι1(~x) + T~u,

and extend θ to θ′ by padding it with m̂ − n̂ 0’s. Another way to accomplish this padding is by
padding T with m̂− n̂ 0-rows and S with m̂− n̂ 0-columns and each Hi with m̂− n̂ 0-columns. We
then have

~φ := R>ι2(~b) +R>Γι2(~y) +R>ΓS′~u− (T ′)>~u+

η∑
i=1

riH
′
i~u+ (S′)>ι1(~a) + (S′)>Γ>ι1(~x) + T ′~u.

Since the map is symmetric we have ~u•(T ′−(T ′)>)~u = 0. If we have a set H ′1, . . . ,H
′
η′ that generates

all matrices H ′ such that ~u •H ′~u = 0, then we have T ′ − (T ′)> is in the span of them. This means
the following simpler proof is also witness-indistinguishable

~φ := R>ι2(~b) +R>Γι2(~y) + (S′)>ι1(~a) + (S′)>Γ>ι1(~x) +R>ΓS′~u+

η′∑
i=1

riH
′
i~u.

7 NIWI proof for satisfiability of a set of quadratic equations

We will now give the full composable NIWI proof for satisfiability of a set of quadratic equations in
a module with a bilinear map, i.e., the language

L =
{
{(~ai,~bi,Γi, ti)}Ni=1

∣∣∣ ∃~x, ~y ∀i : ~ai · ~y + ~x ·~bi + ~x · Γi~y = ti

}
.

The proof will have Lguilt-soundness for

Lguilt =
{
{(~ai,~bi,Γi, ti)}Ni=1

∣∣∣ ∀~x, ~y ∃i : p1(ι1(~ai)) · ~y + ~x · p2(ι2(~bi)) + ~x · Γi~y 6= pT (ιT (ti))
}
.
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Observe as an important special case that if p1 ◦ ι1, p2 ◦ ι2, pT ◦ ιT are the identity maps on A1, A2

and AT , then Lguilt = L̄ making soundness and Lguilt-soundness the same notion.
The cryptographic assumption we make is that the common reference string is created by one

of two algorithm K or S and that their outputs are computationally indistinguishable. The first
algorithm outputs a common reference string that specifies a soundness setting, whereas the second
algorithm outputs a common reference string that specifies a witness-indistinguishability setting.

Setup: (gk, sk) = ((R, A1, A2, AT , f), sk)← G(1k).

CRS generators: The common reference string defines (B1, B2, BT , F, ι1, p1, ι2, p2, ιT , pT , ~u,~v,H1, . . . ,Hη).
It can be generated as a soundness string σ ← K(gk, sk) or as a witness-indistinguishability
string σ ← S(gk, sk).

Prover: The input consists of gk, σ, a list of quadratic equations {(~ai,~bi,Γi, ti)}Ni=1 and a satisfying
witness ~x ∈ Am1 , ~y ∈ An2 .

Pick at random R ← Matm×m̂(R) and S ← Matn×n̂(R) and commit to all the variables as
~c := ~x+R~u and ~d := ~y + S~v.

For each equation (~ai,~bi,Γi, ti) make a proof as described in Section 6. In other words, pick
Ti ← Matn̂×m̂(R) and ri1, . . . , riη ← R and compute

~πi := R>ι2(~bi) +R>Γiι2(~y) +R>ΓiS~v − T>i ~v +

η∑
j=1

rijHj~v

~θi := S>ι1(~ai) + S>Γ>i ι1(~x) + Ti~u.

Output the proof (~c, ~d, {(~πi, ~θi)}Ni=1).

Verifier: The input is gk, σ, {(~ai,~bi,Γi, ti)}Ni=1 and the proof is (~c, ~d, {(~πi, ~θi)}Ni=1).

For each equation check

ι1(~ai) • ~d+ ~c • ι2(~bi) + ~c • Γi~d = ιT (ti) + ~u • ~πi + ~θi • ~v.

Output 1 if all the checks pass, else output 0.

Theorem 11 The proof system (G,K, P, V ) given above is a NIWI proof for satisfiability of a set
of quadratic equations with perfect completeness, perfect Lguilt-soundness and composable witness-
indistinguishability.

Proof. Perfect completeness follows from Theorem 6.
Consider a proof (~c, ~d, {(~πi, ~θi)}) on a soundness string. Define ~x := p1(~c), ~y := p2(~d). It follows

from Theorem 7 that for each equation we have

p1(ι1(~ai)) · ~y + ~x · p2(ι2(~bi)) + ~x · Γi~y
= p1(ι1(~ai)) · p2(~d) + p1(~c) · p2(ι2(~bi)) + p1(~c) · Γip2(~d) = pT (ιT (ti)).

This means we have perfect Lguilt-soundness.
We have assumed that soundness strings and witness-indistinguishability strings are computa-

tionally indistinguishable. Consider now a witness-indistinguishability string σ. The commitments
are perfectly hiding, so they do not reveal the witness ~x, ~y that the prover uses in the commitments
~c, ~d. Theorem 8 says that in each equation either of two possible witnesses yields the same distri-
bution on the proof for that equation. A straightforward hybrid argument then shows that we have
perfect witness-indistinguishability. �
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Proof of knowledge. We observe that if K outputs an additional secret piece of information
ξ that makes it possible to efficiently compute p1 and p2, then ξ makes it possible to extract the
witness ~x = p1(~c) and ~y = p2(~d).

Proof size. The size of the common reference string is m̂ elements in B1 and n̂ elements in B2

in addition to the description of the modules, the maps and H1, . . . ,Hη. The size of the proof is
m+Nn̂ elements in B1 and n+Nm̂ elements in B2.

Typically, m̂ and n̂ will be small, giving us a proof size that is O(m + n + N) elements in B1

and B2. The proof size may thus be smaller than the description of the statement, which can be of
size up to Nn elements in A1, Nm elements in A2, Nmn elements in R and N elements in AT .

7.1 NIWI proofs for bilinear groups

We will now outline the strategy for making NIWI proofs for satisfiability of a set of quadratic
equations over bilinear groups. As we described in Section 3, there are four different types of
equations corresponding to the following four combinations of Zn-modules:

Pairing product equations: A1 = G1, A2 = G2, AT = GT , f(X ,Y) = e(X ,Y).

Multi-scalar multiplication in G1: A1 = G1, A2 = Zn, AT = G1, f(X , y) = yX .

Multi-scalar multiplication in G2: A1 = Zn, A2 = G2, AT = G2, f(x,Y) = xY.

Quadratic equations in Zn: A1 = Zn, A2 = Zn, AT = Zn, f(x, y) = xy mod n.

The common reference string will specify commitment schemes to respectively scalars and group
elements. We first commit to all the variables and then make the NIWI proofs that correspond to
the types of equations that we are looking at. It is important that we use the same commitment
schemes and commitments for all equations, i.e., for instance we only commit to a scalar x once and
we use the same commitment in the proof whether x is involved in is a multi-scalar multiplication in
G2 or a quadratic equations in Zn. The use of the same commitment in all the equations is necessary
to ensure a consistent choice of x throughout the proof. As a consequence of this we use the same
module B′1 to commit to x in both multi-scalar multiplication in G2 and quadratic equations in Zn.
We therefore end up with at most four different modules B1, B

′
1, B2, B

′
2 to commit to respectively

X , x,Y, y variables.

8 Instantiation based on the subgroup decision assumption

Setup. The first instantiation is based on the composite order groups introduced by Boneh, Goh
and Nissim [BGN05]. The setup algorithm GBGN outputs (gk, sk) where gk = (n, G,GT , e,P)
describes a bilinear group of composite order n and sk = (p,q) consists of two primes such that
n = pq. Boneh, Goh and Nissim also introduced the subgroup decision assumption, which says
that it is hard to distinguish a random element of order q from a random element of order n.

Definition 12 (Subgroup decision assumption) We say the subgroup decision assumption
holds for GBGN if for all non-uniform polynomial time A:

Pr[(gk, sk)← GBGN(1k);α← Z∗n;U := αpP : A(gk,U) = 1]

≈ Pr[(gk, sk)← GBGN(1k);α← Z∗n;U := αP : A(gk,U) = 1].
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Statements. Based on the subgroup decision assumption we will construct NIWI proofs for the
language consisting of pairing product equations, multi-scalar multiplication equations and quadratic
equations as described in Figure 1. A statement consists of NP pairing product equations of the
form

∏
i e(Ai,Yi) ·

∏
i,j e(Yi,Yj)γij = tT , NM multi-scalar multiplication equations of the form∑

i aiYi+
∑

i xiBi+
∑

i,j γijxiYj = T andNQ quadratic equations of the form
∑

i aixi+
∑

i,j γijxixj ≡
t mod n, and a claim that there are x1, . . . , xm ∈ Zn and Y1, . . . ,Yn ∈ G that satisfy all equations.

Formally, given a setup gk = (n, G,GT , e,P) we define the language:

L =
{(
{( ~Ai,ΓP

i , tT i)}
NP
i=1, {(~ai, ~Bi,Γ

M
i , Ti)}

NM
i=1, {(~bi,Γ

Q
i , ti)}

NQ

i=1

) ∣∣∣ ∃m,n ∈ N∃~x ∈ Zmn ∃~Y ∈ Gn :

∀i ∈ [NP] : ~Ai ∈ Gn ∧ ΓP
i ∈ Matn×n(Zn) ∧ tT i ∈ GT ∧ ( ~Ai · ~Y)(~Y · ΓP

i
~Y) = tT i

∧ ∀i ∈ [NM] : ~ai ∈ Zmn ∧ ~Bi ∈ Gn ∧ ΓM
i ∈ Matm×n(Zn) ∧ Ti ∈ G ∧ ~ai · ~Y + ~x · ~Bi + ~x · ΓM

i
~Y = Ti

∧ ∀i ∈ [NQ] : ~bi ∈ Zmn ∧ ΓQ
i ∈ Matm×m(Zn) ∧ ti ∈ Zn ∧ ~x ·~bi + ~x · ΓP

i ~x ≡ ti mod n
}
.

Soundness will hold in the order p subgroups of G,GT and Zn. More precisely, define λ ∈ Zn as an
integer satisfying λ ≡ 1 mod p and λ ≡ 0 mod q. Then λZn is the order p subgroup of Zn and λG
is the order p subgroup of G. We will get Lguilt-soundness for

Lguilt =
{(
{( ~Ai,ΓP

i , tT i)}
NP
i=1, {(~ai, ~Bi,Γ

M
i , Ti)}N

M

i=1 , {(~bi,Γ
Q
i , ti)}

NP
i=1

) ∣∣∣ ∀m,n ∈ N∀~x ∈ (λZn)m∀~Y ∈ (λG)n :

∃i ∈ [NP] : ~Ai /∈ Gn ∨ ΓP
i /∈ Matn×n(Zn) ∨ tT i /∈ GT ∨ ( ~Ai · ~Y)(~Y · ΓP

i
~Y) 6= tT

λ
i

∨ ∃i ∈ [NM] : ~ai /∈ Zmn ∨ ~Bi /∈ Gn ∨ ΓM
i /∈ Matm×n(Zn) ∨ Ti /∈ G ∨ ~ai · ~Y + ~x · ~Bi + ~x · ΓM

i
~Y 6= λTi

∨ ∃i ∈ [NQ] : ~bi /∈ Zmn ∨ ΓQ
i /∈ Matm×m(Zn) ∨ ti /∈ Zn ∨ ~x ·~bi + ~x · ΓQ

i ~x 6≡ti mod p
}
.

Multi-scalar multiplication equations. We will build our full NIWI proof from a combination
of NIWI proofs for pairing-product equations, multi-scalar multiplication equations and quadratic
equations. First consider the case where we only have multi-scalar multiplication equations. Define
LM (LM

guilt) to be L (Lguilt) restricted to NP = NQ = 0 such that it only has NM multi-scalar
multiplication equations.

We can use our framework to get NIWI proofs for LM. The multi-scalar multiplication case
corresponds to R = Zn, A1 = Zn, A2 = G,AT = G, f(x,Y) = xY and equations of the form
~a · ~Y + ~x · ~B + ~x · Γ~Y = T over variables ~x ∈ Am1 and ~Y ∈ An2 .

The setup gk = (n, G,GT , e,P) implicitly defines A1, A2, AT , f . It also implicitly defines B1 =
B2 = BT = G and F (X ,Y) = e(X ,Y) and the linear maps6

ι1(x) = xP ι2(Y) = Y ιT (T ) = e(P, T )

p1(xP) = λx mod n p2(Y) = λY pT (e(P, T )) = λT .

Since λ2 ≡ λ mod n the maps commute as described in Figure 2. That is, we have

(x,Y) xY

(xP,Y) e(P, xY)

(ι1, ι2) ιT

f

F

6To uniquely define the maps let the setup include a bit indicating whether p is the large or the small prime factor
of n.
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and we have

(λx, λY) λxY

(xP,Y) e(P, xY)

(p1, p2) pT

f

F

The common reference string σ consists of an element U ∈ G. In the soundness setting it is
generated as U = αpP and in the witness-indistinguishability setting it is generated as U = αP,
where α ← Z∗n. The subgroup decision assumption implies that soundness strings and witness-
indistinguishability strings are computationally indistinguishable.

We will be using U as a commitment key in bothB1 and inB2. In order to commit to x ∈ A1 = Zn

we pick r ∈ Zn and compute the commitment C := ι1(x) + rU = xP + rU ∈ B1 = G. In order to
commit to Y ∈ A2 = G we pick s← Zn and compute the commitment D := ι2(Y) + sU = Y + sU ∈
B2 = G.

On a soundness string, U describes a binding key for both commitment schemes. We have
p1(U) ≡ p1(αpP) ≡ λαP ≡ 0 mod n and p2(U) = λαpU = O. Furthermore, the maps p1 ◦ ι1(x) =
p1(xP) = λx mod n and p2 ◦ ι2(Y) = p2(Y) = λY and pT ◦ ιT (T ) = pT (e(P, T )) = λT are all non-
trivial. A commitment C ∈ B1 defines the committed value uniquely in λZn, and a commitment
D ∈ B2 defines the committed value uniquely in λG.

On a witness-indistinguishability string, U describes a hiding key for both commitment schemes.
Since U is a generator for B1 = B2 = G we have ι1(A1) = ι1(Zn) = G = 〈U〉 and ι2(A2) = ι2(G) =
G = 〈U〉. This implies that the commitment schemes are perfectly hiding. The only solution
H ∈ Mat1×1(Zn) to U •HU = 1, i.e., e(U , HU) = 1 is H = 0. We do therefore not need to include
any H1, . . . ,Hη in the common reference string.

Theorem 11 now gives us a NIWI proof for the simultaneous satisfiability of a set of multi-
scalar multiplication equations with perfect completeness, perfect LM

guilt-soundness and composable
witness-indistinguishability.

Pairing product equations. Now consider the case where we only have pairing product equa-
tions. Define LP (LP

guilt) to be L (Lguilt) restricted to NM = NQ = 0 such that it only has NP

pairing product equations. Using our framework, this corresponds to R = Zn, A1 = A2 = G,AT =
GT , f(x, y) = e(x, y), and equations of the form ( ~A · ~Y)(~Y · Γ~Y) = tT over variables Y1, . . . ,Yn ∈ G.
The setup also defines modules B1 = B2 = G and BT = GT and the bilinear map F (X ,Y) = e(X ,Y).
We use the maps ι2(Y) = Y and p2(Y) = λY described in the multi-scalar multiplication case above
together with ιT (zT ) = zT and pT (zT ) = zλT to get the commutative diagram

A1 = G × A2 = G AT = GT

B1 = G × B2 = G BT = GT

ι2 p2 ι2 p2 ιT pT

f(X ,Y) = e(X ,Y)

F (X ,Y) = e(X ,Y)
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Using the same type of common reference string as in the multi-scalar multiplication case de-
scribed above, we get a NIWI proof for the simultaneous satisfiability of pairing product equations
with perfect completeness, perfect LP

guilt-soundness and composable witness-indistinguishability.

Quadratic equations in Zn. Finally, consider the case where we only have quadratic equations.
Define LQ (LQ

guilt) to be L (Lguilt) restricted to NP = NM = 0 such that it only has NQ quadratic
equations in Zn. Using our framework, this corresponds to R = Zn, A1 = A2 = AT = Zn, f(x, y) =
xy mod n, and equations of the form ~x·~b+~x·Γ~x ≡ t mod n over variables x1, . . . , xm ∈ Zn. The setup
also defines modules B1 = B2 = G and BT = GT and the bilinear map F (xP, yP) = e(xP, yP). We
use the maps ι1(x) = xP and p1(xP) = λx described in the multi-scalar multiplication case above
together with ιT (t) = e(P, tP) and pT (e(P, tP)) = λt mod n to get the commutative diagram

A1 = Zn × A2 = Zn AT = Zn

B1 = G × B2 = G BT = GT

ι1 p1 ι1 p1 ιT pT

f(x, y) = xy mod n

F (X ,Y) = e(X ,Y)

Using the same type of common reference string as in the multi-scalar multiplication case de-
scribed above, we get a NIWI proof for the simultaneous satisfiability of quadratic equations with
perfect completeness, perfect LQ

guilt-soundness and composable witness-indistinguishability.

The general case. In the three special cases described above, we used the same type of common
reference string σ = U . To get a NIWI proof for the simultaneous satisfiability of equations we
will combine them by using the same U for all three types of equations. The same commitments to
scalars xi ∈ Zn are used in both multi-scalar multiplication equations and in quadratic equations in
Zn and the same commitments to variables Yj ∈ G are used in both pairing product equations and
in multi-scalar multiplication equations to enforce consistency accross different types of equations.
The full NIWI proof for L is as follows:

Setup: (gk, sk) := ((n, G,GT , e,P), (p,q))← G(1k), where n = pq.

Soundness string: On input (gk, sk) return σ := U where U := rpP for random r ∈ Z∗n.

Witness-indistinguishability string: On input (gk, sk) return σ := U where U := rP for random
r ∈ Z∗n.

Prover: On input (n, G,GT , e,P,U), a set of N = NP + NM + NQ equations, and a witness ~x, ~Y
do:

1. Commit to the scalars x1, . . . , xm ∈ Zn and the group elements Y1, . . . ,Yn ∈ G as

Ci := xiP + riU Di := Yi + siU

for randomly chosen ~r ∈ Zmn , ~s ∈ Znn.

2. For each pairing product equation ( ~A · ~Y)(~Y · Γ~Y) = tT make a proof as described in
Section 6.3

φ := ~s> ~A+ ~s>(Γ + Γ>)~Y + ~s>Γ~sU

=
n∑
i=1

siAi +
n∑
i=1

n∑
j=1

(γij + γji)siYj +
n∑
i=1

n∑
j=1

γijsisjU .
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3. For each multi-scalar multiplication equation ~a · ~Y + ~x · ~B + ~x · Γ~Y = T the proof is

φ : = ~r> ~B + ~r>Γ~Y + ~r>Γ~sU + ~s>~aP + ~s>Γ~xP

=
m∑
i=1

riBi +
m∑
i=1

n∑
j=1

riγijYj +
m∑
i=1

n∑
j=1

γijrisjU +
n∑
i=1

si(ai +
m∑
j=1

γijxj)P.

4. For each quadratic equation ~x ·~b+ ~x · Γ~x = t in Zn we have

φ := ~r>~bP + ~r>(Γ + Γ>)~xP + ~r>Γ~rU

= (
m∑
i=1

ribi +
m∑
i=1

m∑
j=1

(γij + γji)rixj)P +
m∑
i=1

m∑
j=1

γijrirjU .

Verifier: On input (n, G,GT , e,P,U), a set of equations and a proof ~C, ~D, {φi}Ni=1 do:

1. For each pairing product equation ( ~A · ~Y)(~Y · Γ~Y) = tT with proof φ check that

n∏
i=1

e(Ai,Di) ·
n∏
i=1

n∏
j=1

e(Di,Dj)γij = tT e(U , φ).

2. For each multi-scalar multiplication ~a · ~Y + ~x · ~B + ~x · Γ~Y = T with proof φ check that

n∏
i=1

e(aiP,Di) ·
m∏
i=1

e(Ci,Bi) ·
m∏
i=1

n∏
j=1

e(Ci,Dj)γij = e(P, T )e(U , φ).

3. For each quadratic equation ~x ·~b+ ~x · Γ~x = t in Zn with proof φ check that

m∏
i=1

e(Ci, biP) ·
m∏
i=1

m∏
j=1

e(Ci, Cj)γij = e(P,P)te(U , φ).

Theorem 13 The NIWI proof for L given above has perfect completeness, perfect Lguilt-soundness
and composable witness-indistinguishability.

Proof. Perfect completeness follows from the perfect completeness of each of the three types of proofs.
Perfect Lguilt-soundness follows from Theorem 10 since we use the same commitments and maps

p1, p2 accross different types of equations thus making the order p solutions ~x = p1(~C), ~Y = p2( ~D)
consistent with each other for all three types of equations. The subgroup decision assumption implies
that soundness and witness-indistinguishability common reference strings are indistinguishable. On
a witness-indistinguishability string the commitments are perfectly hiding and we get perfect witness-
indistinguishability from Theorem 8. �

Size. The size of the NIWI proof is m + n + N group elements in G, where m is the number of
variables in ~x, n is the number of variables in ~Y and N = NP + NM + NQ is the total number of
equations.

23



9 Instantiation based on the SXDH assumption

Setup. The setup algorithm GSXDH returns a prime order bilinear group gk =
(p, G1, G2, GT , e,P1,P2). We will assume the decision Diffie-Hellman problem is hard in both groups,
i.e., the Symmetric External Diffie-Hellman (SXDH) assumption.

Definition 14 (SXDH assumption) We say the SXDH assumption holds for GSXDH if for all
non-uniform polynomial time A and all b ∈ {1, 2} we have

Pr[gk ← GSXDH(1k);α, t← Z∗p : A(gk, αPb, tPb, αtPb) = 1]

≈ Pr[gk ← GSXDH(1k);α, t, r ← Z∗p : A(gk, αPb, tPb, rPb) = 1]

Statements. The setup gk = (p, G1, G2, GT , e,P1,P2) defines the ring Zp and modules
Zp, G1, G2, GT and bilinear maps corresponding to multiplication in Zp, scalar multiplication in
G1 and G2, and the pairing e : G1 ×G2 → GT .

With this setup we can define pairing product equations, multi-scalar multiplication equations
and quadratic equations as follows:

Pairing product equations: Using our framework, this corresponds to R = Zp, A1 = G1, A2 =

G2, AT = GT , f(x, y) = e(x, y), and equations of the form ( ~A · ~Y)( ~X · ~B)( ~X · Γ~Y) = tT .

Multi-scalar multiplication in G1: Using our framework, this corresponds to R = Zp, A1 =

G1, A2 = Zp, AT = G1, f(X , y) = yX , and equations of the form ~A · ~y + ~X ·~b+ ~X · Γ~y = T1.

Multi-scalar multiplication in G2: Using our framework, this corresponds to R = Zp, A1 =

Zp, A2 = G2, AT = G2, f(x,Y) = xY, and equations of the form ~a · ~Y + ~x · ~B + ~x · Γ~Y = T2.

Quadratic equation in Zp: Using our framework, this corresponds to R = Zp, A1 = Zp, A2 =

Zp, AT = Zp, f(x, y) = xy mod p, and equations of the form ~a · ~y + ~x ·~b+ ~x · Γ~y = t.

We consider statements that consist of sets of pairing product equations, multi-scalar multipli-
cations in G1 and G2, and quadratic equations as described above. The equations are over variables
x1, . . . , xm′ , y1, . . . , yn′ ∈ Zp and X1, . . . ,Xm ∈ G1 and Y1, . . . ,Yn ∈ G2. We let L be the language

of statements where there exists a solution ~x, ~y, ~X , ~Y that simultaneously satisfies all equations of
all types.

Commitments. Consider a group G of prime order p. With entry-wise addition we get the
Zp-module B := G2. We will use a commitment key of the form

u1 = (P,Q) := (P, αP) u2 = (U ,V),

where α ← Z∗p is chosen at random. We can choose u2 = (U ,V) in two different ways: u2 := tu1
or u2 := tu1 − (O,P) for a random t ∈ Z∗p. The former choice of u2 gives a perfectly binding
commitment key, whereas the latter choice of u2 gives a perfectly hiding commitment key. The two
types of commitment keys are computationally indistinguishable under the DDH assumption.

Let us now describe how to commit to an element X ∈ G1 using randomness r1, r2 ∈ Zp:

ι(Z) := (O,Z) p(Z1,Z2) := Z2 − αZ1 c := ι(X ) + r1u1 + r2u2.

On a binding key where u2 = tu1 we have that p◦ ι is the identity map on G and p(u1) = p(u2) = O.
The commitment c = ((r1 + r2t)P, (r1 + r2t)Q + X ) corresponds to an ElGamal encryption of X .
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On a hiding key on the other hand, u1 and u2 are linearly independent. This means u1, u2 form a
basis for B = G2 and ι(G) ⊆ 〈u1, u2〉 giving a perfectly hiding commitment.

Commitment to a scalar x ∈ Zp using randomness r ∈ Zp works as follows:

u := u2 + (O,P) ι′(z) := zu p′(z1P, z2P) := z2 − αz1 c := ι′(x) + ru1.

On a binding key p′ ◦ ι′ is the identity map and p′(u1) = 0, so the commitment scheme is perfectly
binding, and in fact the commitment c = ((r + xt)P, (r + xt)Q + xP) is an ElGamal encryption
of xP. On a hiding key we have u = tu1 so u ∈ 〈u1〉, which implies ι′(Zp) ⊆ 〈u1〉. A hiding key
therefore gives us a perfectly hiding commitment scheme.

Common reference string. The common reference string is of the form (u1, u2, v1, v2), where
(u1, u2) is a commitment key for the group G1 implicitly defining maps ι1, p1, ι

′
1, p
′
1 as described

above, and (v1, v2) is a commitment key for G2 implicitly defining maps ι2, p2, ι
′
2, p
′
2 as described

above.
We will always use B1 = G2

1, B2 = G2
2 and we define BT := G4

T with addition being entry-wise
multiplication. The map F is defined as follows:

F : G2
1 ×G2

2 → G4
T (

(
X1

X2

)
,

(
Y1
Y2

)
) 7→

(
e(X1,Y1) e(X1,Y2)
e(X2,Y1) e(X2,Y2)

)
.

On a witness-indistinguishability string, we have hiding commitment keys u1, u2
and v1, v2 where each pair of vectors is linearly independent. The four elements
F (u1, v1), F (u1, v2), F (u2, v1), F (u2, v2) are also linearly independent in the witness-
indistinguishability scenario. This implies that ~u • H~v = 0 only has the trivial solution
where H is the 2× 2 matrix with 0-entries. Therefore, the common reference string does not need
to include any matrices H1, . . . ,Hη for the pairing product equations. The same holds true for the
other types of equations, we do not need any matrices H1, . . . ,Hη in the common reference string.

Pairing product equations. Consider first the restricted language LP ⊂ L, where the statements
only have pairing product equations. The common reference string describesR = Zp, A1 = G1, A2 =
G2, AT = GT , and B1 = G2

1, B2 = G2
2, BT = G4

T , and commitment keys u1, u2, v1, v2, and the
following commuting linear and bilinear maps:

(X ,Y) e(X ,Y)

((
O
X

)
,

(
O
Y

)) (
1 1
1 e(X ,Y)

)
(ι1, ι2) ιT

f

F

For the following maps we recall u1 = (P1, α1P1) and v1 = (P2, α2P2):
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(X2 − α1X1,Y2 − α2Y1) e(X2 − α1X1,Y2 − α2Y1)

((
X1

X2

)
,

(
Y1
Y2

)) (
e(X1,Y1) e(X1,Y2)
e(X2,Y1) e(X2,Y2)

)
(p1, p2) pT

f

F

This gives us the setup from Section 5 and we can use the NIWI proofs described in Section 6
on the pairing product equations.

Multi-scalar multiplication in G1 or G2. For multi-scalar multiplications in G1, we will need
maps ι̃T : G1 → G4

T and p̃T : G4
T → G1. For multi-scalar multiplications in G2 we will need maps

ι̂T : G2 → G4
T and p̂T : G4

T → G2. The two cases are symmetric, so we will just focus on multi-scalar
multiplication in G2 here.

We define

ι̂T (Z) := F (ι′1(1), ι2(Z)) = F (u, (O,Z)) p̂T = e−1(pT (z)),

where e−1(e(P1,Z)) := Z. In the soundness setting p̂T ◦ ι̂T is the identity map on G2.
We have F (ι′1(x), ι2(Y)) = F (ι′1(1), ι2(xY)) = ι̂T (xY) by the linearity and bilinearity of the maps,

and p′1(x1P1, x2P1)p2(Y1,Y2) = (x2 − α1x1)(Y2 − α2Y1) = x2Y2 − α1x1Y2 − α2(x2Y1 − α1x1Y1) =
p̂T (F ((x1P1, x2P2), (Y1,Y2))). This gives us the commutative diagram of linear and bilinear maps:

A1 = Zp × A2 = G2 AT = GT

B1 = G2
1 × B2 = G2

2 BT = G4
T

ι′1 p′1 ι2 p2 ι̂T p̂T

f(x,Y) = xY

F

Using this setup, we can apply the NIWI proof from Section 6 to multi-scalar multiplication
equations in G2. The case of multi-scalar multiplication in G1 is treated similarly.

Quadratic equations. For quadratic equations in Zp we define the maps ι′T : Zp → G4
T and

p′T : G4
T → Zp as follows

ι′T (t) := F (ι′1(1), ι′2(t)) = F (u, tv) p′T (z) := loge(P1,P2)(pT (z)).

In the soundness setting p′T ◦ ι′T is the identity map on Zp. To see that the maps satisfy the two
commutative properties from Figure 2, observe F (ι′1(x), ι′2(y)) = F (ι′1(1), ι2(xy)) = ι′(xy) by the
linearity and bilinearity of the maps, and

p′1(x1P1, x2P1)p′2(y1P2, y2P2)
= (x2 − α1x1)(y2 − α2y1) = x2y2 − α1x1y2 − α2(x2y1 − α1x1y1) = p′T (F ((x1P1, x2P2), (y1P2, y2P2))).

This gives us the following setup:
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A1 = Zp × A2 = Zp AT = Zp

B1 = G2
1 × B2 = G2

2 BT = G4
T

ι′1 p′1 ι′2 p′2 ι′T p′T

f(x, y) = xy mod p

F

NIWI proof. We now give the full NIWI proof for L.

Setup: gk := (p, G1, G2, GT , e,P1,P2)← GSXDH(1k).

Soundness string: On input gk return σ := (u1, u2, v1, v2) where u2 = t1u1 and v2 = t2v1 for
random t1, t2 ← Zp.

Witness-indistinguishability string: On input gk return σ := (u1, u2, v1, v2) where u2 = t1u1−
(O,P1) and v2 = t2v1 − (O,P2) for random t1, t2 ← Zp.

NIWI proof: On input gk, σ, a set of equations and a witness ~X , ~Y, ~x, ~y do:

1. Commit to the group elements ~X ∈ Gm1 and the scalars ~x ∈ Zm′p as

~c := ι1( ~X ) +R~u ~c′ := ι′1(x) + ~ru1 where R← Matm×2(Zp), ~r ← Zm
′

p .

Commit to the group elements ~Y ∈ Gn2 and the scalars ~y ∈ Zn′p as

~d := ι2(~Y) + S~v ~d′ := ι′2(y) + ~sv1 where S ← Matn×2(Zp), ~s← Zn
′

p .

2. For each pairing product equation ( ~A · ~Y)( ~X · ~B)( ~X ·Γ~Y) = tT make a proof as described
in Section 6. Writing it out, we have for T ← Mat2×2(Zp) the following proof:

~π := R>ι2( ~B) +R>Γι2(~Y) + (R>ΓS − T>)~v

~θ := S>ι1( ~A) + S>Γ>ι1( ~X ) + T~u

Following Section 6.2, for each linear equation ~A· ~Y = tT we use ~π := ~0 and ~θ := S>ι1( ~A).
There is a bijective correspondence between S> ~A = p1(~θ) and ~θ = ι1(S

> ~A). The proof
can therefore be communicated by sending S> ~A, which consists of two group elements
in G1.

For each linear equation ~X · ~B = tT we use ~π := R>ι2( ~B) and ~θ := ~0. As above, the proof
can be communicated by sending the two group elements R> ~B in G2.

3. For each multi-scalar multiplication equation ~A · ~y + ~X ·~b+ ~X · Γ~y = T1 in G1 the proof
is for random T ← Mat1×2(Zp)

~π := R>ι′2(
~b) +R>Γι′2(~y) + (R>Γ~s− T>)v1

θ := ~s>ι1( ~A) + ~s>Γ>ι1( ~X ) + T~u

For each linear equation ~A · ~y = T1 the proof is ~π := ~0 and θ := ~s>ι1( ~A). There is a
bijective correspondence between ~s> ~A = p1(~θ) and θ = ι1(~s

> ~A). The proof can therefore
be communicated by sending ~s> ~A, which consists of one group element in G1.

For each linear equation ~X ·~b = T1 the proof is ~π := R>ι′2(
~b) and θ := 0. As above, the

proof can be communicated by sending the two field elements R>~b.
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4. For each multi-scalar multiplication equation ~a · ~Y + ~x · ~B + ~x · Γ~Y = T2 in G2 the proof
is for random T ← Mat2×1(Zp)

π := ~r>ι2( ~B) + ~r>Γι2(~Y) + (~r>ΓS − T>)~v

~θ := S>ι′1(~a) + S>Γ>ι′1(~x) + Tu1

For each linear equation ~a · ~Y = T2 the proof is π := 0 and ~θ := S>ι′1(~a). There is a

bijective correspondence between S>~a = p′1(
~θ) and ~θ = ι′1(S

>~a). The proof can therefore
be communicated by sending S>~a, which consists of two field elements.

For each linear equation ~x · ~B = T2 the proof is π := ~r>ι2( ~B) and ~θ := 0. As above, the
proof can be communicated by sending the single group element ~r> ~B.

5. For each quadratic equation ~a ·~y+~x ·~b+~x ·Γ~y = t in Zp the proof is for random T ← Zp

π := ~r>ι′2(
~b) + ~r>Γι′2(~y) + (~r>Γ~s− T )v1

θ := ~s>ι′1(~a) + ~s>Γ>ι′1(~x) + Tu1

For each linear equation ~a · ~y = t we use π := 0 and θ := ~s>ι′1(~a). There is a bijective
correspondence between ~s>~a = p′1(θ) and θ = ι′1(~s

>~a). The proof can therefore be
communicated by sending ~s>~a, which consists of one field element.

For each linear equation ~x · ~b = t we use π := ~r>ι′2(
~b). As above, the proof can be

communicated by sending the single field element ~r>~b.

Verifier: On input (gk, σ), a set of equations and a proof ~c, ~d,~c′, ~d′, {~πi, ~θi}Ni=1 do:

1. For each pairing product equation ( ~A · ~Y)( ~X · ~B)( ~X · Γ~Y) = tT with proof (~π, ~θ) check
that

ι1( ~A) • ~d+ ~c • ι2( ~B) + ~c • Γ~d = ιT (tT ) + ~u • ~π + ~θ • ~v.

2. For each multi-scalar equation ~A · ~y + ~X ·~b + ~X · Γ~y = T1 in G1 with proof (~π, θ) check
that

ι1( ~A) • ~d′ + ~c • ι′2(~b) + ~c • Γ~d′ = ι̃T (T1) + ~u • ~π + F (θ, v1).

3. For each multi-scalar equation ~a · ~Y + ~x · ~B + ~x · Γ~Y = T2 in G2 with proof (π, ~θ) check
that

ι′1(~a) • ~d+ ~c′ • ι2( ~B) + ~c′ • Γ~d = ι̂T (T2) + F (u1, π) + ~θ • ~v.

4. For each quadratic equation ~a · ~y + ~x ·~b+ ~x · Γ~y = t in Zp with proof (π, θ) check that

ι′1(~a) • ~d′ + ~c′ • ι′2(~b) + ~c′ • Γ~d′ = ι′T (t) + F (u1, π) + F (θ, v1).

Theorem 15 The protocol is a NIWI proof with perfect completeness, perfect soundness and com-
posable witness-indistinguishability for satisfiability of a set of equations over a bilinear group where
the SXDH problem is hard.

Proof. Perfect completeness follows from Theorem 6. Perfect soundness follows from Theorem
7 since the p ◦ ι maps are identity maps on Zp, G1, G2 and GT . The SXDH assumption gives
us that the two types of common reference strings are computationally indistinguishable. On a
witness-indistinguishability string, the commitments are perfectly hiding and we get perfect witness-
indistinguishability from Theorems 8 and 9. �

28



Assumption: SXDH G1 G2 Zp

Variables x ∈ Zp,X ∈ G1 2 0 0
Variables y ∈ Zp,Y ∈ G2 0 2 0
Pairing product equations 4 4 0

- Linear equation: ~A · ~Y = tT 2 0 0

- Linear equation: ~X · ~B = tT 0 2 0
Multi-scalar multiplication equations in G1 2 4 0

- Linear equation: ~A · ~y = T1 1 0 0

- Linear equation: ~X ·~b = T1 0 0 2
Multi-scalar multiplication equations in G2 4 2 0

- Linear equation: ~a · ~Y = T2 0 0 2

- Linear equation: ~x · ~B = T2 0 1 0
Quadratic equations in Zp 2 2 0
- Linear equation: ~a · ~y = t 0 0 1

- Linear equation: ~x ·~b = t 0 0 1

Table 3: Cost of each variable and equation measured in elements from G1, G2 and Zp.

Size. The modules we work in are B1 = G2
1 and B2 = G2

2, so each element in a module consists of
two group elements from respectively G1 and G2. Table 3 lists the cost of all the different types of
equations.

10 Instantiation based on the DLIN assumption

Setup. Let GDLIN be a generator of a bilinear group (p, G,GT , e,P). The decisional lin-
ear assumption (DLIN) introduced by Boneh, Boyen and Shacham [BBS04] states that given
(αP, βP, rαP, sβP, tP) for random α, β, r, s it is hard to tell whether t = r + s or t is random.

Definition 16 (DLIN assumption) The decisional linear assumption holds for GDLIN if for all
non-uniform polynomial time A we have

Pr[gk ← GDLIN(1k);α, β, r, s← Z∗p : A(gk, αP, βP, rαP, sβP, (r + s)P) = 1]

≈ Pr[gk ← GDLIN(1k);α, β, r, s, t← Z∗p : A(gk, αP, βP, rαP, sβP, tP) = 1].

Statements. The setup gk = (p, G,GT , e,P) describes three Zp-modules Zp, G and GT . A
statement will consist of a set of equations, which can include quadratic equations in Zp, multi-
scalar multiplication equations in G and pairing product equations. The equations are over variables
x1, . . . , xm ∈ Zp and Y1, . . . ,Yn ∈ G.

Pairing product equations: Using our framework, this corresponds to R = Zp, A1 = G,A2 =

G,AT = GT , f(x, y) = e(x, y), and equations of the form ( ~A · ~Y)(~Y · Γ~Y) = tT .

Multi-scalar multiplication in G: Using our framework, this corresponds to R = Zp, A1 =

Zn, A2 = G,AT = G, f(x,Y) = xY, and equations of the form ~a · ~Y + ~x · ~B + ~x · Γ~Y = T .

Quadratic equations: Using our framework, this corresponds to R = Zp, A1 = Zp, A2 =

Zp, AT = Zp, f(x, y) = xy mod p, and equations of the form ~x ·~b+ ~x · Γ~x = t.
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We will construct NIWI proofs for the language L that consists of statements with pairing product
equation, multi-scalar multiplication equations and quadratic equations for which there is a choice
of ~x, ~Y satisfying all equations simultaneously.

Commitments. We will now describe how to commit to elements in Zp and G. The commitments
will belong to the Zp-module B = G3 formed by entry-wise addition. The commitment key is of
the form

u1 := (U ,O,P) = (αP,O,P) u2 := (O,V,P) = (O, βP,P) u3 = (W1,W2,W3),

where α, β ← Z∗p. The vector u3 can be chosen as either u3 := ru1+su2 or u3 := ru1+su2−(O,O,P)
giving a binding key or a hiding key, respectively. The DLIN assumption says it is hard to tell
whether three elements rU , sV, tP have the property that t = r + s, which implies that the two
types of commitment keys are computationally indistinguishable.

For committing to Y ∈ G using randomness (s1, s2, s3)← Z3
p we define

ι(Z) := (O,O,Z) p(Z1,Z2,Z3) := Z3 −
1

α
Z1 −

1

β
Z2 giving us c := ι(Y) +

3∑
i=1

siui.

On a binding key we have p◦ι is the identity map and p(u1) = p(u2) = p(u3) = O so the commitment
is perfectly binding, and in fact c = ((s1 + rs3)U , (s2 + ss3)V, (s1 + s2 + (r+ s)s3)P +Y) is a linear
encryption [BBS04] of Y with p being the decryption algorithm. On a hiding key u1, u2, u3 are
linearly independent so they form a basis for B = G3 and therefore ι(G) ⊆ 〈u1, u2, u3〉 so the
commitment scheme is perfectly hiding. The commitment scheme described here coincides with the
scheme of Waters [Wat06]. We note that the different, and less efficient, commitment scheme of
Groth [Gro06] can be similarly described in our language of modules.

To commit to a scalar x ∈ Zp we define u := u3 + (O,O,P) and using randomness r1, r2 ∈ Zp

let

ι′(z) := zu p′(z1P, z2P, z3P) := z3 −
1

α
z1 −

1

β
z2 giving us c := xu+ r1u1 + r2u2.

On a binding key, p′ ◦ ι′ is the identity map on Zp and p′(u1) = p′(u2) = 0 so the commitment
c = ((r1 + rx)U , (r2 + sx)V, (r1 + r2 + x(r + s))P + xP) is perfectly binding. On a hiding key, we
have that u = ru1 + su2 so ι′(Zp) ⊆ 〈u1, u2〉 and the commitment scheme is perfectly hiding.

Common reference string. The common reference string is of the form (u1, u2, u3), which im-
plicitly defines maps ι, p, ι′, p′ and commitment schemes in B = G3 as described above.

We use the module BT := G9
T with addition corresponding to entry-wise multiplication. We use

two different bilinear maps F, F̃ . The map F̃ : G3 ×G3 → G9
T is defined as follows:

F̃ : (

 X1

X2

X3

 ,

 Y1Y2
Y3

) 7→

 e(X1,Y1) e(X1,Y2) e(X1,Y3)
e(X2,Y1) e(X2,Y2) e(X2,Y3)
e(X3,Y1) e(X3,Y2) e(X3,Y3)

 .

The symmetric map F is defined by

F (x, y) :=
1

2
F̃ (x, y) +

1

2
F̃ (y, x).

We use the notation •̃ and • when using F̃ and F , respectively, as the underlying bilinear maps
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Pairing product equations. For pairing product equations we define

ιT (z) :=

 1 1 1
1 1 1
1 1 z



pT (

 z11 z12 z13
z21 z22 z23
z31 z32 z33

) := z33z
− 1
α

13 z
− 1
β

23

(
z31z

− 1
α

11 z
− 1
β

21

)− 1
α
(
z32z

− 1
α

12 z
− 1
β

22

)− 1
β

.

The map pT corresponds to first decrypting down the columns using the decryption key α, β for the
linear encryption scheme [BBS04] and then decrypting along the resulting row. We note that pT ◦ ιT
is the identity map. Both F̃ and F satisfy the two commutative properties in Figure 2.

Some computation shows that the nine elements F̃ (ui, uj) are linearly independent in the witness-
indistinguishability setting. This implies that ~u •̃ H~u only has the trivial solution where H is the
3 × 3 matrix with 0-entries. On the other hand, the map F has non-trivial solutions to ~u • H~u
corresponding to the identities F (ui, uj) = F (uj , ui). Some computation shows that the matrices

H1 =

 0 1 0
−1 0 0
0 0 0

 H2 =

 0 0 1
0 0 0
−1 0 0

 H3 =

 0 0 0
0 0 1
0 −1 0


form a basis for the matrices H such that ~u • H~u = 0. Since these matrices are fixed, we do not
need to define them explicitly in the common reference string.

Multi-scalar multiplication equations. We will now look at the case of multi-scalar multipli-
cation in G. We define

ι̃T (Z) := F̃ (ι′(1), ι(Z)) = F̃ (u, (O,O,Z)) ι̂T (Z) := F (ι′(1), ι(Z)) = F (u, (O,O,Z))

p̃T (z) = p̂T (z) := e−1(pT (z)) where e−1(e(P,Z)) := Z.

In the soundness setting p̃T ◦ ι̃T and p̂T ◦ ι̂T are the identity maps on G. F̃ satisfies the
two commutative properties, since by the linear and bilinear properties give F̃ (ι′(x), ι(Y)) =
F̃ (ι′(1), ι(xY)) = ι̃T (xY) and p′(x1P, x2P, x3P)p(Y1,Y2,Y3) = (x3− 1

αx1−
1
βx2)(Y3−

1
αY1−

1
βY2) =

p̃T (F̃ ((x1P, x2P, x3P), (Y1,Y2,Y3)). F also satisfies the two commutative properties, since the bilin-
earity gives us F (ι′(x), ι(Y)) = F (ι′(1), ι(xY)) = ι̂T (xY) and p′(x)p(y) = 1

2p
′(x)p(y) + 1

2p
′(y)p(x) =

1
2 p̃T (F̃ (x, y)) + 1

2 p̃T (F̃ (y, x)) = p̂T (F (x, y)).

Quadratic equations. Finally, we have the case of quadratic equations in Zp. We define

ι̃′T (z) := F̃ (ι′(1), ι′(z)) ι′T (z) := F (ι′(1), ι′(z)) p′T (z) := loge(P,P)(pT (z)).

On a soundness string p′T ◦ ι̃′T and p′T ◦ ι′T are the identity maps on Zp.

F̃ satisfies the commutative properties from Figure 2, since by the linear and bilinear prop-
erties F̃ (ι′(x), ι′(y)) = F̃ (ι′(1), ι′(xy)) = ι̃T (xy) and p′(x1P, x2P, x3P)p′(y1P, y2P, y3P) = (x3 −
1
αx1 −

1
βx2)(y3 −

1
αy1 −

1
βy2) = pT (F̃ ((x1P, x2P, x3P), (y1P, y2P, y3P)). F also satisfies the two

commutative properties, since the bilinearity gives us F (ι′(x), ι′(y)) = F (ι′(1), ι′(xy)) = ι′T (xy) and

p′(x)p′(y) = 1
2p
′(x)p′(y) + 1

2p
′(y)p′(x) = 1

2p
′
T (F̃ (x, y)) + 1

2p
′
T (F̃ (y, x)) = p′T (F (x, y)).
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NIWI proof. Having described the modules, maps and matrices that are implicitly given by the
common reference string above, we are now ready to give the full NIWI proof.

Setup: gk := (p, G,GT , e,P)← GDLIN(1k).

Soundness string: On input gk return σ := (u1, u2, u3), where u1 = (αP,O,P), u2 =
(O, βP,P), u3 = ru1 + su2 for random α, β ← Z∗p and r, s← Zp.

Witness-indistinguishability string: On input gk return σ := (u1, u2, u3), where u1 =
(αP,O,P), u2 = (O, βP,P), u3 = ru1 + su2− (O,O,P) for random α, β ← Z∗p and r, s← Zp.

Prover: For notational convenience let ~v = (u1, u2). On input gk, σ, a set of equations and a
witness ~x, ~Y do:

1. Commit to the scalars ~x ∈ Zmp and the group elements ~Y ∈ Gn as

~c := ι′(~x) +R~v ~d := ι(~Y) + S~u

for randomly chosen R← Matm×2(Zp), S ← Matn×3(Zp).

2. For each pairing product equation ( ~A · ~Y)(~Y · Γ~Y) = tT make a proof as described in
Section 6.3 using the symmetric map F and random r1, r2, r3 ← Zp.

~φ := S>ι( ~A) + S>(Γ + Γ>)ι(~Y) + S>ΓS~u+

3∑
i=1

riHi~u.

For each linear equation ~A · ~Y = tT we use the asymmetric map F̃ following Section 6.2
to get the proof

~π = ~0 ~θ := S>ι( ~A).

The reason we use the asymmetric F̃ for the linear equation is that there are no non-
trivial matrices H such that ~u •̃ H~u = 0, which simplifies the proof. Observe that
~θ = ι(S> ~A) = S>ι( ~A) and, conversely, p(~θ) = S> ~A is easily computable in this special
setting, since ι(A) = (O,O,A). We can therefore just reveal the proof ~φ := p(~θ) = S> ~A,
which consists of only three group elements.

3. For each multi-scalar multiplication equation ~a · ~Y + ~x · ~B + ~x · Γ~Y = T2 we use the
symmetric map F and as in Section 6.3 let R′ be R with an appended 0-row. The proof
is for random r1, r2, r3 ← Zp:

~φ := (R′)>ι( ~B) + (R′)>Γι(~Y) + S>ι′(~a) + S>Γ>ι′(~x) + (R′)>ΓS~u+

3∑
i=1

riHi~u.

For each linear equation ~a · ~Y = T we use the asymmetric map F̃ to get the proof

~π = ~0 ~θ := S>ι′(~a).

It suffices to reveal the value ~φ = S>~a. Since ~θ determines ~φ uniquely, this does not com-
promise the perfect witness-indistinguishability we have on witness-indistinguishability
strings. The verifier can compute ~θ = ι′(~φ). The proof now consists of only 3 elements
in Zp.
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For each linear equation ~x · ~B = T we use F̃ to get the proof

~π := R>ι( ~B) ~θ = ~0.

We can use ~φ = R> ~B as the proof, since it allows the verifier to compute ~π = ι(~φ). The
proof therefore consists of only 2 group elements.

4. For each quadratic equation ~x ·~b + ~x · Γ~x = t in Zp we use the symmetric map F . The

matrix H ′1 =

(
0 1
−1 0

)
generates all H such that ~v • H~v. The proof is for random

r1 ← Zp:
~φ := R>ι′(~b) +R>(Γ + Γ>)ι′(x) +R>ΓR~v + r1H1~v.

For each linear equation ~x ·~b = t we use the asymmetric map F̃ to get the proof ~π :=
R>ι′(~b). It suffices to reveal just ~φ = R>~b, from which the verifier can compute ~π = ι′(~φ).

Verifier: On input (gk, σ), a set of equations and a proof ~c, ~d, {~φi}Ni=1 do:

1. For each pairing product equation ( ~A · ~Y)(~Y · Γ~Y) = tT with proof ~φ check that

ι( ~A) • ~d+ ~d • Γ~d = ιT (tT ) + ~u • ~φ.

For each linear equation ~A · ~Y = tT with proof ~φ check

ι( ~A) •̃ ~d = ιT (tT ) + ι(~φ) •̃ ~u .

2. For each multi-scalar multiplication ~a · ~Y + ~x · ~B + ~x · Γ~Y = T with proof ~φ check that

ι′(~a) • ~d+ ~c • ι( ~B) + ~c • Γ~d = ι̂T (T ) + ~u • ~φ.

For each linear equation ~a · ~Y = T with proof ~φ check

ι′(~a) •̃ ~d = ι̂T (T ) + ι′(~φ) •̃ ~u.

For each linear equation ~x · ~B = T with proof ~φ check

~c •̃ ι( ~B) = ι̂T (T ) + ~v •̃ ι(~φ).

3. For each quadratic equation ~x ·~b+ ~x · Γ~x = t in Zp with proof ~φ check that

~c • ι′(~b) + ~c • Γ~c = ι′T (t) + ~v • ~φ.

For each linear equation ~x ·~b = t with proof ~φ check

~c •̃ ι′(~b) = ι′T (t) + ~v •̃ ι′(~φ).

Theorem 17 The protocol is a NIWI proof with perfect completeness, perfect soundness and com-
posable witness-indistinguishability for satisfiability of a set of equations over a bilinear group where
the DLIN problem is hard.

Proof. Perfect completeness follows from Theorem 6. Perfect soundness follows from Theorems
7 and 10 since the p ◦ ι maps are identity maps on Zp, G and GT . The DLIN assumption gives
us that the two types of common reference strings are computationally indistinguishable. On a
witness-indistinguishability string, the commitments are perfectly hiding and we get perfect witness-
indistinguishability from Theorems 8 and 9. �
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Assumption: DLIN G Zp

Variables x ∈ Zp,Y ∈ G 3 0
Pairing product equations 9 0

- Linear equation: ~A · ~Y = tT 3 0
Multi-scalar multiplication equations 9 0

- Linear equation: ~a · ~Y = T 0 3

- Linear equation: ~x · ~B = T 2 0
Quadratic equations in Zp 6 0

- Linear equation: ~x ·~b = t 0 2

Table 4: Cost of each variable and equation measured in elements from Zp and G.

Size. The module we work in is B = G3, so each element in the module consists of three group
elements from G. In some of the linear equations, we can compute p(~φ) efficiently and we have
ι(p(~φ)) = ~φ, which gives us shorter proofs. Figure 4 list the cost of all the different types of
equations.

11 Zero-knowledge

We will now show that in many cases it is possible to make zero-knowledge proofs for satisfiability
of quadratic equations. An obvious strategy is to use our NIWI proofs directly, however, one could
imagine such proofs might not be zero-knowledge because the zero-knowledge simulator might not
be able to compute any witness for satisfiability of the equations. It turns out that the strategy
is better than it seems at first sight though; we will often be able to modify the set of quadratic
equations into an equivalent set of quadratic equations where a witness can be found and which has
the same distribution of proofs.

We will consider the case where A1 = R, A2 = AT , f(r, y) = ry. We remark that it is quite
common to have A1 = R; in bilinear groups both multi-scalar multiplication equations in G1, G2

and quadratic equations in Zn have this structure.
The first stage of the simulator S1 will output a witness-indistinguishability string and a simu-

lation trapdoor τ that makes it possible to trapdoor open the commitments in B1. More precisely,
τ = ~s ∈ Rm̂ such that ι1(1) = ι1(0) + ~s>~u. Define c := ι1(1), which is a commitment to δ = 1 with
trivial randomness. The idea in the simulation is that we can rewrite the statement as

~ai · ~y + f(−δ, ti) + ~x ·~bi + ~x · Γ~y = 0.

We have introduced a new variable δ and by choosing all variables to be 0 gives a satisfying witness.
In the simulation, the simulator S2 will use the trapdoor information τ to open c to 0 and it can
now use the NIWI proof from Section 7.

We are now ready to give the NIZK proof for the language L consisting of statements with
quadratic equations that are simultaneously satisfiable defined in Section 6. These are statements
consisting of one or more equations of the form ~a · ~y + ~x · ~b + ~x · Γ~y = t such that there is some
choice of ~x, ~y that satisfy all equations. The witness for membership of L is w = (~x, ~y). The NIZK
proof will have perfect Lguilt-soundness as defined in Section 6. When Lguilt = L̄ this corresponds
to standard perfect soundness.

Setup: (gk, sk) = ((R, A1, A2, AT , f), sk)← G(1k), where A1 = R and A2 = AT .
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Soundness string: σ = (B1, B2, BT , F, ι1, p1, ι2, p2, ιT , pT , ~u,~v,H1, . . . ,Hη)← K(gk, sk).

Prover: This protocol is exactly the same as in the NIWI proof, we do not even need to rewrite
the equations. The input consists of gk, σ, a list of quadratic equations {(~ai,~bi,Γi, ti)}Ni=1 and
a satisfying witness ~x, ~y.

Pick at random R ← Matm×m̂(R) and S ← Matn×n̂(R) and commit to all the variables as
~c := ι1(~x) +R~u and ~d := ι2(~y) + S~v.

For each equation (~ai,~bi,Γi, ti) make a proof as described in Section 6. In other words, pick
Ti ← Matn̂×m̂(R) and ri1, . . . , riη ← R and compute

~πi := R>ι2(~bi) +R>Γι2(~y) +R>ΓS~v − T>i ~v +

η∑
j=1

rijHj~v

~θi := S>ι1(~ai) + S>Γ>ι1(~x) + Ti~u.

Output the proof (~c, ~d, {(~πi, ~θi)}Ni=1).

Verifier: The input is gk, σ, {(~ai,~bi,Γi, ti)}Ni=1 and the proof (~c, ~d, {(~πi, ~θi)}).
For each equation check

ι1(~ai) • ~d+ ~c • ι2(~bi) + ~c • Γi~d = ιT (ti) + ~u • ~πi + ~θi • ~v.

Output 1 if all the checks pass, else output 0.

Simulation string: (σ, τ) = ((B1, B2, BT , F, ι1, p1, ι2, p2, ιT , pT , ~u,~v,H1, . . . ,Hη), ~s) ← S1(gk, sk),
where ι1(1) = ι1(0) + ~s>~u.

Proof simulator: The input consists of gk, σ and a list of quadratic equations {(~ai,~bi,Γi, ti)}Ni=1

and the simulation trapdoor τ = ~s.

Rewrite each equation as ~ai · ~y+ ~x ·~bi + f(δ,−ti) + ~x ·Γi~y = 0. Define ~x := ~0, ~y := ~0 and δ = 0
to get a witness that satisfies all the modified equations.

Pick at random R ← Matm×m̂(R) and S ← Matn×n̂(R) and commit to all the variables as
~c := ~0 +R~u and ~d := ~0 + S~v. We also use c := ι1(1) = ι1(0) + ~s>~u and append it to ~c.

For each modified equation (~ai,~bi,−ti,Γi, 0) make a proof as described in Section 6. Return
the simulated proof {(~c, ~d, ~πi, ~θi)}Ni=1.

Theorem 18 The protocol described above is a composable NIZK proof for satisfiability of quadratic
equations with perfect completeness, perfect Lguilt-soundness and composable zero-knowledge.

Proof. Perfect completeness on a soundness string follows from the perfect completeness of the
NIWI proof: The simulator knows an opening of c := ι1(1) to c = ι1(0) +

∑m̂
i=1 siui. It therefore

knows a witness ~0,~0, δ = 0 for satisfiability of all the modified equations. It therefore outputs a
proof {(~c, ~d, ~πi, ~θi)}Ni=1 such that for all i we have

ι1(~ai) • ~d+ ~c • ι2(~bi) + F (ι1(1),−ι2(ti)) + ~c • Γi~d = ιT (0) + ~u • ~πi + ~θi • ~v.

The commutative property of the maps gives us F (ι1(1), ι2(ti)) = ιT (f(1, ti)) = ιT (ti), so the NIZK
proofs satisfy the equations the verifier checks. Perfect completeness on a simulation string now
follows from the perfect completeness of the NIWI proof as well.
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Perfect Lguilt-soundness follows from the perfect Lguilt-soundness of the NIWI proof.
We will now show that on a simulation string we have perfect zero-knowledge. The commitments

~c, ~d and c = ι1(1) are perfectly hiding and therefore have the same distribution whether we use
witness ~x, ~y, δ = 1 or ~0,~0, δ = 0. Theorem 8 now tells us that the proofs ~πi, ~θi made with either type
of opening of ~c, ~d, c are uniformly distributed over all possible choices of {(~πi, ~θi)}Ni=1 that satisfy

the equations ι1(~ai) • ~d + ~c • ~bi + ~c • Γ~d = ιT (t). We therefore have perfect zero-knowledge on a
simulation string. �

Since the NIZK proof is exactly the same as the NIWI proof, there is no additional cost associated
with getting composable zero-knowledge for full quadratic equations. If we look at linear equations,
there are two cases to consider. On a linear equation of the form ~x ·~b = t, the simulator can rewrite
it as ~x ·~b+ f(−δ, t) = 0, which is a linear equation of the same form. The shorter NIWI proofs for
this type of linear equations can therefore also be perfectly simulated on a simulation string. NIWI
proofs for linear equations of the form ~a · ~y = t on the other hand cannot be simulated as easily,
because if the simulator rewrites the equation as ~a · ~y + (−δ, t) = 0, then it is no longer a linear
equation. To get composable zero-knowledge for the latter type of linear equation, the prover can
instead use the NIWI proof for the full quadratic equation.

11.1 NIZK proofs for bilinear groups

Let us now consider bilinear groups and the four types of quadratic equations given in Figure 1. If
we set up the common reference string such that we can trapdoor open both ι′1(1) and ι′2(1) to 0
then multi-scalar multiplication equations and quadratic equations in Zn are of the form for which
we can get a perfect simulation.

In the case of pairing product equations we do not know how to get zero-knowledge, since even
with the trapdoors we may not be able to compute a witness. We do observe though that in the
special case, where all tT = 1 the choice of ~X = ~O, ~Y = ~O is a satisfactory witness. Since we also use
the witness ~X = ~O, ~Y = ~O in the other types of equations, the simulator can use this witness in the
simulation. In the special case where all tT = 1 we can therefore make NIZK proofs for satisfiability
of a set of quadratic equations.

In another special case where we have a pairing product equation with tT =
∏n
i=1 e(Pi,Qi) for

some known Pi,Qi there is another technique that can be useful to get zero-knowledge. In this case,
we can add the equations δZi − δQi = O to the set of multi-scalar multiplication equations in G2

and rewrite the pairing product equation as ( ~A · ~Y)( ~X · ~B)(~P · ~Z)( ~X ·Γ~Y) = 1. This gives us pairing
product equations of the type where we can make zero-knowledge proofs. We can therefore also
make zero-knowledge proofs for a set of quadratic equations over a bilinear group if all the pairing
product equations have tT of the form tT =

∏n
i=1 e(Pi,Qi) for some known Pi,Qi.

The case of pairing product equations points to a couple of differences between witness-
indistinguishable proofs and zero-knowledge proofs using our techniques. NIWI proofs can handle
any target tT , whereas zero-knowledge proofs can only handle special types of target tT . Further-
more, if tT 6= 1 the size of the NIWI proof for this equation is constant, whereas the NIZK proof for
the same equation may be larger.

We conclude our discussion of NIZK proofs with Figure 3 and Figure 4 that give the costs for
proving the satisfiability of a set of quadratic equations in the SXDH and DLIN instantiations. For
the subgroup decision instantiation, NIZK proofs for sets of quadratic equations where all tT = 1
are the same as those given in Figure 1.
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Assumption: SXDH G1 G2 Zp

Variables x ∈ Zp,X ∈ G1 2 0 0
Variables y ∈ Zp,Y ∈ G2 0 2 0
Pairing product equations with tT = 1 4 4 0

- Linear equation: ~A · ~Y = 1 2 0 0

- Linear equation: ~X · ~B = 1 0 2 0
Multi-scalar multiplication equations in G1 2 4 0

- Linear equation: ~A · ~y = T1 1 0 0

- Linear equation: ~X ·~b = O 0 0 2
Multi-scalar multiplication equations in G2 4 2 0

- Linear equation: ~a · ~Y = O 0 0 2

- Linear equation: ~x · ~B = T2 0 1 0
Quadratic equations in Zp 2 2 0
- Linear equation: ~a · ~y = t 0 0 1

- Linear equation: ~x ·~b = t 0 0 1

Figure 3: Cost of each variable and equation in an NIZK proof in the SXDH instantiation.

Assumption: DLIN G Zp

Variables x ∈ Zp,Y ∈ G 3 0
Pairing product equations with tT = 1 9 0

- Linear equation: ~A · ~Y = 1 3 0
Multi-scalar multiplication equations 9 0

- Linear equation: ~a · ~Y = O 0 3

- Linear equation: ~x · ~B = T 2 0
Quadratic equations in Zp 6 0

- Linear equation: ~x ·~b = t 0 2

Figure 4: Cost of each variable and equation in an NIZK proof in the DLIN instantiation.

12 Conclusion and an open problem

Our main contribution in this paper is the construction of efficient non-interactive cryptographic
proofs for use in bilinear groups. Our proofs can be instantiated with many different types of
bilinear groups and the security of our proofs can be based on many different types of intractability
assumptions. We have given three concrete examples of instantiations based on the subgroup decision
assumption, the SXDH assumption, and the DLIN assumption, respectively.

Because of their interest for applications, we have focused on bilinear groups in our instantiations.
However, our techniques generalize beyond bilinear groups; for instance we do not require the
modules to be cyclic (as is the case for bilinear groups). It is possible that other types of modules
with a bilinear map exist, which are not constructed from bilinear groups. The existence of such
modules might lead to efficient NIWI and NIZK proofs based on entirely different intractability
assumptions. We leave the construction of such modules with a bilinear map as an interesting open
problem.
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A Quick reference to notation

Bilinear groups

G1, G2, GT : cyclic groups with bilinear map e : G1 ×G2 → GT .

P1,P2: generators of respectively G1 and G2.

Group order: prime order p or composite order n.

Modules with bilinear map

R: finite commutative ring (R,+, ·, 0, 1).

A1, A2, AT , B1, B2, BT : R-modules.

f, F : bilinear maps f : A1 ×A2 → AT and F : B1 ×B2 → BT .

~x · ~y :=
n∑
i=1

f(xi, yi) , ~x • ~y :=
n∑
i=1

F (xi, yi).

Properties that follows from bilinearity:

~x ·M~y = M>~x · ~y , ~x •M~y = M>~x • ~y.

Commutative diagram of maps in setup

A1 × A2 AT

B1 × B2 BT

ι1 p1ι2 p2 ιT pT

f

F

Commutative properties:

F (ι1(x), ι2(y)) = ιT (f(x, y)) , f(p1(x), p2(y)) = pT (F (x, y)).

Equations

(Secret) variables: ~x ∈ Am1 , ~y ∈ An2 .

(Public) constants: ~a ∈ An1 ,~b ∈ Am2 ,Γ ∈ Matm×n(R), t ∈ AT .

Equations: ~a · ~y + ~x ·~b+ ~x · Γ~y = t.

Commitments

Commitment keys: ~u ∈ Bm̂
1 , ~v ∈ Bn̂

2 .

Commitments:
~c := ι1(~x) +R~u ∈ Bm

1 , ~d := ι2(~y) + S~v ∈ Bn
2 .
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NIWI proofs

Additional setup information: H1, . . . ,Hη such that ~u •Hi~v = 0.

Randomness in proofs: T ← Matn̂×m̂(R), r1, . . . , rη ← R.

Proofs:

~π := R>ι2(~b) +R>Γι2(~y) +R>ΓS~v − T>~v +

η∑
i=1

riHi~v

~θ := S>ι1(~a) + S>Γ>ι1(~x) + T~u

Verification: ι1(~a) • ~d+ ~c • ι2(~b) + ~c • Γ~d = ιT (t) + ~u • ~π + ~θ • ~v.
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