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Abstract

We present a homomorphic trapdoor commitment to group elements. In contrast, previous
homomorphic trapdoor commitment schemes only allow the messages to be exponents. Our com-
mitment scheme is length-reducing, we can make a short commitment to many group elements at
once, and it is perfectly hiding and computationally binding. The construction is based on groups
with a bilinear map and the binding property follows from the simultaneous triple pairing assump-
tion. While the simultaneous triple pairing assumption is new, we demonstrate that it is implied
by the well-known decision linear assumption.

Keywords: Homomorphic trapdoor commitment, bilinear groups, simultaneous triple pairing as-
sumption.

1 Introduction

A non-interactive commitment scheme makes it possible to create a commitment c to a secret message
m. The commitment hides the message, but we may later disclose m and demonstrate that ¢ was a
commitment to m by revealing the randomness r used when creating it. Revealing the message and
the randomness is called opening the commitment. It is essential that once a commitment is made, it
is binding. Binding means that it is infeasible to find two openings of the same commitment to two
different messages.

In this paper, we are interested in public-key commitments with a couple of useful features: First,
we want the commitment scheme to have a trapdoor property. In normal operation the commitment
scheme is binding, however, if we know a secret trapdoor tk associated with the public commitment
key ck, then it is possible to create commitments that can be opened to any message. We note that the
trapdoor property implies that the commitment hides the message. Second, we want the commitment
scheme to be homomorphic. Homomorphic means that messages and commitments belong to abelian
groups and if we multiply two commitments, we get a new commitment that contains the product of
the two messages.

RELATED WORK. There are many examples of homomorphic commitments. Homomorphic cryp-
tosystems such as ElGamal [EIG85], Okamoto-Uchiyama [OU98], Paillier [Pai99], BGN [BGNO5]
or Linear Encryption [BBS04] can be seen as homomorphic commitment schemes that are perfectly
binding and computationally hiding. Commitments based on homomorphic encryption can be con-
verted into computationally binding and perfectly hiding homomorphic commitments, see for instance
the mixed commitments of Damgard and Nielsen [DN02] and the commitment schemes used by
Groth, Ostrovsky and Sahai [GOS06], Boyen and Waters [BW06], Groth [Gro06] and Groth and Sahai



[GS08]. Even for the perfectly hiding variation of these commitment schemes, the size of a commit-
ment is larger than the size of a message though. This length-increase follows from the fact that the
underlying building block is a cryptosystem and a ciphertext must be large enough to accomodate the
message.

There are also direct constructions of homomorphic trapdoor commitment schemes such as Guillou
and Quisquater commitments [GQ88] and Pedersen commitments [Ped91]. Pedersen commitments are
one of the most used commitment schemes in the field of cryptography. The public key consists of
two group elements g, h belonging to a group of prime order ¢ and we commit to a message m € Zq
by computing ¢ = g™ h", where r € Z, is a randomly chosen randomizer. Pedersen commitments are
perfectly hiding with a trapdoor and if the discrete logarithm problem is hard they are computationally
binding. There are many variants of the Pedersen commitment scheme. Fujisaki and Okamoto [FO97]
and Damgard and Fujisaki [DF02] for instance suggest a variant where the messages can be arbitrary
integers.

There is an important generalization of the Pedersen commitment scheme that makes it possible to
commit to many messages at once. The public key consists of n 4 1 group elements g1, ..., g, h and
we compute a commitment to (m, ..., my,) asc = h" [["_; ¢g;"*. This commitment scheme is length-
reducing since we only use one group element to commit to n messages, a feature that has been found
useful in contexts such as mix-nets/voting, digital credentials, blind signatures and zero-knowledge
proofs [FSO1, NefO1, Bra00, KZ06, Lip03].

Common for all the homomorphic trapdoor commitment schemes' we mentioned above is that
they are homomorphic with respect to addition in a ring or a field.However, in public-key cryptogra-
phy it is common to work over groups that are not rings or fields and often it is useful to commit to
group elements from such groups. Of course, if we know the discrete logarithms of the group elements
we want to commit to, we can use the Pedersen commitment scheme to commit to the discrete loga-
rithms. In general, we cannot expect to know the discrete logarithms of the group elements that we
want to commit to though, leaving us with the open problem of constructing homomorphic trapdoor
commitments to group elements.

OUR CONTRIBUTION. The contribution of this paper is the construction of a homomorphic trapdoor
commitment scheme for group elements. The commitment scheme is perfectly hiding, perfectly trap-
door and computationally binding. We stresss that we can commit to arbitrary group elements and
trapdoor-open to arbitrary group elements, even if we do not know the discrete logarithms of these
group elements. Moreover, the commitment scheme has the additional advantage of being length-
reducing, we can commit to multiple group elements with one short commitment.

Our construction is based on bilinear groups. These are groups G, Gr with a bilinear map
e : G x G — Gp. Both messages and randomizers will be elements from (, whereas the com-
mitments will consist of a couple of group elements in Gr. One advantage of our commitment
scheme is that the construction is very simple. The public key consists of 2n + 4 group elements
(91,1, -+, 9n, Py Gry By Gs, hs) and we commit to my, . . ., m,, by choosing r, s € G at random and
computing the commitment (¢, d) as

n

c=-e(gr,7)e(gs, s) He(gi,mi) and d = e(h,,r)e(hs,s) He(hi,mi).
i=1 i=1

1Boyen and Waters [BWO06], Groth [Gro06] and Groth and Sahai [GSO8] use homomorphic commitments to group
elements, but do they do not have a trapdoor property that makes it possible to open them to arbitrary group elements.
Moreover, those commitments suffer from being length-increasing.



The commitment scheme is computationally binding assuming the simultaneous triple pairing as-
sumption holds. This assumption says that given two random triples (g, gs, g¢) and (h,, hg, hy) it is
computationally infeasible to find group elements r, s, ¢ so

e(gr,m)e(gs, s)e(ge,t) =1 and  e(hy,7)e(hs, s)e(hg,t) = 1.

Perhaps surprisingly, we show that the decision linear assumption [BBS04] implies the simultaneous
triple pairing assumption.

2 Definitions

NOTATION. Algorithms in our commitment scheme take a security parameter k£ as input written in
unary. For simplicity we will sometimes omit writing the security parameter explicitly, assuming k can
be deduced from the other inputs. All our algorithms will be probabilistic polynomial time algorithms.
We write y = A(z;7), when A on input x and randomness 7 outputs y. We write y < A(x), for the
process of picking randomness r at random and setting y = A(x; r). We also write y < S for sampling
y uniformly at random from the set .S. When defining security, we assume that there is an adversary
attacking our scheme. This adversary is modeled as a non-uniform polynomial time stateful algorithm.
By stateful, we mean that we do not need to give it the same input twice, it remembers from the last
invocation what its state was. This makes the notation a little simpler, since we do not need to explicitly
write out the transfer of state from one invocation to the next. Given two functions f,g : N — [0;1]
we write f(k) ~ g(k) when there is negligible difference, i.e., |f(k) — g(k)| = k=<1,

2.1 Commitments

A commitment scheme is a protocol between Alice and Bob that allows Alice to commit to a secret
message m. Later Alice may open the commitment and reveal to Bob that she committed to m.
Commitment schemes must be binding and hiding. Binding means that Alice cannot change her mind,
a commitment can only be opened to one message m. Hiding means that Bob does not learn which
message Alice committed to.

In this paper, we will focus on non-interactive commitment schemes. In a non-interactive com-
mitment scheme, Alice computes the commitment herself and sends it to Bob. The opening process
is also non-interactive, it simply consists of Alice sending the message and the randomness she used
when creating the commitment to Bob. Bob can now run the commitment protocol himself, to check
that indeed this was the message Alice had committed to.

A non-interactive commitment scheme consists of three polynomial time algorithms (G, K, com).
G is a probabilistic setup algorithm that takes as input the security parameter k£ and outputs some setup
information gk. The setup information gk can for instance describe a finite group over which we are
working, but it could also just be the security parameter written in unary so there is no loss of generality
in including a setup algorithm. We include an explicit algorithm for the setup because when designing
cryptographic protocols we often need the commitment scheme to work with an existing finite group.
K is a probabilistic algorithm that takes as input the setup gk and generates a commitment key ck and a
trapdoor key tk. The commitment key ck specifies a message space My, a randomizer space R, and
a commitment space C.;. We assume it is easy to verify membership of the message space, randomizer
space and the commitment space and it is possible to sample randomizers uniformly at random from
R~ The algorithm com takes as input the commitment key ck, a message m from the message space,
a randomizer r from the randomizer space and outputs a commitment c¢ in the commitment space.



We are interested in constructing homomorphic trapdoor commitments. By homomorphic, we
mean that My, Rek, Cer, are groups with the property that if we multiply two commitments, then we
get a commitment to the product of the messages. By trapdoor we mean that given the secret trapdoor
key generated by the key generator, it is possible to open a commitment to any message. For this
purpose, we have two additional probabilistic polynomial time algorithms Tcom and Topen. Tcom
takes the trapdoor tk as input and outputs an equivocal commitment ¢ and an equivocation key ek.
Topen on input ek, c and a message m € M,y creates an opening r € R of the commitment, so
¢ = comgg(m; 7).

Definition 1 (Homomorphic trapdoor commitment scheme) A homomorphic trapdoor commit-
ment scheme consists of a quintuple of algorithms (G, K, com, Tcom, Topen) as described above,
such that (G, K, com) is hiding and binding and homomorphic and (G, K, com, Tcom, Topen) has a
perfect trapdoor property as defined below.

Definition 2 (Perfect hiding) The triple (G, K, com) is perfectly hiding if for all stateful adversaries
A we have

Pr {gk — G(1%); (ck, tk) — K(gk); (mg, m1) < A(gk, ck); ¢ «— comg(mg) : A(c) = 1}
= Pr|gk — G(1%); (ck, th) — K(gh); (mo,m1) — Algk, ck); e — comex(mi) : A(c) = 1],
where we require that A outputs mg, mq that belong to M.

Definition 3 (Computational binding) The triple (G, K, com) is computationally binding if for all
non-uniform polynomial time stateful adversaries A we have

Pr [gk — G(1%); (ck, tk) — K(gk); (mo, m1,70,m1) < A(gk, k) :
mo #m1 A comeg(mo;To) = comeg(my;ry)| =0,
where we require that A outputs mg, m1 € M and 1o, 71 € Reg.

Definition 4 (Perfect trapdoor) The quintuple (G, K, com, Tcom, Topen) has a perfect trapdoor
property if for all stateful adversaries A we have

Pr [gk — G(1¥Y; (ck, th) — K (gk);m — A(gk, ck);7 — Rep; ¢ = comen(m;r) : Ale,r) = 1
= Pr|gk < G(1"); (ck, th) — K(gh);m — A(gh, ck); (¢, ek) — Teom(tk);
r « Topen,,(m,r) : A(e,r) =11,
where A outputs m € M.

We note that the perfect trapdoor property implies that the commitment scheme is perfectly hiding,
since a commitment is perfectly indistinguishable from an equivocal commitment that can be opened
to any message.

Definition 5 (Homomorphic) The commitment scheme (G, K,com) is homomorphic if K always
outputs ck describing groups M i, Rck, Cer, which we will write multiplicatively, such that for all
m,m' € Mg, r, v € Co, we have

comgy, (m; r)comeg (m; ') = comey, (mm’; rr').



3 Setup

BILINEAR GROUPS. Let G be a probabilistic polynomial time algorithm that generates
(p, G, Gr,e,g) < G(1*) such that

e pis a k-bit prime

e G, Gt are cyclic groups of order p

e ¢ is arandomly chosen generator of ¢

e ¢: G X G — Gr is anon-degenerate bilinear map so

- e(g, g) generates Gp
— For all a, b € Z, we have e(g%, ¢°) = e(g, 9)®

Group operations, evaluation of the bilinear map, and membership of G, G are all efficiently
computable.

SIMULTANEOUS TRIPLE PAIRING ASSUMPTION. The security of our commitment scheme will be
based on the simultaneous triple pairing assumption. The simultaneous triple pairing problem is
given random elements g, by, gs, hs, gi, hy € G to find a non-trivial triple (r,s,t) € G2 such that
e(gr,m)e(gs, s)e(ge, t) = 1 and e(hy,r)e(hs, s)e(hy, t) = 1.

Definition 6 (Simultaneous triple pairing assumption) We say the simultaneous triple pairing as-
sumption holds for the bilinear group generator G if for all non-uniform polynomial time adversaries
A we have

Pr |:gk - (pa G7 GT,@,Q) — g(]-k);grvhrag&hsagtv ht — Ga
(T’ Sat) — A(gk7gra hmgs’ hsagh ht) : (Ta 57t) € G3 \ {(17 17 1)}
A e(gr,r)e(gs,s)e(g,t) =1 AN e(hy,r)e(hs, s)e(he,t) = 1} ~ 0.

EXAMPLE. Let us give an example taken from Boneh and Franklin [BF03] of a bilinear group where
we believe the simultaneous triple pairing assumption holds. Consider the elliptic curve > = 23 +

1 mod ¢, where ¢ = 2 mod 3 is a prime. It is straightforward to check that a point (z,y) is on the

curve. Furthermore, picking y € Z, at random and computing r = (y? — 1)%1 mod ¢ gives us a

random point on the curve. The curve has a total of ¢ + 1 points, including the point at infinity. When
generating such groups, we will pick p as a random k-bit prime. We then let ¢ be the smallest prime
so0 p|q + 1 and define G to be the order p subgroup of the curve. The target group is G = IF:;Q and the
bilinear map is the modified Weil-pairing.

3.1 Security Analysis of the Simultaneous Triple Pairing Assumption

To gain confidence in the simultaneous triple pairing assumption, we will explore its relationship with
other cryptographic assumptions. First, we will show that the simultaneous triple pairing assumption
follows from a computational hardness assumption called the simultaneous pairing assumption intro-
duced by Groth and Lu [GLO7]. Groth and Lu proved that the simultaneous pairing assumption is
secure in the generic group model and since the security reduction only uses generic group operations



this implies that the simultaneous triple pairing assumption is secure in the generic group model. Sec-
ond, we will show that the simultaneous triple pairing assumption follows from the decision linear
assumption from Boneh, Boyen and Shacham [BBS04].

RELATION TO THE SIMULTANEOUS PAIRING ASSUMPTION. The simultaneous pairing problem is
given g1 = g™, h; = g‘”f, ey Gn =g hy = g"”% for random 1, ..., x, € Z, find a non-trivial set
of elements p1, ..., iy, € G such that

n n

He(gi,,ui) =1 A He(hi,,ui) =1.

i=1 i=1
Definition 7 (Simultaneous pairing assumption) The simultaneous pairing assumption holds for G
if for all non-uniform polynomial time adversaries A we have

2

Pr |:gk: (p7G7GT7eag) <_g(1k)7$177xn <_Z]D;gl :gxlahl :gx§7"'7g1 :gmnvhn =g,
(,U’lv"-),ufn) <_~’4(gkaglahla"°7gTLahn) :

He(giaﬂi) =1A He(hiaﬂi) =1 A Jip# 1] ~ 0.
=1 i=1

Theorem 8 If the simultaneous pairing assumption with n = 3 holds for G, then the simultaneous
triple pairing assumption holds for G.

Proof. Suppose we have an adversary A that breaks the simultaneous triple pairing assumption with
probability €(k). We will show how to construct an adversary B that breaks the simultaneous pairing
assumption for n = 3 with probability higher than e(k) — 6/p.

Given a random simultaneous pairing problem instance (gk, g1, h1, g2, h2, g3, h3) the adversary B
picks at random p, o, 7 < Z; and computes

9r = g'f h'r = h/:[) gs = gg hs = hg gt = gg ht = hg

Ifg1 = 1,92 = 1orgs = 1litis trivial to solve the simultaneous pairing problem. Provided the discrete
logarithms of g1, g2, g3 are non-trivial, i.e., x1 # 1,22 # 1,x3 # 1, we get a random distribution of
6 group elements in G \ {1}, which has statistical distance less than 6/p from a random six-tuple of
group elements in G. The adversary now runs A on (gk, g,, by, gs, hs, gi, hy) and gets an non-trivial
simultaneous triple pairing solution (r, s, t) with probability higher than e(k) — 6/p. We have

e(gr,r)e(gs, s)e(ge,t) = e(g1,7”)e(g2,57)e(gs,t7) =1
e(hy,r)e(hs, s)e(hy, t) = e(hi,rP)e(ha,s%)e(hs, t™) =1,

so (7, s7,t7) is a non-trivial solution to the simultaneous pairing problem. O

RELATION TO THE DECISION LINEAR ASSUMPTION. The decision linear problem is to decide
whether a tuple (g1, g2, 93, ¢/, 9, h3) has hs = g5 or hs is random.



Definition 9 (Decision linear assumption) The decision linear assumption holds for G if for all non-
uniform polynomial time adversaries A we have:

Pr [gk’ = (p,G,Gr,€,9) — g(lk) 5 91,92,93 — G5 p,0 — Ly -
Algk, g1, 92,93, 97,93, 9577) = 1}
~ Pr {gk = (p,G,Gr,e,9) « g<1k) i 91,92,93,h3 «— G p,o — Zp :
A(gk, g1, 92,93, 97,95, h3) = 1}.

Theorem 10 The simultaneous triple pairing assumption holds for G if the decision linear assumption
holds for G.

Proof. Let us first make an observation regarding the solution (7, s,¢) of a simultaneous triple pairing
problem (g, gs, gt, hr, hs, hy) When e(g,, hs) # e(gs, h,). Taking discrete logarithms this means

TrYs 7 Tsyy SO the matrix
( Ty T >
y’f‘ yS

has non-zero determinant. Consequently, (x,, y,) and (x5, ys) are linearly independent in ZZ and for
any gy, hy there is a unique solution (a, b) € ZIQ) SO

g =9vgs N hi=hihl.
The solution (r, s, t) satisfies
e(gr,r)e(gs, s)e(ge,t) =1 A e(hy,r)e(hs, s)e(hs, t) =1,

which implies
e(gr,mtYe(gs, st?) =1 A e(hy, 7t%)e(hs, 5t°) = 1.

Since (z,,%,) and (z, ys) are linearly independent, this means r» = ¢~ and s = ¢~°. The solution is
non-trivial if and only if ¢ = 1.

Suppose now we have an adversary .4 that breaks the simultaneous triple pairing assumption with
probability (k). We will show how to construct an adversary B that breaks the decision linear as-
sumption with at least probability (k) — 7/p.

B is presented with a decision linear problem instance (gk, g1, g2, g3, h1, ho, h3). B picks at ran-
dom «, B « Z, and sets g; = g%gf“gg and h; = hgh‘fhg . B then runs A on the simultaneous triple
pairing problem (gk, g1, 92, g¢, h1, ha, hy). There is more than 1 — 3/p chance that the decision linear
problem instance has g1 # 1,92 # 1 and e(g1, h2) # e(g2, h1).

Let us analyze the probability that A generates a valid solution (r, s, t) to the simultaneous triple
pairing problem when g1 # 1,92 # 1,e(g1, h2) # e(ge2, h1). As above, the latter inequality implies
that (1, x2) and (y1,y2) are linearly independent in Z2 and therefore g;, h; are random in G. The
probability of g1 = 1V g2 = 1V e(g1,h2) = e(ga, h1) on a random instance of the simultaneous
triple pairing problem is less than 3/p, so we have at last (k) — 3/p probability of finding a non-trivial
solution (r, s, t) to the simultaneous triple pairing problem created by 5.

In total we therefore have more than e(k) — 6/p probability that the decision linear challenge has
g1 # 1,92 # 1,e(g1, ha) # e(ga, h1) and that we find a non-trivial solution (r, s, t) so

e(g1,r)e(ge, s)e(ge,t) =1 A e(hy,r)e(ha, s)e(hy, t) = 1.



By our observation above, the solution satisfies » = ¢~® and s = t~°, where a, b are unknown expo-
nents such that

g =9g5 A hg=hihs,
and since it is non-trivial we have t # 1. Plugging in g; = g%g‘f‘gg and h; = hgh‘f‘hg gives us

e(g1, rt*)e(ga, Stﬂ)e(gg,t) =1 A e(hl,rto‘)e(hg,stﬁ)e(hg,t) =1

so (1 = t*% s = 97 ¢) is a solution to the simultaneous triple pairing problem

(gk7917927g§7 h17 h2, h/3) with ¢ ;é 1.

There are two types of challenges we can meet in the decision linear game with g; # 1,92 #

1,e(g1, ha) # e(ga, h1). If the challenge is a linear tuple (g1, g2, g3, 97, 95, g5 7) we have

932) = gf3/x1g;03/1‘2 A hy = h¢f3/1‘1 h9263/I2,

This means the solution (1, s',t) satisfies ’ = t~*3/%1 and s’ = ¢t~73/%2 with t # 1. We then have
the following equalities

e(gr,m)e(gs, t) =1 A e(ga,s')e(gs,t) =1
that can be tested by B after running A to get (r, s,t). In this case, 5 will output 1.
On the other hand, if the challenge is chosen randomly as (g1, g2, 93, 97, 99, h3), we only have 1/p
chance of hg = hgf‘"’/mlhgs/m being true. If hg # hgf3/‘r1h‘;3/x2 we have 1/ £ t~%3/%1 or ¢/ £ t*3/%2
Since t # 1 this means

e(gr,)e(gs,t) #1 V  e(go, s )e(gs, t) # 1.

In this case, B will output 0.

To conclude the description of B we let it output 1, whenever g1 = 1, g2 = 1, e(g1h2) = e(g2, h1)
or A does not produce a valid solution (r, s,t). In case B is presented with a linear tuple, it will
therefore always output 1. In case, B is presented with a random tuple instead, it outputs 0 with
probability at least e(k) — 7/p. O

4 Homomorphic Trapdoor Commitment to Group Elements

We will now present the homomorphic trapdoor commitment scheme. The setup algorithm generates a
bilinear group (p, G, G, e, g). The commitment scheme permits committing to n group elements from
G. More precisely, we have message space M, = G, randomizer space R, = G and commitment
space Co, = G2T, where each of them are interpreted as a group using entry-wise multiplication.

Setup: On input 1” return gk = (p, G, Gr,¢,g) «— G(1¥).

Key generator: On input gk pick at random 1, y1, ..., Zn, Yn, Tr, Yr, Ts, Ys < Zy such that z,ys #
sy, and define

T X

g=9" h=g" - gn=g" hn=¢" g-=9g" hr=9" gs=g" hs=g".

Since x,ys # Ty, We can compute

(552’
vy o) \y s '

The commitment key is ck = (gk,g1,h1,...,9n,Pn, Gr, by, gs, hs) and the trapdoor key is
th = (9k7$1,y17 oy Ty Yny Ly Tgy Ypy Ysy 047/8777 6)



Commitment: Using commitment key ck on input message (mi,...,my) € G" pick randomizer
(r,8) < G2. The commitment is (c,d) € G given by

n n

c=e(gr,r)e(gs, s) H€(9i7mi) A d=e(hy,r)e(hs,s) H e(h;, m;).

i=1 =1

Trapdoor commitment: Using commitment key ck and trapdoor key tk we generate an equivocal
commitment (¢, d) € G% by picking (r, s) < G? and computing

c=-e(gr,r)e(gs,s) AN d=e(hy,r)e(hs,s).
The corresponding equivocation key is ek = (tk,r, s).

Trapdoor opening: To trapdoor open an equivocal commitment (c,d) € G% to a message
(mq,...,my) € G™ using the equivocation key ek, we compute

n

n
a = Til?r SCEs H ml—fﬂz /\ b — Ty'r Sys H m;yz
=1

=1

We then compute
P =a’ A =at.

We return the opening (1, ") of (¢, d) to message (my, ..., my,).

Theorem 11 (G, K, com, Tcom, Topen) described above is a homomorphic trapdoor commitment
scheme to n group elements. It has the perfect trapdoor property and assuming the simultaneous triple
pairing assumption holds for G the commitment scheme is computationally binding.

Proof. Let us first prove the commitment scheme is homomorphic. The message space is G", the
randomizer space is G? and the commitment space is G2, which with entry-wise multiplication all
are finite abelian groups. Given a commitment key ck = (gk, g1, h1,- -, 9n, Pns Grs Py gs, hs) it is
straightforward to check the homomorphic property. For all (m1,...,m,), (m},...,m}) € G" and
all (r,s), (r', ') € G? we have

n

n
e(givmi) - e(gr1')e(gs, ) [ [ eginmi) = e(gr,r1")e(gs, s8') [ [ e(gi, mim
1 =1 =1

e(hi,m}) = e(hT,rr')e(hs,ss’)He(hi,mim;)
i=1 =1

=

e(grsr)e(gs, s)

e(hr,r)e(hs,s) | | e(hi,m;) - e(hy, 7" )e(hs, s')

emERT
E:

Il
_

(2

Next, we will prove that the commitment scheme has the perfect trapdoor property. By construc-
tion, x,ys # sy, SO (x,,y,) and (xs,ys) are linearly independent in ZZ. We can deduce from this
that both real commitments and trapdoor commitments are distributed uniformly at random in G2,
because of their e(g,,7)e(gs, s) and e(h,,)e(hs, s) factors where r, s are chosen randomly from G.
The linear independence of (z, ;) and (s, ys) also implies that for any pair (c, d) € G% and a set of
messages (my, ..., m,) € G™ there is a unique randomizer (r, s) € G2 so

¢ = E(gr,r)e(gs,s)He(gi,mi) AN d= e(hrvr)e(h&s)]__[e(hiami)-
i=1 =1

9



To conclude the proof for the perfect trapdoor property, we therefore just need to show that the
trapdoor opening algorithm gives the correct opening (r’, s’) of the commitment. Since

() i)=(0Y)

we have
e(gr,m)e(gs,s') = e(g",a®b7)e(g™, a’t’) = e(g, a7 )e(g, b P T0) = e(g, a)
e(hr,m)e(hs,s') = e(g”,a*b")e(g", ") = e(g, a¥ V7 )e(g, ¥ PTV:0) = e(g,b).

By plugging in a = r*7s% [[I"_; m; “ and b = r¥s¥s [, m; " we get
n

n
e(gr,)e(gs, o) [ [ elgims) = elg,r™s™) [ [ elg,mi ™) = e(gr,7)e(gs, s) =

=1 =1
e(hy,7)e(hs o) [T elhismi) = elg,rs) [T elg,m¥ ") = e(hy, r)elhs, ) = d,
=1 =1

as we wanted.

Finally, we will prove that the commitment scheme is computationally binding if the simultaneous
triple pairing assumption holds for G. More precisely, we will show that if .4 has probability e(k) of
breaking the binding property, then there is an algorithm B that breaks the simultaneous triple pairing
assumption with at least ¢(k) — 1/p chance.

Let (gk, gr, gs, gt, hr, hs, ht) be a random simultaneous triple pairing challenge for B. In case
e(gr, hs) = e(gs, hr), we have a solution to the simultaneous triple pairing problem given by

e(gr, 9s)e(gs, g, 1)e(gr, 1) = 1 Ae(hy, gs)e(hs, g, He(hy, 1) = 1,

which is non-trivial unless gs = g, = 1. If g = g, = 1, then we have a solution (h, k!, 1)
simultaneous triple pairing problem, unless hs = h, = 1 as well. Butin case g, = gs — hy = hs
we have the non-trivial solution (g, g, 1) to the simultaneous triple pairing problem.

Let us now consider the case e(g,,hs) # e(gs,hr). In this case, the discrete loga-
rithms satisfy z,ys # sy, just as when we generate a commitment key. We pick at random
P1501, Ty« 3Pn,0n,Tn < Zp and define g1, hl, <oy 0n, hn by

9i=9r'95'9; N hi=hYhTh

Since (x, y,) and (zs,ys) are linearly independent in Zz% all these group elements are randomly dis-
tributed in G. This means ck = (gk, g1, h1,- -, 9n, Pns Gr, hr, gs, hs) has the same distribution as
commitment keys generated by K.

We give this ck to A and with probability (k) it produces two different messages

(m1,...,my), (m},...,ml) and randomizers (r, s), (', s") so
/ / / /
comeg (M, ..., mp;7,s) = comek(mi,...,my;r,s).
Define y11 = m{my" =m},m, " and " =r'r~1 s = ¢'s™!. By the h hi t
pr=mmy .o =mpm,tand " = r'r=1 s = §'s~. By the homomorphic property
of the commitment scheme we have comx (g1, . . ., pn; 7", 8”) = (1,1). This gives us

::]:

n
e(gr,m")e(gs, ") | | e(gir i) = e(gr, 7 HW e(gs, s HM e(ge, [[ i) = 1
1 i=1

n
e(hl,uz)—ehhr”l—[uzl hs,s”H,u ht>HN?) = 1.
i=1

=1

.’:lzﬂ'

e(hy,r")e(hs, s”)

Il
i

7
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Since (my,...,my) and (m},...,m},) are different, there is at least one p; # 1. Recall g; =
grigZig]t and h; = hP*hZih]* for random p;, 04, 7; < Zp. Since (z,,y,) and (zs,ys) are linearly
independent in Z there is for any 7, a unique pair (p}, o}) € Z2 that would yield g;, h;. This means
from A’s perspective 7; is a perfectly hidden random value in Z,. The probability that [[" , p* =1
is therefore at most 1/p.

So if e(gr,hs) = e(gs, hy) the adversary B breaks the simultaneous triple pairing problem
with probability 1. If e(gr, hs) # e(gs, hr) the adversary B has at least (k) — 1/p chance of
(" TTy w8 T1ey ', T1y 1) being a non-trivial solution to the simultaneous triple pairing
problem. U
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