
Implementing cryptographic pairings:
a magma tutorial

Luis J Dominguez Perez?, Ezekiel J Kachisa??, and Michael Scott.??

School of Computing
Dublin City University

Ireland
ldominguez@computing.dcu.ie ekachisa@computing.dcu.ie

mike@computing.dcu.ie

Abstract. In this paper we show an efficient implementation of the
Tate, ate and R-ate pairings in magma. This will be demonstrated by
using the KSS curves with embedding degree k = 18.

1 Introduction

One of the first well known applications of cryptographic pairings is the transfor-
mation of an elliptic curve discrete logarithm problem (ECDLP) instance into an
instance of discrete logarithm problem (DLP) in the finite field. This was done
by Menezes, Okamoto and Vanstone [32] by using the Weil pairing while later
Frey and Rück [18] also presented a similar technique using the Tate pairing.
These applications were examples of a “negative” use of pairings in ECC. How-
ever, recently pairing implementations had been created for more constructive
uses. Joux [26] showed how pairings can be used for a tripartite authentication
protocol. This opened the flood gates for the positive applications of pairings.
Shamir [41] for example in 1984 posed as a challenge the concept of an Identity-
Based Encryption scheme. Boneh and Franklin [9] proposed a solution to this
challenge based on a bilinear map using the Weil pairing. Many more state-
of-the-art protocols using bilinear pairings were proposed such as short digital
signatures [10].

In response, novel constructions of non-supersingular pairing-friendly ellip-
tic curves have been proposed by different authors for pairing based protocols.
With constructions such as MNT [35], Freeman [15], BN [6] one can produce
ideal pairing-friendly elliptic curves. These are curves whose group bit length
size is equal to the bit length size of the underlying field. The importance and
effectiveness of such curves is mainly felt in the costs incurred in the compu-
tation of pairings. Some of these curves also support twists of higher order, for
example sextic twists on the BN curves. Then there are pairing-friendly elliptic
curves which are near-ideal. For instance curves as proposed by Barreto, Lynn
? This author acknowledge support from the Consejo Nacional de Ciencia y Tecnoloǵıa

?? These authors acknowledge support from the Science Foundation Ireland under
Grant No. 06/MI/006

2 Luis J Dominguez Perez, Ezekiel J Kachisa, and Michael Scott.??

and Scott [4], and later as generalised by Brezing and Weng [12], and KSS curves
as proposed in [27]. In these curves the bit size of the finite field is somewhat
larger compared to the bit size of the prime order subgroup. As such there is
always a need to look for optimal ways to implement pairings on such curves.

The computation of pairings basically involves two groups, G1 and G2. These
two groups are finite cyclic additively-written groups and at least one of which
is of prime order r. The pairing will take an element from each of the two groups
and map them to the third group GT , which is a finite cyclic multiplicatively-
written group also of prime order r. A useful cryptographic pairing satisfies the
following properties:

– Bilinearity :
For all P, P ′ ∈ G1 and all Q,Q′ ∈ G2, one has: e(P + P ′, Q) = e(P,Q)×
e(P ′, Q) and e(P,Q+Q′) = e(P,Q)× e(P,Q′)

– Non-degeneracy :
For all P ∈ G1 with P 6= 0, there is some Q ∈ G2 such that e(P,Q) 6= 1.
For all Q ∈ G2 with Q 6= 0, there is some P ∈ G1 such that e(P,Q) 6= 1.

– Computable:e can be easily evaluated.

The best known method for computing pairings is based on Miller’s algo-
rithm. This is a standard method and many researchers have been trying to
improve its efficiency. The emphasis mainly has been to optimize the Miller’s
loop and the final exponentiation in the algorithm [[3], [1], [14], [31], [38],[5],[22]].

Our implementation uses the Magma software package which is a large, well-
supported package designed to solve computationally hard problems in algebra,
number theory, geometry and combinatorics [11]. Magma currently has internal
functions to compute the Weil or Tate pairing. However one can also implement
the computation of the pairings using ones own functions to eliminate unneces-
sary operations and to exploit specific properties of the chosen family of curves
for an efficient implementation.

In this paper we will demonstrate using magma a step-by-step approach to
the efficient implementation of pairings given a family of pairing friendly elliptic
curves, and propose some specific optimisations for the chosen k = 18 family of
such curves in the computation of the Tate, ate and R-ate pairings.

1.1 Organisation of the paper

The rest of the paper is organised as follows: the next section explains the KSS
curves, in particular a family of curves of embedding degree, k = 18. In Section
§3 we discuss the twists in elliptic curves and how to create sextic twist curves
in magma. In §4 we discuss how to compute the Tate pairing in Magma for
curves of degree 18, similarly in sections §5 and §6 for the ate pairing and R-ate
pairing respectively. In §7 we compare the Miller loop length as experienced in
sections §4, §5 and §6. Finally, in §8 and §9 we discuss an optimisation of the
final exponentiation in the pairing computations. We conclude our discussions
in §10. Appendix §A illustrates how to count points on the elliptic curve over an

Implementing Cryptographic pairings: a magma tutorial 3

extension field and over a twist of a curve. Appendix §B shows how to generate
the Ti pairs for the R-ate paring.

2 Kachisa-Schaefer-Scott Curves

Kachisa et al. [27] proposed families of pairing-friendly elliptic curves of embed-
ding degrees k = 16, 18, 32, 36, and 40. The main idea in the construction is to
use minimal polynomials of the elements of the cyclotomic field other than the
cyclotomic polynomial Φl(x) to define the cyclotomic field Q(ζl). Interestingly,
all these families of curves admit higher order twists. In particular, the family
of curves for k = 18 is parameterised by the authors as follows:

t(x) = (x4 + 16x+ 7)/7

p(x) = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x+ 2401)/21

r(x) = (x6 + 37x3 + 343)/343

where t(x) is the trace of Frobenius, p(x) represents the field size and r(x)
represents the pairing-friendly subgroup. As is well known the number of points
on the elliptic curve E(Fp) is #E = p + 1 − t. For this curve the ratio of the
size of the field to the size of the group ρ = deg(p(x))/deg(r(x)) = 4/3. One is
able to construct a curve using the above parameters when x ≡ 14 mod 42. In
this class, t(x) represent integers, and p(x) and r(x) can represent primes. For
a randomly generated x ≡ 14 mod 42 as input, p and r ∈ Z, are not necessary
both primes. But by using a loop and iterating positive and negative values of
x, it is not difficult to find a desired size of p and r that are both primes. Listing
1 shows the code in magma that can be used to find the primes p and r. The
co-factor c(x) = (p(x) + 1− t(x))/r(x) is also calculated.

Listing 1. Code for finding p and r

// Input <- any random integer number;
// Output -> p,r,t,x Integers, p and r primes.
KSSCurves:= function(x);
while (x-14) mod 42 ne 0 do
x:=x+1;

end while;
while true do
r:=(xˆ6 + 37*xˆ3 + 343) div 343;
if IsPrime(r) then
p:=(xˆ8 + 5*xˆ7 + 7*xˆ6 + 37*xˆ5 + 188*xˆ4 + 259*xˆ3 + 343*xˆ2
+ 1763*x + 2401) div 21;
if IsPrime(p) then
break;

end if;
end if;

4 Luis J Dominguez Perez, Ezekiel J Kachisa, and Michael Scott.??

x:=x+42;
end while;
t:=(xˆ4+16*x+7) div 7;
c:=(p+1-t) div r;
return p,r,t,c,x;

Such a curve would suit, for example, an AES-192 security level protocol.
AES-192 would require a 384-bit subgroup size [30]. Since the ρ-value is the
rounded ratio of the size in bits of the modulus p to the size in bits of the group
order r [38], it is not possible to get the exact number of bits expected. Therefore
the authors decided to use a prime p of size 512-bits and a prime r of 379-bits
for the purposes of this paper.

A suitable field over p and a prime group order r of these sizes, is found using
as a seed x := 0x1500000150000B7CE, which was found to produce an r(x) of
low hamming weight. The actual values are given in Listing 2.

Listing 2. Field size, subgroup size, trace of Frobenius and co-factor

p:= 898399025747640384869366543419163653522011601817338789661118\
4253623282829906032693562699426107208555980140855948371137119487\
303577983463490963245140511947;
r:= 834588325238359397017496169232723349635358800304932055763787\
073529864528483523055250452641305501342615931041985801;
t:=6205063689373751135105729881699169903788763264991774501289731\
6876824887966225;
c:=10764576960635731125531981251036245532323;

Since this type of family of curves has a complex multiplication discriminant
D = −3, then the equation of the curve will take the form of y2 = x3 + b, where
b 6= 0. Using basically the same algorithm as in [6, Algorithm 1], but including
the co-factor c, Listing 3 returns an elliptic curve, a finite field of size p, the b
parameter in the elliptic curve formula, and a point G of order r.

Listing 3. Generating the Elliptic Curve

// Input <- (p,r,c) defining the Elliptic Curve
// Output -> The EC, its Finite Field, b from the EC, and a point
CurveGen:= function(p,r,c)
Fp:= FiniteField(p);
b := Fp!0;
repeat
repeat

b := b + 1;
until IsSquare(b + 1);
y := Fp!Root(b + 1, 2);
E := EllipticCurve([Fp|0,b]);
G := E![1,y];

until IsZero(r*c*G);
return E,Fp,b,G;

Implementing Cryptographic pairings: a magma tutorial 5

Listing 3 begins searching for a curve from b = 1. When one gets to b = 5,
that defines an elliptic curve E : y2 = x3 + 21 and a point G(1,

√
6) with the

correct order.
Although the curve remains defined over Fp, we can also consider points

which are defined over the extension field Fpk . The Listing 4 shows the code in
magma for creating an Elliptic Curve ExtCurve defined over the extension field
Fpk.

Listing 4. Generating an Extension Field and its Elliptic Curve

k:=18;

Fpk:=FiniteField(p,k);
ExtCurve:=EllipticCurve([Fpk!0,b]);

3 Twists of the curves

One way to speed up pairings computation is through the use of twist curves.
If E and E′ are elliptic curves defined over Fp, then E′ is said to be a twist of
degree d if there exists an isomorphism ψ : E′ −→ E defined over Fpe with e
minimal. It was shown by Naehrig et al [36] that such curves leads to compressed
values of line functions which can be computed by a few field operations in Fpk/d

compared to the full field, Fpk . This optimisation was also used in [[38], [14],
[36], [1]]. Unfortunately, there are limited possible values of d such that for p ≥ 5
only quadratic, cubic, quartic and sextic twists are possible.

Since the curve under consideration, k = 18, is divisible by 6 and has a
CM discriminant D = 3, then in this family of curves higher order twists, in
particular sextic twists, exist. For the k = 18 family, to utilise the sextic twist
we must define the point P ∈ G1 defined over the curve E(Fp)[r] and Q ∈ G2

defined over the twist curve E′(Fp3). To do this whenever p ≡ 1 (mod 6), we
choose χ ∈ Fp3 such that W 6 − χ is irreducible over Fp3 [W]. Furthermore, if
δ ∈ Fp18 is a root of W 6 − χ , then there exists a homomorphism which maps
points on the sextic twist to the points of the original curve as follows:

ψ : E′(Fp3)→ E(Fp18) defined by: (x′, y′)→ (x′δ1/3, y′δ1/2),

with an isomorphism given by:

[.] : µ6 → Aut(E) : δ 7→ [δ] with [δ](x, y) = (δ2x, δ3y) [24].

The twist curve for a such a curve has the form of E′ : y′2 = x′3 + b
χ .

The following Listings demonstrate the code in magma for creating the same
curve as in §2 using sextic twists. Now the second point Q is placed and manip-
ulated on the twist curve E′(Fp3) and we can apply the twist map to bring the
point Q to the full extension field when required by the pairing algorithm.

The Fpd in the Listings, here and thereafter, denotes the field constructed
to obtain the extension field, Fp3 . This is done by first finding an irreducible

6 Luis J Dominguez Perez, Ezekiel J Kachisa, and Michael Scott.??

polynomial of degree 3 over Fp. For example, to find the irreducible polynomial
u3 + 2 for this extension field, one would use a magma function as follows:
IrreduciblePolynomial(Fp,3);.

One can now use this polynomial to create the extension field Fp3 . From this
field we now look for an element χ such that W 6 − χ is irreducible over Fp3 [W]
in order to find a suitable representation of Fp18 as a sextic extension of Fp3 . It
is necessary to pick the χ value that gives the correct order of the twist curve
[6].

Firstly, we create a couple of general functions to help in the search for
an appropriate χ. These functions will create the required extension fields and
curves. However if χ is not an irreducible polynomial, the program will fail. This
is especially bad when making long automated searches in magma. We need to
use the try-or-catch mechanism to trap any error in the extension field and curve
creation processes. This can be done as shown in listing 5.

Listing 5. Extension Fields and Curves

// Input <- flag, finite field Fpd, polynomial X
// Output -> The extension field
GenerateFpk:= function(Fp, Fpd, X)
try
Fpk<v>:=ExtensionField<Fpd,v|vˆ6-X>;
return Fpk;

catch e
return Fp;

end try;
end function;

// Input <- flag, finite field Fpd, b from the EC, polynomial X
// Output -> The EC in the twist
GenerateExtT:= function(E, Fpd, b, X)
if IsEllipticCurve([Fpd|0,b/X]) then
ExtT:=EllipticCurve([Fpd|0,b/X]);
return ExtT;

else
return E;

end if;
end function;

Not all the χ values will result in an Elliptic Curve of the right twist [6,
Lemma 1]. When multiplying a random point on the curve by the co-factor c it
must generate a point of order r.

If a point Q is mapped to a subgroup of order r, then r×Q will result in the
point-at-infinity. The wrong twist of the elliptic curve will not generate a point
Q in the correct subgroup of order r.

To create a point Q mapped to a subgroup of order r on the correctly selected
twist of the elliptic curve, we use the homomorphism used in [22] and the addition
chain proposed at [40], see Listing 6 for its implementation. With this program,

Implementing Cryptographic pairings: a magma tutorial 7

one can create a random point Q ∈ E′(Fp3) as: Q:= HashG2(Random(ExtT),
xx, deltas)

(The δ’s elements will be explained in more detail in §5.1.)

Listing 6. Fast Hashing in G2 for KSS:k = 18 curves

// Input <- Point \in E’(\F_{pˆe}), degree of function, \delta
// Output -> Point \in E’(\F_{pˆe})
psi:=function(P,i,delta)
E1:=Curve(P);
Fp:=BaseField(BaseField(E1));
P:=[Frobenius(P[1]*delta[1],Fp,i),Frobenius(P[2]*delta[2],Fp,i)];
P:=E1![P[1]*delta[3],P[2]*delta[4]];
return P;

end function;

// Input <- Point to Hash \in E’(\F_{pˆe}), x, \delta
// Output -> Point \in E’(\F_{pˆe})
HashG2:=function(Q,x,d);
E1:=Curve(Q);
x2:=xˆ2;
Qx:=Q*x;
Q_x:=Q*-x;
Q_x2:=Q*-x2;
Q_x3:=Q_x2*x;
Q_x4:=Q_x2*x2;
Q_x5:=Q_x4*x;
Q_x6:=Q_x4*x2;
Q_x7:=Q_x6*x;

xA:=Q_x; //x20
xB:=-Q; //-x21
t1:=xA+xB; //x20.x21
t0:=psi(Qx,2,d)+xA; //x16.x20
t1:=2*t1; //t1.t1
t1:=t1+psi(Q_x,3,d); //t1.x19
t1:=2*t1; //t1.t1
t1:=t1+t0; //t1.t0
t0:=Q_x2+xB; //x18.x21
t0:=2*t0; //t0.t0
xB:=psi(Q_x2,3,d); //x17
t0:=t0+xB; //t0.x17
t2:=t1+psi(Qx,1,d); //t1.x14
t1:=t1+psi(Qx,4,d); //t1.x9
t0:=t0+Q_x3; //t0.x15
t3:=psi(Q_x4,1,d)+psi(Q_x4,2,d)+Q_x3; //x5.x15
t2:=t0+t2; //t0.t2
t4:=t2+psi(-Q,3,d); //t2.x13
t2:=t2+Q_x5+psi(Q_x4,3,d); //t2.x7
t4:=2*t4; //t4.t4
t4:=t4+psi(P,2,d)+psi(P,4,d); //t4.x11
t6:=Q_x4+xB;//x12.x17

8 Luis J Dominguez Perez, Ezekiel J Kachisa, and Michael Scott.??

t4:=t6+t4; //t6.t4
t6:=t6+t3; //t6.t3
t1:=t4+t1; //t4.t1
t4:=t4+t2; //t4.t2
xC:=psi(Q_x3,1,d)+psi(Q_x3,2,d); //x10
t2:=xC+Q_x2; //x10.x18
t3:=psi(Q_x5,3,d)+xC; //x6.x10
t1:=t2+t1; //t2.t1
t2:=t2+xB; //t2.x17
t7:=t1+psi(Q_x3,3,d); //t1.x8
t4:=t7+t4; //t7.t4
t3:=t4+t3; //t4.t3
t4:=t4+psi(Q*xˆ2,4,d)+psi(Q_x2,1,d); //t4.x4
t3:=t3+t7; //t3.t7
t7:=t7+t2; //t7.t2
t1:=t3+t1; //t3.t1
t6:=t1+t6; //t1.t6
t6:=t6+t0; //t6.t0
t1:=t6+t1; //t6.t1
t6:=t6+t0; //t6.t0
t0:=t1+Q_x6; //t1.x3
t1:=t1+Q_x7+psi(Q_x7,1,d)+psi(Q_x7,2,d); //t1.x0
t0:=t0+t4; //t0.t4
t2:=t0+psi(Q_x6,1,d)+psi(Q_x6,2,d); //t0.x2
t0:=t0+t7; //t0.t7
t5:=t2+psi(Q_x6,3,d); //t2.x1
t2:=t2+t6; //t2.t6
t2:=t2+t5; //t2.t5
t0:=2*t0; //t0.t0
t0:=t0+t5; //t0.t5
t1:=t2+t1; //t2.t1
t2:=t2+t4; //t2.t4
t0:=t1+t0; //t1.t0
t1:=t1+t3; //t1.t3
t0:=2*t0; //t0.t0
t0:=t0+t2; //t0.t2
t0:=2*t0; //t0.t0
t0:=t0+t1; //t0.t1
return t0;

end function;

At this point, the reader knows how to create a point Q, from an already
selected twist of the elliptic curve. One can check if it is in fact mapped to a
subgroup of order r with the magma function IsZero(r*Q).

To find a twist of an elliptic curve, we began a linear search for a small χ in
Listing 7. However as stated earlier not all the irreducible polynomials define an
extension field and elliptic curves of the right twist. Hence, not all the irreducible
polynomials can be used. The reader is also encouraged to add more powers in
χ if preferred.

Implementing Cryptographic pairings: a magma tutorial 9

If one follows the strategy suggested in [6, Lemma 1], one would get a bigger
χ than in Listing 7 and still have to test the order of a random point. It can
take some time to create a random point on a curve like ExtT from Listing 6.

Listing 7. Searching for χ

for i1:= 0 to 100 do
for i0:= 1 to 100 do
X:=i1*u+i0;
X:=Fpd!X;
Fpk:=Fp;
Fpk:=GenerateFpk(Fp, Fpd, X);
if Fpk ne Fp then
ExtT:=E;
ExtT:=GenerateExtT(E, Fpd, b, X);
if ExtT ne E then
V:=Name(Fpk,1);
deltas:=[];
Append(˜deltas,Vˆ2);
Append(˜deltas,Vˆ3);
Append(˜deltas,1/deltas[1]);
Append(˜deltas,1/deltas[2]);
Q:=HashG2(Random(ExtT),xx,deltas);
if IsZero(r*Q) then
print "OK",i1,"*u+",i0;

end if;
end if;

end if;
end for;

end for;

Once the irreducible polynomials are known, the reader may prefer some
simpler code for constructing a twist curve and picking up points P and Q of
order r as shown below:

Listing 8. Twisted elliptic curve definition and map of points

Fp:=FiniteField(p);
E:=EllipticCurve([Fp! 0,b]);

Fpd<u>:=ExtensionField<Fp,u|uˆ3+2>;
X:=u+5;
ExtT:=EllipticCurve([Fpd|0,b/X]);

Fpk<v>:=ExtensionField<Fpd,v|vˆ6-X>;
ExtCurve:=EllipticCurve([Fpk|0,b]);
deltas:=[];
V:=Name(Fpk,1);
Append(˜deltas,Vˆ2);
Append(˜deltas,Vˆ3);

10 Luis J Dominguez Perez, Ezekiel J Kachisa, and Michael Scott.??

Append(˜deltas,1/deltas[1]);
Append(˜deltas,1/deltas[2]);
P:=c*Random(E);
Q:=HashG2(Random(ExtT),ExtT,ExtCurve,xx,Fp);

4 The Tate Pairing

Originally there were two cryptographic pairings, the Weil and Tate-Lichten-
baum. The Weil pairing requires two Miller loops to generate the mth roots of
unity [42, III.§8], while the Tate pairing requires only one application of the
Miller loop, making it more efficient than the Weil pairing.

The Tate pairing was introduced by Tate as a rather general pairing on
Abelian varieties over local fields. Lichtenbaum gave an application of this pairing
to the Jacobians of curves over local fields[13]. The Tate-Lichtenbaum pairing is
hereafter referred to as the Tate pairing.

Recalling some notation from §2 or [27], Let k be the embedding degree, which
sometimes is referred to as security multiplier, of an elliptic curve E defined over
a finite field Fp, and let r be the large prime number that divides #E such that
r divides (pk−1) with p a large prime number. The definition of the Tate pairing
is as follows [8]:

Let P ∈ E(Fp)[r] and Q ∈ E(Fpk), consider the divisor D = (Q + S) − (S)
with S a random point in E(Fpk). Let fa,P be a function with a divisor (fa,P) =
a(P)− (aP)− (a− 1)(0) for a ∈ Z. A non degenerate bilinear Tate pairing can
be defined as a map:

– er : E(Fp)[r]× E(Fpk)/rE(Fpk)→ F∗
pk/(F∗

pk)r

(P,Q) 7→ 〈P,Q〉r = fr,P (D)

This value of the pairing is in an equivalence class, F∗
pk/(F∗

pk)r. For practical
purposes it is preferred to raise the value of the pairing to the power of (pk−1)/r
to obtain a unique representative of the class, i.e er(P,Q) = 〈P,Q〉(pk−1)/r. This
exponentiation is known as the final exponentiation, and the pairing is referred
to as the Reduced Tate Pairing.

4.1 The Miller Loop for the Tate Pairing

Implementing the Tate Pairing is almost as easy as implementing the Miller
loop. An easy way to implement the Miller formula is explained in [3, Theorem
2] and [38].

The inputs to the pairing are the points P ∈ E(Fp)[r] and Q ∈ E(Fpk). It
is necessary to apply the double-and-add, line-and-tangent algorithm until the
point P , on being multiplied by its order r, finally reaches the point-at-infinity.
It will arrive there after lg(r − 1) iterations of the Miller loop.

In this case Q may not be of order r. We get a random point ∈ E′(Fp3) and
apply the ψ map. See Listing 9

Implementing Cryptographic pairings: a magma tutorial 11

Listing 9. Generating point Q ∈ E(Fpk)

Q:=Random(ExtT);
Q:=ExtCurve![Q[1]*deltas[1],Q[2]*deltas[2]];

The code in Listing 10 is used to compute line functions lA,B(Q) when eval-
uating the contribution to the pairing value of the elliptic curve point addition,
A+B. In essence these are distances calculated between the fixed point Q and
the lines that arise when adding points A and B. In this code there are three
cases to be considered.

Listing 10. Line function

//Input <- A,B in G_1, Q in E(\F_{pˆk})
//Output -> return in G_T
L:= function(A,B,Q)

if A eq -B then
return Q[1]-A[1];

end if;
if A eq B then

l:=(3*A[1]ˆ2) / (2*A[2]);
else // A ne B

l:=(B[2]-A[2])/(B[1]-A[1]);
end if;
return (l*(Q[1]-A[1]) + A[2]-Q[2]);

end function;

The first case is where A = B, and the line in this case is the tangent to
the curve at point A, the second case is when A 6= B. These two cases use the
formula (l*(Q[1]-A[1]) + A[2]-Q[2]), where l is the slope of the line,
to compute the values of the functions. The last case is when the point A is a
negative of point B. In this case we have a vertical line and use the formula
Q[1]-A[1] to compute the line functions. Refer to [42] for more details.

Finally, the full Tate Pairing algorithm is presented in Listing 11. In this
code the double-and-add stages can be identified by 2 ∗ T (double) and T + P
(add), where the add is required when a 1 is present in the binary expansion of
r. In addition, there is the “vanilla” final exponentiation step. This step obtains
the unique value of the cosets of F∗

pk/(F∗
pk)r. This will be discussed in §8 in more

detail where we will also look at some optimisations that apply to this step.

Listing 11. Basic Tate pairing with single Miller Loop

// Input <- P \in G_1, Q \in E(\F_{pˆk})
// Output -> f \in G_T
pairing:= function(P,Q)
f:=1;
T:=P;
i:=Floor(Log(2,r))-1;
si:=Intseq(r,2);
while i ge 0 do

f:=fˆ2*L(T,T,Q);

12 Luis J Dominguez Perez, Ezekiel J Kachisa, and Michael Scott.??

T:=2*T;
if si[i+1] eq 1 then

f:=f*L(T,P,Q);
T:=T+P;

end if;
i:=i-1;

end while;
f:=fˆ(((pˆk)-1) div r);
return f;
end function;

5 The ate Pairing

The ate pairing[24] is a variant of Tate pairing and it is a generalisation of
the Eta pairing to ordinary pairing-friendly elliptic curves. The ate pairing is
particularly suitable for pairing-friendly curves with small values of the trace of
Frobenius.

Let πp be the Frobenius endomorphism, πp : E 7−→ E : (x, y) 7−→ (xp, yp).
We denote G1 = E[r]∩Ker(πp − [1]), G2 = E[r]∩Ker(πp − [p]). Let T = t− 1.
Let N = gcd(T k − 1, pk − 1), T k − 1 = LN . For Q ∈ G2 and P ∈ G1 ate pairing
is defined as [24]:

aT : (Q,P) 7−→ fT,Q(P)cT (pk−1)/N ,

where cT =
∑k−1−i

i=0 pi ≡ kpk−1 mod r. The ate pairing is a bilinear non-
degenerate pairing if r - L. What should be noted here also is the change in
arguments. The first parameter P is defined over the extension field and Q is
defined over the base field.

5.1 The Miller Loop for the ate Pairing

In the ate pairing the number of iterations in the Miller loop depends on the
size of the trace of the Frobenius t rather than on the size of the subgroup r.
Thus, as noted in [38] if ω = log r/ log |t| is greater than one for a particular
family then it is possible to compute the ate pairing faster for those type of
curves. The larger the ω the faster the ate computation compared to the Tate
pairing computation. For k = 18 curves we have ω = 3/2. Therefore this curve
is suitable for an implementation of the ate pairing.

The code in magma for computing the ate pairing is given in Listing 12.
Where G1 ∈ E(Fp)[r]) and G2 ∈ E′(Fp3). Note that here we define G2 on the
sextic twist.

Listing 12. ate pairing with single Miller Loop

//Input <- P \in G_2, Q \in G_1$
//Output -> f \in G_T
pairing:= function(P,Q)

Implementing Cryptographic pairings: a magma tutorial 13

f:=1;
T:=P;
s:= t-1;
i:=Floor(Log(2,s))-1;
si:=Intseq(s,2);
while i ge 0 do
f:=fˆ2*L(T,T,Q);
T:=2*T;
if si[i+1] eq 1 then
f:=f*L(T,P,Q);
T:=T+P;

end if;
i:=i-1;

end while;
f:=fˆ(((pˆk)-1) div r);
return f;
end function;

However, in the Miller loop, some operations on the curve over the extension
field are required. Since one is using a point Q ∈ E′(Fpk/d) instead of E(Fpk), it
is therefore required to apply the map ψ, discussed in [§3], in the line function.
Each of the x and y coordinate of a point Q ∈ E′(Fp3) has three components
defined over the base field Fp. Hence instead of applying the map function ψ,
one can also place the 3 components to their corresponding positions in the x
and y-coordinates of Q.
Unfortunately, this cannot be done in magma. Instead we apply the “full” ψ map
(x.δ2, y.δ3). However, since δ is a constant for the generated curve, we can pre-
compute these values and the cost of the mapping will be just one multiplication
by a coordinate component (each time the L-function is called.)

Listing 13 show the modified code.

Listing 13. Line Function with ψ map

//Input <- A,B \in G_2, Q \in G_1
//Output -> return in G_T
L:= function(A,B,Q)
Ax:=A[1]*deltas[1];
Ay:=A[2]*deltas[2];
Bx:=B[1]*deltas[1];
By:=B[2]*deltas[2];
if (Ax eq Bx) then
if (Ay eq -By) then
return Q[1]-Ax;

else
if (Ax eq Bx) and (Ay eq By) then
l:=(3*Axˆ2) / (2*Ay);

end if;
end if;

else // A ne B
l:=(By-Ay)/(Bx-Ax);

end if;

14 Luis J Dominguez Perez, Ezekiel J Kachisa, and Michael Scott.??

return (l*(Q[1]-Ax) + Ay-Q[2]);
end function;

6 The R-ate Pairing

The new R-ate pairing introduced by Lee, Lee and Park [29] is a generalisation
of the ate[24] and atei[45] pairing improving its computation efficiency. It takes
three short Miller loops to calculate the pairing, that together requires a shorter
loop than a single typical application of the ate pairing. The R-ate pairing can
be regarded as a ratio of any two pairings, hence the name.

The definition of the R-ate pairing with A = aB + b where A,B, a, b,∈ Z is
as follows:

eA,B(P,Q) = fa,BP (Q)× fb,P (Q)×GaBP,bP (Q)

Generally this definition does not always give a bilinear and non-degenerate
pairing. However, with a careful choice of pairs A and B one can succeed. For
efficiency, we look for a working and non-trivial combination of A and B that
would give the shortest Miller loop.

In [29, Algorithm 2] there are three Miller loops to compute and the final
exponentiation is calculated at the end of the computation. These computations
won’t produce the mth roots of unity since they are not full-Miller loops. They
give a partial result that is used as part of the pairing T , as in Listing 11.

The code for the Miller loop denoted as M in Listing 14 is used to compute
the R-ate pairing. It makes function calls to Listing 10.

Listing 14. Miller loop as to be used by the R-ate pairing

// Input <- P \in G_2, Q \in G_1, l \in \Z
// Output -> f \in G_T, T \in \Z
M:= function (P,Q,l)
T:=P;
f:=1;
i:=Floor(Log(2,l))-1;
li:=Intseq(l,2);
while i ge 0 do
f:=fˆ2*L(T,T,Q);
T:=2*T;
if li[i+1] eq 1 then
f:=f*L(T,P,Q);
T:=T+P;

end if;
i:=i-1;

end while;
return f,T;
end function;

Implementing Cryptographic pairings: a magma tutorial 15

There are a few differences between the Listing 11 and Listing 14. In partic-
ular the absence of the final exponentiation, the introduction of the parameter
l that prescribes the number of loops, instead of r or t-1 and the use of T as
an extra output in Listing 14.

The R-ate pairing, like in the atei [45], requires the calculation of Ti ≡ pi mod
r, with 0 ≤ i < k, where k is the embedding degree. This pairing is constructed
from the parameters (p, r), which are also used to define the ate and Tate pairing,
and a combinations of Ti.

Listing 16 shows an implementation of the R-ate pairing function. As noted in
[29, Algorithm 2], fa, fb, aQ and bQ with {a, b} = {m1,m2} is used, in addition,
parameters m1 = max{a, b} and m2 = min{a, b} play an important role in the
algorithm.

The R-ate pairing, also called RA,B(P,Q), is relative to parameters A and
B. For the KSS, k = 18, the authors founded the linear combination, T13 =
3
7xT6 + 2

7x, that is a = 3
7x, j = 6 and b = 2

7x as one of the working non-trivial
combinations for the R-ate pairing computation.

This is a good choice since A and B have almost the same number of bits
with both values less than x ∈ Z, as such it provides a short Miller length of
which one can use the f3 and T value from the Listing 14 and return them to
get the final values. Substituting the last four lines in Listing 14 with those in
Listing 15 one obtains an optimised Miller’s loop for R-ate pairing.

Listing 15. Modifications to the Miller loop for the R-ate pairing

if i eq 1 then
f2:=f; T2:=T;

end if;
i:=i-1;

end while;
return f,T,f2,T2;
end function;

We know from [29, Algorithm 2] that c ← [m1
m2

] and d ← m1 − c ×m2. For
the a = 3

7x, b = 2
7x values proposed, we got d = a

2 . With these values, the first
and third Miller function call can be integrated into one as shown in Listing 15.

We also get c = 1 from these combination. Then it is not necessary to call
Listing 14 for the second loop.

Furthermore, one can omit unnecessary use of memory or computations since
by definition a, b, j, m1, m2, c, d, fcm2 and cm2Q are known.

Listing 16. R-ate pairing function

// Input <- P \in G_1, Q \in G_2, l \in \Z
// Output -> f \in G_T, T \in \Z
pairing:= function(P,Q)
dd:=(xx) div 7;
m1:=(3*dd);
m2:=(2*dd);
jj:=6;

16 Luis J Dominguez Perez, Ezekiel J Kachisa, and Michael Scott.??

//Compute
fm2,m2Q,fd,dQ:=M(Q,P,m2);

f1:=fm2*fd;
fm1:=f1*L(m2Q,dQ,P);
m1Q:=m2Q+dQ;

//Exponentiation
f2:=Frobenius(fm1,Fp,jj)*fm2;
Q1:=[Frobenius(m1Q[1]*V2,Fp,jj),Frobenius(m1Q[2]*V3,Fp,jj)];
Q1:=ExtT![Q1[1]*V1_2,Q1[2]*V1_3];
f3:=f2*L(Q1,m2Q,P);

//Final Exponentiation
f3:=f3ˆ(((pˆk)-1) div r);

return f3;
end function;

The code, fm2,m2Q,fd,dQ:= M(Q,P,m2);, in the Compute section of
Listing 16 returns fm2 as f and m2Q as T in Listings 14 or 15. It is easy to
note that Q and m2 are the parameters of the M function, where m2 is the Miller
length. Hence m2Q is the actual state of T.

New in Listing 16 is the use of the Frobenius function in exponentiation
not only at the computation of Q1, but also for f2. This will be covered in more
detail later at §8 as one of the optimisations for the computation of pairings.

Additionally, since there is only one M function call, one would be able to
insert the Miller loop inside a modified version of the Listing 16.

Finally, Q1 ∈ E(Fp18) and the L-function requires it to be ∈ E′(Fp3), hence,
we apply the inverse ψ map from Section §3 before the line function. Optionally,
one may use a modified version of this function.

7 Comparison of the Miller-loop length

In this section we compare the Miller length of the pairings implemented in
sections §4, §5 and §6.

The Tate pairing was presented in section §4. From Listing 11 one can see
how the number of Miller loops iterations is related to r. One can refer to the
Tate pairing as er(P,Q) and its length is blog2(r)c − 1.

In section §5 the ate pairing presented in Listing 12 shows the number of
Miller loops iterations is related to t. Similarly to the Tate pairing, the ate
pairing can be referred to as et(P,Q), and its length is blog2(t− 1)c − 1.

However, in §6 there are three Miller loops required with lengths depending
on the A and B parameters. One can use eA,B(P,Q) as a way of referring to
the R-ate pairing. Its length is blog2(m2)c + blog2(c)c + blog2(d)c − 3, where
m1 = max{a, b}, m2 = min{a, b}, c ← [m1

m2
] and d ← m1 − c ·m2. Simplifying

for the chosen parameters in §6, the length is blog2(m2)c − 1.

Implementing Cryptographic pairings: a magma tutorial 17

Using the parameters in Listing 3 and 6, the Miller loop length for these 3
pairings is shown in Table 1. Clearly, the Miller loop length of the R-ate pairing
is 1

6blog2(r)− 1c.

Miller-length in iterations

Tate er(P, Q) 376
ate et(P, Q) 253
R-ate eA,B(P, Q) 61

Table 1. Comparison of Miller-loop length

8 Final exponentiation

One of the most expensive operation in the pairing computation is the final
exponentiation. In this section we discuss how the costs of final exponentiation
can be reduced for our k = 18 curves.

In the Tate, ate and R-ate pairings one is required to perform an exponen-
tiation by (pk − 1)/r. This process eliminates the r-th powers and facilitates
obtaining the r-th roots of unity. There have been many suggestions as to how
one can speed up the computation in the final exponentiation.

Devegili et al. [14] observed that if the exponent (pk − 1) is appropriately
factored, then one can get easy exponentiations using the Frobenius. In the
k = 18 curves we apply the same idea here by factoring (p18 − 1) into (p9 − 1)
and (p9 +1). Furthermore, we can factor (p9 +1) into (p3 +1) and Φ18(p). Since
r|Φ18(p), one can apply the Frobenius map on (p9 − 1) and (p3 + 1) and be
left with Φ18(p)/r, where Φ18(p) = (p6 − p3 + 1). Listing 17 gives the generic
magma code which can replace the final exponentiation in the Tate, ate and
R-ate pairing algorithms to utilise the cheap computation of the Frobenius map.

Listing 17. The Final Exponentiation

f:=Frobenius(f,Fp,9)*fˆ(-1);

f:=Frobenius(f,Fp,3)*f;

f:=fˆ((pˆ6-pˆ3+1) div r);

Now if we let λ = (p6− p3 + 1)/r, the “hard part” of the final exponent, one
can find a way to simplify λ. For example, the exponent λ can be represented to
the base p as λ0 + λ1p+ λ2p

2 + · · ·+ λ5p
5. Such that fλ can be written as:

fλ = fλ0+λ1p+λ2p2+···+λ5p5
= (f)λ0 · (fp)λ1 · (fp2

)λ2 · · · (fp5
)λ5

This decomposition can be obtained using the Listing 18 where the λi are cal-
culated as polynomials of x. These exponents are not as simple as in [14], which
are for the BN Curves. However, one can calculate them off-line.

18 Luis J Dominguez Perez, Ezekiel J Kachisa, and Michael Scott.??

Listing 18. Base p representation of the λ exponent

getlambdas:= function(xx)
Zx<x>:=PolynomialRing(RationalField());
px:=(xˆ8 + 5*xˆ7 + 7*xˆ6 + 37*xˆ5 + 188*xˆ4 + 259*xˆ3 + 343*xˆ2 +

1763*x + 2401) / 21;
rx:=(xˆ6 + 37*xˆ3 + 343) div 343;
lambda:= [];
Append(˜lambda,(pxˆ6-pxˆ3+1) div rx);
for i:=1 to 5 do
Append(˜lambda,lambda[i] mod pxˆ(6-i));

end for;
for i:=1 to 6 do
lambda[i]:= Evaluate(lambda[i] div pxˆ(6-i),xx);

end for;

return lambda;
end function;

As before, one can use the Frobenius exponentiation for the fpi

elements
combined with any multi-exponentiation technique. However, we can use the
same approach as in [39, 7.2] to simplify the computation of the hard part of the
final exponentiation.

Listing 19. Code for the hard part of the final exponentiation

HardExpo:= function(f3,x)
f3x1:=f3ˆ(x);
f3x2:=f3x1ˆx;
f3x3:=f3x2ˆx;
f3x4:=f3x3ˆx;
f3x5:=f3x4ˆx;
f3x6:=f3x5ˆx;
f3x7:=f3x6ˆx;

xB:= Frobenius((f3x1)ˆ(-1),Fp,2);//x27
xA:= Frobenius((f3)ˆ(-1),Fp,2);//x28
t4:= xB*xA;//x27.x28
t0:= t4*Frobenius((f3x2)ˆ(-1),Fp,2);//x24
t4:= t4ˆ2;
t4:= t4*xA;//x28
xA:= Frobenius(f3x1,Fp,1);//x26
t4:= t4*xA;//x26
t3:= Frobenius((f3x5)ˆ(-1),Fp,2)*Frobenius(f3x4,Fp,4)*Frobenius(

f3x2,Fp,5)*xA;//x8.x26
t4:= t4ˆ2;
t4:= t4*t0;
xA:= Frobenius(f3x2,Fp,1);//x25
t0:= Frobenius((f3x4)ˆ(-1),Fp,2)*Frobenius(f3x1,Fp,5)*xA;//x15.x25
t6:= xAˆ2;//x25
t6:= t6*Frobenius(f3x2,Fp,4);//x21
t2:= t4*Frobenius(f3x1,Fp,4);//x23

Implementing Cryptographic pairings: a magma tutorial 19

t4:= t4*xB;//x27
t2:= t2ˆ2;
xA:= Frobenius((f3x2)ˆ(-1),Fp,3);//x22
t6:= t6*xA;//x22
t1:= t6*(f3x2)ˆ(-1);//x19
t6:= t6*t4;
xB:= Frobenius((f3x3)ˆ(-1),Fp,3);//x20
t1:= t1*xB;//x20
t2:= t1*t2;
t4:= t2*Frobenius((f3x3)ˆ(-1),Fp,2)*Frobenius(f3,Fp,5);//x18
t5:= t2*t3;
t5:= t5*t4;
xC:= (f3x3)ˆ(-1);//x17
t4:= t4*xC;//x17
t3:= Frobenius((f3x6)ˆ(-1),Fp,3)*xC;//x6.x17
t4:= t4ˆ2;
t4:= t4*t6;
xC:= Frobenius(f3x3,Fp,1);//x16
t0:= t0*xC;//x16
t2:= xC*xA;//x16.x22
t7:= t0*t4;
t4:= t0*Frobenius(f3x4,Fp,1);//x13
t0:= t7*Frobenius(f3x3,Fp,4);//x14
t6:= t7*Frobenius((f3x5)ˆ(-1),Fp,3)*Frobenius(f3x5,Fp,4);//x7
t4:= t0*t4;
t0:= t0*Frobenius(f3x6,Fp,1);//x3
t4:= t4ˆ2;
t4:= t4*t5;
xA:= Frobenius((f3x4)ˆ(-1),Fp,3);//x12
t5:= (f3x4)ˆ(-1)*xA;//x10.x12
t3:= t3*xA;//x12
xA:= Frobenius(f3x5,Fp,1);//x11
t7:= xAˆ2;//x11
t7:= t7*t6;
t6:= t5*Frobenius(f3,Fp,3);//x9
t4:= t6*t4;
t6:= t6*Frobenius((f3x7)ˆ(-1),Fp,3);//x1
t1:= t4*t1;
t4:= t4*Frobenius(f3x6,Fp,4);//x2
t1:= t1ˆ2;
t1:= t1*(f3x5)ˆ(-1);//x5
t2:= t7*t2;
t4:= t4*t7;
t2:= t2ˆ2;
t2:= t2*t0;
t1:= t1*t3;
t0:= t1*xB;//x20
t1:= t1*t6;
t0:= t0ˆ2;
t0:= t0*t5;
xA:= (f3x6)ˆ(-1);//x4

20 Luis J Dominguez Perez, Ezekiel J Kachisa, and Michael Scott.??

t2:= t2*xA;//x4
t2:= t2ˆ2;
t2:= t2*t4;
t0:= t0ˆ2;
t0:= t0*t3;
t1:= t2*t1;
t0:= t1*t0;
t1:= t1*xA;//x4
t0:= t0ˆ2;
t0:= t0*t2;
xA:= f3*(f3x7)ˆ(-1);//x0
t0:= t0*xA;//x0
t1:= t1*xA;//x0
t0:= t0ˆ2;
t0:= t0*t1;

return t0;
end function;

During the computations some intermediate results are required and one can
still gain some advantages optimizing the code to use less memory.

It will be necessary to change the last line of §17 to f:=HardExpo(f,xx);
in order to call this function. This will result in a significant gain in speed.

9 Multiplication in G2

Gallant, Lambert and Vanstone [19] introduced a method to speed up general
point multiplication nP ∈ E(Fp)[r] when there is an efficient computable en-
domorphism ψ on E defined over Fp such that ψ(P) = λP . In the case of this
paper, since KSS k = 18 curves [27] have the form y2 = x3 +b as in [19, Example
4], the GLV method applies and it would require only one multiplication in Fp

to apply the endomorphism to point in G1.
The idea is to compute nP efficiently by writing n ≡ n0+n1λ (mod r) with

|ni| <
√
r and performing a double exponentiation n0P + n1ψ(P) [19]. In this

case, the number of bits in n0 and n1 are half the bitlength of n. One can save
a significant number of point doublings at the expense of a few point additions
and the application of a map. If the map ψ is also cheaper than a point addition
then, it is possible to get a few extra computational savings.

Gallant et al [19] pointed that their method can be generalised for using
higher powers of the endomorphism. Galbraith and Scott [22] recently showed a
technique on how to do it for the groups G2 and GT , as follows.

To get an m-dimensional expansion n ≡ n0+n1λ+. . .+nm−1λ
m−1 (mod r)

of nP , one must compose n with powers of λ sufficiently different modulo r.
This can be done by solving a closest vector problem in a lattice as done in the
Babai’s rounding method [2]. However, an LLL-reduced lattice basis must be
precomputed[22].

For KSS k = 18 curves [27], it will be possible to get a “natural” 6-dimensional
expansion.

Implementing Cryptographic pairings: a magma tutorial 21

The modular lattice basis is defined as follows:

L =

{
x ∈ Zm :

m−1∑
i=0

xiλ
i ≡ 0 (mod r)

}

where λ = T = t − 1 as in [22, Example 5].This 6-dimensional modular lattice
L will be used to construct a 6 × 6 matrix. Then, one can fill the matrix with
any combination of λ that gives Li,j ≡ 0 (mod r). One can use a predefined
sequence of values for the L-matrix to be LLL-reduced, however it is possible to
use random values. See Listing 20 for a random and an ordered definition of the
matrix L. Also see the function LLL() for the LLL-reduction at the end of the
program.

Listing 20. Initial Lattice and LLL-reduction

x:=25672080793808285942;
m:=6;
r:=(xˆ6 + 37*xˆ3 + 343) div 343;
t:=(xˆ4+16*x)/7+1;
lambda:=t-1;

// Option 1, randomly
L:= Matrix(Rationals(), m, [
lambda,-1,0,0,lambda,-1,
0,0,lambda,-1,0,0,
0,0,0,lambda,-1,0,
0,lambda,-1,0,lambda,-1,
lambda,-1,0,lambda,-1,0,
r,lambda,-1,lambda,-1,0

]);

// Option 2, ordered
L:= Matrix(Rationals(), m, [
r,0,0,0,0,0,
lambda,-1,0,0,0,0,
lambdaˆ2,0,-1,0,0,0,
lambdaˆ3,0,0,-1,0,0,
lambdaˆ4,0,0,0,-1,0,
lambdaˆ5,0,0,0,0,-1

]);

B:=LLL(L);

This way, B is the LLL-reduced matrix, similarly to [22, Example 5]. Note
that one can automate the L creation in the second matrix in Listing 20.

One can verify the lattice consistency mod r with the code in Listing 21

Listing 21. Validate matrix B

checklattice:=procedure(L)
sum:=0;

22 Luis J Dominguez Perez, Ezekiel J Kachisa, and Michael Scott.??

for i:=1 to m do
for j:= 1 to m do
sum:=sum+L[i][j]*lambdaˆ(j-1);

end for;
sum:= Integers()!sum mod r;
if sum eq 0 then print "OK"; else print "BAD",i; end if;
sum:=0;

end for;
end procedure;

At this point, there is a valid LLL-reduced B matrix.

B =


− 2x

7 −1 0 −x
7 0 0

0 − 2x
7 −1 0 −x

7 0
0 0 2x

7 1 0 x
7

x
7 0 0 − 3x

7 −1 0
0 x

7 0 0 − 3x
7 −1

−1 0 −x
7 1 0 3x

7


Choose a random exponent n for decomposing a vector (n,0,0,0,0,0) with

respect to the basis formed by B. However, and with the λ value generating B
from Listing 20, one obtains a vector v ≈ wB−1 as follows:

v ≈ (− 3x5+56x2

343 , 8x4+147x
343 , 19x3+343

343 , x5+3x2

343 ,− 5x4+98x
343 ,− 18x3+343

343).nr

Since all the elements of v are divided by r and /∈ Z, one just needs to round
each element [2],[20] of v before getting the vector u = w − vB. See Listing 22.

Listing 22. Rounding and generating vector u

n:= Random(r);
w:= Matrix(RationalField(), 1, m, [n,0,0,0,0,0]);

// Rounding
v0:= w*Bˆ-1;
v:= Matrix(RationalField(), 1, m, [0,0,0,0,0,0]);
for i:= 1 to m do
v[1][i]:= Round(v0[1][i]);

end for;

// Main vector
u:= w-v*B;

In the code of Listing 22 the vector u contains the coefficients ni with the
decomposition of n mentioned at the beginning of this section. Finally, one can
verify n ≡ n0 + n1λ+ . . .+ nm−1λ

m−1 (mod r) for this vector in Listing 23

Listing 23. Verification of the ni components

sum:=0;
for i:= 1 to m do

Implementing Cryptographic pairings: a magma tutorial 23

sum:= sum + u[1][i]*lambdaˆ(i-1);
end for;
if (Integers()!sum mod r) eq n then print "OK" else print "BAD";

10 Conclusion

In this paper we have taken the reader through the processes of implementation
of pairings on a pairing-friendly elliptic curves using the magma software. This
has been demonstrated using a family of pairing friendly elliptic curves of em-
bedding degree 18. Some optimizations such as the use of a twist of a curve and
methods to speed up the final exponentiation have been discussed in relation to
k = 18 curves. These optimisations can be extended to other embedding degrees
with similar structure. The code in this paper can be used as a basic guide in
the implementation of cryptographic pairings.

11 Acknowledgements

The authors would like to thank Professor Gary McGuire UCD(CSI) for his
useful clarifications on the counting of points on the elliptic curves.

References

1. Antonio, C.A., Tanaka, S. and Nakamula, K., (2007) Implementing Cryptographic
Pairings over Curves of Embedding Degrees 8 and 10. Cryptology ePrint Archive
Report 2007/426, http://eprint.iacr.org/2007/426.

2. Babai, Li. (1986) On Lovasz lattice reduction and the nearest lattice point problem.
Combinatronica 1986, 6(1), pp. 1–13, Springer-Verlag.

3. Barreto P.S.L.M., Lynn, B., Kim H. and Scott, M. (2002) Efficient Algorithms
for Pairing-Based Cryptosystems. Advances in Cryptology – Crypto’2002, Lecture
Notes in Computer Science 2442, pp. 354-368, Springer-Verlag

4. Barreto P.S.L.M., Lynn, B. and Scott, M., (2002) Constructing elliptic curves with
prescribed embedding degree. Security in Communication Networks -SCN 2002, Lec-
ture Notes in Computer Science 2576, pp. 263–273, Springer-Verlag

5. Barreto P.S.L.M., Lynn, B. and Scott, M., (2003) On the Selection of Pairing-
Friendly Groups. Symposium on Applied Computing -SAC 2003, Lecture Notes in
Computer Science 3006, pp. 17–25, Springer-Verlag

6. Barreto, P.S.L.M., and Naehrig M., (2006) Pairing-friendly elliptic curves of prime
order. Selected Areas in Cryptography – SAC’2005, Lecture Notes in Computer
Science 3897, pp 319–331 Springer-Verlag

7. Blake, I., Seroussi, G., and Smart, N., (1994) Elliptic Curves in Cryptography.
London Mathematical Society, Cambridge: Cambridge University Press.

8. Blake, I., Seroussi, G., and Smart, N. (2005). Advances in Elliptic Curve Cryptog-
raphy. Cambridge University Press.

9. Boneh, D., Franklin, M. (2001) Identity-based encryption from the Weil pairing.
Lecture Notes in Computer Science 2139, pp. 213229, Springer-Verlag.

24 Luis J Dominguez Perez, Ezekiel J Kachisa, and Michael Scott.??

10. Boneh, D., Lynn, B., and Shacham, H. (2001). Short Signatures from the Weil
Pairing. Lecture Notes in Computer Science 2248, pp. 514-532. Springer, Verlag.

11. Bosma, W., Cannon, J., and Playoust, C. (1997). The Magma algebra system. I.
The user language. J. Symbolic Comput., 24(3-4):235-265, 1997

12. Brezing F. and Weng A., (2005) Elliptic curves suitable for pairing based cryptog-
raphy., Designs Codes and Cryptography, Vol. 37, No. 1, pp. 133–141

13. Cohen, H., Frey, G. (2006). Hanbook of Elliptic and Hyperelliptic Curve Cryptog-
raphy Chapman & Hall/CRC

14. Devegili, A. J., Scott, M. and Dahab R., (2007) Implementing Cryptographic Pair-
ings over Barreto-Naehrig Curves. Pairing 2007, Lecture Notes in Computer Sci-
ence 4575, pp. 197–207, Springer-Verlag

15. Freeman, D., (2006) Constructing pairing-friendly elliptic curves with embedding
Degree 10. In Algorithmic Number Theory Symposium ANTS-VII, Lecture Notes
in Computer Science 4096, pp. 452–465. Springer-Verlag

16. Freeman, D., Scott, M. and Teske, E., (2006) A Taxonomy of pairing-fri-
endly elliptic curves. Cryptography ePrint Archive, Report 2006/372, http://
eprint.iacr.org/2006/372

17. Frey, G. (2001). Applications of Arithmetical Geometry to Cryptographic Construc-
tions Finite Field 5, 128–161, 2001.

18. Frey, G., and Rück, H-G., (1994). A Remark concerning m-Divisibility and the
Discrete Logarithm in the Divisor Class Group of Curves. Mathematics of Com-
putation, Volume 62, Number 206, pp. 865–874. American Mathematical Society.

19. Gallant Robert P., Lambert, Robert J., and Vanstone, Scott A. Faster Point Mul-
tiplication on Elliptic Curves with Efficient Endomorphisms. Crypto 2001, Lecture
Notes in Computer Science 2139, pp 190–200. Springer-Verlag.

20. Galbraith, S.D. Personal communication.
21. Galbraith, S.D, McKee, J. and Valenca, P., (2004) Ordinary Abelian varieties

having small embedding degree. Cryptography ePrint Archive, Report 2004/365,
http://eprint.iacr.org/2004/365.

22. Galbraith, S. D., Scott, M. (2008). Exponentiation in pairing-friendly groups using
homomorphisms. Pairing 2008, Lecture Notes in Computer Science 5209, pp 211–
224 Springer-Verlag

23. Hankerson, D., Menezes, A. and Vanstone, S., (2004) Guide to elliptic curve cryp-
tography. New York: Springer-Verlag.

24. Hess, F., Smart, N. and Vercauteren F., (2006) The Eta Pairing revisited. IEEE
Trans. Information Theory, Vol. 52, pp. 4595–4602

25. IEEE Standard Specification 1363-2000. Annex A. IEEE, 2000.
26. Joux, A, (2000). A One Round Protocol for Tripartite DiffieHellman. Lecture Notes

in Computer Science, 1838, pp. 385-394. Springer, Verlag.
27. Kachisa, E., Schaeffer, E.F. and Scott M (2007) Constructing Brezing-Weng pairing

friendly elliptic curves using elements in the cyclotomic field, Pairing 2008, Lecture
Notes in Computer Science 5209, pp 126–135 Springer-Verlag

28. Koblitz, N., Menezes, A. Pairing-Based Cryptography at High Security Levels Lec-
ture Notes in Computer Science 3796, pp 13–36, 2005.

29. Lee, E., Lee, H.-S., Park,C.-M. Efficient and Generalized Pairing Computation on
Abelian Varieties Cryptology ePrint Archive, Report 2008/040, 2008.

30. Lenstra, A. K. Unbelievable Security Matching AES security using public key sys-
tems, http://www.win.tue.nl/ klenstra/aes match.pdf

31. Matsuda, S., Kanayama, N., Hess, F. and Okamoto, E., (2007) Optimised versions
of the ate and Twisted ate Pairings. Cryptology ePrint Archive, Report 2007/013,
http://eprint.iacr.org/2007/013

Implementing Cryptographic pairings: a magma tutorial 25

32. Menezes, A., Okamoto, T., and Vanstone, S., (1991) Reducing Elliptic Curve Log-
arithms to Logarithms in a Finite Field. Proceedings of the twenty-third annual
ACM symposium on Theory of computing, pp. 80-89. Association for Computing
Machinery.

33. Miller, V. S. Short Programs for functions on Curves. IBM Thomas J. Watson
Research Center (available at http://crypto.stanford.edu/Miller/Miller.ps), 1986.

34. Mitsunari, A., Sakai, R., and Kasahara, M. (2002). A New Traitor Tracing. Trans-
actions on Fundamentals of Electronics, Communications and Computer Science,
vol. E85-A, no. 2, pp. 481-484.

35. Miyaji, A., Nakabayashi, M. and Takano, S., (2001) New explicit conditions of
elliptic curve traces for FR-reduction. IEICE Trans. Fundamentals, E84 pp. 1234
- 1243.

36. Naehrig, M. and Barreto, P.S.L.M., (2007) On compressible pairings and their
computation. Progress in Cryptology AFRICACRYPT 2008. Lecture Notes in
Computer Science, 5023, pp 371-388. Springer-Verlag

37. Sakai, R., Ohgishi, K., and Kasahara, M. (2000). Cryptosystems based on pair-
ing. Symposium on Cryptography and Information Security (SCIS2000), Okinawa,
Japan, Jan. 2628, 2000.

38. Scott, M. (2007). Implementing Cryptographic Pairings. Lecture Notes in Com-
puter Science, 4575, pp. 177–196. Springer, Verlag.

39. Scott, M. Benger, N. Charlemagne, M. Dominguez P., L. J., Kachiza, E. (2008).
On the final exponentiation for calculating pairings on ordinary elliptic curves.
Cryptology ePrint Archive, Report 2008/490, http://eprint.iacr.org/2008/490

40. Scott, M. Benger, N. Charlemagne, M. Dominguez P., L. J., Kachiza, E. (2008).
Fast hashing to G2 on pairing friendly curves. Cryptology ePrint Archive, Report
2008/530, http://eprint.iacr.org/2008/530

41. Shamir, A. (1984). Identity-Based Cryptosystems and Signature Schemes. Lecture
Notes in Computer Science, 196, pp. 47-53. Springer, Verlag.

42. Silverman, J. H. (1986). The Arithmetic of Elliptic Curves. Springer-Verlag.

43. Solinas, J. A. (2003). ID-Based Digital Signature Algorithms. ECC 2003. http://
www.cacr.math.uwaterloo.ca/conferences/2003/ecc2003/solinas.pdf

44. Tanaka, S. and Nakamula, K., (2007) More constructing pairing-friendly el-
liptic curves for cryptography. Mathematics arXiv Archive, Report 0711.1942,
http://arxiv.org/abs/0711.1942

45. Zhao, C-A., and Zhang, F. and Huang, J., (2007) A Note on the ate Pairing.
Cryptology ePrint Archive, Report 2007/247, http://eprint.iacr.org/2007/247

Appendix

A Counting rational points on the curve

The number of points on an elliptic curve is related to the size of the field as
follows #E(Fp) = p + 1 − t, where t is the trace of the Frobenious of Endor-
morphism. If α is a root to the characteristic polynomial X2 − tX + p, then
the number of points on the curve defined over the extension field is defined as
follows, #E(Fpk) = pk + 1 − αk − ᾱk. In magma one compute the number of
points on E(Fpk) using the following code:

26 Luis J Dominguez Perez, Ezekiel J Kachisa, and Michael Scott.??

Listing 24. Counting points in the curve over the extension field

// Input <- (p,k,t) defining the Elliptic Curve
// Output -> The number of points in the curve
GetnpFpk:= function(p,k,t)
tr:=[];
Append(˜tr,2);
Append(˜tr,t);
for i:=2 to k do
Append(˜tr,t*tr[i]-p*tr[i-1]);

end for;
return (pˆk)+1-tr[k+1];
end function;

However, when constructing a twist curve the number of rational points
varies. For k = 18, for example, one can define q = p3 and T = t3 − 3pt for
a sextic twist of these curves [24]. Then, #E′(Fq) = q + 1 − (3F + T)/2, with
T 2− 4q = −3F 2. Solving for F , one can easily calculate the number of points in
the twisted curve as in Listing 25.

Listing 25. Counting points in the curve over the twisted curve

// Input <- (p,k,t) defining the Elliptic Curve
// Output -> The number of rational points on the twisted curve

over Fpˆ3
GetnpFp3:= function(p,k,t)
q:=pˆ3;
T:=tˆ3-3*p*t;
F:=Isqrt((Tˆ2-4*q) div -3);
np:=q+1-(3*F+T) div 2;

return np;
end function;

B Ti selection

The authors used a previously calculated Ti-Tj combination of 3
7x.T6 + 2

7x. In
this section is presented a way to get all the valid combinations.

It has been stated that Ti ≡ pimod r and A = a.B + b. Then, Ti = a.Tj + b,
similary Tj ≡ pj mod r. However, it is also possible to use (t− 1)imod r.

One can calculate all the Ti-Tj combinations and compare later. First, it is
necessary to generate all the Ti’s. There are up to k possible polynomials. One
way to obtain them is shown as Listing 26.

Listing 26. Calculating the Ti’s

Zx<x>:=PolynomialRing(RationalField());
k:=18;
px:=(xˆ8 + 5*xˆ7 + 7*xˆ6 + 37*xˆ5 + 188*xˆ4 + 259*xˆ3 + 343*xˆ2 +

1763*x + 2401) / 21;

Implementing Cryptographic pairings: a magma tutorial 27

rx:=(xˆ6 + 37*xˆ3 + 343) div 343;

Poly:=[];
for i:=0 to k-1 do

Append(˜Poly,(pxˆi) mod rx);
end for;

In Listing 26 RationalField is being used for defining the p(x) and r(x)
polynomials from [27]. One can modify these polynomials, with its respective
k to calculate to corresponding Ti’s polynomials for a different elliptic curve
family.

The polynomials for [27] generated from Listing 26 are shown in Listing 27:

Listing 27. Ti polynomials for KSS, k=18

> Poly;
[

1,
1/7*xˆ4 + 16/7*x,
-5/49*xˆ5 - 87/49*xˆ2,
-xˆ3 - 18,
3/7*xˆ4 + 55/7*x,
-8/49*xˆ5 - 149/49*xˆ2,
-xˆ3 - 19,
2/7*xˆ4 + 39/7*x,
-3/49*xˆ5 - 62/49*xˆ2,
-1,
-1/7*xˆ4 - 16/7*x,
5/49*xˆ5 + 87/49*xˆ2,
xˆ3 + 18,
-3/7*xˆ4 - 55/7*x,
8/49*xˆ5 + 149/49*xˆ2,
xˆ3 + 19,
-2/7*xˆ4 - 39/7*x,
3/49*xˆ5 + 62/49*xˆ2

]

It is appreciated that the first and 10th polynomials are 1 and -1 respectively.
These polynomials are not useful for the computation of the pairing but will be
discarded later.

Now the Ti’s polynomials are available, one can use the code in Listing 28 to
test all the posible rational combinations for R-ate pairing. This is continuation
of Listing 26.

In this program, trivial combinations will be avoided. Also, negative coeffi-
cients (a or b) are being discarded as they will lead to an inefficient pairing.
Using negative coefficients mod r will give a Miller length greater than t − 1.
The ate pairing uses t − 1 as the number of Miller loops iterations in the ate
pairing, see §5. The Miller loops iterations in the R-ate pairing, all together,
should be shorter than that.

28 Luis J Dominguez Perez, Ezekiel J Kachisa, and Michael Scott.??

Listing 28. Chosing Ti-Tj valid candidates

A:=[]; B:=[];
Ti:=[];Tj:=[]; Tl:=[];
tot:=0;
for i:=1 to k do

// "No non-polynomials"
if Poly[i] eq 1 then continue; end if;
if Poly[i] eq -1 then continue; end if;
for j:=i+1 to k do

// "No non-polynomials"
if Poly[j] eq 1 then continue; end if;
if Poly[j] eq -1 then continue; end if;

//Have gt be div by smaller
// caution w/ negative coeff and same degree
if Poly[i] ge Poly[j] then

ii:=i; jj:=j;
Coefii:=LeadingCoefficient(Poly[ii]);
if Coefii lt 0 then

if Degree(Poly[ii]) eq Degree(Poly[jj]) then
ii:=j; jj:=i;

end if;
end if;

else
ii:=j; jj:=i;

end if;

// Negative A,B components will give no efficient R-ate
Coefii:=LeadingCoefficient(Poly[ii]);
Coefjj:=LeadingCoefficient(Poly[jj]);
if Coefii * Coefjj lt 0 then continue; end if;
Bprev:=Poly[ii] mod Poly[jj];
if LeadingCoefficient(Bprev) lt 0 then continue; end if;

// No trivial combo.
Aprev:=Poly[ii] div Poly[jj];
if Aprev le 1 and Bprev le 1 then continue; end if;

// if A and B are in Zz is not verified,
// since it may vary with respect to x.

Append(˜A,Poly[ii] div Poly[jj]);
Append(˜B,Bprev);
Append(˜Ti,ii);
Append(˜Tj,jj);
tot:=tot+1;

end for;
end for;

This program (Listing 28) generates 4 indexed lists of information: A, B,
Ti and Tj. They are ordered, and represent the elements of the polynomial

Implementing Cryptographic pairings: a magma tutorial 29

A = a.B + b in the following way: Ti = A.Tj + B (after substracting 1 from
Ti and Tj). These combinations are the only candidates that are non-negative,
non-trivial, and depending on its coefficients and the value of x can be ∈ Z.

However, once again, not all Ti-Tj combinations will result in a bilinear and
non-degeneracy pairing [29]. So, in Listing 29 is shown the code used for testing
all the possible valid combinations. This is continuation of Listing 28. However,
one needs a generic Listing 16 where all Miller loops will be called. Note the
extra parameters of the pairing function.

The reader may notice in Listing 16 the lack of conditions compared with
[29, Algorithm 2], since one already knows the actual value of A, B and j. In
this case, one is evaluating all the Ti-Tj combinations.

Listing 29. Verifying Bilinearity and non-degeneracy

//tot is the number of Ti-Tj candidates. Obtained previously
PrintFile("rateloop",Sprintf("K=%o\tp=%o-bits\tr=%o-bits",k,Round(

Log(2,p)+0.5),Round(Log(2,r)+0.5)));
ss:=Random(2,r-1);
ssP:=ss*P; ssQ:=ss*Q;
tot2:=0;
for i:=1 to tot do

print "i=",i;
Ax:=Evaluate(A[i],xx);
Bx:=Evaluate(B[i],xx);
if IsIntegral(Ax) then Ax:= Integers()!Ax; else continue; end
if;
if IsIntegral(Bx) then Bx:= Integers()!Bx; else continue; end
if;
f:= pairing(ssP,Q,Ax,Bx,Tj[i]-1);
bilinearity:= f eq pairing(P,ssQ,Ax,Bx,Tj[i]-1);
if bilinearity eq true then
print"Bilinear";
if f ne 1 then
print"Non-degeneracy";
print "#",i,",Tj=",Tj[i]-1;
PrintFile("rateloop",Sprintf("A=%o, B=%o, Tj=%o",A[i],B[i],

Tj[i]-1));
end if;

end if;
tot2:=tot2+1;

end for;
PrintFile("rateloop","-.-.-.-.-.-.-.-.-.-.-.-.-");

New at this point is the inclusion of the PrintFile command that stores
the many posibilities for the R-ate pairing in the file rateloop for latter review.

Another new inclusion is the Evaluate command. In Listing 26, the poly-
nomials as shown in Listing 27 are ∈ Q, but their actual value with respect to
p and r as used in Listing 3 is needed. This command makes the A and B be
a function with respect to x (Listing 26) and assigns the xx value (Listing 3).

30 Luis J Dominguez Perez, Ezekiel J Kachisa, and Michael Scott.??

Since they are used as execution times, one needs to verify if these evaluates
∈ N. Otherwise, such combination should be discarded.

For the evaluation of the bilinearity, one creates ss a Random number and
creates ssP and ssQ as ss*P and ss*Q with P and Q respectively as from
Listing 3. And they are used for verifying the bilinearity: e(P, ssQ) = e(ssP,Q).
Also the non-degeneracy property is evaluated: e(P,Q) 6= 1.

The reader must load additionally to the Listing 3 and 14, the modified
Listing 16 for computing the pairing. Listing 8 for the points definition. And
Listing 26, 28 and, 29 for the generation of the Ti-Tj combinations.

Once the Ti-Tj combinations are generated. The reader must choose the
shortest one from the generated rateloop file from Listing 29. Some readers
may prefer another combination, and make its own optimizations. For example
the 11th combination from the rateloop file: 2

7xT12 + 3
7x combination is quite

similar, but is left to the reader as an exercise.

