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Abstract

Enhanced Privacy ID (EPID) is a cryptographic scheme that enables the remote authenti-
cation of a hardware device while preserving the privacy of the device. EPID can be seen as a
direct anonymous attestation scheme with enhanced revocation capabilities. In EPID, a device
can be revoked if the private key embedded in the hardware device has been extracted and
published widely so that the revocation manager finds the corrupted private key. In addition,
the revocation manager can revoke a device based on the signatures the device has signed, if
the private key of the device is not known. In this paper, we introduce a new security notion
of EPID including the formal definitions of anonymity and unforgeability with revocation. We
also give a construction of an EPID scheme from bilinear pairing. Our EPID scheme is efficient
and provably secure in the random oracle model under the strong Diffie-Hellman assumption
and the decisional Diffie-Hellman assumption.

1 Introduction

Consider the following problem: a hardware device (e.g., a graphics chip, a trusted platform module,
a mobile device, or a processor) wants to authenticate to a service provider that it is a genuine
hardware device instead of a software simulator, so that the service provider can send a protected
resource (e.g., high definition media) to the device. One possible solution is that the hardware
manufacturer assigns each device a unique device certificate. The device can authenticate to the
service provider by showing the device certificate. However, such solution raises a privacy concern
as the device certificate can uniquely identify the device.

Brickell, Camenisch, and Chen [13] introduced a cryptographic scheme called Direct Anonymous
Attestation (DAA) that can solve the above problem. The original usage of DAA is for anonymous
authentication of a special hardware device called the Trusted Platform Module (TPM). The DAA
scheme was adopted by the Trusted Computing Group (TCG) [46] and was standardized in the
TCG TPM Specification version 1.2 [45].

In a DAA scheme, a hardware device can be revoked only if the private key embedded in the
hardware device has been extracted and published widely so that the revocation manager finds
the corrupted private key. However, if an attacker corrupts a hardware device and obtains the
device’s private key, but he never publishes it, then there is no way to revoke the key in DAA. If
the named base option in DAA is used, it can allow revocation based on signatures for all uses
of the same named base, but it has the unfortunate property of removing the anonymity for all
uses with the same named base. To get around the problem of the limited revocation properties
of DAA, Brickell and Li [15] introduced the notion of Enhanced Privacy ID (EPID). In EPID, the
revocation manager can revoke a hardware device based on the signatures that were signed by the
private key of the device, without reducing the anonymity properties. The EPID scheme will have
broader applicability beyond attestation and the TCG application.
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In an EPID scheme, there are four types of entities: an issuer, a revocation manager, platforms,
and verifiers. The issuer could be the same entity as the revocation manager. The issuer is in
charge of issuing membership to platforms, i.e., each platform obtains a unique private key from
the issuer through a join process. A platform can prove membership to a verifier by signing a
signature using its private key. The verifier can verify membership of the platform by verifying the
signature, but he cannot learn the identity of the platform. One important feature of EPID is that
nobody besides the platform knows the platform’s private key and nobody can trace the signatures
created by the platform. Yet an EPID scheme has to be able to revoke a platform if the platform’s
private key has been corrupted. There are two types of revocations in EPID: (1) private-key based
revocation in which the revocation manager revokes a platform based on the platform’s private key,
and (2) signature based revocation in which the revocation manager revokes a platform based on
the signatures created by the platform. A formal specification of EPID is given in Section 2.

In this paper, we provide two contributions:

1. We give a new security notion of EPID. This new security model is intended to address the
same concept of EPID introduced in [15]. We formally model the two revocation methods
into the security model, and we give a formal definition of anonymity and unforgeability with
notions of revocation embedded.

2. We develop a concrete EPID scheme from bilinear maps. Our EPID scheme builds on top of
Boneh, Boyen, and Shacham’s short group signatures scheme [8]. Our construction of EPID
is efficient and provably secure in the random oracle model under the strong Diffie-Hellman
assumption and the decisional Diffie-Hellman assumption. Our new EPID scheme requires a
much shorter key length and signature size than the original RSA based EPID scheme [15]
and yet achieves a higher level of security.

1.1 Motivation for Signature Based Revocation

We now give a concrete example for motivating signature based revocation. Suppose each platform
has a unique EPID private key. Consider there is a provisioning server for provisioning DRM keys
to each platform. Only platform with valid EPID private key can obtain a unique DRM key from
the provisioning server. If an attacker breaks one EPID private key, he could use the corrupted
EPID private key to obtain DRM keys. If the attacker publishes the private key over the Internet,
we can revoke the key. However, in practice, the attacker may embed the obtained DRM key in a
media ripper software without publishing the EPID private key. Once we find the ripper software
on the Internet and extract the DRM key in it, we can back trace to the EPID signature that was
used to obtain the DRM key. We then revoke the platform based on the signature without knowing
the corrupted EPID private key.

A possible alternative to handle revocation is to add traceability to the EPID scheme, as
most group signature schemes do. That is, we give the revocation manager the ability to open a
signature and identify the actual signer. To revoke a platform based on its signature, the revocation
manager first finds out the platforms private key or its identity, then put the private key into the
revocation list. As in DAA schemes [13, 14], EPID scheme chooses not to have traceability from the
revocation manager in order to provide maximum privacy for the platforms. Traceability provides
the capability that a revocation manager can determine which platform generates which signatures
without any acknowledgement from the user that is being traced. This is not desirable from a
privacy perspective. With EPID, if a platforms private key has been revoked, i.e., placed in a
revocation list, the user of the platform will know that he is revoked or being traced. If the user
finds that his platform is not in the revocation list, then he is assured that nobody can trace him,
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including the issuer and the revocation manager. Observe that, if the revocation manager does
not have traceability and the signature cannot be opened, revocation based on signature is a much
more challenging problem.

1.2 Related Work

The EPID scheme can be seemed as a group signature scheme [1, 8, 22, 26] without the feature
of opening a group signature and identifying the signer of the signature. There have been several
revocation methods proposed for group signatures, such as [11, 44, 18, 2, 9]. The unique property
that EPID has that none of the above have, is the capability to revoke a private key that generated
a signature, without being able to open the signature. The EPID scheme in this paper also shares
some properties with identity escrow [33], anonymous credential systems [17, 23], the pseudonym
system of Brands [10].

As we mentioned early, EPID can be also seemed as a DAA scheme with additional revocation
capabilities. We remove some features of DAA from the design of EPID, such as the name based
option and the outsourcing capability, as those features are more TPM specific. We could easily add
those features back to EPID if necessary. After DAA was first introduced by Brickell, Camenisch,
and Chen [13], it has drawn a lot of attention from both industry and cryptographic community
(e.g., [16, 35, 4], to list a few). Brickell, Chen, and Li recently constructed the first pairing based
DAA scheme [14]. Later Chen, Morrissey, and Smart [27] showed that the DAA scheme in [14]
can be further optimized by transferring the underlying pairing groups from the symmetric to the
asymmetric settings.

Tsang et al. recently proposed a Blacklistable Anonymous Credentials (BLAC) scheme in which
a misbehaved user can be revoked based on his previous signatures [47]. Their BLAC scheme has
a similar revocation capability as the signature based revocation in our EPID scheme. Their
construction is similar to our EPID construction in this paper. Note that our EPID scheme is at
least 30% more efficient than the BLAC scheme [47] in both signature creation and verification and
size of the signatures. See Section 5.4 for the comparison between our EPID scheme and the BLAC
scheme.

1.3 Organization of This Paper

Rest of this document is organized as follows. We give a formal specification of EPID and present
the corresponding security model in Section 2. We then define our notations, present security
assumptions, and briefly review some previously known cryptographic techniques in Section 3. We
present our EPID scheme in Section 4. In Section 5, we recommend two choices of elliptic curves
and security parameters, analyze the efficiency of our scheme, and in the end compare our scheme
with the previous EPID scheme and the pairing based DAA schemes. Finally, we give the security
proof of our construction in Section 6.

2 Specification and Security Model of EPID

In the rest of this paper, we use the following notations. Let S be a finite set, x← S denotes that
x is chosen uniformly at random from S. Let b← A(a) denote an algorithm A that is given input
a and outputs b. Let 〈c, d〉 ← PA,B〈a, b〉 denote an interactive protocol between A and B, where A
inputs a and B inputs b; in the end, A obtains c and B obtains d.
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2.1 Specification of EPID

In an EPID scheme, there are four types of entities: an issuer I, a revocation manager R, platforms
P, and verifiers V. There are two revocation lists managed byR: a private-key based revocation list,
denoted as Priv-RL, and a signature based revocation list, denoted as Sig-RL. An EPID scheme
has the following four algorithms Setup, Sign, Verify, and Revoke, and one interactive protocol Join.

Setup : This setup algorithm for the issuer I takes a security parameter 1k as input and outputs a
group public key gpk and an issuing private key isk.

(gpk, isk)← Setup(1k)

Join : This join protocol is an interactive protocol between the issuer I and a platform Pi. I is
given the group public key gpk and the issuing private key isk. Pi is given gpk. In the end,
Pi outputs a private key ski, while I outputs nothing.

〈⊥, ski〉 ← JoinI,Pi
〈(gpk, isk), gpk〉

Sign : On input of the group public key gpk, a private key ski, a message m, and a signature based
revocation list Sig-RL, this sign algorithm outputs ⊥ if ski has been revoked in Sig-RL, or
outputs a signature σ otherwise.

⊥/σ ← Sign(gpk, ski,m, Sig-RL)

Verify : On input of the group public key gpk, a message m, a private-key based revocation list
Priv-RL, a signature based revocation list Sig-RL, and a signature σ, this verify algorithm
outputs either valid or invalid. The latter output means either that σ is not a valid
signature on m, or that the platform who generated σ has been revoked.

valid/invalid← Verify(gpk,m, Priv-RL, Sig-RL, σ)

Revoke : There are two types of revocations.

1. Private-key based revocation: Given the group public key gpk and a private key ski, R
updates Priv-RL by adding ski to Priv-RL.

Priv-RL← Revoke(gpk, Priv-RL, ski)

2. Signature based revocation: Given the group public key gpk, a message m, and a signa-
ture σ on m, R updates Sig-RL by inserting σ into Sig-RL after verifying σ.

Sig-RL← Revoke(gpk, Priv-RL, Sig-RL,m, σ)

In the usage model, the private-key based revocation is used when a platform has been corrupted
by the adversary, i.e., ski gets extracted from the secure storage of Pi and published widely. The
signature based revocation is used when R identifies that a platform Pi has been corrupted, but
has not obtained Pi’s private key.

Observe that for private-key based revocation, the revocation list Priv-RL is not sent to the
platform. This revocation method is known in the literature as verifier-local revocation [9] and has
been used in the DAA schemes [13, 14]. One implication of this revocation method is that, given a
signature σ on a message m, a private key ski, one can easily determine whether σ was generated
using ski as follows: first set Priv-RL to be empty and make sure σ is a valid signature on m, then
revoke ski by setting Priv-RL = {ski} and run the signature verification algorithm again. If the
verification fails, it means that σ was created by ski.
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2.2 Security Definition of EPID

An EPID scheme is secure if it satisfies the following three requirements: correctness, anonymity,
and unforgeability.

2.2.1 Correctness

Loosely speaking, the correctness requirement states that, every signature generated by a platform
can be verified as valid, except when the platform is revoked. Formally speaking, let Σi be the set
of all signatures generated by the platform Pi, we have

Verify(gpk,m, Priv-RL, Sig-RL,Sign(gpk, ski,m, Sig-RL)) = valid

⇐⇒ (ski 6∈ Priv-RL) ∧ (Σi ∩ Sig-RL = ∅)

2.2.2 Anonymity

We say that an EPID scheme satisfies the anonymity property if no adversary can win the following
anonymity game. In the anonymity game, the goal of the adversary is to determine which one of
two private keys was used in generating a signature. As mentioned earlier, given a signature and a
private key, the adversary could determine whether the signature was generated using the private
key, thus the adversary should not be given access to either key. The anonymity game between a
challenger and an adversary A is defined as follows.

1. Setup. The adversary A computes (gpk, isk)← Setup(1k) and sends gpk to the challenger.

2. Queries. The adversary A can make the following queries to the challenger.

(a) Join. A requests for creating a new platform Pi. The challenger makes sure that i has
not been requested before and then runs the join protocol as Pi with A as the issuer. In
the end, the challenger obtains ski.

(b) Sign. A chooses a subset of the signatures obtained from the challenger as Sig-RL1. A
requests a signature on a message m with Sig-RL for platform Pi. The challenger makes
sure Pi has been created, computes σ ← Sign(gpk, ski,m, Sig-RL), and returns σ to A.

(c) Corrupt. A requests the private key of Pi. The challenger makes sure Pi has been
created and then responds with ski.

3. Challenge. A outputs a message m, a subset of the signatures obtained from the challenger as
Sig-RL, and two indices i0 and i1. A must have not made a corruption query on either index
and Sig-RL cannot include any signatures from either Pi0 or Pi1 . The challenger makes sure
both Pi0 and Pi1 have been created, chooses a random bit b← {0, 1}, computes a signature
σ∗ ← Sign(gpk, skib ,m, Sig-RL), and sends σ∗ to A.

4. Restricted Queries. After the challenge phase, A can make additional queries to the chal-
lenger, restricted as follows.

(a) Join. A can make join queries as before.

(b) Sign. As before, except that A cannot include σ∗ in Sig-RL.

(c) Corrupt. As before, but A cannot make corrupt queries at i0 and i1.

1
A may choose a different Sig-RL for each sign query.
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5. Output. Finally, A outputs a bit b′. The adversary wins if b′ = b.

We define A’s advantage in winning the anonymity game as |Pr [b = b′]− 1/2|. The probability
is taken over the coin tosses of A, of the randomized setup, join, and sign algorithms, and over the
choice of b.

Definition 1 An EPID scheme is anonymous, if for every probabilistic polynomial-time adversary
A, the advantage in winning the anonymity game is negligible.

2.2.3 Unforgeability

We say that an EPID scheme is unforgeable if no adversary can win the following unforgeability
game. In the unforgeability game, the adversary’s goal is to forge a valid signature, given that all
private keys known to the adversary have been revoked. The traceability game between a challenger
and an adversary A is defined as follows.

1. Setup. The challenger computes (gpk, isk) ← Setup(1k) and sends gpk to the adversary A.
The challenger sets U := ∅, the set of platforms controlled by the adversary.

2. Queries. The adversary A can make the following queries to the challenger.

(a) Join. A requests for creating a new platform Pi. The challenger makes sure that i has
not been join requested before. There are the following two cases:

i. The challenger and A run 〈⊥, ski〉 ← JoinI,A〈(gpk, isk), gpk〉, where A gets ski

from the join protocol. A sends ski to the challenger who appends i to U .

ii. The challenger runs locally the join protocol and generates ski.

(b) Sign. A chooses a subset of the signatures obtained from the challenger as Sig-RL. A
requests a signature on a message m with Sig-RL for platform Pi. The challenger makes
sure Pi has been created, computes σ ← Sign(gpk, ski,m, Sig-RL), and returns σ to A.

(c) Corrupt. A requests the private key of Pi. The challenger makes sure Pi has been
created before, responds with ski, and appends i to U .

3. Response. Finally, A outputs a message m∗, a private key based revocation list Priv-RL∗, a
signature based revocation list Sig-RL∗, and a signature σ∗.

The adversary wins if: (1) Verify(gpk, Priv-RL∗, Sig-RL∗, σ∗,m∗) = valid; (2) for every i ∈ U ,
either ski ∈ Priv-RL∗ or one of the signatures created by Pi is placed in Sig-RL∗; and (3) A did
not obtain σ∗ by making a sign query on m∗. In other words, the adversary wins if he can forge
a valid group signature that he has not queried the signature before, and all the private keys he
knows have been revoked.

Definition 2 An EPID scheme is unforgeable, if for every probabilistic polynomial-time adversary
A, the probability in winning the unforgeability game is negligible.

We note that a signature scheme that satisfies the EPID security model above is unforgeable
under chosen message attacks. This follows immediately from the unforgeability game.
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3 Background and Building Blocks

In this section, we first review the concept of bilinear maps, then discuss some complexity assump-
tions related to our EPID scheme, and finally review some building blocks that shall be used in our
construction.

3.1 Background on Bilinear Maps

We follow the notation of Boneh, Boyen, and Shacham [8] to review some background on bilinear
maps. Let G1 and G2 to two multiplicative cyclic groups of prime order p. Let g1 be a generator
of G1 and g2 be a generator of G2. We say e : G1 ×G2 → GT is an admissible bilinear map, if it
satisfies the following properties:

1. Bilinear. For all u ∈ G1, v ∈ G2, and for all a, b ∈ Z, e(ua, vb) = e(u, v)ab.

2. Non-degenerate. e(g1, g2) 6= 1 and is a generator of GT .

3. Computable. There exists an efficient algorithm for computing e(u, v) for any u ∈ G1, v ∈ G2.

We sometimes call the two groups (G1, G2) in the above a bilinear group pair. In the rest of
this paper, we consider bilinear maps e : G1 ×G2 → GT where G1, G2, and GT are multiplicative
groups of prime order p. We could set G1 = G2. However, we allow for the more general case where
G1 6= G2 so that we are not limited to choose supersingular elliptic curves, this allows us to take
advantage of certain families of elliptic curves in order to obtain the shortest possible private keys
and group signatures.

3.2 Cryptographic Assumptions

The security of our EPID construction relies on the Strong Diffie-Hellman (SDH) assumption and
the Decisional Diffie-Hellman (DDH) assumption, where the SDH assumption is used for proving
unforgeability of our EPID scheme and the DDH assumption is used for proving unlinkability of
our scheme. We now state these two assumptions as follows:

3.2.1 Strong Diffie-Hellman Assumption

Let G1 and G2 be two cyclic groups of prime order p, respectively, generated by g1 and g2. The
q-Strong Diffie-Hellman (q-SDH) problem in (G1, G2) is defined as follows: Given a (q +3)-tuple of

elements (g1, g
γ
1 , . . . , g

(γq)
1 , g2, g

γ
2 ) as input, output a pair (g

1/(γ+x)
1 , x) where x ∈ Z

∗
p. An algorithm

A has advantage ǫ in solving q-SDH problem in (G1, G2) if

Pr
[

A(g1, g
γ
1 , . . . , g

(γq)
1 , g2, g

γ
2 ) = (g

1/(γ+x)
1 , x)

]

≥ ǫ

where the probability is over the random choice of γ and the random bits of A.

Definition 3 We say that the (q, t, ǫ)-SDH assumption holds in (G1, G2) if no t-time algorithm
has advantage at least ǫ in solving the q-SDH problem.

The q-SDH assumption was used by Boneh and Boyen [7] to construct a short signature scheme
without random oracles and was shown in the same paper that q-SDH assumption holds in the
generic group in the sense of Shoup [43]. The q-SDH assumption was later used in [8] for construct-
ing a short group signature scheme. The security of the SDH problem was studied by Cheon [28].
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3.2.2 Decisional Diffie-Hellman Assumption

Let G, generated by g, be a cyclic group of prime order p. The Decisional Diffie-Hellman (DDH)
problem in G is defined as follows: Given a tuple of elements (g, ga, gb, gc) as input, output 1 if
c = ab and 0 otherwise. An algorithm A has advantage ǫ in solving DDH problem in G if

∣

∣

∣
Pr

[

g ← G, a, b← Zp : A(g, ga, gb, gab) = 1
]

− Pr
[

g ← G, a, b, c← Zp : A(g, ga, gb, gc) = 1
]
∣

∣

∣
≥ ǫ

where the probability is over the uniform random choice of the parameters to A and over the
random bits of A.

Definition 4 We say that the (t, ǫ)-DDH assumption holds in G if no t-time algorithm has advan-
tage at least ǫ in solving the DDH problem in G.

There are many groups in which the DDH problem is believed to be intractable, and the best
known algorithm for DDH is a full discrete log algorithm [6]. However, for a cyclic group with a
symmetric pairing, the DDH problem is tractable [32]. In our paper, we build the EPID scheme on
the assumption that the DDH problem is intractable in group G3, where G3 could be a standard
elliptic curve group.

3.3 BBS+ Signature Scheme

In this subsection, we review a signature scheme that will be used in our EPID construction called
BBS+ signature scheme [3]. This BBS+ signature scheme is a variant of Boneh-Boyen signature
scheme [7]. The idea of constructing this BBS+ signature scheme is informally stated in [8, 20]. Au,
Susilo, and Mu [3] formalize this idea and call this signature scheme BBS+ scheme. Let (G1, G2)
be a bilinear group pair of some prime order p. Let e : G1 × G2 → GT be a computable bilinear
pairing function. The BBS+ signature scheme is as follows:

Key Generation Select g1, h1, h2 ← G1, g2 ← G2, γ ← Z
∗
p, and compute w := gγ

2 . The public
key is the tuple (g1, g2, h1, h2, w). The private key is γ.

Sign Given a public key (g1, g2, h1, h2, w) and the corresponding private key γ, a message m ∈ Zp,
the sign algorithm chooses x, y ← Zq and computes A := (g1h

m
1 hy

2)
1/(x+γ). The signature on

m is σ := (A,x, y).

Verify Given a public key (g1, g2, h1, h2, w), a message m, and a signature σ = (A,x, y), the verify
algorithm verifies that e(A, gx

2 w) = e(g1h
m
1 hy

2, g2). If the equality holds, the signature is valid.

Lemma 1 The BBS+ signature scheme is unforgeable against adaptive chosen message attacks
under the q-SDH assumption.

The proof of the above lemma is given by Au, Susilo, and Mu in [3]. The BBS+ signature scheme
was used to construct a blacklistable anonymous credential scheme [47]. The same signature scheme
was also used by Furukawa and Imai to build an efficient group signature scheme [30], although the
BBS+ signature scheme was not explicitly stated.
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3.4 Protocols for Proof of Knowledge

In our scheme we will use various protocols to prove knowledge of and relations among discrete
logarithms. To describe these protocols, we use notation introduced by Camenisch and Stadler [22]
for various proofs of knowledge of discrete logarithms and proofs of the validity of statements about
discrete logarithms. For example,

PK{(a, b) : y1 = ga
1hb

1 ∧ y2 = ga
2hb

2}

denotes a proof of knowledge of integers a and b such that y1 = ga
1hb

1 and y2 = ga
2hb

2 holds, where
g1 and h1 are generators of some group G1, and g2 and h2 are generators of some group G2. The
variables in the parenthesis denote the values the knowledge of which is being proved, while all
other parameters are known to the verifier. Using this notation, a proof of knowledge protocol can
be described without getting into all details.

In the random oracle model, such proof of knowledge protocols can be turned into signature
schemes using the Fiat-Shamir heuristic [29, 41]. We use the notation SPK{(a) : y = za}(m) to
denote a signature on a message m obtained in this way.

In this paper, we use the following known proof of knowledge protocols:

• Proof of knowledge of discrete logarithms. A proof of knowledge of a discrete logarithm of
an element y ∈ G [42] with respect to a base z is denoted as PK{(a) : y = za}. A proof of
knowledge of a representation of an element y ∈ G with respect to several bases z1, . . . , zv ∈ G
[24] is denoted PK{(a1, . . . , av) : y = za1

1 · . . . · z
av
v }.

• Proof of knowledge of equality. A proof of equality of discrete logarithms of two group elements
y1, y2 ∈ G to the bases z1, z2 ∈ G, respectively, [25] is denoted PK{(a) : y1 = za

1 ∧ y2 = za
2}.

Such protocol can also be used to prove that the discrete logarithms of two group elements
y1 ∈ G1 and y2 ∈ G2 to the bases z1 ∈ G1 and z2 ∈ G2, respectively in two different groups
G1 and G2, are equal [12].

• Proof of knowledge of inequality. A proof of inequality of discrete logarithms of two group
elements y1, y2 ∈ G to the bases z1, z2 ∈ G, respectively, is denoted PK{(a) : y1 = za

1 ∧ y2 6=
za
2}. Camenisch and Shoup gave an efficient protocol [21] for proving inequality of discrete

logarithms, which only requires three multi-exponentiations for the prover and two multi-
exponentiations for the verifier.

4 Our EPID Scheme

We begin with a high-level overview of our construction. In our scheme, each platform chooses a
unique membership key f . As in anonymous credential schemes [17, 19], group signature schemes [8,
9], or DAA schemes [13, 14], the issuer in our scheme computes a signature on f . That is, the
issuer computes a BBS+ signature (A,x, y). The value f is the platform’s unique membership key
and the signature (A,x, y) is the platform’s membership credential, they together form the private
key of the platform. To sign a signature, the platform proves in zero-knowledge that he has a
BBS+ signature on his membership key f . To verify a group signature, the verifier verifies the
zero-knowledge proof.

In addition, each platform chooses a random base B and computes K := Bf . This (B,K) pair
serves the purpose of revocation check. To sign a group signature, the platform needs not only to
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show that he has a BBS+ signature on f , but also to prove that he constructs (B,K) pair correctly.
That is, the platform proves in zero-knowledge

PK{(A,x, y, f) : e(A, gx
2 w) = e(g1h

f
1hy

2, g2) ∧ K = Bf}.

If a private key (A,x, y, f) was compromised, the revocation manager places f in Priv-RL.
Given a signature which contains (B,K), one can easily tell whether the signature was created using
the private key (A,x, y, f) by checking whether K = Bf . To revoke a signature, the revocation
manager appends the (B,K) pair of the signature to Sig-RL. To sign a group signature, a non-
revoked platform needs to prove that he did not generate the (B,K) pair before. This can be done
by a zero-knowledge proof protocol for proving inequality of discrete logarithms.

Our Construction of EPID

There are four types of entities in our construction of EPID: an issuer I, a revocation manager R,
platforms P, and verifiers V. Our EPID scheme has the following algorithms Setup, Sign, Verify,
and Revoke and one interactive protocol Join which are defined as follows.

Setup : Given 1k, this algorithm chooses a bilinear group pair (G1, G2) of prime order p and a cyclic
group G3 of order p in which the decisional Diffie-Hellman problem is hard. Let g1, g2, g3 be
the generators of G1, G2, and G3 respectively. It chooses h1, h2 ← G1, γ ← Z

∗
p, and computes

w := gγ
2 . This algorithm outputs

(gpk, isk) := ((p,G1, G2, G3, g1, g2, g3, h1, h2, w), γ)

Let e : G1×G2 → GT be a bilinear map function and H : {0, 1}∗ → Zp be a collision resistant
hash function. We treat H as a random oracle in the proof of security.

Join : The join protocol is performed by a platform P and the issuer I. P takes gpk as input and
I has gpk and isk. The protocol has the following steps:

1. P chooses at random f ← Zp and y′ ← Zp, and computes T := hf
1 · h

y′

2 .

2. P sends T to I, and performs the following proof of knowledge to I

PK{(f, y′) : hf
1 · h

y′

2 = T}

Note that we can use the standard zero-knowledge proof protocols such as [24, 40]. Since
the security proof requires rewinding to extract f from an adversarial platform, this step
can only be run sequentially. With some loss of efficiency, we could modify this step to
support concurrent execution by using verifiable encryption [21] of the f value.

3. I chooses at random x← Zp and y′′ ← Zp, and computes

A := (g1 · T · h
y′′

2 )1/(x+γ).

4. I sends (A,x, y′′) to the platform.

5. P computes y := y′ + y′′ (mod p) and verifies that e(A,wgx
2 ) = e(g1h

f
1hy

2, g2).

6. P outputs sk := (A,x, y, f) where (A,x, y) is a BBS+ signature on f .

Sign : On input of gpk, sk = (A,x, y, f), a message m ∈ {0, 1}∗, and a signature based revocation
list Sig-RL, this sign algorithm has the following steps:

10



1. It chooses B ← G3 and computes K := Bf .

2. It chooses a← Zp, computes in Zp that b := y + ax, and computes T := A · ha
2.

3. It runs the following signature of knowledge protocol

SPK{(x, f, a, b) : Bf = K ∧

e(T, g2)
−x · e(h1, g2)

f · e(h2, g2)
b · e(h2, w)a = e(T,w)/e(g1, g2)}(m).

(a) It randomly picks

rx ← Zp, rf ← Zp, ra ← Zp, rb ← Zp.

(b) It computes

R1 := Brf , R2 := e(T, g2)
−rx · e(h1, g2)

rf · e(h2, g2)
rb · e(h2, w)ra .

(c) It then computes
c := H(gpk, B,K, T,R1, R2,m).

(d) It computes in Zp

sx := rx + cx, sf := rf + cf, sa := ra + ca, sb := rb + cb.

4. It sets σ0 := (B,K, T, c, sx, sf , sa, sb).

5. Let Sig-RL = {(B1,K1), . . . , (Bn2
,Kn2

)}. For i = 1, . . . , n2, it proves in zero-knowledge
that sk has not been revoked in Sig-RL, i.e., computes

σi := SPK{(f) : K = Bf ∧ Ki 6= Bf
i }(m).

We can use the zero-knowledge proof protocol from Camenisch and Shoup [21].

6. If any of the zero-knowledge proofs in the previous step fails, it outputs σ := ⊥.

7. It outputs the signature σ := (σ0, σ1, . . . , σn2
).

Verify : On input of gpk, a message m, a private-key based revocation list Priv-RL, a signature
based revocation list Sig-RL, and a signature σ, the verify algorithm has the following steps:

1. Let σ = (σ0, σ1, . . . , σn2
), where σ0 = (B,K, T, c, sx, sf , sa, sb).

2. It first verifies that

B,K
?
∈ G3, T

?
∈ G1, sx, sf , sa, sb

?
∈ Zp.

3. It computes

R̂1 := Bsf ·K−c,

R̂2 := e(T, g2)
−sx · e(h1, g2)

sf · e(h2, g2)
sb · e(h2, w)sa · (e(g1, g2)/e(T,w))c.

4. It verifies that
c

?
= H(gpk, B,K, T, R̂1, R̂2,m).

5. Let Priv-RL = {f1, . . . , fn1
}. For i = 1, . . . , n1, it checks that K

?
6= Bfi .

11



6. Let Sig-RL = {(B1,K1), . . . , (Bn2
,Kn2

)}. For i = 1, . . . , n2, it verifies that σi is indeed
a valid zero-knowledge proof

SPK{(f) : K = Bf ∧ Ki 6= Bf
i }(m).

7. If all the above verification succeeds, it outputs valid, otherwise, outputs invalid.

Revoke : Initially, both revocation lists are empty, i.e., Priv-RL := ∅ and Sig-RL := ∅.

1. Private-key based revocation: Given gpk, Priv-RL, and a private key sk = (A,x, y, f) to
be revoked, R updates Priv-RL as follows: R verifies the correctness of sk by checking
whether the equation e(A, gx

2 w) = e(g1h
f
1hy

2, g2) holds, then appends f to Priv-RL.

2. Signature based revocation: Given gpk, Priv-RL, Sig-RL, a message m, and correspond-
ing signature σ, R updates Sig-RL as follows: Let σ = (σ0, σ1, . . . , σn2

). R first verifies
that σ is a valid signature on m, i.e., checks Verify(gpk,m, Priv-RL, ∅, σ0) = valid, then
appends (B,K) in σ0 to Sig-RL.

Before we present the security proofs of our EPID scheme in Section 6, we first describe some
intuitions of our construction. We show in following two lemmas that steps 2-4 of the join algorithm
and steps 2-4 of the verify algorithm indeed form a signature of knowledge

SPK{(A,x, y, f) : e(A, gx
2 w) = e(g1h

f
1hy

2, g2) ∧ K = Bf}(m).

We first show the correctness of the signature of knowledge protocol. Let (A,x, y, f) be a private

key that satisfies the equations e(A, gx
2 w) = e(g1h

f
1hy

2, g2) and Bf = K. Step 3 of the sign algorithm
is a standard way of proving the following two equations hold:

Bf = K, e(T, g2)
−x · e(h1, g2)

f · e(h2, g2)
b · e(h2, w)a = e(T,w)/e(g1 , g2).

The first equation holds trivially. The second equation holds because

e(T,w) · e(T, g2)
x = e(T, gx

2 w) = e(Aha
2 , g

x
2w)

= e(A, gx
2 w) · e(ha

2, g
x
2w)

= e(g1h
f
1hy

2, g2) · e(h
a
2, w) · e(ha

2 , g
x
2 )

= e(g1, g2) · e(h1, g2)
f · e(h2, g2)

y · e(h2, w)a · e(h2, g2)
ax

= e(g1, g2) · e(h1, g2)
f · e(h2, g2)

y+ax · e(h2, w)a

= e(g1, g2) · e(h1, g2)
f · e(h2, g2)

b · e(h2, w)a.

Lemma 2 The transcript of (T, c, sx, sf , sa, sb) in σ0 can be simulated.

Proof. Observe that T is a commitment of A, given the random choice of a in Zp, T is distributed
uniformly at random in G1. The simulator can simulate T by choosing T ← G1. Observe that c is
the result of the hash function H. As we model H as a random oracle, c is uniformly distributed
over Zp. It is also easy to see that sx, sf , sa, sb are uniformly distributed over Zp given the random
choice of rx, rf , ra, rb. The simulator chooses a random c← Zp and then chooses sx, sf , sa, sb ← Zp.
The simulator outputs the transcript (T, c, sx, sf , sa, sb). As we argued above, this transcript is
distributed identically to the transcript in σ0. 2
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Lemma 3 There exists a knowledge extractor that extracts an (A,x, y, f) tuple from a prover, who

runs steps 2-4 of the sign algorithm, such that e(A, gx
2 w) = e(g1h

f
1hy

2, g2) and K = Bf .

Proof. Suppose that a knowledge extractor can rewind the prover and control the outcome of H.
The prover first computes T , then chooses rx, rf , ra, rb and computes R1, R2. For a hash value c,
the prover outputs sx, sf , sa, and sb. For another hash value c′, the prover outputs s′x, s

′
f , s′a, and

s′b. If the prover is convincing, steps 2-4 of the verify algorithm would pass successfully. In other

words, for two set of values, R̂′
1 = R̂1 and R̂′

2 = R̂2.
Let ∆c = c− c′, ∆sx = sx − s′x, and similarly for ∆sf ,∆sa, and ∆sb. Let

x̂ := ∆sx/∆c, f̂ := ∆sf/∆c, â := ∆sa/∆c, b̂ := ∆sb/∆c.

We can verify that x̂, f̂ , â, b̂ satisfy the following two equations:

Bf̂ = K, e(T, g2)
−x̂ · e(h1, g2)

f̂ · e(h2, g2)
b̂ · e(h2, w)â = e(T,w)/e(g1 , g2).

Let ŷ := b̂− âx̂, we can derive from the last equation that

e(T, gx̂
2w) = e(T,w) · e(T, g2)

x̂ = e(g1, g2) · e(h1, g2)
f̂ · e(h2, g2)

b̂ · e(h2, w)â

= e(g1, g2) · e(h1, g2)
f̂ · e(h2, g2)

ŷ+âx̂ · e(h2, w)â

= e(g1h
f̂
1hŷ

2, g2) · e(h2, g2)
âx̂ · e(h2, w)â = e(g1h

f̂
1hŷ

2, g2) · e(h
â
2, g

x̂
2w)

Thus we have
e(T · h−â

2 , gx̂
2w) = e(g1h

f̂
1hŷ

2, g2).

Let Â := T · h−â
2 , the extractor obtains an (Â, x̂, ŷ, f̂) tuple such that

e(Â, gx̂
2w) = e(g1h

f̂
1hŷ

2, g2) K = Bf̂ .

2

5 Implementation of the EPID Scheme

In this section, we first describe how to implement the proposed EPID scheme, i.e., we briefly review
the construction of an admissible bilinear map from the Tate pairing and then suggest two choices
of elliptic curves and security parameters. We then analyze the efficiency of the EPID scheme and
compare our scheme with the original EPID scheme in [15] and other related schemes.

5.1 Admissible Bilinear Map from the Tate Pairing

We first review the description of an admissible bilinear map [5, 31, 36] from the Tate pairing. Let
E(Fq) be an elliptic curve over a prime field Fq. Let G1 be a cyclic subgroup of E(Fq) of prime order
p, generated by a point g1. We strict ourself to the curves such that p and q are prime integers.
Let k be smallest positive integer such that p | qk − 1. We call k the embedding degree. A Tate
pairing takes the concrete form:

e : E(Fq)× E(Fqk) → F
∗

qk

Let G2 be a cyclic subgroup of E(Fqk) of order p, generated by a point g2 such that g2 is linearly
independent of g1. Let GT be the p-th roots of unity in Fqk . We now have an admissible bilinear
map function e : G1×G2 → GT from the Tate pairing. Note that we can optimize the efficiency of
the bilinear map function using twist curves [5].
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5.2 Choices of Elliptic Curves and Security Parameters

Before we suggest the choices of elliptic curves and security parameters, we first review two known
attacks on discrete log in G1: generic discrete log algorithms such as Pollard’s Rho method [38] and
the MOV attack [37] which reduces the discrete log problem in G1 to a discrete log problem in F

∗

qk .
Therefore, we need to make sure p is sufficiently large and at the same time k is large enough to
make discrete log in F

∗

qk intractable. We suggest the following two choices of security parameters.

1. To achieve 80-bit security level, we choose k = 6 and use a family of non-supersingular elliptic
curves defined by Miyaji et al. [39] for Tate pairing. As in [8], we choose p and q to be 170-bit
prime integers. Each element in G1 can be represented by a 171-bit string. We then choose a
170-bit prime q′ and construct G3 as an order-p cyclic subgroup of group E(Fq′). The security
strength of this setting is approximately the same as a standard 1024-bit RSA algorithm.

2. To achieve 128-bit security level, as suggested by Koblitz and Menezes [34], the minimum
size of G1 is 256-bit and the minimum size of F

∗

qk should be at least 3072-bit. We choose
embedding degree k = 12 for Tate pairing and use a method developed by Barreto and
Naehrig for finding suitable elliptic curves (see [36] chapter 4.14). We choose p and q to be
256-bit prime integers and choose G3 to be an elliptic curve group of order p. The security
strength of this setting is approximately the same as a standard 3072-bit RSA algorithm.

5.3 Efficiency of the EPID Scheme

We now summarize the efficiency of the EPID scheme as follow. For simplicity, we assume that
Priv-RL and Sig-RL are empty.

• For parameters with 80-bit security, p is a 170-bit prime, each element in G1 or G3 is 171-bit
in length. The size of the private key is 681 bits or 86 bytes. The size of the signature is 1363
bits or 171 bytes.

• For parameters with 128-bit security, p is a 256-bit prime, each element in G1 or G3 is 257-bit
in length. The size of the private key is 1025 bits or 129 bytes. The size of the signature is
2051 bits or 257 bytes.

• To sign a signature, the platform can pre-compute e(A, g2), e(h1, g2), e(h2, g2), and e(h2, w).
When computing a signature, the platform can compute R2 as follows

R2 := e(A, g2)
−rx · e(h1, g2)

rf · e(h2, g2)
rb−arx · e(h2, w)ra .

Therefore, the sign algorithm only takes 1 exponentiations in G1, 2 exponentiations in G3, 1
multi-exponentiation in GT , and no pairing needed. The platform can, per signature base,
pre-compute (B,K, a, b, T, rx, rf , ra, rb, R1, R2). Once the platform knows what message m
to sign, it can start from step 3(c) of the sign algorithm. It only needs to perform one hash
and four multiplications given per signature based pre-computation.

• To verify a signature, the verifier can pre-compute e(g1, g2), e(h1, g2), (h2, g2), and e(h2, w).
When verifying a signature, the verifier can compute R̂2 as follows

R̂2 := e(T, g−sx

2 w−c) · e(h1, g2)
sf · e(h2, g2)

sb · e(h2, w)sa · e(g1, g2)
c.

Hence, the verify algorithm takes 1 multi-exponentiation in G2, 1 multi-exponentiation in G3,
1 multi-exponentiation in GT , and 1 pairing operation.
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Now we discuss the efficiency of revocation. For each item in Priv-RL, the platform needs to
do nothing while the verifier needs to perform one exponentiation in G3. For each item in Sig-RL,
the platform needs to compute 3 multi-exponentiations in G3 and the verifier needs to perform 2
multi-exponentiations in G3.

5.4 Comparison with EPID, DAA, and BLAC Schemes

Brickell and Li developed an EPID scheme from the strong RSA assumption [15]. Their scheme
is derived from the original DAA scheme in [13]. Same as the DAA scheme, using 2048-bit RSA
modulus, the length of private key is 670 bytes and the size of a signature is 2800 bytes in [15]. The
sizes of private keys and signatures in our EPID construction are only 129 bytes and 257 bytes,
respectively, for 128-bit security level (higher security strength than 2048-bit RSA modulus). Thus
our EPID scheme offers significant advantage over the scheme in [15], as hardware devices typically
have limited size of secure storage.

Brickell, Chen, and Li [14] developed the first pairing-base DAA scheme. Their scheme is based
on Camenisch and Lysyanskaya’s pairing based group signature scheme [20]. Chen, Morrissey, and
Smart further optimized the DAA scheme [27] by transferring the underlying pairing groups from
the symmetric to the asymmetric settings. We now show that our EPID scheme is more efficient
than the pairing based DAA schemes [14, 27]. In other words, an EPID scheme derived from the
DAA schemes [14, 27] would not be as efficient as the EPID scheme described in this paper.

Tsang et al. recently proposed a Blacklistable Anonymous Credentials (BLAC) scheme in which
a misbehaved user can be revoked based on his previous signatures [47]. The BLAC scheme [47]
shares a similarity of construction as our EPID scheme. However, our EPID scheme is at least 30%
more efficient than [47] in both signature creation and verification and size of the signatures, due
to our optimizations in the zero-knowledge proof 2.

private key size signature size sign verify

Our EPID scheme 86 bytes 171 bytes 4 EXP 3 EXP + 1 P

BCL DAA scheme [14] 213 bytes 512 bytes 10 EXP 2 EXP + 5 P

CMS DAA scheme [27] 86 bytes 148 bytes 8 EXP + 1 P 1 EXP + 5 P

BLAC scheme [47] 86 bytes 320 bytes 10 EXP 7 EXP + 2 P

Table 1: A comparison between our EPID scheme, the pairing based DAA schemes [14, 27], and
the BLAC scheme [47] with 80-bit security level, where EXP denotes multi-exponentiation and P
denotes a pairing operation, assuming the revocation list is empty.

6 Security Proofs

We now show that the EPID scheme in Section 4 is secure under the security definition in Section 2,
namely, the EPID scheme is correct, anonymous, and unforgeable. As we have shown in Section 4,
steps 2-4 of the join algorithm and steps 2-4 of the verify algorithm form a signature of knowledge

SPK{(A,x, y, f) : e(A, gx
2 w) = e(g1h

f
1hy

2, g2) ∧ K = Bf}(m).

2The comparison is based on the basic EPID scheme and basic BLAC scheme without revocation, as two schemes

have different types of revocation methods. The revocation method used in the BLAC scheme is efficient than the

signature based revocation in EPID, but less efficient than the private key based revocation.
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In the following security proofs, we assume that the protocols in step 2 of the join protocol and
in step 5 of the sign algorithm are indeed zero-knowledge proof of knowledge protocols, i.e., the
transcripts of two protocols can be simulated and there exists an extractor that extracts (f, y′) such

that hf
1 · h

y′

2 = T and extracts f such that K = Bf and Ki 6= Bf
i from a convincing platform.

Theorem 4 The EPID scheme is correct.

Proof. For a given group public key gpk = (p,G1, G2, G3, g1, g2, g3, h1, h2, w), each private key takes
the format of (A,x, y, f) where (A,x, y) is a BBS+ signature on f . The private key (A,x, y, f)

satisfies the following equation e(A, gx
2 w) = e(g1h

f
1hy

2, g2).
If an honest platform with a legitimate private key (A,x, y, f) follows the sign algorithm cor-

rectly, then steps 2-4 of the verify algorithm would succeed as (A,x, y, f) satisfies both e(A, gx
2 w) =

e(g1h
f
1hy

2, g2) and K = Bf . Let Priv-RL = {f1, . . . , fn1
} and Sig-RL = {(B1,K1), . . . , (Bn2

,Kn2
)}.

If the platform has not been revoked in Priv-RL, i.e., f 6∈ {f1, . . . , fn1
}, then step 4 of the verify

algorithm would succeed, as for i = 1, . . . , n1, K = Bf 6= Bfi . If the platform has not been revoked
in Sig-RL, i.e., i = 1, . . . , n2, f = logB K 6= logBi

Ki, then the platform should be able to run the
zero-knowledge proof protocol for proving inequality of discrete logarithms in step 5 of the sign
algorithm. Observe that, if the platform has been revoked, then the verify algorithm would fail in
either step 5 or 6. 2

Before we prove the anonymity of the EPID scheme, we first give some intuition. Observe
that the sign algorithm has three steps: first chooses B and computes K, then performs a zero-
knowledge proof of knowledge of (A,x, y, f) such that e(A, gx

2 w) = e(g1h
f
1hy

2, g2) and K = Bf ,
and finally proves that it is not revoked in Sig-RL using Camenisch-Shoup’s protocol for proving
inequality of discrete logarithms. As the last two steps are zero-knowledge proof of knowledge
protocols, the transcripts of last two steps can be simulated.

Note that (B,K) cannot be simulated. In fact, we intentionally design this so that the verifier
can check (B,K) against Priv-RL, i.e., verify whether the (B,K) pair was created by a revoked
membership key f . Loosely speaking, an EPID scheme is anonymous if no adversary can determine
whether two signatures were created by one platform. Consider two pairs (B1,K1) and (B2,K2)

from two signatures where K1 = Bf1

1 and K2 = Bf2

2 , and B1 and B2 are chosen randomly. If
the adversary can determine whether f1 = f2 (i.e., whether logB1

K1 = logB2
K2), the he breaks

the DDH problem: given a (u, v,w, z) tuple, where v = ua, w = ub, z = uc, the adversary can
determine whether logu v = logw z, thus determine whether c = ab. The formal proof of anonymity
is described as follows.

Theorem 5 The EPID scheme is anonymous in the random oracle model under the decisional
Diffie-Hellman assumption in G3.

Proof. Suppose algorithm A breaks the anonymity of the EPID scheme. We can build an algorithm
B that breaks the decisional Diffie-Hellman assumption in G3. Algorithm B is given as input a
tuple (u, v = ua, w = ub, z) where u← G3, a, b,← Zp, and either z = uab or z is a random element
in G3. Algorithm B decides which z was given by interacting with A as follows:

Setup. Let (G1, G2) be a bilinear group pair of prime order p with generator g1 and g2, respectively.
Let G3 be a cyclic group of prime order p with generator g3. B does the following:

1. B receives a group public key gpk = (p,G1, G2, G3, g1, g2, g3, h1, h2, w) from A.
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2. For simplicity, assume that the index of the platforms in the join query increases sequen-
tially, i.e., A requests for creating P1, P2, and so on. Let N be the expected join queries
A would make. B picks two random platform indices i0, i1 ← {1, . . . , N} and keeps i0, i1
secret.

Hash Queries. At any time, A can query the hash function H. B responds with random values
in Zq while ensuring consistency.

Queries. Algorithm A can perform join queries, sign queries, and corrupt queries. B responds as
follows:

1. Join queries: A requests for creating a new platform Pi. B runs the join protocol with
A and obtains a private key ski = (Ai, xi, yi, fi). If i = i0 or i1, B discards the obtained
private key ski. To give some intuition here, B behaves as if logu v is fi0 in the platform
i0’s private key and logw z is fi1 in the platform i1’s private key. Observe that B knows
neither logu v nor logw z.

2. Sign queries: given a message m ∈ {0, 1}∗, a signature based revocation list Sig-RL,
and a platform index i, if i 6= i0, i1, then B use the private key ski = (Ai, xi, yi, fi) to
respond the query. For queries on platforms i0 or i1, B responds as follows:

(a) For queries on platforms i0, B checks whether Sig-RL contains any (B,K) pair from
the signatures generated in previous sign queries for platform i0, if so, B responds
with ⊥. Otherwise, B picks r← Z

∗
p and sets

B := ur, K := vr.

(b) Analogously, B checks whether platform i1 has been revoked in Sig-RL, if so, B
responds with ⊥. Otherwise, B picks r ← Z

∗
p and sets

B := wr, K := zr.

(c) If B did not respond ⊥, B simulates the rest of σ0 as follows: B picks T ← G1

and sx, sf , sa, sb ← Zp. B computes R1, R2 using equations in step 3 of the verify
algorithm, and then computes

c := H(gpk, B,K, T,R1, R2,m).

In the rare event thatA has already issued a hash query for H(gpk, B,K, T,R1, R2,m),
B reports failure and aborts. Algorithm B sets

σ0 := (B,K, T, c, sx, sf , sa, sb).

For each (Bi,Ki) pair in Sig-RL, B simulates the transcripts of the zero-knowledge
proof and produce σi. As B controls the hash oracle, it can always create a well-
formed σi. B sets the signature σ := (σ0, σ1, . . . , σn2

). Note that by Lemma 2, σ is
a properly distributed signature.

3. Corrupt queries: If a corrupt query is for a platform i 6= i0 or i1, then B responds with
ski = (Ai, xi, yi, fi). Otherwise, B reports failure and aborts.

Challenge. Algorithm A outputs a message m, a signature based revocation list Sig-RL, and two
platforms i∗0 and i∗1. If {i∗0, i

∗
1} 6= {i0, i1}, then B reports failure and aborts. Otherwise, let

us assume i∗0 = i0 and i∗1 = i1. B picks b ← {0, 1} and generate a signature σ∗ for m with
platform ib using the same method described in the sign queries above. B sends σ∗ to A.
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Restricted Queries. Algorithm A issues restricted queries. Algorithm B responds as in regular
queries above.

Output. In the end, A outputs b′ ∈ {0, 1} as the guess for b. If b = b′, then B outputs 0, which
indicates that z is a random element in G3. Otherwise B outputs 1, which means that z = uab.

Let ǫ be the probability that A succeeds in breaking the anonymity game. Suppose B does not
abort during the above simulation. If z is random in G3, B emulates the anonymity game perfectly,
i.e., Pr [b = b′] > 1

2 + ǫ. If z = uab, then logu v = logw z, the private keys for platforms i0 and i1 are
identical and thus the signature σ∗ is independent of b. It follows that Pr [b = b′] = 1

2 . Therefore,
assuming B does not abort, it has advantage at least ǫ/2 in solving the DDH problem in G3.

We now discuss the probability that algorithm B does not abort in the above game. B does
not abort if it can correctly guesses the values i∗0 and i∗1 in the setup phase and none of the sign
queries cause B to abort. The probability that B can guess correctly is about 1/n2, where n is the
total number of private keys B has created. The probability that B aborts in the sign queries is
negligible if p is large enough. Therefore, the probability that B does not abort is roughly 1/n2. 2

We now give some intuition for the proof of the unforgeability game. In the unforgeability game,
the adversary can query the challenger for joining the group, signing a message, or corrupting a
platform’s private key. In the end, the adversary outputs a group signature. The adversary wins
if the signature he outputs is valid. As the sign algorithm is indeed a proof of knowledge protocol,
we can rewind the proof and extract the knowledge (i.e., a private key) from the signature. Recall
that a private key is a BBS+ signature on a membership key f . If an adversary can forge a group
signature in the unforgeability game, we can build another adversary that forges a BBS+ signature.

Theorem 6 The EPID scheme is unforgeable in the random oracle model under the strong Diffie-
Hellman assumption in (G1, G2).

Proof. Suppose algorithm A breaks the unforgeability of the EPID scheme, we build an algorithm
B that breaks the unforgeability of the BBS+ signature scheme described in Section 3.3. Algorithm
B interacts with A as follows:

Setup. Let (G1, G2) be a bilinear group pair of prime order p with generator g1 and g2, respectively.
B is given a public key (g1, g2, h1, h2, w) of the BBS+ signature scheme, where h1, h2 ∈ G1

and w ∈ G2. B does the following:

1. B chooses a cyclic group G3 of order p with generator g3 and gives A the group public
key gpk = (p,G1, G2, G3, g1, g2, g3, h1, h2, w).

2. B maintains a list U of corrupted membership keys. Initially, U := ∅.

Hash Queries. At any time, A can query the hash function H. B responds with random values
in Zq while ensuring consistency.

Join Queries. A can make a join query on platform Pi, it could be one of the following two cases:

1. B and A run the join protocol as follows: A runs steps 1-2 of the join protocol. As
step 2 of the join protocol is a proof of knowledge protocol, B obtains (fi, y

′
i) by rewinds

A. B now queries the BBS+ signature signing oracle on fi and obtains (Ai, xi, yi). B
computes y′′i := yi − y′i and returns (Ai, xi, y

′′
i ) to A. B also appends fi to U .
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2. B generates ski as follows: B chooses a random fi ← Zp. Next, B sets (Ai, xi, yi) := ⋆
which indicates that B does not know the corresponding BBS+ signature on fi. Finally,
B sets ski = (Ai, xi, yi, fi). To give some intuition here, B will obtain a BBS+ signature
on fi only when A issues a corrupt query on the platform of index i.

Sign Queries. A asks for a signature on message m with Sig-RL by the private key at index i. If
(Ai, xi, yi) 6= ⋆, B follows the signing algorithm with the private key (Ai, xi, yi, fi) to obtain
a group signature σ on m, and returns σ to A.

In the case where (Ai, xi, yi) = ⋆, i.e., B does not have a valid private key for platform i
but has fi, B can simulate a signature on m as follows: B runs the first step of the sign
algorithm and obtains a (B,K) pair. B then simulates the rest of σ0 by picking T ← G1 and
sx, sf , sa, sb ← Zp. B computes R1, R2 using equations in step 3 of the verify algorithm, and
then patches the hash oracle such that

H(gpk, B,K, T,R1, R2,m) = c.

If this causes a collision in the hash oracle, B reports failure and exits. Otherwise, algorithm
B sets

σ0 := (B,K, T, c, sx, sf , sa, sb).

For each (Bi,Ki) pair in Sig-RL, B simulates the transcripts of the zero-knowledge proof and
produce σi. B sets the signature σ := (σ0, σ1, . . . , σn2

) and returns σ to A.

Corrupt Queries. A asks for the private key of the platform at some index i. If (Ai, xi, yi) = ⋆, B
queries the BBS+ signature signing oracle with fi and obtains a BBS+ signature (Ai, xi, yi)
on fi. B returns (Ai, xi, yi, fi) to A and appends fi to U .

Response. Finally, if algorithm A is successful, it outputs a forged signature σ∗ on a message
m∗ along with a private-key based revocation list Priv-RL∗ and a signature based revocation
list Sig-RL∗, such that (1) Verify(gpk, Priv-RL∗, Sig-RL∗, σ∗,m∗) = valid, and (2) for each
fi ∈ U , either fi ∈ Priv-RL∗ or there exists a (Bi,Ki) pair in Sig-RL∗ such that Ki =

Bfi

i . The first requirement states that the forged signature σ∗ is a valid signature. The
second requirement means that each corrupted platform private key has been revoked in
either Priv-RL∗ or Sig-RL∗.

Let Priv-RL∗ = {f1, . . . , fn1
} and Sig-RL∗ = {(B1,K1), . . . , (Bn2

,Kn2
)}. Observe that the sign

algorithm is essentially a proof of knowledge protocol

PK{(A,x, y, f) : e(A, gx
2w) = e(g1h

f
1hy

2, g2) ∧ K = Bf}

and combined with the following series of proof of knowledge protocols, for i = 1, . . . , n2,

PK{(f) : K = Bf ∧ Ki 6= Bf
i }

Using the knowledge extractor of Lemma 3, B obtains an (A∗, x∗, y∗, f∗) tuple from σ∗ such that

e(A∗, gx∗

2 w) = e(g1h
f∗

1 hy∗

2 , g2), K = Bf∗

. (1)

As G3 is a cyclic group of prime order p, for the (B,K) pair in σ∗, there is only one f∗ ∈ Zp such
that K = Bf∗

. Using the knowledge extractor of the zero-knowledge proof of inequality of discrete
logs, B extracts the same f∗ such that K = Bf∗

and Ki 6= Bf∗

i , for i = 1, . . . , n2. We next show
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that f∗ 6∈ U . For every fi ∈ U , either fi ∈ Priv-RL∗ or there exist a (Bi,Ki) pair in Sig-RL∗ such

that Ki = Bfi

i . If f∗ = fi ∈ Sig-RL∗ then the verification of σ∗ would fail. If f∗ = fi and Ki = Bfi

i ,
this would contradict to the result of the knowledge extractor. Thus, f 6= fi for any fi ∈ U .

In the end of this game, B outputs (A∗, x∗, y∗, f∗). Observe that, (A∗, x∗, y∗) is a valid BBS+
signature on f∗ from equation (1). Also observe that B has queried the BBS+ signature oracle only
for fi in U . As f∗ 6∈ U , B has successfully forged a BBS+ signature on f∗ if B does not abort during
the simulation. As the BBS+ signature scheme is unforgeable against chosen message attacks under
the SDH assumption, our EPID scheme is also unforgeable under the SDH assumption. 2
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