
A Single Initialization Server

for Multi-Party Cryptography

Hugue Blier and Alain Tapp

Département d’informatique et de recherche opérationnelle
Université de Montréal, C.P. 6128, Succ. Centre-Ville

Montréal (QC), H3C 3J7 Canada

Abstract. We present information-theoretically secure bit commitment, zero-knowledge and
multi-party computation based on the assistance of an initialization server. In the initializa-
tion phase, the players interact with the server to gather resources that are later used to
perform useful protocols. This initialization phase does not depend on the input of the proto-
col it will later enable. Once the initialization is complete, the server’s assistance is no longer
required. This paper improves on previous work as there is only one server and it does not
need to be trusted. If the server is honest, the protocols are secure against any coalition of
dishonest players. If all players are honest, then there is an exponentially small probability
that both the initialization phase succeeds and that later the protocol fails. That is, the
server cannot create a situation in the initialization phase that would lead honest players to
accuse each other. The protocols are built in a modular fashion and achieve linear complexity
for the players in terms of the security parameter, number of players and the size of the circuit.

keywords: two-party computation, multi-party computation, cryptography, zero-knowledge,
initialization server.

1 Introduction

Two-party computation is a common scenario: Alice and Bob want to compute a function based on
their inputs such that they get the correct output but also without revealing their respective input
to the other participant. This situation can obviously be generalized to more than two participant.
Multi-party computation was first introduced by [24, 25, 18]. It has been shown that without any
computational assumptions, secure multi-party computation is possible if and only if a majority
of participants are honest, in the presence of a broadcast channel [22]. If no broadcast channel is
available, this proportion must be strictly more than 2/3 [3, 6]. Multi-party computation security
can also be based on other assumptions: noisy channels [14, 11, 15], or using directly some primitives
such as oblivious transfer (OT) [19, 13], trapdoor one-way permutations [18] or bounded memory
[5, 4].

Beaver [1, 2] introduced in 1997 a model where a server is involved in the computation. This
third party is said to be semi-trusted. It is trusted in the sense that it doesn’t collude with any
participant and it follows the protocol correctly. But if the players are honest, a dishonest server
cannot learn anything about the input and output of the protocol it enables. In some contexts,
the qualifier honest but curious is also used. Beaver uses this server to distribute commodities to
users prior to the calculation. Under these assumptions, he realizes a protocol for OT on which

secure multi-party computation can be based. In the same model, Rivest [23] has also shown simple
algorithms for bit commitment (BC) and OT. Many specific problems having practical applications
have been solved using such a third party [10, 16, 17]. This model is very appealing since it is close
to the Internet setting in which a server provides services. Since this server does not have to be
fully trusted, it has practical applications.

Yet trust is an issue and this is the problem we address in this paper. In [1, 23], since the server
has to follow the protocol, it is an issue to choose a server trusted by both parties. The way they
addressed this problem was by using more than one server. The drawback is that the protocol is
less practical. Here, our protocols deal with a dishonest server, as long as it doesn’t collude with
other participants. That is, the server could make the initialization phase fail, but will not be able
to make honest players accuse each other of cheating. Once the initialization phase succeeds, the
security of the primitives and protocols performed in the computation phase is unconditional.

Our protocols have the following properties. If the server does not collude with any player, the
initialization phase enables protocols that achieve information theoretical privacy and correctness.
That is, the protocols are resilient to both cheating players and a dishonest server at the same time
under the no-collusion assumption. If all players are honest, the server will gain no information about
the protocol realized after the initialization phase. Furthermore, whatever the server behaviour, the
probability that both the initialization phase succeeds and the later protocol aborts is exponentially
small. The last criteria is unusual in conventional multi-party computation but is reasonable in
presence of two different types of actors.

An appealing aspect of our protocols is their simplicity and efficiency. As first said, the situation
of multi-party computation has been studied for a long time and is well understood. An attentive
reader will recognize flavours of known techniques. For example, our protocols are based on so-
called commitment chips similar to two precomputed oblivious transfers and our bit commitments
are constructed so that the Rudich technique [20, 13, 12] can be used and some noise can be
tolerated.

It is worthwhile to mention that a simple but inefficient solution can easily be obtained from
known techniques. For example the server, during the initialization phase, could distribute two
random strings of n bits to Alice and Bob such that the Hamming distance between these two
strings is εn. This could be probabilistically verified with some accuracy. Afterwards, Alice and
Bob could use these two strings as one-time pads to communicate. This would result in a binary
symmetric channel with error ε which is known to be sufficient for multi-party computation [14, 13]
since it enables the participants to realize OT. Another way would be to adapt ideas from [9] and
[8]. It is not too hard to obtain similar results based these article for the two-party case, but for the
multi-party case, the obtained protocol would be significantly less efficient than the one we present.
Note also that [21] propose a elegant solution where the initialization server is fully trusted; in our
protocol, the server does not have to be trusted and the solution we propose is also more efficient.

In the following sections, we present protocols for commitment (Sect. 2), committed circuit eval-
uation and zero-knowledge (Sect. 3) and multi-party secure computation (Sect. 4). Even though
our protocols are intricate, the proofs are relatively straightforward and are not particularly en-
lightening. Because of lack of space, they will not be presented in this extended abstract.

2 Bit Commitment

BC is a cryptographic procedure composed of two phases. In the commitment phase, Alice commits
to a bit value with Bob and in the opening phase, she reveals that bit. We say that the commitment
is binding if, after the commitment phase, Alice can only open one unique value. We say that
the commitment is concealing if, after the commitment phase, Bob has no information about the
committed bit. Note that the opening phase is optional.

To accomplish BC (as well as all the following protocols), we rely on commitment chips (CCs).
Our protocol begins by an initialization phase where the server creates enough CCs and gives them
to the players. A CC i is a weak commitment to the value vi = xi

1
⊕xi

2
⊕xi

3
⊕xi

4
, the parity of four

bits that the server privately transmits to Alice. Of these four bits, the server only transmits to Bob
one of the first two and one of the last two. We will always suppose that communication between
the players and the server is done in a private way. CCs can be seen as a combination of 2 (1

2
)-OTs

are constructed is such a way that the Rudich technique can be used. It is crucial that Alice doesn’t
know which bits Bob knows. The CCs created in the initialization phase are the resources shared
by Alice and Bob to construct BCs and all other protocols.

In the protocols, we denote Alice by A, Bob by B and the server by S. Note that except if
otherwise stated, the CCs and BCs are from Alice to Bob.

Protocol 1 CC Commit
Input: an index i ∈ I
Result: the CC indexed by i is created

S chooses xi
1, x

i
2, x

i
3, x

i
4 ∈R {0, 1} and sends them to A

S chooses `i ∈R {1, 2} and ri ∈R {3, 4} and sends to B (`i, ri, x`i , xri)

To verify the honesty of the server (i.e. that the bits of Alice and Bob correspond), half of
the CCs given by the server will be opened. In all our protocols, we say that a bit is inconsistent
whenever Alice and Bob disagree on its value.

Protocol 2 CC Unveil
Input: an index i ∈ I
Result: the CC indexed by i is unveiled

A sends xi
1, x

i
2, x

i
3, x

i
4 to B

B outputs FAIL if xi
`i or xi

ri are inconsistent

From the protocol CC Preprocessing we can already see the role of the two bits given to
Bob: if Alice wants to change the value of one CC, she must change the value of at least one its
four xis. Since she is not aware of which bits Bob knows, she will change a bit Bob knows with
probability one-half, and get caught. Note also that since Bob knows only two bits of each CC, he
has no information about the parity of the four bits.

Protocol 3 CC Preprocessing

Result: I an index set of CCs

Let I be a set of indices
∀i ∈ I, Call CC Commit(i)

B chooses O ⊂R I such that |O| = |I|
2

and sends its description to A
∀i ∈ O, Call CC Unveil(i) and Bob outputs ABORT if the output is FAIL
A and B set I to I r O

Since we would like Alice to only have an exponentially small probability of successfully cheating
when committing, we define s = 2k + 1 (a odd security parameter), and a BC to the value b will
be a group of 3s CCs to the value b. The choice of 3s instead of s is useful in the following section.
Note that once the initialization phase is complete, the players do not need the server to realize
BC.

After the initialization phase, a set of indices I corresponding to CCs is shared between Alice
and Bob. To construct a BC (as well as other protocols), CCs are consumed and removed from this
set.

Protocol 4 BC Commit
Input: b ∈ {0, 1} and I an index set of CCs
Result: a BC B to the value b (I is updated)

A chooses B ⊂R I such that |B| = 3s and such that ∀i ∈ B, vi = b
A sends a description of B to B
A and B set I to I r B

To open the BC C, Alice only needs to reveal every bit of every CC. The condition for Bob to
accept the opening is that no more than 1

10
of the CCs aren’t consistent with the bits he knows.

Why? Because the server is not trusted. The verification done in the initialization phase assures
the players that there is little inconsistency, but not that there is none.

If Alice is dishonest, she can choose to construct a BC in an undefined way by choosing CCs
with two different values. In order to ensure that the BC value is always well-defined, we say that
the value of a BC is the value of the majority of the values of the CCs of which it is made. This is
why we choose s to be odd.

Protocol 5 BC Unveil
Input: a BC B
Result: B is opened

A sends b to B
B sets e to 0
∀i ∈ B

Call CC Unveil(i)
if CC Unveil(i) outputs FAIL or does not have value b, then set e to e + 1

If e ≥ |C|
10

, B outputs ABORT

Usually, in the analysis of a two-party protocol, we consider what happens when one of the
participants is honest and the other is dishonest. Here, we also have to consider the fact that the
server can be dishonest.

Lemma 1. (BC Commit: concealing) As long as Bob and the server do not collude, after BC

Commit(b), Bob has no information on b.

Lemma 2. (BC: binding) As long as Alice and the server do not collude, after BC Commit(B),
BC Unveil(B = b) has a chance exponentially small in s to succeed.

Since we want to consider a cheating server, we also want to be sure that, if the server is
dishonest, none of the honest players can be falsely incriminated.

Lemma 3. (BC: robust) Given that Alice and Bob are honest, there is an exponentially small
probability that both the preprocessing succeeds and that one of the later BC Unveil aborts.

So, if Alice and Bob are honest and the server is dishonest, it cannot make the initialization
phase succeed in such a way that later, a commitment phase or an opening phase will fail. Once
the initialization phase has been done, the only way for the protocol to abort is if Alice or Bob
misbehave. Thus, there is no way the server can cheat in a way that Alice or Bob will be accused
wrongly (except with exponentially small probability).

A very useful characteristic of our BC protocol is the possibility for Alice to choose m BCs and
prove to Bob that the parity of their committed values is p without revealing any other information.
The parity of m CCs, each chosen from a different BC, must also be p. The protocol CC Parity

verifies this fact, but has probability 1/2 of failure in case Alice tries to cheat. BC Parity simply
calls CC Parity s times to amplify this probability. This is the well-known technique introduced
by Rudich. At the end of the BC Parity protocol, Bob will be convinced of the parity and all the
BCs will remain valid, but s CCs contained in each BC will have been consumed.

Protocol 6 CC Parity

Input: a list of CC indices i1, i2, . . . , im and a parity p
Result: B learns if p = vi1 ⊕ vi2 ⊕ · · · ⊕ vim

A sends p to B

A computes q =
Lm

j=1
x

ij

1 ⊕ x
ij

2 and sends it to B
B sends r ∈R {0, 2} to A

For j from 1 to m, A sends to B x
ij

1+r and x
ij

2+r

B checks that these values are consistent and:
If r = 0, B checks that q =

Lm

j=1
x

ij

1 ⊕ x
ij

2

If r = 2, B checks that p ⊕ q =
Lm

j=1
x

ij

3 ⊕ x
ij

4

If an error is detected, the output of the protocol is FAIL

Note that FAIL is an acceptable outcome for a sub-protocol but that when a sub-protocol
outputs ABORT, it implies that the calling protocol also outputs ABORT and so on. Note that
each BC is composed of 3s CCs. This implies that three operations (BC Parity, BC Unveil) can
be performed on a single BC before it becomes useless. This can be used to perform FAN-OUT and
NOT gates in the obvious way.

Protocol 7 BC Parity

Input: a list of BCs B1, B2, . . . , Bm and a bit p
Result: B learns if p = b1 ⊕ b2 ⊕ · · · ⊕ bm

A computes p = b1 ⊕ b2 ⊕ · · · ⊕ bm and sends it to B
B sets e to 0
Repeat s times

For j from 1 to m
B chooses ij ∈R Bj and send it to A
A and B sets Bj to Bj r ij

A and B call CC Parity(i1, i2, . . . , im, p)
If the protocol outputs FAIL, set e to e + 1

If e > s
10

then ABORT

Lemma 4. (BC Parity: robust) Given that Alice and Bob are honest, the probability that both
the initialization phase succeeds and that BC Parity outputs ABORT is exponentially small in s.

Lemma 5. (BC Parity: zero-knowledge) If Alice and the server are honest, after
BC Parity(B1, B2, . . . , Bm), Bob cannot learn any information except p = b1 ⊕ b2 ⊕ · · · ⊕ bm.

Lemma 6. (BC Parity: sound) Given that Alice and the server do not collude and that p =
b1 ⊕ b2 ⊕· · ·⊕ bm, the probability that Parity BC(B1, B2, . . . , Bm, p) succeeds is exponentially small
in s.

3 Oblivious Circuit Evaluation and Zero-Knowledge

In this section, we discuss techniques called oblivious circuit evaluation (OCE) to compute functions
on committed bits, producing committed bits with the right relationship without revealing any
information whatsoever (i.e. in a zero-knowledge way). To do this, it is sufficient to be able to do
a NOT gate and an AND gate on committed bits.

The NOT could be achieved using the BC Parity protocol from the previous section. One
just has to observe that x = y ⇔ x ⊕ y = 0. The implementation of the AND gate requires
some preprocessing. This preprocessing step creates AND-Commitment-Chips (ACCs). An ACC is
a triplet of commitment chips (V1, V2, V3) such that v1 ∧ v2 = v3. As you can se, we use uppercase
letters for objects and lowercase letter for bit values. As usual, the preprocessing of the ACC is
independent of the circuit to be evaluated later. Each AND gate requires the use of 10s ACCs. It
is straightforward to see that with the tools to evaluate an arbitrary known circuit on committed
values, it is easy to prove any statement in NP in a zero-knowledge way.

Suppose that Alice has commitments B1 and B2 and wants to commit herself to the AND of the
two values. First, she creates ACCs to random values. Half of them are opened to ensure consistency.
She then chooses a subset of the remaining ACCs with the appropriate value and then uses them to
construct B3 such that b1∧b2 = b3. In the protocol, the union of the third component of every ACC
forms a BC to the desired value. For this to be secure, we have on one hand to manage potential
errors but on the other hand to prevent Alice from using these to create a tweaked gate. Alice has
therefore to group ACCs each time an AND gate is to be computed. The final protocol, OCE of
a function F , can be realized using BC Parity to perform NOT and FAN-OUT gates and OCE

AND for AND gates.

Protocol 8 OCE AND
Input: BCs B1,B2 and B3

Result: B is convinced that b3 = b1 ∧ b2

A chooses at random a set T of triplets of indices of CCs such that
∀[i1, i2, i3] ∈ T, vi3 = vi1 ∧ vi2

|T | = 10s
and sends it to B

B sets e to 0
B creates O ⊂R T such that |O| = 5s and sends it to A
∀[i1, i2, i3] ∈ O

A opens i1, i2 and i3 using CC Unveil

if any of the openings output FAIL or
if vi3 6= vi1 ∧ vi2 B sets e to e + 1

If e > 5s
10

then B outputs ABORT
B sets e to 0
A creates S ⊂ T such that |S| = s and ∀[i1, i2, i3] ∈ S,vi1 = b1 and vi2 = b2

A sends a description of S to B
A and B set T to T r S
∀[i1, i2, i3] ∈ S

B chooses j1 ∈R B1, j2 ∈R B2 and j3 ∈R B3

A proves that vi1 = vj1 ,vi2 = vj2 and vi3 = vj3 using CC Parity

If this FAILS then set e to e + 1
A and B set B1 to B1 r j1, B2 to B2 r j2 and B3 to B3 r j3

If e > s
10

then B outputs ABORT

Lemma 7. (OCE: robust) Given that Alice and Bob are honest, the probability that both the ini-
tialization phase succeeds and that the OCE protocol aborts is exponentially small in s.

Lemma 8. (OCE: sound) If Bob and the server are honest, the value of the commitments at the
end of OCE protocol are correct except with exponentially small probability in s.

Lemma 9. (OCE: zero-knowledge) If Alice and the server are honest, Bob learns absolutely noth-
ing while performing OCE with Alice.

4 Secure Multi-Party Computation

In this section, we deal with protocols that can involve more that two participants. Secure multi-
party computation (MP) is a n player task where all players learn the output of a circuit evaluated
on private inputs coming from each of them. This is a very general, useful and well-studied task.
In this section, we present a protocol to implement information theoretically secure MP. As in
our previous protocols, an initialization phase is required, but this phase does not depend on the
function that is computed later. As usual in multi-party computation, all the input bits and the
intermediate values are shared using secret sharing among all players. Since we have no bound on
the number of dishonest players, the secret sharing scheme we choose is simply parity. In the first
step, each player commits to his input. Then the circuit is evaluated gate by gate (AND gates and
NOT gates), and the output is a committed secret shared value between all players. Finally, the
answer bits are opened. Known techniques [7] could be used to reveal the result of the function

gradually in order not to give an unfair advantage to any of the players. This process is called
multi-party computation (MP).

We implement the inputs and all intermediate values by a distributed BC (DBC). A DBC B
with value b is a set of n2 BCs B[i, j] (player i is committed to player j) with value b[i, j] such that
for all i, we have that for all j and j′, b[i, j] = b[i, j′] and therefore we choose to denote that value
by b[i]. In addition, b =

⊕
n

i=1
b[i]. Of course, this is in the honest cases. Inconsistent DBCs will fail

when used in an AND gate.

To begin the computation of the known circuit, each player i has to construct, with the help of
the other players, a DBC to every b of his input bits. This is done by having player i commit to
every other player to b (∀j, B[i, j] = b) and all other players commit to 0 (∀k 6= i, j, B[k, j] = 0). The
consistency of the commitment of player i is not verified, but the fact that all other commitments
are equal to zero is.

Protocol 9 MP bit initialization
Input: a bit d from player i
Result: a DBC B with value b.
∀j 6= i

Player i commits to b to Player j using BC Commit

∀k 6= j
Player j commit to bit 0 to player k using BC Commit

Player k chooses s CCs in that commitment
Player j opens these CCs using CC Unveil

If more than s
10

are inconsistent or do not have value 0, Player k outputs ABORT

There is no way after MP bit initialization to be sure that player i is committed to the same
value with all the players. If this is not the case, the first AND gate directly or indirectly involving
this bit will fail, except with exponentially small probability.

Protocol 10 DACC
Result: a set D of DACC is created
Let D be a set of indices
For all k ∈ D

S chooses uniformly at random v[i], v′[i] and v′′[i] such that
Ln

i=1
v′′[i] =

Ln

i=1
v[i] ∧

Ln

i=1
v′[i]

∀i, j 6= i, S creates CCs from i to j to the value v[i], v′[i] and v′′[i] using CC Commit,
v[i], v′[i] and v′′[i] are associated with the index k

∀j, player j chooses 1/2n indices in D and asks the other players to unveil all these CCs
If any of the unveiling FAILS or if

Ln

i=1
v′′[i] 6=

Ln

i=1
v[i] ∧

Ln

i=1
v′[i] then ABORT

All players remove the opened value from D

In the preprocessing stage, the server creates random triplets of vectors of CCs, called Dis-
tributed AND CCs (DACCs). These triplets are such that the AND of the first two values equals
the third one.

Note that there is an exponential number of different possible distinct DACCs. Therefore, the
server cannot just choose groups of identical ones to form a Distributed AND BC (DABC). Actually
the same kind of problem will also happen in the choice of DABC. In order to have an efficient
algorithm, we have to use a trick, both in DABC and MP AND.

Once the DACCs are verified, they will be grouped by the server to create a DABC. The server
does not group them such that the vectors are identical but only such that the parity of the vectors
is identical. Note that by flipping an even number of bits, the parity of a vector does not change.
Thus, to make an identical set, the participants have to modify the vector (in an even number of
places) such that at the end they are identical. All this is accomplished without interaction with
the server and without revealing information on the committed bit of the resulting triplet.

Protocol 11 DABC
Input: D an index set of DACCs
Result: E a set of DABCs
The server chooses C ⊂R D such that |C| = s and

∃α, β, ∀k ∈ C, α =
Ln

i=1
vk[i] and β =

Ln

i=1
v′

k[i]
Let k′ ∈ C be a specific index
The server broadcasts the index forming a description of C and the value k′

∀k ∈ C r k′, ∀i
Player i broadcasts t[i] = vk[i] ⊕ vk′ [i] and t′[i] = v′

k[i] ⊕ v′
k′ [i]

For every 1 broadcasted,
each player flips the first bit of the four-tuple constituting the CC

If
Ln

i=1
t[i] 6= 0 or

Ln

i=1
t′[i] 6= 0 then ABORT

D is set to D r C and C is added to E
All the previous steps are repeated until there is are enough elements in D

Protocol 12 MP NOT
Input: a DBC B and a set E of DABCs
Result: a DBC B′ such that b 6= b′

Let β be the value that player 1 is committed to in B
∀i 6= 1

Player 1 commits with B′[1, i] to value β using BC Commit

Player 1 proves to player i that b′[1, i] 6= b[1, i] using BC Parity

∀j Player i and j rename B[i, j] to B′[i, j]

In order to process a NOT gate, one player (we arbitrarily choose player 1 here) commits to
the opposite bit with every player. These new commitments replace his commitment in the DBC
vector B.

In order to compute the AND, we will use the DABC. The idea is similar to the computation of
an AND gate in the preceding section: choose a DABC such that the first two vectors are identical to
those in the input of the gate and consider the third one as the output. Once again, an exponential
number of DABCs would be needed to achieve a perfect matching. Fortunately, this is not required,

we only need the number of differences to be even, which means the values are equal. This simple
idea is very important in making the protocols efficient.

Protocol 13 MP AND

Input: two DBCs B and B′, E a DABC
Result: a DBC A′′ such that b ∧ b′ = a′′

Repeat
Player 1 chooses C ∈R E (C = (A, A′, A′′)) and announces his choice
∀i

Player i broadcasts p[i] = b[i] ⊕ a[i]
Player i broadcasts p′[i] = b′[i] ⊕ a′[i]

Until
L

i
p[i] = 0 and

L

i
p′[i] = 0

∀i
∀j 6= i

Player i proves to player j that p[i] = b[i] ⊕ a[i] using BC Parity

Player i proves to player j that p′[i] = b′[i] ⊕ a′[i] using BC Parity

The A′′ is the resulting DBC

As mentioned, there is no way during the initialization phase to be sure the one player is com-
mitted to the same value with every other player. This problem is solved because of the properties of
the MP AND protocol. In that protocol, every player must broadcast the parity of his values in B
(and B′) and his value in A (and A′). If he had committed to an opposite value in the initialization
phase, he must now cheat the parity protocols. We must assume that every bit is involved directly
or indirectly in at least one AND gate (possibly a dummy one).

Combining the protocols presented in this section, we obtain a protocol MP. FAN-OUT is
done in the obvious way, the NOT and AND gates use protocols MP NOT and MP AND and
initialization of input bits using protocol MP bit initialization. The MP protocol we obtain has
the following nice properties.

Lemma 10. (MP: correct) If the server and all players are honest, the function is computed
correctly with probability 1, in expected polynomial time.

Lemma 11. (MP: robust) Whatever the server does, if all players are honest, the probability that
the preprocessing succeeds and MP fails is exponentially small in s.

The previous lemma implies that if all players are honest it is almost impossible for the server to
act in such a way that players will be led to believe that the protocols failed because of a dishonest
player. Conversely, if a protocol fails after the initialization phase, this means that the most likely
explanation is that a player cheated.

Lemma 12. (MP: zero-knowledge) In MP, any group of dishonest players cannot learn anything
else than the outcome of the function provided they do not collude with the server.

5 Conclusion and Future Work

We have presented protocols for a server to provide resources to players so that they can perform
at a later time protocols that implement bit commitment, zero-knowledge and secure multi-party
computation. Our protocols and initialization phase are efficient, quite simple and their security
is easy to verify. Table 1 summarizes the complexity, both in terms of communication and com-
putation. The complexity of the protocols take into account the creation of necessary resources in
the initialization phase. The complexity for the server in each of these protocols is obtained by
multiplying by the number of players. We use n for the number of players, m for the size of the
function and s for the security parameter.

Table 1. Protocol Complexity

Protocol Expected Amortized Complexity

BC Commit and BC Unveil O(s)
BC Parity O(sm)
OCE O(sm)
MP bit initialization O(sn)
DABC O(sn)
MP NOT O(sn)
MP AND O(sn)
MP O(snm)

Although we do not have any formal proof of the optimality of our protocols, the fact that they
are linear in each parameter seems to indicate that except for the constants (which are already
quite small), no further complexity improvement could be achieved.

6 Acknowledgements

Special thanks to Anne Broadbent for proof reading. We are also grateful to Jörn Müller-Quade
for pointing out some interesting work. This research was made possible by generous funding from
Canada’s NSERC.

References

[1] Beaver, D. Commodity-based cryptography (extended abstract). In Proceedings of the 29th Annual

ACM Symposium on Theory of Computing (1997), pp. 446–455.
[2] Beaver, D. Server-assisted cryptography. In Proceedings of the 1998 New Security Paradigms Work-

shop (1998), pp. 92–106.
[3] Ben-Or, M., Goldwasser, S., and Wigderson, A. Completeness theorems for noncryptographic

fault-tolerant distributed computation (extended abstract). In Proceedings of the 20th Annual ACM

Symposium on Theory of Computing (1988), pp. 1–10.

[4] Cachin, C., Crépeau, C., and Marcil, S. Oblivious transfer with a memory bounded receiver. In
Proceedings of IEEE Symposium on Foundations of Computer Science (1998), pp. 493–502.

[5] Cachin, C., and Maurer, U. Unconditional security against memory-bounded adversaries. In
Advances in Cryptology - CRYPTO’97 (1997), pp. 292–306.

[6] Chaum, D., Crépeau, C., and Damg̊ard, I. Multiparty unconditionally secure protocols (extended
abstract). In Proceedings of the 20th Annual ACM Symposium on Theory of Computing (1988),
pp. 11–19.

[7] Cleve, R. Controlled gradual disclosure schemes for random bits and their applications. In Advances

in Cryptology - CRYPTO’89 (1989), pp. 573–588.
[8] Cramer, R., Damgaard, I., Dziembowski, S., Hirt, M., and Rabin, T. Efficient multi-party

computations with dishonest majority. In EUROCRYPT (1999), vol. 1592, Springer, pp. 311–326.
[9] Cramer, R., Damg̊ard, I., and Maurer, U. Efficient general secure multi-party computation from

any linear secret-sharing scheme. In CRYPTO (2000), vol. 1807, Springer, pp. 316–334.
[10] Crescenzo, G. D., Ishai, Y., and Ostrovsky, R. Universal service-providers for database private

information retrieval. In Proceedings of the 17th Annual ACM Symposium on Principles of Distributed

Computing (1998), pp. 91–100.
[11] Crépeau, C. Efficient cryptographic protocols based on noisy channels. In Proceedings of EURO-

CRYPT ’97 (1997), pp. 306–317.
[12] Crépeau, C. Commitment. In Encyclopedia of Cryptography and Security (2005), H. C. van Tilborg,

Ed., vol. 12, pp. 83–86.
[13] Crépeau, C., Graaf, J., and Tapp, A. Committed oblivious transfer and private multi-party

computation. In Advances in Cryptology - CRYPTO’95 (1995), pp. 110–123.
[14] Crépeau, C., and Kilian, J. Achieving oblivious transfer using weakened security assumptions. In

Proceedings of IEEE Symposium on Foundations of Computer Science (1988), pp. 42–52.
[15] Crépeau, C., Morozov, K., and Wolf, S. Efficient unconditional oblivious transfer from almost

any noisy channel. In Proceedings of Fourth Conference on Security in Communication Networks

(2004), pp. 47–59.
[16] Du, W., Han, Y. S., and Chen, S. Privacy-preserving multivariate statistical analysis: Linear

regression and classification. In Proceedings of the 4th SIAM International Conference on Data Mining

(2004), pp. 222–233.
[17] Du, W., and Zhan, Z. Building decision tree classifier on private data. In Proceedings of the IEEE

ICDM Workshop on Privacy, Security and Data Mining (2002), pp. 1–8.
[18] Goldreich, O., Micali, S., and Wigderson, A. How to play any mental game. In Proceedings of

the 19th Annual ACM Symposium on Theory of Computing (1987), pp. 218–229.
[19] Kilian, J. Founding cryptography on oblivious transfer. In Proceedings of the 20th Annual ACM

Symposium on Theory of Computing (1988), pp. 20–31.
[20] Kilian, J. A note on efficient zero-knowledge proofs and arguments. In Proceedings of the 24th Annual

ACM Symposium on Theory of Computing (1992), pp. 723–732.
[21] Nascimento, A. C. A., Müller-Quade, J., Otsuka, A., Hanaoka, G., and Imai, H. Uncon-

ditionally non-interactive verifiable secret sharing secure against faulty majorities in the commodity
based model. In Applied Cryptography and Network Security, Second International Conference, ACNS

2004 (2004), vol. 3089 of Lecture Notes in Computer Science, Springer, pp. 355–368.
[22] Rabin, T., and Ben-Or, M. Verifiable secret sharing and multiparty protocols with honest majority.

In Proceedings of the 21th Annual ACM Symposium on Theory of Computing (1989), pp. 73–85.
[23] Rivest, R. Unconditionally secure commitment and oblivious transfer schemes using private channels

and a trusted initializer. Unpublished manuscript (1999).
[24] Yao, A. Protocols for secure computations. In Proceedings of IEEE Symposium on Foundations of

Computer Science (1982), pp. 160–164.
[25] Yao, A. How to generate and exchange secrets. In Proceedings of IEEE Symposium on Foundations

of Computer Science (1986), pp. 162–167.

	A Single Initialization Server for Multi-Party Cryptography
	Hugue Blier and Alain Tapp

