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Abstract

Many cryptographic applications of hash functions are analyzed in the random oracle model. Unfortunately, most
concrete hash functions, including the SHA family, use the iterative (strengthened) Merkle-Damgård transform applied to
a corresponding compression function. Moreover, it is well known that the resulting “structured” hash function cannot
be generically used as a random oracle, even if the compression function is assumed to be ideal. This leaves a large
disconnect between theory and practice: although no attack is known for many concrete applications utilizing existing
(Merkle-Damgård based) hash functions, there is no security guarantee either, even by idealizing the compression function.

Motivated by this question, we initiate a rigorous and modular study of developing new notions of (still idealized)
hash functions which would be (a) natural and elegant; (b) sufficient for arguing security of important applications; and
(c) provably met by the (strengthened) Merkle-Damgård transform, applied to a “strong enough” compression function. In
particular, we show that a fixed-length compressing random oracle, as well as the currently used Davies-Meyer compression
function (the latter analyzed in the ideal cipher model) are “strong enough” for the two specific weakenings of the random
oracle that we develop. These weaker notions, described below, are quite natural and should be interesting in their own
right:

• Preimage Aware Functions. Roughly, if an attacker found a “later useful” output y of the function, then it must
“already know” the corresponding preimage x. We show that this notion works well with the Merkle-Damgård
transform (unlike fixed-length random oracles), and has many applications. Most notably, it yields a variable-length
random oracle, when composed with a fixed-length random oracle. Additionally, (compressing) preimage aware
functions considerably generalize collision-resistant hash functions. Moreover, we show that existing block-cipher-
based hash functions, originally only shown collision-resistant in the ideal cipher model, are in fact preimage aware.

• Public-Use Random Oracles. Roughly, these objects are indifferentiable from ordinary random oracles, but only
when they are never evaluated on secret inputs. We show that such public-use oracles are enough to argue security of
most hash-based signature schemes, including Full Domain Hash and Fiat-Shamir signatures. Moreover, the Merkle-
Damgård transform preserves this notion. As a result, all “public-use” applications of random oracles are still secure
with existing hash functions (assuming a strong enough compression function, such as a fixed-length random oracle
or the Davies-Meyer function).

Keywords: hash functions, random oracle model, indifferentiability framework

∗Dept. of Computer Science, New York University. 251 Mercer St. New York, NY 10012, USA. Email: dodis@cs.nyu.edu. URL:
http://www.cs.nyu.edu/ dodis
†Dept. of Computer Science & Engineering 0404, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0404, USA. Email:

tristenp@cs.ucsd.edu. URL: http://www.cs.ucsd.edu/˜tristenp
‡ Dept. of Computer Science, Portland State University, Room 120, Forth Avenue Building, 1900 SW 4th Avenue, Portland OR 97201

USA and Faculty of Informatics, University of Lugano Via Buffi 13, CH-6900 Lugano, Switzerland. Email: teshrim@cs.pdx.edu,
thomas.shrimpton@unisi.ch. URL: http://www.cs.pdx.edu/ teshrim, http://www.inf.unisi.ch/

1



Contents
1 Introduction 3

1.1 Preimage Aware Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Public-Use Random Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 6

3 Preimage Awareness 8
3.1 Relationships between PrA, CR, and Random Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Weak Preimage Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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1 Introduction
The primary security goal for cryptographic hash functions has historically been collision-resistance. Consequently, in-use
hash functions, such as the SHA family of functions [30], were designed using the (strengthened) Merkle-Damgård (MD)
transform [18, 29]: the input message M is suffix-free encoded (e.g. by appending a message block containing the length
of M ) and then digested by the cascade construction using an underlying fixed-input-length (FIL) compression function.
The key security feature of the strengthened MD transformation is that it is collision-resistance preserving [18, 29]. Namely,
as long as the FIL compression function is collision-resistant, the resulting variable-input-length (VIL) hash function will
be collision-resistant too.

RANDOM ORACLE MODEL. Unfortunately, the community has come to understand that collision-resistance alone is insuf-
ficient to argue the security of many important applications of hash functions. Moreover, many of these applications (e.g.
Fiat-Shamir [24] signatures or RSA [4] encryption) are such that no standard model security assumption about the hash
function appears to suffice for proving security. On the other hand, no realistic attacks against these applications have been
found. Motivated in part by these considerations, Bellare and Rogaway [4] introduced the Random Oracle (RO) model,
which models the hash function as a public oracle implementing a random function. Using this abstraction, Bellare and Ro-
gaway [4, 5, 6] and literally thousands of subsequent works managed to formally argue the security of important schemes.
Despite the fact that a proof in the RO model does not always guarantee security when one uses a real (standard model)
hash function [13], such a proof does provide evidence that the scheme is structurally sound. Moreover, many important
in-use cryptographic schemes only have provable security guarantees in the RO model.

IS MERKLE-DAMGÅRD A GOOD DESIGN? Given the ubiquity of MD-based hash functions in practice, and the success of
the RO model in provable security, it is natural to wonder if a MD-based hash function H is reasonably modeled as a RO, at
least when the compression function is assumed to be ideal. But even without formalizing this question, one can see that the
answer is negative. For example, the well-known extension attack allows one to take a value H(x) for unknown x, and then
compute the value H(x, 〈`〉, y), where ` is the length of x and y is an arbitrary suffix. Clearly, this should be impossible for
a truly random function. In fact, this discrepancy leads to simple attacks for natural schemes proven secure in the random
oracle model (see [17]).

Consequently, Coron et al. [17] adapted the indifferentiability framework of Maurer et al. [28] to define formally what
it means to build a secure VIL-RO from smaller (FIL) idealized components (such as an ideal compression function or ideal
cipher). Not surprisingly, they showed that the strengthened MD transform does not meet this notion of security, even when
applied to an ideal compression function. Although [17] (and several subsequent works [2, 3, 27]) presented straightforward
fixes to the MD paradigm that yield hash functions indifferentiable from a VIL-RO, we are still faced with a large disconnect
between theory and practice. Namely, many applications only enjoy proofs of security when the hash function is modeled
as a “monolithic” VIL-RO, while in practice these applications use existing MD-based hash functions which (as we just
argued) are demonstrably differentiable from a monolithic RO (even when compression functions are ideal). Yet despite this
gap, no practical attacks on the MD-based design (like the extension attack) seem to apply for these important applications.

“SALVAGING” MERKLE-DAMGÅRD. The situation leads us to a question not addressed prior to this work: given a current
scheme that employs an MD-based hash function H and yet does not seem vulnerable to extension-type attacks, can we
prove its security (at least if the compression function f is assumed to be ideal)? The most direct way to answer this question
would be to re-prove, from scratch, the security of a given application when an MD-based hash function is used. Instead,
we take a more modular approach consisting of the following steps:

(1) Identify a natural (idealized) property X that is satisfied by a random oracle.

(2) Argue that X suffices for proving the security of a given (class of) application(s), originally proved secure when H is
modeled as a monolithic RO.

(3) Argue that the strengthened MD-transform satisfies X , as long as its compression function f satisfies some related
property Y .

(4) Conclude that, as long as the compression function f satisfies Y , the given (class of) application(s) is secure with an
MD-based hash function H .

Although this approach might not be applicable to all scenarios, when it is applicable it has several obvious advantages over
direct proofs. First, it supports proofs that are easier to derive, understand, and verify. Second, proving that a hash function
satisfying X alone is enough (as opposed to being like a “full-blown” RO) for a given application elucidates more precisely
which (idealized) property of the hash function is essential for security. Third, if the propertyX is natural, it is interesting to
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study in its own right. Indeed, we will show several applications of our notions which are quite general and not necessarily
motivated by salvaging the MD transform. Finally, due to point (4), it suffices to argue/assume “only” that the compression
function f — a smaller and much-better-studied object — satisfies some related property Y . Typically, if Y corresponds to
being FIL-RO, it would be easy to conclude that the MD-transform satisfies X , which will already be quite useful. In our
examples, however, we will be able to derive this conclusion for considerably weaker properties Y , which corresponds to
a wider class of “admissible” compression functions f . For example, most in-use compression functions f are built from
a block cipher E via the Davies-Meyer transform: f(c, x) = Ex(c) ⊕ c. It was shown in [17] that this construction is not
indifferentiable from a FIL-RO, even if E is assumed to be an ideal cipher. Despite this, in our examples we will be able
to argue, in the ideal cipher model, that the Davies-Meyer compression function satisfies the property Y sufficient to prove
that the iterated hash function H satisfies X . As a result, the resulting applications we consider are provably secure with
existing block cipher-based hash functions (in the ideal-cipher model).

So which properties X (and Y )? We introduce two: preimage awareness and indifferentiability from a public-use
random oracle. For preimage awareness, the corresponding property Y will also be preimage awareness, which means that
the Merkle-Damgård transform is property-preserving for this new notion. For public-use random oracles, the property
Y will be even weaker than public-use random oracles, which not only implies property-preservation, but will allow us
to justify the use of the Davies-Meyer compression function (which is differentiable from a public-use random oracle, but
satisfies this weaker notion). We detail these new notions below.

1.1 Preimage Aware Functions
A function being Preimage Aware (PrA) means, informally, that if an attacker can output a range point y and subsequently
produce a preimage x for y, then in fact the attacker “already knew” x when it output y. To get an idea of how we
formalize this, consider a hash function H built using some ideal primitive P (which could model a compression function
or a block cipher). Then the PrA security experiment is loosely defined as follows. An attacker, using oracle access to
P , first outputs a range point y. Then a deterministic algorithm called an extractor is run on y and the transcript of the
attacker’s interaction with P (the queries and their associated responses); it outputs a domain point x′. The attacker wins
if it can (using further access to P ) output a domain point x 6= x′ such that H(x) = y. Intuitively, this definition captures
that producing a preimage-image pair under H requires actually evaluating H on the preimage in a manner that reveals
it to anyone observing the attacker’s oracle calls. Our notion is very similar in spirit to the notion of plaintext awareness
for encryption schemes [4, 1] and the notion of extractability for perfectly one-way functions [11, 12]; we discuss these
similarities in more detail, below.

We notice that random oracles are clearly PrA. In fact, preimage awareness precisely captures the spirit behind a
common proof technique used in the RO model, often referred to as extractability, making it an interesting notion to
consider. We also show that preimage awareness is a natural strengthening of collision-resistance (CR). That preimage
awareness lies between being a RO and CR turns out to be quite useful: informally, a PrA function is “strong enough” to be
a good replacement for a RO in some applications (where CR is insufficient), and yet the notion of preimage awareness is
“weak enough” to be preserved by strengthened MD (like CR).

MERKLE-DAMGÅRD PRESERVES PREIMAGE AWARENESS. We show that the (strengthened) MD transform preserves
preimage awareness, in stark contrast to the fact that it does not preserve indifferentiability from a RO [17]. Thus, to
design a variable-input-length preimage aware (VIL-PrA) function, it is sufficient to construct a FIL-PrA function, or, even
better, argue that existing compression functions are PrA, even when they are not necessarily (indifferentiable from) random
oracles. The proof of this is somewhat similar to (but more involved than) the corresponding proof that MD preserves
collision-resistance.

APPLICATION: DOMAIN EXTENSION FOR ROS. A PrA hash function is exactly what is needed to argue secure domain
extension of a random oracle. More precisely, assuming h is a FIL-RO, and H is a VIL-PrA hash function (whose output
length matches that of the input of h), then F (x) = h(H(x)) is indifferentiable from a VIL-RO. Ironically, when H is just
CR, the above construction of F was used by [17] to argue that CR functions are not sufficient for domain extension of a
RO. Thus, the notion of PrA can be viewed simultaneously as a non-trivial strengthening of CR, which makes such domain
extension work, while also a non-trivial weakening of RO, which makes it more readily achieved.

RECIPE FOR HASH DESIGN. The previous two properties of PrA functions give a general recipe for how to construct hash
functions suitable for modeling as a VIL-RO. First, invest as must as needed to construct a strong FIL function h (i.e. one
suitable for modeling as a FIL-RO.) Even if h is not particularly efficient, this is perhaps acceptable because it will only be
called once per message (on a short input). Second, specify an efficient construction of a VIL-PrA hash function built from
some cryptographic primitive P . But for this we use the fact that MD is PrA-preserving; hence, it is sufficient to focus on
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constructing a FIL-PrA compression function f from P , and this latter task could be much easier than building from P an
object indifferentiable from a FIL-RO.

Adopting our more modular point-of-view, several existing hash constructions in the literature [17, 2, 3, 32, 21] enjoy
an easier analysis. For example, the NMAC construction of [17] becomes an example of our approach, where the outer h
and the inner f are both implemented to be like (independent) FIL-ROs. In [17] it is argued directly, via a difficult and long
argument, that the inner f can be replaced by the Davies-Meyer construction (in the ideal-cipher model), despite the fact
that Davies-Meyer is not itself indifferentiable from a FIL-RO. We can instead just prove that Davies-Meyer is PrA (which
requires only a few lines due to the existing proofs of CR [7, 37]) and then conclude.

LIFTING FROM CR TO PrA. Another important aspect of preimage awareness is that, for many important constructions,
it gives a much more satisfactory security target than collision resistance. Indeed, there exists a large body of work [31, 7,
25, 26, 34, 35, 33, 21] building FIL-CR hash functions from idealized blockciphers and permutations. On the one hand, it
seems very hard to prove the security of such schemes in the standard model, since there exists a black-box separation [36]
between collision-resistant hash functions and standard-model block ciphers (which are equivalent to one-way functions).
On the other hand, it seems quite unsatisfactory that one starts with such a “powerful” idealized primitive (say, an ideal
cipher), only to end up with a much “weaker” standard model guarantee of collision resistance (which is also insufficient
for many applications of hash functions). The notion of preimage awareness provides a useful solution to this predicament.
We show that all the FIL constructions proven CR in [7, 35, 33, 21] are provably PrA. This is interesting in its own right, but
also because one can now use these practical constructions within our aforementioned recipe for hash design. We believe
(but offer no proof) that most other CR ideal-primitive-based functions, e.g. [25, 26, 34], are also PrA.

We note that it is also possible to prove that a VIL-CR hash function is PrA even if the underlying compression function
is not. Of course, in this case we must step outside of our modular approach (point (4), in particular). As an example, in
Appendix C we show that the Group-2 blockcipher-based compression functions from [7, 31] (which are not even CR) do
yield a PrA-hash when iterated.

OTHER APPLICATIONS/CONNECTIONS? We believe that PrA functions have many more applications than the ones so far
mentioned. As one example, PrA functions seem potentially useful for achieving straight-line extractability for various
primitives, such as commitments or zero-knowledge proofs. These, in turn, could be useful in other contexts. As already
mentioned, preimage awareness seems to be quite related to the notion of plaintext awareness in public-key encryption
schemes [5, 1], and it would be interesting to formalize this potential connection. PrA functions are also very related to so
called extractable hash functions (EXT) recently introduced by Canetti and Dakdouk [11, 12]. However, there are some
important differences between EXT and PrA, which appear to make our respective results inapplicable to each other: (a)
EXT functions are defined in the standard model, while PrA functions in an idealized model; (b) EXT functions are keyed
(making them quite different from in-use hash functions), while PrA functions can be keyed or unkeyed; (c) EXT functions
do not permit the attacker to sample any “unextractable” image y, while PrA functions only exclude images y which could
be later “useful” to the attacker; (d) EXT functions allow the extractor to depend on the attacker, while PrA functions insist
on a universal extractor.

1.2 Public-Use Random Oracles
Next, we consider applications that never evaluate a hash function on secret data (i.e. data that must be hidden from ad-
versaries). This means that whenever the hash function is evaluated on some input x by an honest party C, it is safe to
immediately give x to the attacker A. We model this by formalizing the notion of a public-use random oracle (pub-RO);
such a RO can be queried by adversaries to reveal all so-far-queried messages. This model was independently considered,
under a different motivation, by Yoneyama et al. [39] using the name leaky random oracle. Both of our papers observe
that this weakening of the RO model is actually enough to argue security of many (but, certainly, not all) classical schemes
analyzed in the random oracle model. In particular, a vast majority of digital signature schemes, including Full Domain
Hash (FDH) [4], probabilistic FDH [16], Fiat-Shamir [24], BLS [10], PSS [6] and many others, are easily seen secure in
the pub-RO model. For example, in the FDH signature scheme [4], the RO H is only applied to the message m supplied by
the attacker, to ensure that the attacker cannot invert the value H(m) (despite choosing m). Other applications secure in the
pub-RO model include several identity-based encryption schemes [9, 8], where the random oracle is only used to hash the
user identity, which is public.

We go on to formalize this weakening of ROs in the indifferentiability framework of Maurer et al. [28]. This allows us
to define what it means for a hash function H (utilizing some ideal primitive P ) to be indifferentiable from a public-use
random oracle. We call such a hash function a public pseudorandom oracle (pub-PRO).

MERKLE-DAMGÅRD CONSTRUCTS PUBLIC-USE ROS. As our main technical result here, we argue that the MD transform
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preserves indifferentiability from a pub-RO, even though it does not preserve general indifferentiability from a (regular) RO.
To get some intuition about this fact, it is instructive to examine the extension attack mentioned earlier, which was the root
of the problem with MD for general indifferentiability. There one worried about adversaries being able to infer the hash
output on a message with unknown prefix. In the public-use setting, this is not an issue at all: the security of a public-use
application could never be compromised by extension attacks since all messages are known by the attacker.

PUBLIC-USE COMPRESSION FUNCTIONS. Our modular approach allows us to dig deeper, investigating the suitability
of various compression function designs for use within MD to build hash functions that enjoy indifferentiability from a
pub-RO. It is clear that a FIL RO or FIL pub-RO would suffice. Unfortunately, widely-used compression functions are
not suitable for modeling as even pub-ROs, because they are based on block ciphers. (Briefly, that ciphers are invertible
obviates hope of such compression functions being indifferentiable from a pub-RO.) This is doubly unfortunate since widely
used hash functions, such as the SHA family, are constructed using such compression functions. We therefore formalize a
further-restricted variant of a pub-RO for compression functions: a public-use guarded RO. Informally, this is an FIL RO
that is used by honest parties only within the confines of the MD transform. (Dishonest parties can use the RO in arbitrary
manners.) We go on to strengthen our preservation result regarding MD above to show that MD applied to any (object
indifferentiable from a) public-use guarded RO results in a full public-use RO. Further, we go on to show that all of the
PGV type-2 compression functions applied to an ideal cipher are indifferentiable from public-use guarded ROs. Note that
this approach is still entirely modular, allowing independent (and simpler) analyses of compression function and transform.

DISCUSSION. Our results, combined with the composition theorem of [28], give a plethora of new, important provable
security results. Namely, for any scheme only proven secure in the RO model and whose security is unaffected by public
dissemination of hashed messages, our results give the first ever proofs of security (in the ideal cipher model) when using
hash functions such as SHA-2. Since SHA-2 (and even SHA-1) will be in use for many years to come, these positive results
importantly help explain when such hash functions are secure to use.

2 Preliminaries
When S is a set, x←$ S means to sample uniformly from S and assign the resultant value to x. We write D+ for the set
({0, 1}d)+. We write x←$ A to denote running algorithm A with fresh random coins and assigning its output to x. For
M ∈ {0, 1}∗, we write M1, . . . ,M`

d←M to denote (1) let ` = b|M |/dc, (2) let Mi be assigned the ith d-bit substring of
M for 1 ≤ i ≤ `− 1, and (3) let M` be the last |M | mod d bits of M if |M | mod d 6= 0 and let M` be the last d bits of M
otherwise. For set S, we write S ∪← s to denote S ← S ∪ {s}.

For any algorithm f that accepts inputs from Dom ⊆ {0, 1}∗, we write Time(f,m) to mean the maximum time to run
f(x) for any input x ∈ Dom such that |x| ≤ m. When f is a function with domain Dom ⊆ {0, 1}∗, we define Time(f,m)
to be the minimum, over all programs Tf that implement the mapping f , of the size of Tf plus the worst case running time
of Tf over all elements x ∈ Dom such that |x| ≤ m. In either case, when we suppress the second argument, writing just
Time(f), we mean to maximize over all strings in the domain. Running times are relative to some fixed underlying RAM
model of computation, which we do not specify here.

As a small abuse of standard notation, we writeO(X) to hide absolute constants that are dominated by the argument X .

INTERACTIVE TMS. An Interactive Turing Machine (ITM) accepts inputs via an input tape, performs some local compu-
tation using internal state that persists across invocations, and replies via an output tape. An ITM might implement various
distinct functionalities f1, f2, . . . that are to be exposed to callers. An interface of an ITM specifies that writing one of a
certain subset of possible strings on the input tape invokes a particular functionality. For example, writing i ‖ s (where the
number i is suitably encoded as a string) results in executing fi on s. When we write P = (f1, f2, . . .), this means that
ITM P implements the functionalities f1, f2, . . . using some fixed interface semantics. We write P = (f1, f2, . . .) for an
ITM implementing f1, f2, · · · . When functionalities fi, fj (say) do not share state, we say that fi and fj are independent
functionalities; these will be explicitly noted. We will (slightly abusing notation) write fi to refer to accessing an ITM via
interface fi.

We sometimes distinguish between private interfaces and public interfaces (following terminology from [28]), writing
P = ((f1, f2, . . .), (f ′1, f

′
2, . . .)) to denote the ITM P that has private interfaces f1, f2, . . . and public interfaces f ′1, f

′
2, . . ..

(Looking ahead, private interfaces will be used exclusively by honest parties while public interfaces will be used by adver-
saries and simulators.) We writeMP if an ITMM has access to the private interfaces of P and writeMPpub ifM has access
only to the public interfaces of P . If P does not have distinguished public and private interfaces, then the public interfaces
are just the private interfaces. We write MP1,P2,... to denote M having access to multiple (independent) ITMs P1, P2, . . ..

6



Implicitly this means one defines a single ITM P = (P1, P2, . . .) with interfaces for the independent functionalities and
then give M unfettered access to P .

IDEAL PRIMITIVES. We sometimes use the moniker ideal primitive to refer to an ITM; this is to emphasize the use of an
ITM as building block for some larger functionality. For non-empty sets Dom,Rng , a random oracle is the ideal primitive
FDom,Rng with a single interface that consistently maps inputs in Dom to range points randomly chosen from Rng . When
Dom = {0, 1}d and Rng = {0, 1}r for some d, r we write Fd,n. We write F when Dom and Rng are clear from context.
Let κ, n > 0 be integers. A block cipher is a map E : {0, 1}κ × {0, 1}n → {0, 1}n such that E(k, ·) is a permutation for
all k ∈ {0, 1}κ. Let BC(κ, n) be the set of all such block ciphers. An ideal cipher is the ideal primitive Cκ,n = (E,D)
with two interfaces implementing a cipher chosen randomly from BCκ,n and its inverse, respectively. We write C when κ
and n are clear from context. (Note that in both cases all interfaces are private, and so accessed both by honest parties and
adversaries alike.)

HASH FUNCTIONS AND MERKLE-DAMGÅRD. Let Dom ⊆ {0, 1}∗ be a non-empty set of strings, and Rng be a non-empty
set (typically {0, 1}n for some integer n > 0). A hash function is an algorithm that computes a map H : Dom → Rng .
We will be concerned with hash functions that use (oracle access to) an underlying ideal primitive P . We write HP

when we want to make this dependency explicit. If P has both private and public interfaces, then we use the convention
that HP means H uses the first private interface. When the primitive is clear from context, we will sometimes suppress
reference to it. When computing Time(H, ·), calls to P are unit cost. Similar to our definition of Time(H,m), we write
NumQueries(H,m) for the minimum, over all programs TH that compute H , of the maximum number of queries to P
required to compute HP (x) for any x ∈ Dom such that |x| ≤ m.

For integers n, d > 0, we call a hash function fP : {0, 1}n×{0, 1}d → {0, 1}n a compression function (using idealized
primitive P ). Let v0 = IV be a fixed n-bit string. Then the iteration of fP , denoted by Itr[fP ], is the algorithm1 that on
input M ∈ D+ first sets m1, · · · ,m`

d←M , then computes vi ← fP (vi−1,mi) iteratively for each i ∈ [1 .. `], and returns
v`. Let sfpad : {0, 1}∗ → D+ be a suffix-free padding function which returns a suffix-free encoding of M . A suffix-free
encoding has the property that for any M,M ′ such that |M | < |M ′| the string returned by sfpad(M) is not a suffix of
sfpad(M ′). (For example, pad an appropriate amount and append an encoding of the length of the message.) Let SMD[fP ]
be the algorithm that on input M runs sfpad(M) and then applies Itr[fP ] to the result.

COLLISION RESISTANCE OF HASH FUNCTIONS. Fix sets Dom ⊆ {0, 1}∗ and Rng and let A be an adversary that outputs
a pair of strings x, x′ ∈ Dom. Let P be an ideal primitive. To hash function HP : Dom → Rng and adversary A we
associate the advantage relation

Advcr
H,P (A) = Pr

[
(x, x′)←$ AP : HP (x) = HP (x′) ∧ x 6= x′

]
where the probability is over the coins used by A and primitive P .

THE INDIFFERENTIABILITY FRAMEWORK. We make extensive use of the indifferentiability framework of Maurer, Renner,
and Holenstein [28], however we follow more closely the formalizations of it appearing in [17, 2, 3]. Let H be some
cryptographic scheme (e.g. a hash function) that utilizes an ideal primitive P . Let Q be a second ideal primitive. A
simulator, typically denoted by S, is just an ITM revealing some number of interfaces. Informally, we say that H is
indifferentiable from Q if there exists an efficient simulator S with an interface for each interface of Ppub such that for all
“reasonable” adversaries A outputing a bit it is the case that

Pr
[
Expindiff-1

H,P,A ⇒ 1
]
− Pr

[
Expindiff-0

Q,S,A ⇒ 1
]

is “small” where the probabilities are taken over the coins used the experiments shown in Figure 1. In the indiff-1 experi-
ment H uses access to the (first) private interface of P while the adversary A has access to the public interfaces of P . In the
indiff-0 experiment the adversary has access to Q’s private interfaces while S has access to Q’s public interfaces. Note that
a crucial aspect of the framework is that the simulator, while able to query Qpub itself, does not get to see the queries made
by the adversary to Qpriv.

We shall formalize several security notions, based on the reference primitive Q that the scheme is compared against
(e.g. see below). A key benefit of using indifferentiability is the composition theorem detailed in [28], which states that
(intuitively) one can securely use HP instead of Q in applications.

PSEUDORANDOM ORACLES. Fix non-empty sets Dom,Rng . Let P be an ideal primitive and let FDom,Rng be a random

1This construction is sometimes referred to as the Merkle-Damgård transform, seemingly due to [29, 18], however its use significantly predates these
papers. See e.g. [20].
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Expindiff-1
H,P,A

b← AH
P ,Ppub

Ret b

Expindiff-0
Q,S,A

b← AQ,S
Qpub

Ret b

Figure 1: Experiments used in the indifferentiability framework for scheme H , adversary A, and ideal primitives P and Q.

Exppra
H,P, E,A

x←$ AP,Ex

z ← HP (x)
Ret (x 6= V[z] ∧ Q[z] = 1)

oracle P(m):
c← P (m)
α← α ‖ (m, c)
Ret c

oracle Ex(z):
Q[z]← 1
V[z]← E(z, α)
Ret V[z]

Figure 2: (Left) Experiment for defining preimage awareness (PrA) for hash function H , extractor E and adversary A.
(Center,Right) Description of the oracles used in the PrA experiment. The (initially empty) advice string α, the (initially
empty) array V, and the (initially everywhere ⊥) array Q are global.

oracle. We define the pro advantage of an adversary A against a function HP mapping from Dom to Rng by

Advpro
H,P,S(A) = Pr

[
Expindiff-1

H,P,A ⇒ 1
]
− Pr

[
Expindiff-0

F,S,A ⇒ 1
]
.

3 Preimage Awareness
Suppose H is a hash function built from an (ideal) primitive P . We seek to, roughly speaking, capture a notion which states
that an adversary who knows a “later useful” output z of HP must “already know” (be aware of) a particular corresponding
preimage x. We can capture the spirit of this notion using a deterministic algorithm called an extractor. Consider the
following experiment. An adversaryA outputs a range point z, possibly after interacting with an oracle for P . The extractor
is then run on two inputs: z and an advice string α. The latter contains a description of all of A’s queries so far to P and
the corresponding responses. The extractor outputs a value x in the domain of H . Then A continues and attempts to output
a preimage x′ such that HP (x′) = z but x 6= x′. Informally speaking, if no adversary can do so with high probability,
then we consider H to be preimage aware. We now turn to formalizing a notion based on this intuition, but which allows
multiple, adaptive attempts by the adversary to fool the extractor.

Fix sets Dom ⊆ {0, 1}∗ and Rng , and let A be an adversary that outputs a string x ∈ Dom. In the preimage aware-
ness (pra) experiment defined in Figure 2, the adversary is provided with two oracles. First, an oracle P that provides access
to the (ideal) primitive P , but which also records all the queries and their responses in an advice string α. (We assume
that when P is providing an interface to multiple primitives, it is clear from the advice string to which primitive each query
was made.) Second, an extraction oracle Ex. The extraction oracle provides an interface to an extractor E , which is a
deterministic algorithm that takes as input a point z ∈ Rng and the advice string α, and returns a point in Dom ∪ {⊥}.

For hash function H , adversary A, and extractor E , we define the advantage relation

Advpra
H,P, E(A) = Pr

[
Exppra

H,P, E,A ⇒ true
]

where the probabilities are over the coins used in running the experiments. We will assume that an adversary never asks
a query outside of the domain of the queried oracle. We use the convention that the running time of the adversary A does
not include the time to answer its queries (i.e. queries are unit cost). When there exists an efficient extractor E such that
Advpra

H,P, E(A) is small for all reasonable adversaries A, we say that the hash function H is preimage aware (PrA). (Here
“efficient”, “small”, and “reasonable” are meant informally.)

REMARKS. As mentioned, the above formalization allows multiple, adaptive challenge queries to the extraction oracle.
This notion turned out to be most convenient in applications. One can instead restrict the above notion to a single query
(or to not allow adaptivity) resulting in a definition with slightly simpler mechanics. In Appendix D we discuss such an
alternative formulation of preimage awareness.
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3.1 Relationships between PrA, CR, and Random Oracles
Our new notion preimage awareness is an interesting middle point in the continuum between objects that are CR (on one end)
and those that are random oracles (on the other). More formally speaking, we will show momentarily that a PrA function is
also CR, and that a random oracle is PrA. The second point is fairly obvious, but the first is quite interesting. In particular,
we will see in Section 4 that a PrA function is a secure domain extender for fixed-input-length random oracles, unlike CR
functions [17]. (This already suggests that CR does not necessarily imply PrA.). Preimage awareness is consequently a very
useful strengthening of CR, not to mention that it provides rigor to the folklore intuition that CR functions are insufficient
for this application due to a lack of extractability. What is more, the MD transform preserves preimage awareness. This is
in stark contrast to the fact that MD (even if one uses strengthening) does not preserve indifferentiability from a random
oracle (i.e. PRO-Pr)

Let us begin with the formal results. One can view preimage awareness as a strengthening of collision resistance in
the following way. Say that queries to P allow the adversary to compute distinct domain points x, x′ such that HP (x) =
HP (x′) = z. The adversary can make an extraction query on z, and then succeed in the PrA game by returning whichever
of x and x′ is not extracted from (z, α) by the extractor.

Theorem 3.1 [PrA⇒CR] Let P be an ideal primitive and HP : Dom → Rng be a hash function. Let E be an arbitrary
extractor. Let A be a CR adversary against H asking a total of qp queries to P . Then there exists a PrA adversary B such
that

Advcr
H(A) ≤ Advpra

H,P, E(B) .

B runs in time that of A plus O(qp) + Time(H), asks at most qp primitive queries, and one extraction query. �

Proof: The PrA adversary B starts by running A, using its oracle P to answer A’s oracle queries. Eventually, A halts with
output of two messages x0, x1. When it does, let B compute z ← HP (x0). Then let B make the single query x′ ← Ex(z).
If x′ = x0 then B outputs x1, otherwise it outputs x0.

On the other hand, it is not hard to see that a RO is a PrA function. The following theorem captures this, and its proof is in
Appendix A.

Theorem 3.2 [ROs are PrA.] Fix Dom ⊆ {0, 1}∗ and n > 0, let P = RFDom,n Then the hash function HP (x) = P (x) is
preimage-aware. Specifically, there exists an extractor E such that for all adversaries A making at most qe queries to P and
qe extraction queries

Advpra
H,E(A) ≤ qeqp

2n
+
q2
p

2n
.

Moreover, the running time of the extractor is O(q) . �

3.2 Weak Preimage Awareness
Our proofs of preimage-awareness will be aided by considering a related notion that we call weak preimage awareness
(WPrA) We define WPrA simply by modifying the pra experiment of Figure 2 so that the extractor, when queried on an
image z, can return a set of potential preimages (instead of just a single preimage). The adversary wins if it can output a
preimage x such that H(x) = z yet x is not in the set returned by the extractor. While this weakening of PrA no longer
implies CR, it will be useful for evaluating functions already proven CR.

Fix sets Dom and Rng . A multi-point extractor E+ is a deterministic algorithm that takes input a point z ∈ Rng and
outputs a set X ⊆ Dom. Formally, let Expwpra

H,P, E+,A work exactly like Exppra
H,P, E+,A except that the last line of the pra

experiment (see Figure 2) is changed to “Ret (x /∈ V[z]∧ Q[z] 6= ⊥)”. Then we associate to any hash function H , adversary
A, and set extractor E the advantage relation

Advwpra
H,P,E(A) = Pr

[
Expwpra

H,P, E,A ⇒ true
]
.

We say that a multi-point extractor E+ is honest if for any z ∈ Rng and advice string α it is the case that

Pr
[
∀x ∈ X . HP (x) = z : X ← E+(z, α)

]
= 1

where the probability is taken over the coins used by P . We will sometimes restrict attention to honest multi-point extractors.
Note that this is not, in general, without loss, since E does not have oracle access to P . However it will be easy to verify
that extractors we construct are honest.
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We can simplify some of our proofs with the following easy, but useful, results. First, WPrA when allowing only
a single query (denoted 1-WPrA) implies WPrA with many queries. The proof (omitted) is by straightforward hybrid
argument. Second, and more interestingly, we give a lemma showing that any function that is both CR and WPrA is also
PrA. These lemmas greatly simplify some of proofs, because together they reduce the task of showing a CR function fully
preimage-aware to showing that it meets the WPrA definition for a single extraction query.

Lemma 3.3 [1-WPrA ⇒ WPrA] Let P be an ideal primitive and HP : Dom → Rng be a hash function. Let E+ be a
multi-point extractor. Let A be an adversary making at most qe extraction queries and running in time t. Then there exists
an PrA adversary B, asking at most one extraction query, such that

Advwpra
H,P, E+(A) ≤ qe ·Advwpra

H,P, E+(B) .

B runs in time at most t+O(qe · Time(E+)) and makes the same number of P queries queries as A. �

Lemma 3.4 [WPrA + CR ⇒ PrA] Let P be an ideal primitive and HP : Dom → Rng be a hash function. Let E+ be
an arbitrary honest multi-point extractor. Then there exists an extractor E such that for any pra-adversary A making qe
extraction queries there exists wpra-adversary B and cr-adversary C such that

Advpra
H,P, E(A) ≤ Advwpra

H,P, E+(B) + Advcr
H,P (C) .

B makes the same number of queries as A and runs in time that of A plus O(qe). C asks qp queries and runs in time
t+ qe ·Time(E+). E runs in the same time as E+. �

Proof: Let E be the extractor that, on input (z, α) runs X ← E+(z, α) and outputs the first element in X . Let B be a WPA-
adversary that works as follows. It runs A, just forwarding oracle queries to P and E+, returning P -responses directly to A
and simulating E using the responses of E+. Let B output whatever A does.

In the event space defined by Exppra
H,P, E,A let Coll denote the event that E+ outputs a set of size larger than one. Then its

clear that Pr[Coll] ≤ Advcr
H(C) for the natural adversary C because E+ is honest. Note that until event Coll occurs the

execution of Exppra
H,P, E,A is identical that of Exppra

H,P, E+,B . Therefore,

Pr
[
Exppra

H,P, E,A ⇒ true
]
≤ Pr

[
Exppra

H,P, E+,B ⇒ true
]

+ Pr [ Coll ]

implying the theorem statement.

4 Merkle-Damgård as an FIL-RO domain extender
In this section we develop a main result: that an MD-hash is a good domain extender for an FIL random oracle. We do this
in two steps. First, in Theorem 4.1 we prove a generic result that any PrA function is a good domain extender for an FIL
random oracle. This is interesting in itself, because until now no property weaker than being a PRO is known to be sufficient
for extending the domain of an FIL-RO; in particular, CR is not sufficient [17]. In the second step, Theorem 4.2, we prove
that Merkle-Damgård (with strengthening) yields a VIL-PrA hash function when the underlying compression function is a
FIL-PrA function.

Theorem 4.1 [RO domain extension via PrA] Let P be an ideal primitive and HP : Dom → Rng be a hash function.
Let R be an ideal primitive with two interfaces that implements independent functionalities P andR = RFRng,Rng . Define
FR(M) = R(HP (M)). Let F = RFDom,Rng . Let E be an arbitrary extractor for H . Then there exists a simulator
S = (S1,S2) such that for any PRO adversary A making at most (q0, q1, q2) queries to its three oracle interfaces, there
exists a PrA adversary B such that

Advpro
F,R,S(A) ≤ Advpra

H,P, E(B) .

Simulator S runs in time O(q1 + q2 ·Time(E)). Let `max the the length (in bits) of the longest query made by A to it’s first
oracle. Adversary B runs in time that of A plus O(q0 ·Time(H, `max) + q1 + q2), makes q1 + q0 ·NumQueries(H, `max)
primitive queries, q2 extraction queries, and outputs a preimage of length at most `max. �

Proof: Let E be an arbitrary extractor for H . Then S = (S1,S2) works as follows. It maintains an internal advice string
α (initially empty) that will consist of pairs (u, v) corresponding to A’s queries to P (via S1). When A queries u to S1 the
simulator simulates u ← P (v) appropriately, sets α ← α ‖ (u, v), and returns v. For a query Y to S2, the simulator runs
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X ← E(Y, α). If X = ⊥ then the simulator returns a random point. Otherwise it queries Z ← F(X) and returns Z to the
adversary.

Consider the experiments of the PRO definition, that is A interacting with oracle interfaces (O0,O1,O2) = (F, P,R) or
(O0,O1,O2) = (F ,S1,S2). Informally, there exist only a few events that adversary A can cause that force the two sets of
oracles to behave differently. These are:

(i) if A makes a query O2(Y ) and the extractor outputs ⊥ when run on E(Y, α). Later A queries O0(X) such that
HP (X) = Y ;

(ii) if A first makes a query O0(X) with Y = HP (X) and later A queries O2(Y ), yet E(Y, α) outputs a value that does
not equal X;

(iii) if A first makes a query O2(Y ), the extractor outputs a point X , and later A queries O0(X ′) such that X 6= X ′ but
HP (X ′) = Y ; or

(iv) if A queries O0(X) and O0(X ′) such that X 6= X ′ but HP (X) = HP (X ′).

Furthermore, each case implies that A has forced a situation that leads to contradicting the preimage awareness of H .

To formalize these observations, we utilize the five games and adversary B shown in Figure 3 and Figure 4. We will justify
that

Advpro
F,S(A) = Pr

[
AR0 ⇒ 1

]
− Pr

[
AI0 ⇒ 1

]
(1)

= Pr
[
AR1 ⇒ 1

]
− Pr

[
AI0 ⇒ 1

]
(2)

= Pr
[
AG0 ⇒ 1

]
− Pr

[
AG1 ⇒ 1

]
(3)

≤ Pr
[
AG1 sets bad

]
(4)

= Pr
[
AG2 sets bad

]
(5)

= Advpra
H,P,E(B) . (6)

Game R0 implements the oracles (F, P,R) using a table R to simulate the random oracle R. Note that the simulation is
such that none of the oracle procedures query each other (unlike the obvious implementation of F, P,R). Included in R0
is some extra “book-keeping” code, such as a table YtoX tracking mappings between range points under H and preimages,
usage of the extractor in handlingO2 queries, etc. This extra code will be useful in future games, but in R0 it does not affect
the computation of responses to queries by A. Thus, Pr[Expindiff-1

F,R,A ⇒ 1] = Pr[AR0 ⇒ 1].

Game R1 implements the same functionality as R0, but using a different way of simulating R. Specifically, the table R is
relegated to only handle points Y that are queried to O2 and for which the extractor E outputs bottom. These table entries
are only later potentialy used in the handling of a O0 query. (Note that repeat queries to O2 are pointless, and therefore
disallowed.) Other points are handled by a new table F in exactly the same manner as done before in game R0. Thus
Pr[AR0 ⇒ 1] = Pr[AR1 ⇒ 1].

Game G0 (boxed statements included) is the same as R1 except that we now index F with preimages of H associated to
points Y . To ensure consistency of the simulation with R1, the table YtoX is used to keep track of whatX,Y pairs have been
seen thus far. If ever there are are two values X associated to a single Y value, then F is indexed via the first encountered X
used. This provides behavior consistent with game R1. Thus, Pr[AR1 ⇒ 1] = Pr[AG0 ⇒ 1]

Game I1 implements the oracles (F ,S1,S2) using a table F to simulate the random oracle F . Note that the simulation is
such that none of the oracle procedures query each other (unlike the obvious implementation of F ,S1,S2). Like in R0 there
is extra book-keeping code that does not affect responses. Thus, Pr[Expindiff-0

F,S,A ⇒ 1] = Pr[AI1 ⇒ 1].

Game G1 (boxed statements excluded) is the same as I1 except for the setting of bad and replacing Z with R[Y ] inO2. Both
do not affect query responses because the boxed statements are omitted. Thus, Pr[AI1 ⇒ 1] = Pr[AG1 ⇒ 1]. We have so
far justified Equations (1), (2), and (3). Since G0 and G1 are identical-until-bad, we can apply the fundamental lemma of
game-playing [2] to justify Equation (4).

In game G1 the setting of bad does not affect query responses. We therefore defer the setting of bad until Finalize in game
G2. To do so, we record a transcript τ of information related to O0 and O2 queries. We also replace the setting of R in O2

with the setting of a variable Z. Each entry records which oracle was queried along with a domain point X (or ⊥) and a
range point Y (in O0 this is set to ⊥ because we will wait until Finalize to compute it). Procedure Finalize iterates over
the resultant transcript, computing the missing Y values, filling out the tables YtoX and R, and determining if bad is set.
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procedure O0(X): Game R0

Y ← HP (X)
YtoX[Y ]← X

If R[Y ] 6= ⊥ then Ret R[Y ]
Ret R[Y ]←$ Rng

procedure O1(u):

v ← P (u) ; α← α ‖ (u, v) ; Ret v

procedure O2(Y ):

X ← E(Y, α)
YtoX[Y ]← X

If R[Y ] 6= ⊥ then Ret R[Y ]
Ret R[Y ]←$ Rng

procedure O0(X): Game R1

Y ← HP (X)
If R[Y ] 6= ⊥ then Ret R[Y ]
YtoX[Y ]← X

If F[Y ] 6= ⊥ then Ret F[Y ]
Ret F[Y ]←$ Rng

procedure O1(u):

v ← P (u) ; α← α ‖ (u, v) ; Ret v

procedure O2(Y ):

X ← E(Y, α)
If X = ⊥ then Ret R[Y ]←$ Rng

YtoX[Y ]← X

If F[Y ] 6= ⊥ then Ret F[Y ]
Ret F[Y ]←$ Rng

procedure O0(X): Game I1

Y ← HP (X)
YtoX[Y ]← X

If F[X] 6= ⊥ then Ret F[X]
Ret F[X]←$ Rng

procedure O1(u):

v ← P (u) ; α← α ‖ (u, v) ; Ret v

procedure O2(Y ):

X ← E(Y, α)
If X = ⊥ then Ret Z←$ Rng

YtoX[Y ]← X

If F[X] 6= ⊥ then Ret F[X]
Ret F[X]←$ Rng

procedure O0(X): Games G0 G1

Y ← HP (X)

If R[Y ] 6= ⊥ then bad← true ; Ret R[Y ]

If YtoX[Y ] 6= ⊥ ∧ YtoX[Y ] 6= X then

bad← true ; Ret F[YtoX[Y ]]

YtoX[Y ]← X

If F[X] 6= ⊥ then Ret F[X]

Ret F[X]←$ Rng

procedure O1(u):

v ← P (u) ; α← α ‖ (u, v) ; Ret v

procedure O2(Y ):

X ← E(Y, α)

If X = ⊥ then Ret R[Y ]←$ Rng

If YtoX[Y ] 6= ⊥ ∧ YtoX[Y ] 6= X then

bad← true ; Ret F[YtoX[Y ]]

YtoX[Y ]← X

If F[X] 6= ⊥ then Ret F[X]

Ret F[X]←$ Rng

Figure 3: The five games R0, R1, I1, G0, and G1 used in the proof of Theorem 4.1. In each game, initially all tables are
everywhere ⊥.
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procedure O0(X): Game G2

i← i+ 1 ; τ ← τ ‖ (0, X,⊥)

If F[X] 6= ⊥ then Ret F[X]

Ret F[X]←$ Rng

procedure O1(u):

v ← P (u) ; α← α ‖ (u, v) ; Ret v

procedure O2(Y ):

X ← E(Y, α)

i← i+ 1 ; τ ← τ ‖ (2, X, Y )

If X = ⊥ then Ret Z←$ Rng

If F[X] 6= ⊥ then Ret F[X]

Ret F[X]←$ Rng

procedure Finalize(b):

(γ1, X1, Y1), . . . , (γi, Xi, Yi)← τ

For j = 1 to i do

If Yj = ⊥ then Yj ← HP (Xj)

If γj = 0 ∧ R[Yj ] 6= ⊥ then bad← true

If γj = 2 ∧Xj = ⊥ then R[Yj ]← 1

Else

If YtoX[Yj ] 6= ⊥ ∧ YtoX[Yj ] 6= Xj then

bad← true

YtoX[Yj ]← Xj

adversary BP,Ex:

Run AO0,O2,O3 , answering queries by:

query O0(u):

01 i← i+ 1 ; τ ← τ ‖ (0, X,⊥)

02 If F[X] 6= ⊥ then Ret F[X]

03 Ret F[X]←$ Rng

query O1(u):

10 Ret P(u)

query O2(Y ):

20 X ← Ex(Y )

21 i← i+ 1 ; τ ← τ ‖ (2, X, Y )

22 If X = ⊥ then Ret Z←$ Rng

26 If F[X] 6= ⊥ then Ret F[X]

27 Ret F[X]←$ Rng

When A halts with output b:

30 (γ1, X1, Y1), . . . , (γi, Xi, Yi)← τ

31 For j = 1 to i do

32 If Yj = ⊥ then Yj ← HP(Xj)

33 If γj = 0 ∧ R[Yj ] 6= ⊥ then Output Xj

34 If γj = 2 ∧Xj = ⊥ then R[Yj ]← 1

35 Else

36 If YtoX[Yj ] 6= ⊥ ∧ YtoX[Yj ] 6= Xj then

37 k ← Γ[Yj ]

38 If γj = 2 then Output Xk

39 If γk = 2 then Output Xj

40 X∗ ← Ex(Yj)

41 If X∗ = Xk then Output Xj

42 If X∗ = Xj then Output Xk

43 YtoX[Yj ]← Xj

44 Γ[Yj ]← j

Figure 4: The game G2 and adversary B used in the proof of Theorem 4.1. Initially i = 0 and all tables are everywhere ⊥.
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Procedure Finalize is written so that Pr
[
AG1 sets bad

]
= Pr

[
AG2 sets bad

]
, justifying (5).

We bound the probability of bad being set in game G2 by building a PrA adversary B against H . The adversary B is
detailed in Figure 4. It executes AG2, except that the ideal primitive P is replaced by queries to B’s primitive oracle P,
usage of E is replaced by queries to B’s extraction oracle Ex, and setting bad is replaced by outputing a domain point of H .
We will now finish by justifying Equation (6).

By construction setting bad in G2 corresponds to B outputting a non-bottom domain point. Thus we must justify that any
time B outputs a domain point, it wins in the PrA game. We do so via a case analysis:

• Line 33: This case corresponds to event (i) discussed above. The conditional on line 33 ensures that there exists a
previous transcript entry (γk, Xk, Yk) with k < j such that γk = 2 and Xk = ⊥. (This is because R[Yj ] is defined.)
But this implies that Ex was queried on Yk = Yj with return ⊥ and that HP (Xj) = Yj = Yk. Thus outputting Xj

causes B to win the PrA game.
• Line 38: This case corresponds to event (ii) discussed above. The conditional on line 36 implies that there exists a

k < j such that transcript entry (γk, Xk, Yk) was such that Yk = Yj but Xk 6= Xj . Since γj = 2, this means Xk

was first queried to O0 and then Yj = Yk was later queried to O2, but the query to Ex(Yk) did not output Xk. Thus
outputting Xk causes B to win the PrA game.

• Line 39: This case corresponds to event (iii) discussed above. This case is exactly like the last: the first query was
made toO2 on Yk, the query Ex(Yk) output a value Xk, and a later queryXj toO0 was such that HP (Xj) = Yj = Yk
yet Xj 6= Xk. Thus outputting Xj causes B to win the PrA game.

• Lines 41,42: These cases corresponds to event (iv) discussed above. Two queriesXk, Xj toO0 resulted inHP (Xj) =
Yj = Yk = HP (Xk), yetXk 6= Xj . The adversary queries Yj to the extraction oracle and outputs whichever ofXk, Xj

is not returned. This results in B winning the PrA game.

In all cases we see that B succeeds, justifying (2).

Theorem 4.1 shows that preimage awareness is a strong enough notion to provide secure domain extension for random
oracles. At the same time, the next theorem shows that it is “weak” enough to be preserved by SMD. We consider SMD
based on any suffix-free padding function sfpad : {0, 1}∗ → ({0, 1}d)+ that is injective. Further we assume it is easy to
strip padding, namely that there exists an efficiently computable function unpad : ({0, 1}d)+ → {0, 1}∗ ∪ {⊥} such that
x = unpad(sfpad(x)) for all x ∈ {0, 1}∗. Inputs to unpad that are not valid outputs of sfpad are mapped to ⊥ by unpad.

Theorem 4.2 [SMD is PrA-preserving] Fix n, d > 0 and let P be an ideal primitive. Let hP : {0, 1}n×{0, 1}d → {0, 1}n
be a compression function, and let H = SMD[hP ]. Let Eh be an arbitrary extractor for the PrA-experiment involving h.
Then there exists an extractor EH such that for all adversaries A making at most qp primitive queries and qe extraction
queries and outputting a message of at most `max ≥ 1 blocks there exists an adversary B such that

Advpra
H,P, EH

(A) ≤ Advpra
h,P, Eh

(B) .

EH runs in time at most `max (Time(Eh) + Time(unpad)). B runs in time at most that of A plus O(qe`max), makes at
most `max · NumQueries(h, `max) + qp ideal primitive queries, and makes at most qe`max extraction queries. �

Proof: We start by defining the adversary B; the extractor EH is implicit in its description.

adversary BP,Ex(ε):

m∗←$ AP,SimEx

m∗` · · ·m∗1
d← sfpad(m∗) ; v∗`+1 ← IV

For i = ` down to 1 do
v∗i ← hP(v∗i+1,m

∗
i )

If Q[v∗i ] = 1 and E[v∗i ] 6= (v∗i+1,m
∗
i ) then Ret (v∗i+1,m

∗
i )

Ret ⊥

subroutine SimEx(z, α):

i← 1 ; v1 ← z

While i ≤ `max do
(vi+1,mi)← Ex(vi, α)
Q[vi]← 1 ; E[vi]← (vi+1,mi)
If vi+1 = ⊥ then Ret ⊥
m← unpad(mi · · ·m1)
If vi+1 = IV and m 6= ⊥ then Ret m
i← i+ 1

Ret ⊥

Adversary B answers A’s primitive queries by forwarding to its own oracle P. It answers A’s extraction queries using the
subroutine SimEx (which makes use of B’s extraction oracle). For the line of code (vi+1,mi) ← Ex(vi, α) is executed
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with the oracle returning ⊥, then both vi+1 and mi are assigned ⊥. The code m∗` · · ·m∗1
d← sfpad(m∗) means take the

output of sfpad(m∗) and parse it into ` d-bit blocks m∗` , . . . ,m
∗
1. The tables Q and E, which record if a value was queried

to Ex and the value returned by the query, are initially everywhere ⊥.

The extractor EH works exactly the same as the code of SimEx except that queries to Ex are replaced by directly running
Eh and the tables Q and E can be omitted. Loosely, extractor EH , when queried on a challenge image z, uses Eh to compute
(backwards) the preimages of each iteration of h leading to z. When a chaining variable equal to IV is extracted, the
function unpad is applied to the extracted message blocks. If it succeeds, then the result is returned.

Note that we reverse the (usual) order of indices for message blocks and chaining variables (starting high and counting
down, e.g. m∗` · · ·m∗1) for both the extractor and B due to the extractor working backwards.

To lower bound B’s advantage by the advantage of A we first point out that, by construction of EH , the values returned by
the simulated SimEx are distributed identically to the values returned during execution of Exppra

H,P,EH ,A
. Thus we have that

Advpra
H,P,EH

(A) = Pr[m∗ satisfies] where the event “m∗ satisfies”, defined over the experiment Exppra
h,P, EB ,B

, occurs
when the message m∗ satisfies the conditions of winning for A. Namely that HP (m∗) was queried to SimEx and the
reply given was not equal to m∗. We call m∗ a satisfying preimage for A. We will show that whenever m∗ is a satisfying
preimage for A, with m∗` · · ·m∗1

d← sfpad(m∗), there exists a k with 1 ≤ k ≤ ` for which adversary B returns (v∗k+1,m
∗
k)

and this pair is a satisfying preimage for B (i.e. one that wins the PrA experiment against h for B). This will establish that

Pr [m∗ satisfies ] ≤ Advpra
h,Eh

(B) . (7)

Consider the query SimEx(HP (m∗)) necessarily made by A. Let (vj+1, xj), . . . , (v2, x1) be the sequence of values re-
turned by the Ex queries made by SimEx in the course of responding to A’s query. Necessarily 1 ≤ j ≤ `max and
1 ≤ ` ≤ `max .

We will show that there exists a k such that 1 ≤ k ≤ min{j, `} and (vk+1, xk) 6= (v∗k+1,m
∗
k). (This includes the possibility

that vk+1 = ⊥ and xk = ⊥.) First we use this fact to conclude. Since k ≤ j it means that vk was queried to Ex. If
vk = v∗k = HP (v∗k+1,m

∗
k) we are done, because then v∗k+1,m

∗
k is a satisfying preimage for B. Otherwise, vk 6= v∗k and

we can repeat the reasoning for k − 1. At k = 1 we have that, necessarily, ck = v∗k since this was the image queried by A.
Thus there must exist a satisfying preimage, justifying (7).

We return to showing the existence of k such that 1 ≤ k ≤ min{j, `} and (vk+1, xk) 6= (v∗k+1,m
∗
k). Assume for contra-

diction that no such k exists, meaning that (v∗i+1,m
∗
i ) = (vi+1, xi) for 1 ≤ i ≤ min{j, `}. If j > `, then since vj = IV

and m∗` · · ·m∗1 = m` · · ·m1 we have a contradiction because in such a situation the loop in SimEx would have halted at
iteration `. If j = `, then having m∗` · · ·m∗1 = m` · · ·m1 and v`+1 = v∗`+1 = IV would imply that SimEx returned
m = m∗, contradicting thatm∗ is a satisfying preimage forA. If j < `, then the loop in SimEx must have stopped iterating
because vj+1 = IV (if vj+1 = ⊥ we would already have contradicted our assumption regarding k) and x 6= ⊥. But by
assumption we have that m∗j · · ·m∗1 = mj · · ·m1 and so there exist two strings m and m∗ for which sfpad(m) is a suffix
of sfpad(m∗). This contradicts that sfpad provides a suffix-free encoding.

Recall that if a compression function h is both CR and hard to invert for range point the IV , then the iteration of h is a
CR function [18, 22]. We prove an analogous theorem for Itr[h] and preimage awareness in Appendix B. This is particularly
useful in our context, because for the compression functions we will consider (e.g. a FIL random oracle or an ideal cipher
based compression function) it is easy to verify that it is difficult to invert a fixed range point. Note that this extra property
on h (difficulty of inverting IV ) is, in fact, necessary for iteration (without strengthening) to provide preimage awareness
(analogously, collision-resistance).

5 Building Preimage-Aware Functions
The results of Section 4 allow us to more elegantly and modularly prove that a hash function construction is a pseudorandom
oracle (PRO). Particularly, Theorems 4.1 and 4.2 mean that the task of building a PRO is reduced to the task of building
a compression function that is PrA. For example, in the case that the compression function is itself suitable to model
as an FIL-RO, then it is trivially PrA and so one is finished. However, even if the compression function has some non-
trivial structure, such as when based on a block cipher, it is still (relatively) straightforward to prove (suitable compression
functions) are PrA. In the rest of this section we show that most CR functions built from an ideal primitive are, in fact, PrA.

Are there applications of preimage awareness beyond analysis of hash functions? We believe the answer is yes. For
example, one might explore applications of CR functions, instead analyzing these applications assuming a PrA function.
(As one potential application, the CR-function using statistically hiding commitment scheme of [19] conceivably achieves
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straight-line extractability given instead a PrA function.) We leave such explorations to future work.

PrA FOR CR CONSTRUCTIONS. There is a long line of research [31, 7, 25, 26, 34, 35, 33, 21] on building compression
functions (or full hash functions) that are provably collision-resistant in some idealized model, e.g. the ideal-cipher model.
We show that in many cases one can generalize these results to showing the constructions are also PrA. In the rest of this
section we show that the Davies-Meyer and other so-called “group-1” PGV compression functions [31, 7] are not only CR
but PrA. We also give bounds on the PrA-security of the Shrimpton-Stam compression function [35], the Dodis-Pietrzak-
Puniya compression function [21], and the first two steps of the MCM construction [32]. Previously these constructions
were only known to be CR.

5.1 CR compression functions from PGV are preimage-aware
Let us begin with block-cipher-based compression functions. Sixty-four schemes, including Davies-Meyer and MMO, were
considered by Preneel et al. [31], and twelve of these were later proven to be optimally collision-resistant and preimage-
resistant (in the ideal-cipher model) by Black et al. [7]; these were labeled as “group-1”. Another group of eight “group-2”
compression functions were found to be optimally collision resistant in the iteration (and preimage resistant in the iteration
up to the birthday bound) despite not being collision or preimage resistant themselves. Subsequently, Stam [37] gave
an alternative classification of these schemes based on a more general analysis of rate-1 block-cipher-based compression
functions. He considered compression functions that, on input a chaining variable v ∈ {0, 1}n and message block m ∈
{0, 1}d, operate as follows:

(k, x)← Cpre(v,m) ; y ← E(k, x) ; Ret w ← Cpost(v,m, y)

whereCpre : {0, 1}n×{0, 1}d → {0, 1}d×{0, 1}n andCpost : {0, 1}d×{0, 1}n×{0, 1}n → {0, 1}n are functions called
preprocessing and postprocessing, respectively. He also defined an auxillary post-processing function Caux : {0, 1}d ×
{0, 1}n × {0, 1}n → {0, 1}n. Davies-Meyer, for example, has Cpre(v,m) = (m, v) and Cpost(v,m, y) = v ⊕ y and
Caux(k, x, y) = x⊕ y. Stam called a scheme “Type-I” iff
(1) Cpre is bijective,
(2) for all v,m the mapping Cpost(v,m, ·) is bijective, and
(3) for all k, y the mapping Caux(k, ·, y) is bijective.
When they exist, we let C−pre denote the inverse of Cpre, C−post(v,m, ·) denote the inverse of Cpost(v,m, ·), and
C−aux(k, ·, y) denote the inverse of Caux(k, ·, y). As it turns out, the twelve “group-1” compression functions are also
“Type-I”. We leverage Stam’s results here to show that the group-1/Type-I PGV compression functions are preimage aware.
In Appendix C we discuss the group-2 PGV functions, showing these build preimage aware hash functions when used
within an iteration. (There too we leverage Stam’s generalized framework and results.)

Theorem 5.1 [The Group-1/Type-I PGV schemes are PrA] Fix κ, n > 0, let Cκ,n = (E,D) be an ideal cipher and let
HC be a Type-I block-cipher-based compression function. There exists an extractor E such that for any adversary A making
at most qp queries to C and qe extraction queries we have

Advpra
H, C, E(A) ≤ qeqp

2n − qp
+
qp(qp + 1)
2(2n − qp)

where E runs in time at most O(qp(Time(C−pre) + Time(Cpost))). �

Proof: We will prove that any such compression function is 1-WPrA-secure, and then use Lemmas 3.3 and 3.4 to give the
final bound. We note that Theorem 5 of [37] upperbounds the collision-finding advantage of A by qp(qp + 1)/2(2n − qp),
yielding the second term above.

Let us define the extractor E as follows:

algorithm E(z, α):
L ← ∅
Parse (k1, x1, y1), · · · , (kr, xr, yr)← α
For i = 1 to r do

(vi,mi)← C−pre(ki, xi)
If Cpost(vi,mi, yi) = z then L ∪← (vi,mi)

If L 6= ∅ then Return L else Return ⊥
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Note that because Cpre is a bijection, a pair (vi,mi) is uniquely determined by a pair (ki, xi). Intuitively, E simply iterates
over the query-response triples and searches for ideal-cipher queries (k, x, y) that would produce z under the compression
function. Upon finding them, it adds the corresponding (unique) compression function input (v,m) to the preimage list.
Thus all preimages of z that can be determined from the query list α are returned, and if A wins the 1-WPrA experiment,
it must find find a new preimage of z. Then one can straightforwardly adapt Stam’s results (specifically, the proof of [37,
Th. 6]) to show that the probability of this occuring is at most q/(2n − q).

5.2 Shrimpton-Stam compression function is preimage-aware
Next we show that it is possible to build a PrA compression function from non-compressing random functions2. In particular,
we examine the compression function recently designed by Shrimpton and Stam [35]. They proved that their compression
function is nearly optimally collision resistant (i.e. to the birthday bound), and we will now show that it is also PrA.

Theorem 5.2 [Shrimpton-Stam is PrA] Fix n > 3. Let f1, f2, f3 be three independent random oracles Fn,n. Define a
compression function Hf1,f2,f3(c,m) = f3(f1(m)⊕ f2(c))⊕ f1(m). Then there exists an extractor E such that for any
adversary A making qp queries to each of f1, f2, f3 and qe extraction queries, we have

Advpra
H,f1,f2,f3, E(A) ≤ (n+ 3)qpqe

2n
+

(3n+ 13)qe
2n

+
q2
p(1 + 4n2) + 1

2n

where the extractor runs in time O(q2
p). �

Before proving the theorem, we first remark that this bound is conservative in several ways as it uses a hybrid argument
and several upperbound approximations to facilitate the proof. With additional effort it is possible that, in particular, the
third term in the bound can be tightened a bit.

Proof: We proceed by reasoning about the single-extractor-query WPrA experiment, and then applying Lemmas 3.3 and 3.4
and the collision resistance bound from [35] to get the final result. For convenience, we write q everywhere for qp (this
should cause no confusion as we assume only one extraction query).

We will assume that the advice string has the format

α = 〈r〉, (a1, u1), . . . , (ar, ur), 〈s〉, (b1, v1), . . . , (bs, vs)〈t〉, (x1, y1), . . . , (xt, yt)

where ui = f1(ai), vi = f2(bi) and yi = f3(xi), with i over the indicated indices in each case. We now define the (honest)
multi-point extractor E+. Let L1 and L2 be initialized to the empty set.

algorithm E+(z, α):

Parseα as 〈r〉, (a1, u1), . . . , (ar, ur), 〈s〉, (b1, v1), . . . , (bs, vs), 〈t〉, (x1, y1), . . . , (xt, yt)
For i = 1 to t do

Let u′i = z ⊕ yi
If ∃j such that u′i = uj then L1 ← L1 ∪ {(xi, uj)}

For all (xi, uj) ∈ L1

if ∃k such that xi ⊕ uj = vk then L2 ← L2 ∪ {(aj , bk)}
if L2 = ∅ then return ⊥ else return L2

We note that by construction the extractor returns L2 (i.e. not ⊥) only when all (a, b) ∈ L2 are preimages of z; thus the
extractor is honest. Moreover, this extractor returns all preimages of z that can be computed from the advice string. For A
to win the WPrA experiment, it must find a new (possibly first) preimage for z. Without loss, we assume that A outputs
a new preimage as soon as one can be computed. Thus there are three cases to consider, namely that A’s winning (final)
query is to f1, f2 or f3.

2One can view a block cipher as a compressing primitive, since it takes κ+ n bits and produces n bits.
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f1 query. Consider the case that the winning query is to f1, and let u∗ be the returned value for that query. Since this
is the last query, we can assume that all f2 and f3 queries have already been made. Let V be the list of f2 responses. Let
F3 be the list of f3 query-pairs (xi, yi), and for convenience let X and Y be the lists of xi and yi, respectively (order
maintained relative to the order in F3). If u∗ is one of the q − 1 previously returned f1 values, then we can assume without
loss that A has found a new preimage of z. (This follows because this is assumed to be the final and winning query.) But
this happens with probability at most (q − 1)/2n. So we proceed under the assumption that u∗ does not collide with a
previous f1 response. Consider the multiset u∗ ⊕ Y = {u∗ ⊕ yi : yi ∈ Y }. For u∗ to be winning for A, the target z must
appear in this multiset, and this will happen for any yi = z ⊕ u∗. For any fixed c ∈ {0, 1}n, the probability that there are at
least n strings y ∈ Y (which are q uniform, independent strings) such that y = z ⊕ c is at most 2−n. This follows from a
Chernoff bound under the assumption that q ≤ n2n/6, which is at least 2n/2 for all n claimed by the theorem. So under the
assumption that q ≤ 2n/2, we can assume that there are at most n pairs (xi, yi) such that yi = z ⊕ u∗, this holding except
with probability at most 2−n. (The upperbound on q will ultimately be dropped as the collision-resistance bound, and hence
the PrA bound, will be vacuous for q > 2n/2.)

Now, for each xi ∈ X , define a set Si = {xi ⊕ v : v ∈ V }. (These were already determined at the time of the final f1

query.) Let S =
⋃
i∈I Si where I is the set of indices i such that yi ⊕ u∗ = z. Clearly |S| ≤ nq, so u∗ ∈ S with probability

at most nq/2n. Putting it all together, the probabilty that A wins with an f1 query is at most q−1
2n + nq

2n + 1
2n ≤ (n+1)q

2n + 1
2n .

f2 query. Consider the case that the winning query is to f2, and let v∗ be the returned value for that query. Again, since
this is the last query, we can assume that all f1 and f3 queries have already been made. Let F3, X and Y be as in the
previous case. As before, if v∗ collides with a previously returned f2 query, then we can assume that the adversary has
found a new preimage of z; this happens with probability at most (q − 1)/2n. Now, consider the q distinct values of
v∗ ⊕X = {v∗ ⊕ xi : xi ∈ X}. (These are distinct because the xi are.) Since v∗ is winning only if some previously defined
f1-response u is in v∗ ⊕X , we will assume that for each of the q strings in v∗ ⊕X there is such a u; thus, by a union
bound, we want to upperbound

∑q
i=1 Pr(v∗ ⊕ xi = yi ⊕ z). But each probability in the sum is over the uniform v∗, so this

sum is at most q/2n. In total then, the probability that A wins with an f2 query is at most q−1
2n + q

2n ≤ 2q
2n .

f3 query. Consider the case that the winning query is to f3, and let y∗ be the returned value for that query. As before, we
can assume that all f1 and f2 queries have been made, and we let U and V be the corresponding multisets of responses. Let
Nc be the number of times that c ∈ {0, 1}n appears in the multiset U ⊕ V = {u⊕ v : u ∈ U, v ∈ V }. We assume for the
moment that, for all c, Nc ≤ 3n except with some (small) probability that we will bound in a moment. Then the final f3

query yields at most 3n opportunities for y∗ ⊕ u = z to hold, so that y∗ is winning with probability at most 3n/2n.

It remains to bound Pr[Nc > 3n], which we do by bounding Pr[Nc ≥ 3n]. Notice that the elements of U and V are
independent of adversarial choices, so this is a strictly combinatorial problem. In addition, that the elements in U are
independent of those in V , so the order in which these lists are populated is irrelevant from the point of view of the event
Nc ≥ 3n for any value of c. So we assume that q elements in U are selected, and then we begin to fill in V . Let us assume
that there are no 4-way collisions in U , which holds except with probability at most

2n
(
q

4

)(
1
2n

)4

≤ 2n

4!

( q
2n
)4

<
1
2n

where in the final inequality we have assumed that q ≤ 2n/2. Now, under the assumption that U contains no 4-way
collisions, each element assigned to V increases Nc by at most 3 for any c ∈ {0, 1}n. Thus if Nc ≥ 3n for some c, it must
be the case that at least n values of v increase Nc. The probability that some value of v increases Nc (equivalently that
v = u⊕ c for some u ∈ U ) is at most q/2n. Thus by a union bound

Pr[∃c ∈ {0, 1}n such that Nc ≥ 3n | no 4-way collisions in U ] ≤ 2n
(
q

n

)( q
2n
)n

≤ 2n

n!

(
q2

2n

)n
≤ 2n

n!
(again assuming q ≤ 2n/2)

≤ 2 · 1 · 2
3
· 2

4
· · · 2

n
≤ 4/3

2n−3
<

11
2n

.
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So assuming that q ≤ 2n/2, the probability that A wins on an f3 query is at most 3n
2n + 1

2n + 11
2n = 3n

2n + 12
2n .

Summary. Pulling together all of our cases, the probability that A manages to find a new preimage for z in our single-
extractor-query WPrA experiment is at most(

(n+ 1)q
2n

+
1
2n

)
+

2q
2n

+
(

3n
2n

+
12
2n

)
=

(n+ 3)q
2n

+
3n+ 13

2n

By Lemma 3.3, we multiply through by qe to get the bound for the multiple-extractor-query case. Finally, we use Lemma 3.4
and the collision resistance bound from [35]. The latter states that for all n > 0 and k, q ≥ 0 the probability of finding a
collision is at most q

2

2n + (kq)2

2n + Pq,k,n where

Pq,k,n =
(

q!
(q − k)!

)2(2n

k!

)(
(2n − k)!

2n!

)
≤ q2k

k!

(
1

(2n − 1)(2n − 2) · · · (2n − (k − 1))

)
≤ q2k

k!

(
1

2n − (k − 1)

)k−1

Now we determine an upperbound on q (as a function of k, n) such that the last line above is at most 1/2n. This means

q2k ≤ k!
1
2n

(2n − (k − 1))k−1

q ≤ (k!)
1
2k 2

−n
2k (2n − (k − 1))

k−1
2k

Setting k = 2n and taking logarithms (base 2),

log(q) ≤ log(2n!)
4n

+
−1
4

+
2n− 1

4n
log(2n − (2n− 1))

Since n log(n) ≤ log(2n!) for all n, we can use the more conservative bound

log(q) ≤ log(n)
4

+
−1
4

+
2n− 1

4n
log(2n − (2n− 1)).

Now is can be shown that for n > 3

log(n)
4

+
−1
4

+
2n− 1

4n
log(2n − (2n− 1)) ≥ 2n

4n
log(2n−1)

=
n− 1

2

Thus if n > 3 and log(q) ≤ (n − 1)/2, or equivalently q ≤ 2(n−1)/2, we have Pq,2n,n ≤ 1/2n. This yields a collision
bound of q2

2n + (2nq)2

2n + 1
2n = q2(1+4n2)+1

2n . But in fact if q = 2(n−1)/2 we can see that q
2(1+4n2)

2n > 1 (i.e., without the
addition of Pq,2n,n), so we can drop the restriction on q. This completes the proof.

5.3 Dodis-Pietrzak-Puniya compression function is preimage-aware
Dodis et al. [21] also offer a compression function from non-compressing primitives, this being f(c,m) = f1(c)⊕ f2(m).
A straightforward extension of the argument in [21] shows that this function is PrA for ideal f1 and f2.

Theorem 5.3 [DPP is PA] Fix n > 0. Let f1, f2 be independent random oracles Fn,n and let Hf1,f2(c,m) = f1(c) ⊕
f2(m). Then, there exists an extractor E such that for any adversary A making at most q1, q2 queries to f1, f2 and makes at
most qe extraction queries, we have

Advpra
H,f1,f2,E(A) ≤ q2

1q
2
2 + 2q1q2qe + qe

2n
.
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E runs in time O(q1q2). �

Proof: Using Lemmas 3.3 and 3.4, it suffices to show that H is CR and also WPrA for 1 extraction query. The former
bound was already shown in [21]: for any attacker C, Advcr

H(C) ≤ q2
1q

2
2/2

n.

Next, we prove security relative to the WPrA notion for one extraction query as per Appendix 3.2. We assume that the
advice string α is of the form α1α2 where α1 is a list of query/response pairs made by A to f1 and α2 is the list for f2. Then
let E+ be the (honest) multi-point extractor that works as shown below.

algorithm E+(z, α1α2):
Parse (c1, d1), · · · , (cr, dr)← α1

Parse (x1, y1), · · · , (xp, yp)← α2

For i = 1 to r do
For j = 1 to p do

If di ⊕ yj = z then X ∪← (ci, xj)
If X = ∅ then Ret ⊥
Ret X

Now suppose that A did not query at least one of f1 or f2 before making the extract query z (otherwise E+ would extract
it). Now, each such new query cj = c′ to f1 can define at most q2 new values z′i = f1(c′) ⊕ f2(xi). Since f1(c′)
is random, the chance that z′i is equal to z is at most 2−n, so the total probability that f1(c′) would define some value
z′i = z is at most q2/2n. Symmetrically, the total probability that a new query xi = x′ to f2 would produce a new value
z′j = f1(cj) ⊕ f2(x′) equal to z is at most q1/2n. Taking the union bound over all such new queries, the total probability
of obtaining a value z = f1(cj) ⊕ f2(xi) (for some i and j) is at most 2q1q2/2n. If no such value is found, the chance
that the value (c, x) output by the attacker is equal to z is at most 2−n. Combining these bounds, for any attacker B,
Advwpra-1

H,f1,f2,E(B) ≤ (2q1q2 + 1)/2n.

Combining, we get that for any A, Advpra
H,f1,f2,E(A) ≤ (q2

1q
2
2 + 2q1q2qe + qe)/2n.

5.4 Mix-Compress is preimage-aware
We show that the “mix-compress” portion of the “mix-compress-mix” construction from [32] is PrA as long as the compress
step is CR and relatively balanced. First we must define a measure of balance. Associated to any function F : {0, 1}∗ →
{0, 1}n is the set PreImF (`, z) = {y | y ∈ {0, 1}∗ ∧ |y| = ` ∧ F (y) = z} for all ` > 0 and z ∈ {0, 1}n. That is,
PreImF (`, z) contains the length ` preimages of z under F . We also define the function

δF (`, z) =
∣∣∣∣ |PreImF (`, z)| − 2`−n

2`

∣∣∣∣ (8)

related to F . The δF function measures how far a particular preimage set deviates from the case in which F is regular.
Let ∆F = max{δF (`, z)}, where the maximum is taken over all choices of ` and z. Second, we let F∗,τ to be the ideal
primitive that, on input x ∈ {0, 1}∗ returns a randomly chosen string y ∈ {0, 1}|x|+τ .

Theorem 5.4 [Mix-Compress is PrA.] Fix τ, n > 0, let F : {0, 1}∗ → {0, 1}n and let F∗,τ be the ideal primitive defined
above. Let HF (m) = F (F(m)) be the hash with minimum accepted message length ν ≥ n − τ if n > τ and ν ≥ τ if
n < τ . There exists an extractor E such that for any pra-adversary A making qp primitive queries and qe extraction queries
there exists a CR adversary B such that

Advpra
H,F, E(A) ≤ qeqp(

1
2n

+ ∆F ) + Advcr
H,F,F (B)

E runs in time at most O(qp). B runs in time at most that of A plus O(qp). �

The restricted domain in the theorem statement (inherited from [32]) ensures that inputs to F have size at least n bits.

Proof: We prove the WPrA notion for one extraction query and then apply Lemmas 3.3 and 3.4. Let E+ be the (honest)
multi-point extractor that works as shown below.
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algorithm E+(z, α):
Parse (x1, y1), · · · , (xr, yr)← α
For i = 1 to r do

If z = F (yi) then X ∪← xi
If X = ∅ then Ret ⊥
Ret X

Assume that before the single extractor query no previous query to F by the adversary led to a point y in the preimage set
(under F ) of the challenge point z (otherwise the extractor will have succeeded for z). Then we must bound the probability
that a new query to F results in a point y for which F (y) = z. If F for each message length is regular then any new
random value y has probability 2−n of being mapped to z under F , and so we could finish with bound qp/2n. Instead we
do something slightly more general using the definitions of PreImF , δF , and ∆F defined above. Choose ` ∈ N (such that
` − τ ≥ ν, the minimum message length of H) and z ∈ {0, 1}n to maximize |PreImF (`, z)|. Then the optimal strategy
for A is to first query z to its extraction oracle and only make queries to F of length ` − τ . (Primitive queries before the
extraction query will only lower A’s advantage, since any successful ones will be known to the extractor.) The result of
these queries is qp random `-bit strings, call these y1, . . . , yqp

. Then we have that

Pr [ ∃i . F (yi) = z ] = Pr [ ∃yi . yi ∈ PreImF (`, z) ]

≤
∑

1≤i≤qp

Pr [ yi ∈ PreImF (`, z) ]

=
∑

1≤i≤qp

|PreImF (`, z)|
2`

= qp ·
(

2`−n

2`
+ δF (`, z)

)
(9)

≤ qp
2n

+ qp ·∆F

where the events are defined in the natural manner. In deriving equality (9) we apply (8) (ignoring the absolute values, since
|PreImF (`, z)| ≥ 2`−n due to our maximization). Then applying Lemma 3.3 gives a factor qe to the right hand side of this
bound. We apply Lemma 3.4 and this gives our theorem statement.

6 Indifferentiability for Public-Use Random Oracles
In numerous applications, hash functions are applied only to public messages. Such public-use occurs in most signature
schemes (e.g. full-domain-hash [4], probabilistic FDH [16], Fiat-Shamir [24], BLS [10], PSS [6]) and even some encryption
schemes (e.g. a variant of Boneh-Franklin IBE [14] and Boneh-Boyen IBE [8]). It is easy to verify that the provable security
of such schemes is retained even if all hashed messages are revealed to adversaries. We introduce the notion of a public-use
random oracle (pub-RO). This is an ideal primitive that exposes two interfaces: one which performs the usual evaluation
of a random oracle on some domain point and a second which reveals all so-far evaluated domain points. All parties have
access to the first interface, while access to the latter interface will only be used by adversaries (and simulators).

A wide class of schemes that have proofs of security in the traditional random oracle model can easily be shown secure
in this public-use random oracle model. Consider any scheme and security experiment for which all messages queried
to a RO can be inferred from an adversary’s queries (and their responses) during the experiment. Then one can prove
straightforwardly the scheme’s security in the pub-RO model, using an existing proof in the full RO model as a “black
box”. For example, these conditions are met for unforgeability under chosen-message attacks of signature schemes that use
the RO on messages and for message privacy of IBE schemes that use the RO on adversarially-chosen identities. All the
schemes listed in the previous paragraph (and others) fall into these categories.

The pub-RO model was independently considered by Yoneyama et al. [39] (there called the leaky random oracle model)
under different motivation. They directly prove some schemes secure when hash functions are modeled as a monolithic
pub-RO. They do not analyze the underlying structure of iterative hash functions.

We next utilize the indifferentiability framework of Maurer et al. [28] to formalize a new notion of security for hash con-
structions: indifferentiability from a public-use RO, which we will call being a public-use pseudorandom oracle (pub-PRO).
This new security property is weaker than that of being a PRO, but nevertheless enjoys the indifferentiability framework’s
composibility guarantees [28].
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procedure Feval(M):

If M /∈ Dom then Ret ⊥
If F[M ] = ⊥ then

F[M ]←$ Rng

Q ∪← (M, F[M ])
Ret F[M ]

procedure Freveal():

Ret Q

procedure fgeval(v,m):

If v /∈ W ∪ {IV } or (v, x) /∈ {0, 1}n × {0, 1}d then Ret ⊥
If f[v, x] = ⊥ then

f[v, x]←$ {0, 1}n

W ∪← f[v, x] ; Q ∪← ((v, x), f[v, x])
Ret f[v, x]

procedure feval():

If f[v, x] = ⊥ then f[v, x]←$ {0, 1}n

Q ∪← ((v, x), f[v, x])
Ret f[v, x]

procedure freveal():

Ret Q

Figure 5: (Left) The pub-RO ideal primitive FDom,Rng = (Feval , (Feval ,Freveal)). Initially F is everywhere ⊥ and Q is
empty. (Right) The pub-GRO ideal primitive fn×d,n = (fgeval , (feval , freveal)). Initially f is everywhere ⊥ andW,Q are
empty. Here IV ∈ {0, 1}n is a fixed string.

6.1 Public-use ROs and PROs
Fix sets Dom,Rng . A public-use random oracle (pub-RO) is an ideal primitive FDom,Rng = ((Feval), (Feval ,Freveal))
defined as follows. Let ρ be a random function Dom → Rng . The (private and public) evaluation interface Feval , on
input M ∈ Dom, first adds the pair (M,ρ(M)) to an initially-empty set Q and then returns ρ(M). The (public) reveal
interface Freveal takes no input and returns Q (suitably encoded into a string). Figure 5 details a pub-RO in code. We say
that FDom,Rng is a fixed-input-length (FIL) pub-RO if Dom only includes messages of a single length. We write Fn×d,n
for the FIL pub-RO with domain Dom = {0, 1}n × {0, 1}d and Rng = {0, 1}n. As usual, we write just F when Dom and
Rng are clear from context.

INDIFFERENTIABILITY FROM A pub-RO. Let HP : Dom → Rng be a hash function using an ideal primitive P . Let
FDom,Rng = (Feval , (Feval ,Freveal)) be a pub-RO. Let S be a simulator with oracle access to (both interfaces of) F . Then
we associate to pub-pro adversary A, primitive P , and simulator S the pub-pro advantage function

Advpub-pro
H,P,S (A) = Pr

[
Expindiff-1

H,P,A ⇒ 1
]
− Pr

[
Expindiff-0

F,S,A ⇒ 1
]
.

The simulator’s ability to callFreveal , thereby seeing all queries so-far-made byA toFeval , is the crucial difference between
pub-PRO and PRO. Informally, we say that a construction H is a pub-PRO if there exists an efficient simulator such that all
efficient adversaries A have small advantage.

The composition theorem in [28] (recast to use ITMs in [17]) can be applied to pub-PROs. That is, a cryptographic
scheme using a pub-PRO hash construction HP for some ideal primitive P can have its security analyzed in a setting where
HP is replaced by a monolithic pub-RO F . In this setting, adversaries attacking the scheme can perform queries to Freveal .

6.2 Public-use guarded ROs and PROs
Many “structured” compression functions are easily differentiable from a FIL pub-RO. For example, consider the following
attack against DM, due to [38]. Let A against DME(v,m) = Em(v) ⊕ v work as follows. It picks a random y and m and
then queries its third oracle interface (in the “real” setting this would be E−1) on m, y. When interacting with the pub-RO
F and any simulator S, we see that S would need to respond with a value v such thatFeval(v,m) = y⊕v. This corresponds
to inverting F on some fixed range point, which is hard. (Note that A has not, before querying the simulator, submitted
any queries to F .) Thus the adversary will win easily. Nevertheless brief reflection suggests that iterating DM from a fixed
IV should result in a pub-PRO. We could try to argue this directly, but instead we introduce another variant of ROs as a
technical tool to allow modular proofs.

Fix n, d > 0 and IV ∈ {0, 1}n. A public-use guarded random oracle (pub-GRO) is an ideal primitive fn×d,n =
(fgeval , (feval , freveal)) that works as detailed in Figure 5. In words, let ρ be a random function from {0, 1}n × {0, 1}d
to {0, 1}n. The (private) guarded evaluation interface fgeval on input (v,m) returns ρ(v,m) if v = IV or v is equal to a
value previously returned by the interface; it returns ⊥ otherwise. The (public) evaluation interface feval returns ρ(v,m).
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The (public) reveal interface reveals all so-far (guarded or not) evaluated points and their associated outputs. This weaker
version of a FIL pub-RO will still be sufficient for building a pub-PRO using MD. At the same time, the weakening does
allow us to show that structured compression functions (such as Davies-Meyers) are indifferentiable from a pub-GRO (even
though they are not pub-PROs).

INDIFFERENTIABILITY FROM A pub-GRO. Fix n, d > 0 and IV ∈ {0, 1}n. Let hP : {0, 1}n × {0, 1}d → {0, 1}n be
a FIL hash function using ideal primitive P . Let fn×d,n = (fgeval , (feval , freveal)) be a pub-GRO. Let S be a simulator
with oracle access to (all interfaces of) f . Then we associate to pub-gpro-adversary A, h, P , and S the pub-gpro advantage
function

Advpub-gpro
h,P,S (A) = Pr

[
Expindiff-1

h,P,A ⇒ 1
]
− Pr

[
Expindiff-0

f,S,A ⇒ 1
]
.

We stress that in the second probability experiment, while A has access only to fgeval , the simulator S has oracle access to
feval and freveal . Informally, we say that a construction h is a pub-GPRO if there exists an efficient simulator such that all
efficient adversaries A have small advantage.

7 Constructing Public-use Random Oracles
In this section we first show that iterating a FIL public-use RO (or public-use guarded RO) results in an object indiffer-
entiable from a monolithic public-use RO. Then we go on to show that common constructions of compression functions
are, in fact, indifferentiable from public-use guarded ROs. In particular we show that the Stam Type-II PGV functions
are pub-GROs. Since Davies-Meyers is one such function, these results together imply that the structure of existing hash
functions (such as SHA-2) is sound for public-use applications.

7.1 Iteration preserves being a pub-PRO
We show that iteration preserves the property of being a pub-PRO. In fact we show something slightly stronger. Given a
compression function that is (indifferentiable from) a public-use guarded RO, iterating this compression function results in
a pub-PRO. In the following theorem we write Itr[fgeval ] to mean Itr[gfgeval ] where g is defined by calling fgeval on its input
and returning the result. We note that in the computation of Itr[gfgeval ] the input to fgeval is always either the IV or a valid
chaining value.

Theorem 7.1 [Itr is pub-PRO-preserving] Fix n, d > 0 and IV ∈ {0, 1}n. Let fn×d,n = (fgeval , (feval , freveal)) be
a pub-GRO and let Itr[fgeval ] be the iteration of fgeval . There exists a simulator S = (Seval ,Sreveal) so that for any
adversary A

Advpub-pro
Itr,f,S (A) ≤ (σq0 + q1)2

2n
+
q1(σq0 + q1)

2n

where q0 is the maximal number of queries by A to its first oracle, these of length at most σ blocks of d bits, and q1 is the
maximal number of queries by A to its feval/Seval interface. Let q2 be the number of queries by A to its freveal/Sreveal
interface. Then S runs in time that of A plus O(q0σ(q1 + q2)) and makes at most q0σ + 2q1 + q2 queries. �

Proof: We specify a simulator S = (Seval ,Sreveal) in Figure 6. Recall that S must emulate only the two public interfaces
of a public-use guarded RO. To do this, it utilizes a subroutine update() which uses S’s access to Freveal() to simulate a
compression function by defining chaining variables in terms of appropriate outputs of Feval . That is, for any sequence of
messagem queried to Fgeval (or Feval ) parsed into message blocksm1 . . . ,m`, the simulator defines compression function
input/output pairs ((vi−1,mi), vi) for 1 ≤ i ≤ ` where v0 = IV and vi is assigned the output of Feval(m1 · · ·mi). The
tables V and F are used to maintain this simulation (these tables are initially everywhere ⊥). Queries to Seval not associated
(via the chaining variable input) with a valid sequence of message blocks have random values returned as output.

Intuitively, S will succeed as long as no two outputs of Feval collide (which would mean S might fail to use the correct
sequence of message blocks when assigning a chaining value) or if the adversary queries some value v,m to Seval for which
V[v] = ⊥, yet later one of the chaining variables (an output of Feval ) is assigned the value v. Loosely, the first event will
happen with probability at most (q0σ+q1)2/2n while the second event will happen with probability at most q1(q0σ+q1)/2n.
We now give a formal argument using the sequences of games G0 −→ · · · −→ G6 and G2 −→ G2,1 −→ G2,2. All games
include a procedure O2() which returns Q (this was not explicitly included in the pseudocode for brevity). The games
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procedure Seval(v,m):

update()
If V[v] 6= ⊥ then

Ret Feval(V[v] ‖m)
w←$ {0, 1}n

Q ∪← ((v,m), w)
Ret w

procedure Sreveal():

update()
Ret Q

subroutine update():

(m1, v1), . . . , (mp, vp)← Freveal()
For i = plast + 1 to p do

mi
1, . . . ,m

i
`i

d←mi

vi0 ← IV ; V[IV ]← ε

For j = 1 to `i do
vij ← F[mi

1 · · ·mi
j ]

If vij = ⊥ then
vij ← Feval(mi

1 · · ·mi
j)

V[vij ]← mi
1 · · ·mi

j

Q ∪← ((vij−1,m
i
j), v

i
j)

F[mi
1 · · ·mi

j ]← vij
plast ← p

Figure 6: Simulator used in proof of Theorem 7.1. Tables V and F are initialized everywhere to ⊥, set Q is initially empty,
and plast is initialized to 0.

are shown in Figures 7 and 8. We assume that adversary A does not repeat a query to any of its oracles (such queries are
pointless).

THE FIRST GAME SEQUENCE. We start by justifying that

Pr
[
Expindiff-1

Itr,f,A ⇒ 1
]

= Pr
[
AG0 ⇒ 1

]
(10)

= Pr
[
AG1 ⇒ 1

]
(11)

≤ Pr
[
AG2 ⇒ 1

]
+ Pr

[
AG2 sets bad

]
(12)

= Pr
[
AG3 ⇒ 1

]
+ Pr

[
AG2 sets bad

]
(13)

≤ Pr
[
AG4 ⇒ 1

]
+

(q0σ + q1)2

2n+1
+ Pr

[
AG2 sets bad

]
(14)

≤ Pr
[
AG5 ⇒ 1

]
+

(q0σ + q1)2

2n+1
+ Pr

[
AG2 sets bad

]
(15)

≤ Pr
[
AG6 ⇒ 1

]
+

(q0σ + q1)2

2n
+

(q0σ + q1)2

2n+1
+ Pr

[
AG2 sets bad

]
(16)

= Pr
[
Expindiff-0

Itr,S,A ⇒ 1
]

+
(q0σ + q1)2

2n
+ Pr

[
AG2 sets bad

]
. (17)

We’ll later conclude by bounding Pr[AG2 sets bad ] via a sequence of games G2 −→ G2,1 −→ G2,2.

(Game G0) By construction, the first game implements exactly the oracles (Itr[fgeval ], feval , freveal), justifying (10). Note
that we need not include the explicit checks of the guarded evaluation interface, since the pub-GRO primitive (implemented
using Choose-f ) is only used by O0 to implement Itr.

(Game G1, boxed statement included) In game G1 we modify the way in which queries are handled via some additional
book-keeping; as we will see the changes do not modify the implemented functionality. In particular, we establish a table V
mapping chaining variable values to sequences of message blocks. In O0 the operation V[vi] ← m1 · · ·mi is added. In
O1 handling of a query (v,m) is split into two cases. First, if V[v] 6= ⊥, then V[w] is assigned V[v] ‖ m. Here w is the
value to be returned to the adversary as chosen by Choose-f . The assignment of V[w] maps the new chaining value to a
(one-block-longer) sequence of blocks. Second, if V[w] = ⊥ then we do no updating of V. There remains one further
change in G1: use of Choose-f in O0 and in the in O1 for the first case utilizes s = 0 while in O1 for the second case
utilizes s = 1. To account for this, subroutine Choose-f has additional checks to ensure consistency of use between s = 0
and s = 1. (Looking ahead, dropping these checks will yield independent random functions for the two values of s. The
s = 0 function will become the monolothic random oracle of Expindiff-0

MD,S,A while s = 1 will be used for the unrelated random
values sometimes returned by the simulator.) Because of the checks, we have that the implemented functionality is the same
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procedure O0(M): Game G0

m1, . . . ,m`
d←M ; v0 ← IV

For i = 1 to ` do
vi ← Choose-f(0, vi−1,mi)
Q ∪← ((vi−1,mi), vi)

Ret v`

procedure O1(v,m):

w ← Choose-f(0, v,m)
Q ∪← ((v,m), w)
Ret w

subroutine Choose-f(s, v,m):

If f[s, v,m] = ⊥ then f[s, v,m]←$ {0, 1}n
Ret f[s, v,m]

procedure O0(M): Games G1 , G2

m1, . . . ,m`
d←M ; v0 ← IV ; V[IV ]← ε

For i = 1 to ` do
vi ← Choose-f(0, vi−1,mi)
V[vi]← m1 · · ·mi

Q ∪← ((vi−1,mi), vi)
Ret v`

procedure O1(v,m):

V[IV ]← ε

If V[v] 6= ⊥ then
w ← Choose-f(0, v,m)
V[w]← V[v] ‖m

If V[v] = ⊥ then
w ← Choose-f(1, v,m)

Q ∪← ((v,m), w)
Ret w

subroutine Choose-f(s, v,m):

s′ ← s

If f[1− s, v,m] 6= ⊥ then bad← true ; s′ ← 1− s
If f[s′, v,m] = ⊥ then f[s′, v,m]←$ {0, 1}n
Ret f[s′, v,m]

procedure O0(M): Games G3 , G4

m1, . . . ,m`
d←M ; v0 ← IV ; V[IV ]← ε

For i = 1 to ` do
vi ← Choose-f(0, vi−1,mi)
V[vi]← m1 · · ·mi

Q ∪← ((vi−1,mi), vi)
Ret v`

procedure O1(v,m):

V[IV ]← ε

If V[v] 6= ⊥ then
w ← Choose-f(0, v,m)
V[w]← V[v] ‖m

If V[v] = ⊥ then
w ← Choose-f(1, v,m)

Q ∪← ((v,m), w)
Ret w

subroutine Choose-f(s, v,m):

If f[s, v,m] 6= ⊥ then f[s, v,m]←$ {0, 1}n \R

R ∪← f[s, v,m]
Ret f[s, v,m]

procedure O0(M): Games G5 , G6

m1, . . . ,m`
d←M ; v0 ← IV ; V[IV ]← ε

For i = 1 to ` do
vi ← Choose-f(0, V[vi−1],mi)
V[vi]← m1 · · ·mi

Q ∪← ((vi−1,mi), vi)
Ret v`

procedure O1(v,m):

V[IV ]← ε

If V[v] 6= ⊥ then
w ← Choose-f(0, V[v],m)
V[w]← V[v] ‖m

If V[v] = ⊥ then
w ← Choose-f(1, v,m)

Q ∪← ((v,m), w)
Ret w

subroutine Choose-f(s, v,m):

If f[s, v,m] = ⊥ then f[s, v,m]←$ {0, 1}n \R

R ∪← f[s, v,m]
Ret f[s, v,m]

Figure 7: Games used in proof of Theorem 7.1. All games also have a procedure O2 that returnsQ (not shown for brevity).
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procedure O0(M): Game G2,1

m1, . . . ,m`
d←M ; v0 ← IV ; V[IV ]← ε

For i = 1 to ` do
vi ← Choose-f(0, vi−1,mi)
V[vi]← m1 · · ·mi

Q ∪← ((vi−1,mi), vi)
Ret v`

procedure O1(v,m):

V[IV ]← ε

If V[v] 6= ⊥ then
w ← Choose-f(0, v,m)
V[w]← V[v] ‖m

If V[v] = ⊥ then
w ← Choose-f(1, v,m)

Q ∪← ((v,m), w)
Ret w

subroutine Choose-f(s, v,m):

j ← j + 1 ; (sj , vj ,mj)← (s, v,m)
If ∃i < j s.t. (vi,mi) = (vj ,mj) ∧ si 6= sj then

bad← true

If f[s, v,m] = ⊥ then f[s, v,m]←$ {0, 1}n
Ret f[s, v,m]

procedure O0(M): Game G2,2

m1, . . . ,m`
d←M ; v0 ← IV ; V[IV ]← ε

For i = 1 to ` do
vi ← Choose-f(0, vi−1,mi)
V[vi]← m1 · · ·mi

Q ∪← ((vi−1,mi), vi)
Ret v`

procedure O1(v,m):

V[IV ]← ε

If V[v] 6= ⊥ then
w ← Choose-f(0, v,m)
V[w]← V[v] ‖m

If V[v] = ⊥ then
w ← Choose-f(1, v,m)

Q ∪← ((v,m), w)
Ret w

subroutine Choose-f(s, v,m):

j ← j + 1 ; (sj , vj ,mj)← (s, v,m)
If ∃i < j s.t. (vi,mi) = (vj ,mj) ∧ si = 1 6= 0 = sj then

bad1 ← true

If ∃i < j s.t. (vi,mi) = (vj ,mj) ∧ si = 0 6= 1 = sj then
bad2 ← true

If f[s, v,m] = ⊥ then f[s, v,m]←$ {0, 1}n
Ret f[s, v,m]

Figure 8: Games used in proof of Theorem 7.1. All games also have a procedure O2 that returns Q (not shown for brevity).

in G1 as in G0, justifying (11).

(Game G2, boxed statement omitted) Games G1 and G2 are identical-until-bad, since their only difference is whether or not
the boxed statement is included. The fundamental lemma of game playing [2] justifies (12).

(Game G3, boxed statement omitted) Game G3 dispenses with the extra checks in Choose-f (that, in G1 ensured consistency
between calls with s = 0 and s = 1, but were no longer used in G2). Additionally a set R is added that records all the
random choices made in Choose-f . The functionality of G3 is unchanged from G2, justifying (13).

(Game G4, boxed statement included) Game G4 restricts sampling in Choose-f to not allow collisions between any two
outputs. Games G3 and G4 are identical except for the boxed statement. Since Choose-f can be called a maximum of
q0σ + q1 times, we have via a straightforward birthday analysis that

Pr
[
AG3 ⇒ 1

]
− Pr

[
AG4 ⇒ 1

]
≤ (q0σ + q1)2

2n+1
,

justifying (14).

(Game G5, boxed statement included) Game G5 is such that f[0, ·, ·] is indexed not by chaining variables, message block
pairs but rather by message sequences, message block pairs. That is, wherever Choose-f was called on (0, v,m) for chaining
variable v and message block m in G4 it is called on (0, V[v],m) in G5. Since G4 and G5 never have collisions in outputs
of Choose-f in both games there is a one-to-one correspondence between pairs (0, v) and (0, V[v]). Therefore this change
does not affect the execution of the game, and so (15) has been justified.

(Game G6, boxed statement omitted) Game G5 and G6 are identical except for the boxed statement, and the analysis
justifying (14) above also applies to justify (16). Finally, we argue that G6 implements oracles that are equivalent to
(Feval ,SFeval ,SFreveal). In game G6 the routine Choose-f(0, ·, ·) implements the monolithic random oracle of the indiff-0
experiment (i.e. this implements Feval ). While S uses a subroutine update() to maintain tables V and Q, game G6 updates
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these tables directly in response to queries to O0 or O1. However, since S calls update() immediately upon any query to it,
the two methods for updating the tables are equivalent. Finally, note that in O1 when V[v] = ⊥ a freshly-chosen random
point is returned, which is equivalent to the implementation of SFeval (recall that A does not make pointless queries). We
have justified (17).

UPPER BOUND ON SETTING bad IN G2. All that remains is bounding the probability that bad is set in G2, which we do
with a second sequence of games G2 −→ G2,1 −→ G2,2. See Figure 8.

(Game G2,1) This game implements the same functionality as G2 but changes the way in which bad is set. Now Choose-f
records each s, v,m query using the counter j and tuple (sj , vj ,mj). The flag bad is set if there exists a previous execution
of Choose-f , let it be the ith execution, such that vi = vj and mi = mj and yet si 6= sj . In words, the current v,m query
value matches a previous query value, but s does not. Since this is just another way of checking for the same event that
caused bad to be set in G2, we have that

Pr
[
AG2 sets bad

]
= Pr

[
AG2,1 sets bad

]
.

(Game G2,2) We split the setting of bad into two separate cases, represented by the (new) flags bad1 and bad2. The first is
the case that the previous query had s = 0 and the later query had s = 1 and the second case is the opposite. A union bound
gives that

Pr
[
AG2,1 sets bad

]
≤ Pr

[
AG2,1 sets bad1

]
+ Pr

[
AG2,1 sets bad2

]
.

Note, however, that the last term is zero. This is true since for bad2 to be set due to Choose-f(1, v,m) being called from
O1, it must be the case that V[v] 6= ⊥. That there exists an i < j for which si = 0 but vi = v (so that bad2 is set) means
that necessarily V[vi] = V[v] 6= ⊥. This contradiction justifies that bad2 can never be set. Finally, we bound the probability
of bad1 being set. Let i, j be the numbers such that i < j and (vi,mi) = (vj ,mj) and si = 1 and sj = 0. Then it
must be the case that V[vi] = ⊥ at the ith execution of Choose-f . However, at the jth execution it must be the case that
V[vj ] = V[vi] 6= ⊥ since sj = 0. This means that between the ith and jth calls, the table entry V[vi] was assigned a value.
This can only occur if the output of execution of Choose-f(0, v,m) (for some v,m) equals vi. Combining the facts that all
outputs of Choose-f are uniformly chosen and that there are at most q0σ + q1 executions of Choose-f with s = 0, we have
that

Pr
[
AG2,1 sets bad1

]
≤ q1(q0σ + q1)

2n
.

This concludes the proof.

7.2 Type-II PGV are pub-GPROs
It is easy to see that a RO or a pub-RO are indifferentiable from a pub-GRO, and by Theorem 7.1 can therefore be used
within an iteration to build a pub-PRO hash function for arbitrary input lengths. However many hash functions (e.g. those
built from block ciphers) do not utilize compression functions that are suitable for modeling as a (pub-)RO. In this section
we show that many widely-used block-cipher-based compression functions, while not pub-PROs, are indifferentiable from
a pub-GRO. As an example to build intuition, recall that an adversary can differentiate DM from a pub-RO by abusing the
inverse oracle (see the attack described in Section 6). In the context of pub-GRO, such attacks fail because the adversary
cannot query its first oracle with chaining variables not already returned by it. In fact, we prove that any Type-II PGV
function (see Section 5.1) is indifferentiable from a pub-GRO.

Fix a string IV ∈ {0, 1}n. Let hP be a compression function built using ideal primitive P . Then h̄P is the ITM
implementing a guarded version of h. Initially a set V is empty. Then h̄P (v,m) returns ⊥ if v /∈ IV ∪ V , and otherwise
evalutes hP (v,m) to get value w, adds w to V , and returns w. Then, for example, DM is the guarded version of the
Davies-Meyer compression function (defined in Section 2).

We use the guarded versions of compression functions for clarity in our analyses. In particular, the forthcoming results
do not rely on implementing guarded versions of compression functions — rather when an unguarded compression function
is used within the iteration then only valid v are used with it, meaning our results apply directly. (Formally speaking, we
could also just restrict adversaries from querying any inputs which would result in ⊥ being returned, and the guarding logic
is superfluous. We choose the explicit approach to render transparent this usage scenario.) Our results do not apply for
unguarded compression functions when they are used outside the context of iteration-based hashing.

Recall that the Type-II PGV functions are those for which Cpre is a bijection, Cpost(v,m, ·) is a bijection, and
C−pre

1 (k, ·) is a bijection. Here the map C−pre
1 : {0, 1}d × {0, 1}n → {0, 1}n is defined by C−pre

1 (k,m) = v where
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subroutine Choose-E(s, k, x):

y←$ {0, 1}n
If E[s, k, x] 6= ⊥ then y ← E[s, k, x]
E[s, k, x]← y ; D[s, k, y]← x

Ret y

subroutine Choose-D(s, k, y):

x←$ {0, 1}n
If D[s, k, y] 6= ⊥ then x← D[s, k, y]
E[s, k, x]← y ; D[s, k, y]← x

Ret x

Figure 9: Subroutines used by games G0, G1, G2, and G3 for the proof of Theorem 7.2.

(v,m) = C−pre(k, x). (This is simply the projection of C−pre to its left output.)
It is interesting to note that the four Type-I PGV functions that are not also Type-II are not pub-GPRO. Consider the

(guarded) MMO compression function MMO
E

(v,m) = Ev(m) ⊕ m built from an ideal cipher Cn,n. For any simulator
S , we give an adversary that can differentiate MMO from a pub-GRO that works as follows given oracles O0, O1, and
O2 (implementing (MMO

E
, E,D) or (fgeval ,SE ,SD) respectively). It chooses arbitrary points y ∈ {0, 1}n and queries

O2(IV, y) to get reply x. It then queries O0(IV, x), retrieves w, and outputs a one if y ⊕ w = x. If in the indiff-1
experiment, the adversary will output one always. In the indiff-0 experiment, SD must respond with a value x such that
y ⊕ f(IV, x) = x, lest the adversary will return zero. This can’t be done efficiently (since f is a random oracle), and so
the adversary will succeed with probability close to one. Similar attacks can be fashioned for the three other only Type-I
functions.3

Intuitively, the Type-II functions resist such attacks because of the third requirement, which ensures that any inverse
query corresponds to a (close to) uniform chaining variable. Since uniformly distributed chaining variables are unlikely to
ever end up being in the set V of allowed queries to O0, the final query of the adversary above wouldn’t work for a Type-II
function. The next theorem formalizes this, showing that any Type-II PGV function is a pub-GPRO.

Theorem 7.2 [Type-II PGV are pub-GPROs] Fix d, n > 0 and fix IV ∈ {0, 1}n. Let Cd×n,n = (E,D) be an ideal
cipher and let h̄C be the guarded implementation of a Type-II PGV function hC . There exists a simulator S = (SE ,SD)
such that for any adversary A making at most (q0, q1, q2) queries, we have

Advpub-gpro

h̄,C,S (A) ≤ (q0 + q1 + q2)2

2n
+
q2(q0 + q1 + 1)

2n

where S works in time O(q2(q0 + q1)) and makes at most q1 queries. �

Proof: We fix the simulator S = (SE ,SD) detailed below.

procedure SE(k, x):

If E[k, x] 6= ⊥ then Ret E[k, x]
(m, v)← C−pre(k, x)
w ← feval(v,m)
y ← C−post(v,m,w)
Ret y

procedure SD(k, y):

((v1,m1), w1), . . . , ((v`,m`), w`)← freveal()
For i = 1 to ` do

(ki, xi)← Cpre(vi,mi)
yi ← C−post(vi,mi, wi)
If k = ki and y = yi then Ret xi

x←$ {0, 1}n ; E[k, x]← y

Ret x

The simulator associates queries by the adversary to SE and SD with queries to fgeval . Note that Cpre and Cpost(v,m, ·)
are bijections (the latter for any v,m), and their inverses via C−pre and C−post(v,m, ·) (see Section 5.1). The simulator
uses these functions to map between inputs and outputs of the block cipher and inputs and outputs of f .

We utilize a sequence of games G0 −→ · · · −→ G6 to bound A’s advantage relative to S . See Figures 10 and 11. Some of
these games utilize as subroutines those shown in Figure 9, which together implement a modified version of an ideal cipher
in which sampling with replacement is done (instead of the usual sampling without replacement). (The parameter s is used

3Note that [15] point out that these four just type-I PGV functions are also not suitable compression functions for building PROs via prefix-free
encoding messages and then iteration.
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procedure O0(v,m): Game G0

If v /∈ {IV } ∪ V then Ret ⊥
(k, x)← Cpre(v,m)
y ← Choose-E(0, k, x)
w ← Cpost(v,m, y)
V ∪← w

Ret w

procedure O1(k, x):

y ← Choose-E(0, k, x)
Ret y

procedure O2(k, y):

x← Choose-D(0, k, y)
Ret x

procedure O0(v,m): Game G1

100 If v /∈ {IV } ∪ V then Ret ⊥
101 (k, x)← Cpre(v,m)
102 y ← Choose-E(0, k, x)
103 w ← Cpost(v,m, y)
104 i← i+ 1 ; ((vi,mi), wi)← ((v,m), w)
105 V ∪← w

106 Ret w

procedure O1(k, x):

110 y ← Choose-E(0, k, x)
111 w ← Cpost(C−pre(k, x), y)
112 i← i+ 1 ; ((vi,mi), wi)← (C−pre(k, x), w)
113 Ret y

procedure O2(k, y):

120 For j = 1 to i do
121 (ki, xi)← Cpre(vi,mi)
122 yi ← C−post(vi,mi, wi)
123 If k = ki and y = yi then Ret xi

124 x← Choose-D(0, k, y)
125 Ret x

procedure O0(v,m): Games G2 G3

200 If v /∈ {IV } ∪ V then Ret ⊥
201 (k, x)← Cpre(v,m)
202 s← 0 ; If E[1, k, x] 6= ⊥ then bad← true ; s← 1
203 y ← Choose-E(s, k, x)
204 w ← Cpost(v,m, y)
205 i← i+ 1 ; ((vi,mi), wi)← ((v,m), w)
206 V ∪← w

207 Ret w

procedure O1(k, x):

210 If E[1, k, x] 6= ⊥ then Ret Choose-E(1,m, c)
211 y ← Choose-E(0, k, x)
212 w ← Cpost(C−pre(k, x), y)
213 i← i+ 1 ; ((vi,mi), wi)← (C−pre(k, x), w)
214 Ret y

procedure O2(k, y):

220 For j = 1 to i do
221 (ki, xi)← Cpre(vi,mi)
222 yi ← C−post(vi,mi, wi)
223 If k = ki and y = yi then Ret xi

224 s← 1 ; If D[0, k, y] 6= ⊥ then bad← true ; s← 0
225 x← Choose-D(s, k, y)
226 Ret x

procedure O0(v,m): Game G4

400 If v /∈ {IV } ∪ V then Ret ⊥
401 (k, x)← Cpre(v,m)
402 If E[1,m, c] 6= ⊥ then bad← true

403 y ← f(k, x) ; w ← Cpost(v,m, y)
404 D[0, k, y]← x

405 i← i+ 1 ; ((vi,mi), wi)← ((c,m), w)
406 V ∪← w

407 Ret w

procedure O1(k, x):

410 If E[1, k, x] 6= ⊥ then Ret E[1, k, x]
411 y ← f(k, x) ; w ← Cpost(C−pre(k, x), y)
412 D[0, k, y]← x

412 i← i+ 1 ; ((vi,mi), wi)← (C−pre(k, x), w)
414 Ret y

procedure O2(k, y):

420 For j = 1 to i do
421 (ki, xi)← Cpre(vi,mi)
422 yi ← C−post(vi,mi, wi)
423 If k = ki and y = yi then Ret xi

424 If D[0, k, y] 6= ⊥ then bad← true

425 x←$ {0, 1}n ; E[1, k, x]← y

426 Ret x

Figure 10: Games used in proof of Theorem 7.2. Subroutines Choose-E and Choose-D are detailed in Figure 9. Game G4

uses a random function f mapping from {0, 1}d × {0, 1}n to {0, 1}n.
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procedure O0(v,m): Game G5

500 If v /∈ {IV } ∪ V then Ret ⊥
501 (k, x)← Cpre(v,m)
502 If E[1, k, x] 6= ⊥ then bad← true

503 w ← f(C−pre(k, x)) ; y ← C−post(v,m,w)
504 D[0, k, y]← x

505 i← i+ 1 ; ((vi,mi), wi)← ((v,m), w)
506 V ∪← w

507 Ret w

procedure O1(k, x):

510 If E[1,m, c] 6= ⊥ then Ret E[1,m, c]
511 w ← f(C−pre(k, x)); y ← C−post(C−pre(k, x), w)
512 D[0, k, y]← x

513 i← i+ 1 ; ((vi,mi), wi)← (C−pre(k, x), w)
514 Ret y

procedure O2(k, y):

520 For j = 1 to i do
521 (ki, xi)← Cpre(vi,mi)
522 yi ← C−post(vi,mi, wi)
523 If k = ki and y = yi then Ret xi

524 If D[0, k, y] 6= ⊥ then bad← true

525 x←$ {0, 1}n ; E[1, k, x]← y

526 Ret x

procedure O0(v,m): Game G6

600 If v /∈ {IV } ∪ V then Ret ⊥
601 w ← f(v,m)
602 i← i+ 1 ; ((vi,mi), wi)← ((v,m), w)
603 V ∪← w

604 Ret w

procedure O1(k, x):

610 If E[1,m, c] 6= ⊥ then Ret E[1,m, c]
611 w ← f(C−pre(k, x))
612 i← i+ 1 ; ((vi,mi), wi)← (C−pre(k, x), w)
613 Ret y

procedure O2(k, y):

620 For j = 1 to i do
621 (ki, xi)← Cpre(vi,mi)
622 yi ← C−post(vi,mi, wi)
623 If k = ki and y = yi then Ret xi

624 x←$ {0, 1}n ; E[1, k, x]← y

625 Ret x

Figure 11: Game used in the proof of Theorem 7.2. Games G5 and G6 use a random function f mapping from {0, 1}n ×
{0, 1}d to {0, 1}n.

to allow multiple instances of the objects. Namely, different s indicate distinct tables E and D.) We will justify that

Pr
[
Expindiff-1

DM,E,A ⇒ 1
]
≤ Pr

[
AG0 ⇒ 1

]
+

(q0 + q1 + q2)2

2n
(18)

= Pr
[
AG1 ⇒ 1

]
+

(q0 + q1 + q2)2

2n
(19)

= Pr
[
AG2 ⇒ 1

]
+

(q0 + q1 + q2)2

2n
(20)

≤ Pr
[
AG3 ⇒ 1

]
+

(q0 + q1 + q2)2

2n
+ Pr

[
AG3 sets bad

]
(21)

= Pr
[
AG4 ⇒ 1

]
+

(q0 + q1 + q2)2

2n
+ Pr

[
AG4 sets bad

]
(22)

= Pr
[
AG5 ⇒ 1

]
+

(q0 + q1 + q2)2

2n
+ Pr

[
AG5 sets bad

]
(23)

= Pr
[
AG6 ⇒ 1

]
+

(q0 + q1 + q2)2

2n
+ Pr

[
AG5 sets bad

]
(24)

= Pr
[
Expindiff-0

f,S,A ⇒ 1
]

+
(q0 + q1 + q2)2

2n
+ Pr

[
AG5 sets bad

]
(25)

and then conclude by bounding the probability of bad being set in game G4.

(Game G0) Game G0 implements the oracles h̄E , E,D but where ideal cipher E (with inverse D) is implemented using the
subroutines of Figure 9. A straightforward birthday argument justifies (18).
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(Game G1) Game G1 is the same as G0 except that book-keeping code is added to proceduresO0 andO1 which is then used
inO2. The newO2 functionality checks explicitly for previous queries toO1 orO2 that have already set D[0, k, y] (i.e. due to
an execution of Choose-E(0, k, x) that sampled range point y). To show that this is in fact the case, we need to show that any-
time xi is returned inO2 on line 123, the same value would have been returned on line 125. Let k, y be a pair queried toO2.
Suppose there exists an i such that ki = k and yi = y where (ki, xi) = Cpre(vi,mi) and yi = C−pre(vi,mi, wi). Then
consider if vi,mi, wi were assigned values on line 104. This means that Choose-E(0, Cpre(vi,mi)) = Choose-E(0, ki, xi)
was executed and it returned a value y′, meaning D[0, ki, y′] = xi. Since Cpre and Cpost(vi,mi, ·) are bijections we have
that y′ = yi = y. Thus, D[0, k, y] = xi. Consider now if vi,mi, wi were instead assigned values on line 112. Then again
Choose-E(0, Cpre(vi,mi)) = Choose-E(0, ki, xi) was executed and returned a value y′, meaning D[0, ki, y′] = xi. But
now wi = Cpost(C−pre(ki, xi), y′) and the bijectivity of Cpost and Cpre gives that y′ = yi = y. Thus, D[0, k, y] = xi.
We have justified (19).

(Game G2, boxed statements included) Game G2 is a modification of G1 in that two pairs of tables (corresponding to s = 0
and s = 1) are used to track points defined by the oracles. The checks on lines 201, 210, and 222 ensure, however, that the
two tables are used in a manner that mimics exactly the behavior of the single pair of tables in G1. This justifies (20).

(Game G3, boxed statements excluded) Game G3 and G2 are identical-until-bad, and the fundamental lemma of game-
playing [2] justifies (21).

(Game G4) In game G4 f is a random oracle mapping points k, x to random values from {0, 1}n. It is used in conjunction
with the other code on lines 403/404, 411/412, and 425, to completely remove use of Choose-E and Choose-D in the game.
This simplification of the code of game G3 implements identical functionality, justifying (22).

(Game G5) In game G5 we make two pairs of changes. First, we apply the random oracle f to C−pre(k, x) as oppoesd
to k, x on lines 503 and 511. (Technically, f is now a map on domain {0, 1}n × {0, 1}d. Before it had a domain of
{0, 1}d×{0, 1}n.) Since Cpre is bijective this change does not affect the distribution of the outputs of f . Second, we swap
the order of assignment for y and w on lines 503 and 511, now assigning y to the output of f and then setting z as a function
of y and v,m (or, equivalently, k, x). The change to line 503 is justified by the fact that Cpost(v,m, ·) is a bijection for
any v,m. The change to line 511 is justified since Cpost(C−pre(k, x), ·) is a bijection for any k, x (since Cpre is also a
bijection). Thus the variables involved maintain the same (joint) distribution, justifying (23).

(Game G6) In the final game we drop code that handled the setting of bad in G5. Now we see that this final game G6 is
exactly implementing the oracles (fgeval ,SfE ,S

f
D), justifying (24).

All that remains is to bound the probability of bad being set in game G5. We proceed via case analysis.

The flag bad might be set due to line 502 or line 524. For line 524, however, the loop and conditional of 520 and 521 ensure
that 524 will never be executed when D[0, k, y] 6= ⊥. To see this, note that D[0, k, y] is assigned a value only if one of lines
505 or 513 is also executed. Thus, if D[0, k, y] 6= ⊥ during a O2(k, y) query, then necessarily there exists a j ∈ [1 .. i]
such that k = kj and y = yj where (kj , xj) = Cpre(vj ,mj) and yj = Cpost(vi,mi, wi). This is so because Cpre and
Cpost(vi,mi, ·) are bijections. Thus, bad will never get set on line 524.

We turn to bounding the probability that line 502 sets bad. For bad to be set here, it must be that some query O0(v,m) was
made for which v ∈ {IV } ∪ V at the time of the query and E[1, k, x] 6= ⊥. But E[1, k, x] can only be set to a non-bottom
value if line 525 previously executed and here x was uniformly selected. Let V∗ be the set V at the end of A’s execution.
Let x be a value sampled due to execution of line 523 for a queryO2(k, y). Then we want to assess the probability thatA can
make a later query v,m toO0 for which Cpre(v,m) = (k, x). Re-writing this last equation we have (v,m) = C−pre(k, x)
and thus v = C−pre

1 (k, x). Then we will justify that

Pr [ Cpre(v,m) = (k, x) ∧ (v = IV ∨ v ∈ V∗) ] ≤ Pr
[
C−pre

1 (k, x) = IV ∨ C−pre
1 (k, x) ∈ V∗

]
≤ Pr

[
C−pre

1 (k, x) = IV
]

+ Pr
[
C−pre

1 (k, x) ∈ V∗
]

=
1
2n

+
q0 + q1

2n

where the indicated events are defined in the natural way (over the coins used in executing AG5 ). We can bound the first
term on the right as follows. Since x is a uniformly-chosen point, and by the fact that C−pre

1 (k, ·) is a bijection, we have
the probability that C−pre

1 (k, x) = IV with probability at most 2−n. We can bound the second term as follows. Each
value w added to V in the course of the game is the output of the random function f on some pair v,m. These points are
chosen independently of the value v and there are at most q0 + q1 outputs of f chosen in the course of the game. Thus the
probability of any one of these independent points being equal to C−pre

1 (k, x) is at most (q0 + q1)/2n. Together, we see
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that for the probability of setting bad due to E[1, k, x] being set for any particular O2 query is at most (1 + q0 + q1)/2n,
justifying the equations above.

Finally, since there are at most q2 queries toO2, and consequently at most q2 values x sampled due to execution of line 525
we have via a straightforward union bound that

Pr
[
AG5 sets bad

]
≤ q2(1 + q0 + q1)

2n
.

This completes the proof.
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A Proof of Theorem 3.2

Proof: We argue about WPrA security in the case of a single extraction query, and then apply Lemmas 3.3 and 3.4 to get
the final result. We begin by defining the extractor E+; let it operate as follows:

algorithm E+(z, α):
Parse (x1, y1), · · · , (xk, yk)← α
For i = 1 to k do

If yi = z then X ← xi
If X = ∅ then Ret ⊥
Ret X

That is, E+ simply iterates over the query-response pairs provided in the advice string and, upon finding a response that
matches z, outputs the corresponding domain point. There are two cases to consider. First assume A made a P -query on
x before extraction query (z, α). Then E+ will extract x from the advice string. Thus this case cannot contribute to A’s
advantage. On the other hand, assume A makes extraction query Ex(z, α) for which z has not been already returned by P .
Any subsequent P -query will return z with probability at most 1/2n. Since A can query at most q times to P , this means
that the probability of hitting one such z is at most q/2n.

B Preimage Awareness of Iteration without Strengthening
We formalize a variant of preimage resistance, following [22]. Let hP : Dom → Rng be a hash function for an ideal
primitive P . An inversion adversary A takes no inputs, has access to a primitive oracle P , and outputs a point x ∈ Dom.
For fixed value IV ∈ Rng , we define the experiment Expinv

h,P,IV,A by the following pseudocode

x←$ AP ; Ret hP (x) = IV

We associate to inv-adversary A, hash function HP , and constant IV ∈ Rng the advantage relation

Advinv
h,P,IV (A) = Pr

[
Expinv

h,P,IV,A ⇒ true
]
.

where the probability is taken over the coins used to execute the inv experiment. It is easy to verify that for the ideal-
primitive-based compression functions we consider, the advantage in this game is low for any IV and any adversary. For
example, for f = RFd+n,n, we have that Advinv

f,IV (A) ≤ qp/2n for any adversary A making at most qp queries. We have
the following result.

Theorem B.1 [Itr achieves PrA] Fix n, d > 0 and let P be an ideal primitive. Let hP : {0, 1}n+d → {0, 1}n be a
compression function, and let H = Itr[hP ] using some constant IV ∈ {0, 1}n. Let Eh be an arbitrary extractor for the PA-
experiment involving h. Then there exists an extractor EH such that for all pra-adversaries A making at most qp primitive
queries and qe extraction queries and outputing a message of at most `max ≥ 1 blocks there exists an pra-adversary B and
an inv-adversary C such that

Advpra
H,P,EH

(A) ≤ Advpra
h,P,Eh

(B) + Advinv
h,P,IV (C) .
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EH runs in time at most `max ·Time(Eh). B runs in time at most that of A plus O(qe`max), makes at most qp + `max ·
NumQueries(h) primitive queries, and makes at most qe`max extraction queries. C runs in time that of B and makes the
same number of primitive queries. �

The proof can be adapted easily from that used for SMD. Namely, the probability of the last case (where suffix-freeness
is invoked) of the case analysis occurring can be shown to imply the existance of a natural inversion adversary.

C Group-2 PGV schemes are PrA in the iteration
Consider a generalized rate-1 blockcipher-based compression function, which operates as follows on input (v,m): (k, x)←
Cpre(v,m), y←$ E(k, x), w ← Cpost(v,m, y), output w. We recall that a blockcipher-based compression function is
Stam Type-II if: 1) Cpre is bijective, 2) for all v,m the postprocessing Cpost(v,m, ·) is bijective, and 3) for all k, the
inverse map C−pre

1 (k, ·) is bijective. Here the map C−pre
1 : {0, 1}d × {0, 1}n → {0, 1}n is defined by C−pre

1 (k,m) = v
where (v,m) = C−pre(k, x). (This is simply the projection of C−pre to its left output.) Stam has shown that the Group-2
PGV schemes from [7] are also Type-II.

Theorem C.1 [The Group-2/Type-II PGV schemes are PrA in the iteration.] Fix κ, n > 0, let E←$ BC(κ, n). Let P
be an ideal primitive providing an interfacs to E and E−1. Let hP be a Type-II blockcipher-based compression function,
and let H = Itr[hP ] for some constant IV ∈ {0, 1}n. There exists an extractor E such that for any adversary A making at
most qp queries to P and qe extraction queries we have

Advpra
H,E(A) ≤ qeqp

2n − qp
+

1.5qp(qp + 1)
2n − qp

where E runs in time at most O
(
qe(q2

p + qp(Time(C−pre) + Time(Cpost))
)

�

Proof: Let C be the event that when the PrA-adversary A halts, the advice string α contains the queries required to evaluate
H(M) and H(M ′) for M 6= M ′ such that H(M) = H(M ′), or to evaluate H(M) for some non-trivial M such that
H(M) = IV .

Now we condition:

Pr
[
Exppra

H,E,A⇒ 1
]

= Pr
[(

Exppra
H,E,A⇒ 1

)
∧ C
]

+ Pr
[(

Exppra
H,E,A⇒ 1

)
∧ ¬C

]
≤ Pr

[(
Exppra

H,E,A⇒ 1
)
| ¬C

]
+ Pr [C] (26)

The proof of collision resistance for the Type-II schemes given in Stam [37] bounds Pr[C] ≤ .5qp(qp + 1)/(2n − qp). We
continue then under the assumption that ¬C holds.

The extractor E on input (z, α) operates as follows. Informally, it will build from the blockcipher queries in α an IV -rooted
tree with vertices that are labeled by chaining values and edges labeled by message blocks. It then looks to see if z appears
as a vertex label in the tree. If so, it returns the appropriate preimage by reading edge labels from the IV to z; if not, it
returns ⊥.

Let us be more formal. Let L be an initially empty list. Let E(z, α) first parse the advice string (k1, x1, y1), . . . , (kr, xr, yr).
Let E build a graph T = (V,E) with vertex and edge labels; the vertex labeld by the initial value will simply be refered
to by IV . Initially, V = {IV } and E = {}. For i ∈ [1..r] it does the following: (mi, vi) ← C−pre(ki, xi), wi ←
Cpost(vi,mi, yi); if wi = z then an (initially false) flag possible is set to true. If vi = IV , E adds (vi,mi, wi) to L with
the annotation “used, 0”, and creates edge (IV, wi) in T with label mi; else E simply adds (vi,miwi) to L. If the flag
possible was not set to true during this loop, the extractor halts with output ⊥. We pause in our description to note the
following. Since Cpre and Cpost(v,m, ·) are bijections, each blockcipher query (k, x, y) defines a unique (compression
function) tuple (v,m,w). Combined with the assumption that ¬C holds, any tuple marked as used will never again be
added to the graph. (Note that ¬C also implies that v 6= w.) Continuing our description of E , for each (v,m,w) ∈ L that
is not marked as used, it searches the vertices at distance one from the IV (corresponding exactly to the L-tuples labeled
”used, 0”) for a vertex labeled v; if it finds one, it creates a new edge (v, w) labeled by m, and marks the tuple (v,m,w)
as “used, 1”. The extractor continues in this way, making repeated passes over L and attempting to add un-used tuples
to the tree. Notice that by our assumptions, E only needs to compare un-used tuples to tuples marked “used, `” for the
highest value of ` in the list. (This is easily implement by a counter that keeps track of what is the current distance from
the IV .) When either all tuples in L are marked as used, or when a pass completes without adding any new edges to T ,
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the extractor stops building. It then searches the tree for a vertex labeled z. If it finds one (and there will be at most one) it
reads the edge labels from IV to z and returns the corresponding messsage. Otherwise, it returns ⊥.

It is clear that (for a single extraction query) the running time of the extractor is O(r2 + r(Time(C−pre) + Time(Cpost)).

Now, since ¬C holds, the adversary must win by finding a preimage for some z upon which the extractor never returned
a non-⊥ value. (It is possible that some z is queried more than once to E with different advice strings.) We call these z
useful. Without loss of generality, we can assume that the adversary outputs a preimage for a useful z as soon as one can be
computed from the query list. Thus we can also assume that all extractor queries are made prior to the adversary finding its
eventual preimage, and so there are at most qe useful z. It remains then to bound the probability that the adversary manages
to find a preimage for any of these z.

As the adversary runs, we imaging building a graphG = (V,E) much as the one above. The vertex set V = {0, 1}n and the
edge set is initially empty. When the adversary learns (via a P query) a triple (k, x, y), we compute (v,m)← C−pre(k, x)
and w ← Cpost(v,m, y), and place an edge between vertices v and w. Consider this graph at the time of the final extraction
query. In particular, consider the subgraph G′ that consists of the component containing the IV vertex and any component
containing a vertex labeled with a useful z. Let S ⊆ V be the set of vertices in this subgraph. We claim that if k queries
to P have been made at the time of the last extraction query, then |S| ≤ 1 + qe + k. To see this, notice that S contains
the IV vertex and the (at most) qe vertices labeled by the useful z. Moreover, as components are by definition connected
subgraphs, each of the k edges placed in G would have added at most one new vertex to G′.

Now, as A continues to make P queries after the final extraction query, each adds at most one new vertex to S. A necessary
condition for A to win is for it to create a new edge between vertices already in S, in particular because the IV and all of
the useful z are in S. (This is certainly not a sufficient condition.) Say this occurs on query k + i, for i ∈ [1..qp − k]. If
this is a forward blockcipher query (k, x) yielding y, then by the bijectivity of Cpre and Cpost(v,m, ·), the probability that
w = Cpost(v,m, y) is the label of a vertex already in S is at most (1 + qe + k+ (i− 1))/(2n− (k+ (i− 1))). Similarly, if
the necessary edge is created by an inverse blockcipher query (k, y) yielding x, then the bijectivity of C−pre

1 (k, ·) insures
again that the probability of creating the edge is at most (1 + qe + k + (i− 1))/(2n − (k + (i− 1))).

Thus, by a union bound

Pr
[(

Exppra
H,E,A⇒ 1

)
| ¬C

]
≤

qp−k∑
i=1

qe + k + i

2n − (k + (i− 1))

≤ 1
2n − qp

qp−k∑
i=1

(qe + k + i)

=
1

2n − qp

(
(qp − k)(qe + k) +

(qp − k)(qp − k + 1)
2

)
≤ qp − k

2n − qp

(
2(qe + k) + (qp − k + 1)

2

)
≤ qp − k

2n − qp

(
2qe + qp + k + 1

2

)
≤ qp

2n − qp
(qe + qp + 1)

where the final line is overly conservative because it sets k = 0 outside of the parentheses, and k = qp inside. (We choose
to use this looser bound for presentation purposes, and anyway it suffices.) Altogether then, (26) becomes

Pr
[
Exppra

H,E,A⇒ 1
]
≤ qp(qe + qp + 1)

2n − qp
+
.5(qp)(qp + 1)

2n − qp
=

qeqp
2n − qp

+
1.5(qp)(qp + 1)

2n − qp

completing the proof.

D Alternative Formulation for Preimage Awareness
A two-stage pa-adversary A = (A1, A2) is a pair of algorithms. The challenge selection algorithm A1 runs on no input
and has access to a primitive oracle P . It outputs a triple (z, α, st) where z ∈ Rng , α ∈ {0, 1}∗ is an advice string,
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and st ∈ {0, 1}∗ is a string representing arbitrary state information. The preimage selection algorithm A2 runs on input
z, st, has oracle access to P , and outputs a preimage x′ ∈ Dom. Then the 1-PrA experiment Exp1-pra

H,E,A is defined by the
pseudocode

(z, α, st)←$ AP1 ; x← E(z, α) ; x′←$ AP2 (z, st) ; Ret (x 6= x′ ∧HP (x′) = z)

To H , E , and A we associate the advantage relation

Adv1-pra
H,E (A) = Pr

[
Exp1-pra

H,E,A ⇒ true
]

where the probability is taken over the coins used in executing the experiment. The next theorem captures the simple hybrid
that 1-PrA security implies full PrA security, but with a factor qe (the number of extraction queries) loss in concrete security.
The proof (omitted) is by a simple hybrid argument.

Theorem D.1 [1-PrA ⇒ PrA] Let HP : Dom → Rng be a hash function. Let E be an extractor. Then there exists an
extractor E such that for any pra-adversary A making qe extraction queries there exists a two-stage pra-adversary B =
(B1, B2) such that

Advpra
H, E(A) ≤ qe ·Adv1-pra

H, E (B) .

B runs in time that of A plus qe ·Time(E). �
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