Comments on Shao-Cao’s Unidirectional Proxy Re-Encryption
Scheme from PKC 2009

Xi Zhang, Min-Rong Chen, Xia Li

Abstract

In Eurocrypt’98, Blaze, Bleumer and Strauss [4] introduced a primitive named proxy re-
encryption (PRE), in which a semi-trusted proxy can convert - without seeing the plaintext -
a ciphertext originally intended for Alice into an encryption of the same message intended for
Bob. PRE systems can be categorized into bidirectional PRE, in which the proxy can trans-
form from Alice to Bob and vice versa, and unidirectional PRE, in which the proxy cannot
transform ciphertexts in the opposite direction. How to construct a PRE scheme secure against
chosen-ciphertext attack (CCA) without pairings is left as an open problem in ACM CCS’07
by Canetti and Hohenberger [7]. In CANS’08, Deng et al. [8] successfully proposed a CCA-
secure bidirectional PRE scheme without pairings. In PKC’09, Shao and Cao [10] proposed
a unidirectional PRE without pairings, and claimed that their scheme is CCA-secure. They
compared their scheme with Libert-Vergnaud’s pairing-based unidirectional PRE scheme from
PKC’08, and wanted to indicate that their scheme gains advantages over Libert-Vergnaud’s
scheme. However, Weng et al. [13] recently pointed out that Shao-Cao’s scheme is not CCA-
secure by giving a concrete chosen-ciphertext attack, and they also presented a more efficient
CCA-secure unidirectional PRE scheme without parings. In this paper, we further point out
that, Shao-Cao’s comparison between their scheme and Libert-Vergnaud’s scheme is unfair,
since Shao-Cao’s scheme is even not secure against chosen-plaintext attack (CPA) in Libert-
Vergnaud’s security model.

Keywords. Proxy re-encryption, chosen-ciphertext attack, chosen-plaintext attack.

1 Introduction

The concept of proxy re-encryption (PRE) is initially introduced by Blaze, Bleumer and Strauss [4]
in Eurocrypt’98. In a PRE system, a proxy is able to transform a ciphertext originally intended
for Alice into an encryption of the same message intended for Bob. The proxy, however, can-
not learn anything about the messages encrypted under either key. According to the direction of
transformation, PRE can be categorized into bidirectional PRE and wunidirectional PRE. In bidi-
rectional PRE, the proxy can transform from Alice to Bob and vice versa. In contrast, the proxy in
unidirectional PRE cannot transform ciphertexts in the opposite direction. According to another
criterion, PRE systems can also be classified into multi-hop PRE, in which the ciphertexts can be
transformed from Alice to Bob and then to Charlie and so on, and single-hop PRE, in which the
ciphertexts can only be transformed once'.

Blaze et al. [4] proposed the first bidirectional PRE scheme in 1998. In 2005, Ateniese et al. [2,3]
presented unidirectional PRE schemes based on bilinear pairings. All of these schemes are only
secure against chosen-plaintext attack (CPA). However, applications often require security against
chosen-ciphertext attacks (CCA). So, in ACM CCS’07, Canetti and Hohenberger [7] presented
the first CCA-secure bidirectional PRE scheme. In PKC’08 Libert and Vergnaud [9] presented a
(single-hop) unidirectional PRE scheme with replayable chosen-ciphertext (RCCA) security [13],
where a harmless mauling of the challenge ciphertext is tolerated.

In [2,3,9], for a single-hop unidirectional PRE scheme, the original ciphertext is named second level ciphertext,
and the transformed ciphertext is called first level ciphertert. Through out this paper, we also use these notations.

The CCA/RCCA-secure PRE schemes in [7,9] rely on bilinear pairings. It is well-known that,
compared with standard operations such as modular exponentiation in finite fields, the pairing
computation is a costly expensive operation. It would be desirable for cryptosystems to be con-
structed without bilinear pairings, especially in computation resource limited settings. In view of
this, Canetti and Hohenberger [7] left an important open problem in ACM CCS’07, i.e., how to
construct a CCA-secure PRE scheme without pairings.

In CANS’08, Deng et al. [8] proposed the first CCA-secure (single-hop) bidirectional PRE
scheme without pairings. Subsequently, in PKC’09 Shao and Cao [10] proposed a single-hop
unidirectional PRE without pairings, and claimed that their scheme is CCA-secure. They compared
their scheme with Libert-Vergnaud’s unidirectional PRE scheme in [9], and wanted to indicate that
their scheme gains advantages over Libert-Vergnaud’s scheme. However, Weng et al. [13] recently
pointed out that Shao-Cao’s scheme is not CCA-secure by giving a concrete chosen-ciphertext
attack. Weng et al. [13] also presented a more efficient CCA-secure unidirectional PRE scheme
without parings.

In this paper, we further point out that, Shao-Cao’s comparison between their scheme and
Libert-Vergnaud’s scheme is unfair, since Shao-Cao’s scheme is even not secure against chosen-
plaintext attack (CPA) in Libert-Vergnaud’s security model.

Organization. The rest of the paper is organized as follows. In Section 2, we review the definition
and security notions for PRE systems as defined by Libert and Vergnaud [9]. In Section 3, we
review Shao-Cao’s unidirectional PRE scheme, and then point out that Shao-Cao’s scheme is even
not CPA-secure under Libert-Vergnaud security model [9]. Finally, Section 4 concludes the paper.

2 Framework of Unidirectional Proxy Re-Encryption

2.1 Definition of Unidirectional Proxy Re-Encryption

In this subsection, we review the definition of (single-hop) unidirectional PRE as defined in [9],
with slight modifications for an easy description of Shao-Cao’s unidirectional PRE scheme to be
reviewed later.

A (single hop) unidirectional PRE scheme is defined by the following six algorithms:

e Global-Setup(A): On input of a security parameter A, this setup algorithm outputs the
global parameters param to be used by all parties in the scheme. To lighten notations, we
do not explicitly write param as the input for the rest of algorithms.

e KeyGen(\): On input of the security parameter A, all parties use this randomize algorithm
to generate a public/private key pair (pk, sk).

e ReKeyGen(sk;, pkj): On input of user i’s private key sk; and user j’s public key pk;, this
algorithm outputs a re-encryption key rk;_.;, which can be used to translate second level
ciphertexts for ¢ into first level ciphertexts for j.

e Enc(pk,m): On input of a receiver’s public key pk and a plaintext m, this algorithm outputs
a first level ciphertext that can be re-encrypted into a first level one intended for another

party.

e ReEnc(rk;—;, CT;): On input of a re-encryption key rk;_; and a second level ciphertext CT;
under public key pk;, this algorithm outputs a first level ciphertext CT; intended for user j.

e Dec(sk,CT): On input a private key sk and a ciphertext CT, this algorithm outputs a
plaintext m or the error symbol | if CT is invalid.

Correctness requires that, for any plaintext m chosen from the plaintext space, and any couple
of private/public key pairs (sk;, pk;) and (sk;, pk;) generated by KeyGen, the following conditions

should hold:

Dec(sk;,Enc(pk;, m)) = m,
Dec(skj, ReEnc(ReKeyGen(sk;, pkj), Enc(pk;,m))) = m.

2.2 Security Notions for Unidirectional Proxy Re-Encryption

In this subsection, we review the security notions for single-hop unidirectional PREs as defined
in [9],with slight modifications for the sake of an easy explanation the attack against Shao-Cao’s
unidirectional PRE scheme. We remark that the security notions given in this subsection are in
fact equivalent to those defined by Libert and Vergnaud [9].

The definition defined in [9] requires the adversary commit ahead of time which public key
she wants to challenge. In addition, it only considers the replayable chosen-ciphertext security,
where the attacker is notably disallowed to ask for a decryption of a re-randomized version of the
challenge ciphertext.

Security of Second level ciphertexts. In this notion, the challenger provides the adversary
with a second level ciphertext. The RCCA-security at the second level for a unidirectional PRE
scheme II can be defined via the following game between an adversary A and a challenger C:

Setup. A first commits that he wants to challenge the target user i*’s public key. Then C runs
algorithm GlobalSetup to generate the public parameters param, and returns param to A.

Phase 1. A issues queries ¢, - - - , ¢ where query ¢; is one of the following;:

e Uncorrupted key generation oracle Oy(i): C first runs algorithm KeyGen to obtain a
public/private key pair (pk;, sk;), and then sends pk; to A. Here it is required that pk;«
is generated by this oracle.

e Corrupted key generation oracle O,(j): C first runs algorithm KeyGen to obtain a pub-
lic/private key pair (pkj, sk;), and then gives (pk;, sk;) to A.

e Re-encryption key generation oracle Opi(pki,pk;): C first runs ReKeyGen(sk;, pk;) to
generate a re-encryption key rk;_,;, where sk; is the private key with respect to pk;. Then
C returns rk;_,; to A. Here it is required that A cannot issue the query O, (pki, pk;)
if pk; is generated by O..

e Re-encryption oracle Oye(pki,pkj, CT;): C first runs algorithm ReKeyGen to generate
the re-encryption key rk;—;. Then it runs ReEnc(rk;—;, CT;) to obtain a first level
ciphertext CT, which is returned to A.

e Decryption oracle Oq4(pk,CT): Challenger C returns the result of Decrypt(sk, CT) to A,
where sk is the private key with respect to pk.

For the last three oracles, it is required that pk;, pk; and pk are all generated beforehand by
O, or O..

Challenge. Once A decides that Phase 1 is over, it outputs two equal-length plaintexts mg and
m1 chosen from the plaintext space. Challenger C flips a random coin ¢ € {0, 1}, and encrypts
mg under public key pk;» to generate a second level ciphertext CT*. C then returns CT* as
the challenge ciphertext to A.

Phase 2. A issues additional queries ¢y+1,- - , ¢maz Where each of the queries is one of the fol-
lowing:
e Public key generation query O, (i): The same as in Phase 1.
o Secret key query Oq(j): The same as in Phase 1.
e Re-encryption key generation query Oyp(pki, pk;): The same as in Phase 1.

e Re-encryption oracle Oyc(pki,pk;, CT;): Challenger C responds as in Phase 1. Here it
is required that, if pk; is generated by O, then (pk;, CT;) # (pki<, CT™).

e Decryption oracle Oq4(pk, CT): Challenger C responds as in Phase 1. Here it is required
that, (pk,CT) can not be a derivative of (pk;=, CT*). Here derivative of (pk;,CT™) is
defined as follows:

— (pki=, CT") is a derivative of itself;
— If pk is generated by O, and Dec(sk,C) € {mg, m1}, then (pk,CT) is a derivative
of (pki=,CT™).

Guess. Finally, A outputs a guess ¢’ € {0,1}.

We define A’s advantage in attacking scheme II’'s RCCA-security at the second level as ‘Pr[é’ =
J] — % , where the probability is taken over the random coins consumed by the challenger and the
adversary. If for any probabilistic polynomial time (PPT) adversary A defined as above, his
advantage is negligible, then we say that the unidirectional PRE scheme is RCCA-secure at the
second level.

Security of First Level Ciphertext. The above definition provides the adversary with a second
level ciphertext in the challenge phase. Libert and Vergnaud [9] also defined a complementary
definition of security by providing the adversary with a first level ciphertext in the challenge
phase. Note that, in a single hop unidirectional PRE scheme, since the first level ciphertext cannot
be further re-encrypted, A is allowed to obtain any re-encryption keys. Furthermore, given these
re-encryption keys, A can re-encrypt ciphertexts by himself, and hence there is no need to provide
the re-encryption oracle O, for him. Concretely, the RCCA-security at the first level for a single-
hop unidirectional PRE scheme II can be defined via the following game between an adversary A
and a challenger C:

Setup. A first commits that he wants to challenge the target user i*’s public key. Then C runs
algorithm GlobalSetup to generate the public parameters param, and returns param to A.

Phase 1. A issues queries q1, - - , ¢y Where query ¢; is one of the following;:

e Uncorrupted key generation oracle O, (i): C first runs algorithm KeyGen to obtain a
public/private key pair (pk;, sk;), and then sends pk; to A. Here it is required that pk;«
is generated by this oracle.

o Corrupted key generation oracle Oy(j): C first runs algorithm KeyGen to obtain a pub-
lic/private key pair (pk;, sk;), and then gives (pkj, sk;) to A.

e Re-encryption key generation oracle O, (pk;,pk;j): C first runs ReKeyGen(sk;, pk;) to
generate a re-encryption key rk;_.;, where sk; is the private key with respect to pk;.
Then C returns rk;—; to A. Note that, A is allowed to query any re-encryption key
generation queries, even including O, (pki«, pk;) when pk; is generated by O..

e Decryption oracle Oq4(pk,CT): Challenger C returns the result of Decrypt(sk, CT) to A,
where sk is the private key with respect to pk.

For the last three oracles, it is required that pk;, pk; and pk are all generated beforehand by
O, or O,.

Challenge. Once A decides that Phase 1 is over, it outputs two equal-length plaintexts mg and
mq chosen from the plaintext space. Challenger C flips a random coin § € {0, 1}, and encrypts
mg under public key pk;« to generate a first level ciphertext CT*. C then returns CT* as the
challenge ciphertext to A.

Phase 2. A issues additional queries ¢y+1,- - , ¢maz Where each of the queries is one of the fol-
lowing:

Uncorrupted key generation oracle O, (i): The same as in Phase 1.

Corrupted key generation oracle O.(j): The same as in Phase 1.

e Re-encryption key generation oracle O, (pk;, pk;): The same as in Phase 1.

Decryption oracle Oq(pk,CT): Challenger C responds as in Phase 1. Here it is required
that, A cannot issue Oy(pk;«, CT') such that Dec(sk;, CT') € {mg, m1}.

Guess. Finally, A outputs a guess §' € {0,1}.

We define A’s advantage in attacking scheme II’s RCCA-security at the first level as }Pr[d’ =
5] — %‘, where the probability is taken over the random coins consumed by the challenger and the
adversary. If for any PPT adversary A defined as above, his advantage is negligible, then we say
that the single-hop unidirectional PRE scheme is RCCA-secure at the first level. As usual, we can
define the chosen-plaintext security (CPA) at the first level for an unidirectional PRE scheme by
not providing the decryption oracle for adversary A.

Master Secret Security. In [2,3,9], another security notion, named master secret security,
is defined for unidirectional PRE. This security notion captures the intuition that, even if the
dishonest proxy colludes with the delegatee, it is still impossible for them to derive the delegator’s
private key in full. Formally, we say that a unidirectional PRE scheme has master secret security,
if for any PPT adversary A, the following probability is negligible in the security parameter A

(pkix, ski=) < KeyGen(\), {(pks, sk;) < KeyGen(A)},
Pr |y = ski~ | {rki~—, < ReKeyGen(sk;, pky)}, {rks—i < ReKeyGen(sk,, pki)},
Y= A(pk2*7 {(pkm; Skz)}a {rki*—nr}a {Tkm—m'* })

As argued in [9], for single-hop unidirectional PRE, the master secret security is implied by the
RCCA-security at the first level.

3 Analysis of Shao-Cao’s Unidirectional PRE Scheme

3.1 Review of Shao-Cao’s Scheme

Before reviewing Shao-Cao’s scheme, we review the following non-interactive zero-knowledge proof
of knowledge, named signature of knowledge of equality of two discrete logarithms, which is used
in Shao-Cao’s scheme.

Signature of Knowledge [1,6,12]. Let y1,y2,9,h € G where G is a cyclic group of quadratic
residues modulo N2 (N is a safe-prime modulus), and H be a hash function such that H : {0,1}* —
{0,1}* (k is the security parameter). A pair (c, s), verifying ¢ = H(y1 ||y2|lgl|h|lg®v§||h*yS||m) is a
signature of knowledge of the discrete logarithm of both y; = ¢ w.r.t. base ¢ and yo = h* w.r.t.
base h, on a message m € {0,1}*.

Note that the party with the secret x is able to compute the signature, provided that x =
log, y1 = logy, y2, by choosing a random ¢ € {0, - - - ,2INER 1}, and then computing (c, s) as

c=H(ylly2llgllhllg'||ntIm), s=t—ca.

In [10], they denoted SoK.Gen(y1,y2, g, h, m) as the generation of the proof.

Now, we begin to review Shao-Cao’s scheme [10] as below, only with minor notational differ-
ences.

e Global-Setup: Choose three hash functions Hy, He and Hz where Hy : {0,1} — {0, 1}*1,
Hy : {0,1} — {0,1}", and H3 : {0,1} — {0,1}*2. Here k; and ks are security parameters,
and n is the bit-length of messages to be encrypted. The public parameters are param =
(Hl, HQ, Hg, n, k‘l, kﬁg)

e KeyGen: First choose a safe prime modulus N = pq, where p =2p' +1,¢=2¢' + 1, p,p’, ¢, ¢
are primes. Next, choose three random numbers o € Z%», a,b € [1,pp'qq’] and a hash function
H such that H : {0,1}* — Zy2. Furthermore, set go = a? mod N2, g; = g§ mod N2, and
g2 = g4 mod N2. The public key for this user is pk = (H, N, go, g1, g2), the “weak” secret
key is wsk = (a,b), and the long term secret key is sk = (p,q,p’,¢).

Note that either the long term secret key or the weak secret key can be used to decrypt
ciphertexts, but both the long term secret key and the weak secret key are required to
produce a re-encryption key. Note also that in the following description, the elements from
the key of user X contain an additional subscript X, e.g. pkx = (Hx (), Nx, 9x0,9x1,9x2)-

e ReKeyGen: On input a public key pky = (Hy, Ny, gvo, 9yv1, gy2), a “weak” secret key wskx =
ax, and a long term secret key skx = (px,qx,P,), it outputs the re-encryption key

rkx_y = (rkgly,rkgly), where rkﬁ?_}Y = (A, B, C), as follows:

1. Randomly pick ¢ € Zy, and 3 € {0,1}1.

2. Compute rk&?LY = ax — (3 mod (PxaxPxdy)-

3. Compute rx_y = Hy(5]|3) and then

A = (gyo)™*=¥ mod (Ny)?, B = (gy2)™*~¥ - (1+&Ny) mod (Ny)?, C = H(5)® .

Remark 1. When the proxy colludes with the delegatee (i.e., given the re-encryption key
rkx_y and the delegatee’s secret key), she can recover the delegator’s “weak” secret key ax,
although she cannot compugte the long term secret key skx.

e Enc: On input a public key pk = (H, N, go, g1,92) and a message m € {0,1}", the sender
acts as follows:

1. Randomly pick ¢ € Zy and compute r = H(c||m).

2. Compute A = (go)" mod N2, B = (¢1)" - (1 + oN) mod N?, C = H(c) ® m, and
D = (g2)" mod N2,

3. Run (¢, s) « SoK.Gen(A, D, go, g2, (B, C)), where the underlying hash function is Hs.
4. Output the second level ciphertext CT = (A4, B,C, D, ¢, s).

e ReEnc: On input a re-encryption key rkx_.y = (rkzg)_,y,rk:g?)_,y) and a ciphertext CT =
(A,B,C, D,c,s)under key pkx = (Hx, Nx, gx0,9x1,gx2), this algorithms first checks whether
¢ = H3(A||D|lgxollgxz2ll(9x0)°A¢||(9x2)° D¢||(B||C)) holds. If not, return L; otherwise, com-

(2)
pute A’ = ATk Ly = (gXO)T(“X A and output the first level ciphertext

CTy = (pkx, A, A, B,C, k()) = (pkx, A, A", B,C, A, B, C).

Remark 2. Shao and Cao did not explicitly include the public key pkx in the first level ci-
phertext, and their comparison with Libert-Vergnaud’s scheme did not count this ciphertext
overhead. However, the delegator’s public key should indeed be included in the first level
ciphertext. Otherwise, as shown in their decryption algorithm, without knowing the delega-
tor’s public key, the delegatee is unable to decrypt the first level ciphertexts. Taking into
account this ciphertext overhead, pkx = (Hx, Nx, gxo0,9x1,9x2), the comparison made by
Shao and Cao is unfair, and their scheme should be more inefficient than Libert-Vergnaud’s
scheme.

e Dec: On input a private key and ciphertext CT, this algorithm acts according to cases:

— If CT is a second level ciphertext in the form CT = (A, B,C, D, ¢, s), it works as follows:

1. Check whether ¢ = H3(A||Dl|gollg2|(g0)*A€||(g2)°*D¢||(B]|C)) holds. If not, return

1, else,
a__ 2
% if the secret key is the “weak” secret key a, compute o = 2/(4%)]\1,m°d N

* if the secret key is the long term secret key (p, q,p’,q’), compute

B/gy)% d —1 N2
0:(/%) N mod -m mod N,

where w; is computed as that in [5], and 7 is the inverse of 2p’¢’ mod N.
2. Compute m = C @& Hy(o).
3. If B = (g1)"l™ . (1 4+ oN) mod N? holds, return m; else return L.
— If CT is a first level ciphertext in the form CT = (pkx, A, A, B,C, A, B, C) re-encrypted
from pkx to pky:

1. Compute ¢ according to the following situations:

.)
x if the secret key is the “weak” secret key b, compute & = B/(A%)]\}YmOd Ny

* if sk is the long term secret key (p, q,p’,q’), compute
(B/gg%)%lq/ — 1 mod N

& = Ny - mod Ny,

where w; is computed as that in [5], and 7 is the inverse of 2p’¢’ mod Ny-.
2. Compute = C ® Hy(5).
3. Check whether B = (gy1)™ @19 . (1 + 6Ny) mod N holds. If not, return L.
(Up to this point, only the decryptor’s public key, (Hy, Ny, gvo, 9v1, gv2), is used.
Afterward, only the delegator’s public key, (Hx, Nx, gxo0, 9x1, 9x2), will be used.)

1. ABY—
4. Compute o = Bjar4 3\,; mod N)Q(, and m = C @ Hy(o).

5. If B = (gx1)"x@lIm . (1 + 6 Nx) mod N% holds, return m; else return L.

3.2 On the Security of Shao-Cao’s Scheme at the First level

In this subsection, we will show that Shao-Cao’s scheme fails to satisfy the first level cipertext
security, even in the CPA sense. Below, we present an adversary A against Shao-Cao’s scheme
with non-negligible advantage. Adversary A works as follows:

1. In the Setup phase, A first commits that he wants to challenge the target user Y*’s public
key. Then she is given the public parameters param = (Hy, Hy, H3, n, k1, k2).

2. In Phase 1, A issues a uncorrupted key generation query O, to obtain the target user’s public
key pky.

3. In Challenge Phase, A returns two equal-length plaintexts mg and m; to the challenger. Then
she is given a first level challenge ciphertext CT* encrypted for ms under pky« re-encrypted
from another public key pkx, where ¢ is the random bit chosen by the challenger. Recall
that the delegator’s public key is included in the first level ciphertext. Suppose the challenger
ciphertext CT* = (pkx, A, A’, B, C,A, B, C) is as below:

pkx = (Hx, Nx, 9x0,9x1,9x2),

A= (gX())T mod N)Q(,B = (gXl)r . (1 + O’Nx) mod N)2(, C = HQ(U) (&) mg,Al = (gXO)r(aXfﬂ%

A = (gy~0)™*=" mod (Ny+)?, B = (gy=2)™X~Y" - (1+ ¢Ny+) mod (Ny«)?, C = Hy(6)& 5.
where r = H(o||ms), and 0 is the random bit chosen by the challenger.

4. In Phase 2, A acts as follows:

(a) Issue an corrupted key generation query to obtain another user Z’s public/private key
pair (pkyz,skyz). Here Z #Y™*, X.

(b) Issue a re-encryption key generation query O,k(pkx,pkz) to get the re-encryption key
rkx_z. Recall that according the game for the first level ciphertext security, A is
allowed to issue any re-encryption key generation query.

(¢) As mentioned in Remark 1, using the re-encryption key rkx_.z and the delegatee’s
secret key skz, adversary A is able to recover the delegator’s “weak” secret key ax.
Now, using ax, A is able decrypt the ciphertext (A, B,C) to obtain the underlying
plaintext mgs as below:

B/(A%) — 1 mod N%

o= Ny , ms=C& Hs(o).

5. Finally, with mg, adversary A can certainly know the bit § chosen by the challenger, and
thus break the first level ciphertext security of Shao-Cao’s scheme.

Remark 3. The above adversary does not issue any decryption queries. Thus it means that
Shao-Cao’s scheme fails to achieve the CPA-security at the first level, not to mention the RCCA-
security.

Remark 4. The above adversary is considered in the non-adaptive corruption model. In the
fully adaptive corruption model, this adversary can certainly succeed, since this model provides
the adversary more powers.

Remark 5. We notice that, Weng et al. [13] uploaded (on 05-May-2009 09:05:55 UTC) their
paper on the eprint website presenting a chosen-ciphertext attack against Shao-Cao’s scheme and
mentioning measures to fix. Subsequently, Shao and Cao [11] modified (on 07-May-2009 22:36:35
UTC) their scheme on the eprint website according to these measures without mentioning this.
However, we remark that, the above adversary can also be applied to Shao-Cao’s modified scheme.
Thus their modified scheme is still not CPA-secure at the first level.

4 Conclusions

We pointed out that Shao-Cao’s comparisons between their unidirectional PRE scheme and Libert-
Vergnaud’s scheme is unfair, since Shao-Cao’s scheme is even not CPA-secure in Libert-Vergnaud’s
security model.

References

[1] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In CRYPTO, pages 255-270, 2000.

[2] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved Proxy Re-
Encryption Schemes with Applications to Secure Distributed Storage. In NDSS. The Internet
Society, 2005.

[3] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy re-
encryption schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur., 9(1):1-30, 2006.

[4] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible Protocols and Atomic Proxy
Cryptography. In EUROCRYPT, pages 127-144, 1998.

[5]

Emmanuel Bresson, Dario Catalano, and David Pointcheval. A Simple Public-Key Cryp-
tosystem with a Double Trapdoor Decryption Mechanism and Its Applications. In Chi-Sung
Laih, editor, ASTACRYPT, volume 2894 of Lecture Notes in Computer Science, pages 37—54.
Springer, 2003.

Jan Camenisch and Markus Stadler. Efficient group signature schemes for large groups (ex-
tended abstract). In Burton S. Kaliski Jr., editor, CRYPTO, volume 1294 of Lecture Notes
in Computer Science, pages 410-424. Springer, 1997.

Ran Canetti and Susan Hohenberger. Chosen-Siphertext Cecure Proxy Re-Encryption. In
Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM Conference
on Computer and Communications Security, pages 185-194. ACM, 2007.

Robert H. Deng, Jian Weng, Shengli Liu, and Kefei Chen. Chosen-Ciphertext Secure Proxy
Re-encryption without Pairings. In Matthew K. Franklin, Lucas Chi Kwong Hui, and Dun-
can S. Wong, editors, CANS, volume 5339 of Lecture Notes in Computer Science, pages 1-17.
Springer, 2008.

Benoit Libert and Damien Vergnaud. Unidirectional Chosen-Ciphertext Secure Proxy Re-
encryption. In Ronald Cramer, editor, Public Key Cryptography, volume 4939 of Lecture
Notes in Computer Science, pages 360-379. Springer, 2008.

Jun Shao and Zhenfu Cao. CCA-Secure Proxy Re-encryption without Pairings. In Stanislaw
Jarecki and Gene Tsudik, editors, Public Key Cryptography, volume 5443 of Lecture Notes in
Computer Science, pages 357-376. Springer, 2009.

Jun Shao and Zhenfu Cao. Cca-secure proxy re-encryption without pairings. Cryptology
ePrint Archive, Report 2009/164, 2009. http://eprint.iacr.org/. Improved version of [10].
Version 2 and 3.

Victor Shoup. Practical threshold signatures. In FUROCRYPT, pages 207-220, 2000.

Jian Weng, Sherman S.M. Chow, Yanjiang Yang, and Robert H. Deng. Efficient uni-
directional proxy re-encryption. Cryptology ePrint Archive, Report 2009/189, 2009.
http://eprint.iacr.org.

