
A study of pairing computation for curves with embedding

degree 15

Nadia El Mrabet1, Nicolas Guillermin2, and Sorina Ionica3

1 LIRMM, Montpellier
2 DGA, Rennes

3 Université de Versailles Saint-Quentin-en-Yvelines, 45 avenue des États-Unis,
78035 Versailles CEDEX, France

nadia.elmrabet@lirmm.fr,sorina.ionica@m4x.org

Abstract. This paper presents the first study of pairing computation on curves with embedding
degree 15. We compute the Ate and the twisted Ate pairing for a family of curves with parameter
ρ 1.5 and embedding degree 15. We use a twist of degree 3 to perform most of the operations in Fp

or Fp5 . Furthermore, we present a new arithmetic for extension fields of degree 5. Our computations
show that these curves give very efficient implementations for pairing-based cryptography at high
security levels.
Key-words: Pairing based cryptography, Pairing computation, Arithmetic, Interpolation, Elliptic
Curves, Embedding degree, Security level.

1 Introduction

Pairings on elliptic curves were introduced by André Weil in 1948 in mathematics [24], but their utilization
in cryptography is actually quite recent. They were first used for cryptanalytic purposes, i.e. attacking the
discrete logarithm problem on supersingular elliptic curves [2], but nowadays they are also used as building
blocks for new cryptographic protocols such as the tripartite Diffie-Hellman protocol [15], identity-based
encryption [5], short signatures [6], and others. A pairing is a bilinear map e : G1 × G2 → G3, where
G1, G2 and G3 are groups of large prime order r. Known pairings on elliptic curves, i.e. the Weil, Tate,
Eta and Ate pairings map to the multiplicative group of the minimal extension of the ground field Fp

containing the r-th roots of unity. The degree of this extension is called the embedding degree with
respect to r. The most efficient known method used for pairing computation is Miller’s algorithm, whose
performance relies heavily on efficient arithmetic of this extension field. It follows that for efficient pairing
computation we need curves with a rather small embedding degree.

On the other hand, latest research in efficient computation of pairings focused on the reduction of the
loop length in Miller’s algorithm. It was proven [23][13] that on most known families of ordinary curves,
the complexity of Miller’s algorithm is O(1

ϕ(k) log2(r)), where k is the embedding degree and ϕ is Euler’s

totient function. Consequently, for a fixed level of security and therefore a fixed bit length of r, pairing
computation might turn out to be faster on curves with embedding degrees such that the integer ϕ(k) is

large. Moreover, in practice we are looking for curves for which the following value ρ = log
2
(p)

log
2
(r) is as small

as possible, in order to save bandwidth during the calculation.
In this paper, we give the first efficient pairing computation for curves of embedding degree 15. We

show that existing constructions of families of curves of degree 15 and j-invariant 0 present multiple

advantages. First of all, we show that pairing computation on these curves has loop length log
2
(r)

8 for the

Ate pairing and log
2
(r)

2 for the twisted Ate pairing. Secondly, we show that by using twists of degree 3 we
manage to perform most of the operations in Fp or Fp5 . By making use of an interpolation technique, we
also improve the arithmetic of Fp5 in order to get better results.

Moreover, denominator computation and the final inversion can be avoided by making use of the
twist. Our results show that by choosing the optimal arithmetic on Fp5 and Fp15 , pairing computation

on curves of embedding degree 15 and ρ = 1.5 is faster than on Barreto-Naehrig curves for high security
levels, i.e. security levels of 192 and 256 bits. Our computations suggest that these curves might be the
best choice one could make among known pairing-friendly families of curves for implementations at high
security levels.

The remainder of this paper is organized as follows: Section 2 gives the definition and important
properties of pairings. In Section 3 we establish the optimal computation of the pairing on curves with
embedding degree 15. In Section 4 we describe an interpolation-based algorithm for multiplication over
the field Fp5 . Finally, we conclude in Section 5 by giving a global evaluation of the number of operations
needed to compute the pairing and by comparing our results to performances obtained on Barreto-Naehrig
curves, which are considered as standard at the time this paper was written.

2 Background on pairings

In this section we give a brief overview of the definitions of pairings on elliptic curves and of Miller’s
algorithm [20] used in pairing computation. Let p be a prime, E an elliptic curve defined over Fp by the
Weierstrass equation y2 = x3 + ax + b and r a prime factor of #(E(Fp)). Suppose r2 does not divide
#(E(Fp)) and let k be the embedding degree with respect to r, i.e. the smallest integer such that r
divides pk − 1. We denote by P∞ the point at infinity of the elliptic curve.

Definition 1. A pairing is a bilinear and non degenerate function:

e : G1 ×G2 → G3

(P, Q)→ e(P, Q)

where G1 and G2 are subgroups of order r on the elliptic curve and G3 is generally µr, the subgroup
of the r-th roots of unity in Fpk . In general, in cryptographic applications, we take G1 = E(Fp)[r] and
G2 ⊂ E(Fpk)[r], where we denote by E(K)[r] the subgroup of K-rational points of order r of the elliptic
curve E. We also denote E[r] the subgroup of points of order r defined over the algebraic closure of Fp.

Let P ∈ G1, Q ∈ G2. The goal of Miller’s algorithm is to first construct a rational function fs,P

associated to the point P and to some integer s and to secondly evaluate this function at the point Q (in
fact at a divisor associated to this point). The function fs,P is such that the divisor associated to it is:

div(fs,P) = s(P)− (sP)− (s− 1)(P∞).

Suppose we want to compute the sum of iP and jP . Take h1 the line going through iP and jP and h2

the vertical line through (i + j)P . Miller’s idea was to make use of the following relation

fi+j,P = fi,P fj,P
h1

h2
, (1)

in order to compute fs,P iteratively. Moreover, Miller’s algorithm uses the double-and-add method to
compute fs,P in log2(s) operations.

The Tate pairing The Tate pairing, denoted eTate, is defined by:

G1 ×G2 7→ G3

(P, Q) 7→ eTate(P, Q) = fr,P (Q).

Here, the function fr,P is normalized, i.e. (ur
0fr,P)(P∞) = 1 for ur

0 some Fp-rational uniformizer at
P∞. This pairing is only defined up to a representative of (Fpk)r. In order to obtain a unique value we

raise it to the power pk
−1
r , obtaining an r-th root of unity that we call the reduced Tate pairing

êTate(P, Q) = fr,P (Q)
pk

−1

r .

Ate pairing Let πp be the Frobenius over the elliptic curve: πp : E → E, such that for P = (xP , yP)
πp(P) = (xp

P , yp
P). The trace of the Frobenius is denoted by t. Let T = t− 1, G1 := E[r] ∩Ker(πq − [1])

and G2 := E[r] ∩Ker(πq − [q]). Then for two points P ∈ G1 and Q ∈ G2, the Ate pairing is given by:

eate(Q, P) = fT,Q(P)(p
k
−1)/r

It was shown in [14] that the Ate pairing is actually a power of the reduced Tate pairing.

Twisted Ate pairing We begin with the following definition.

Definition 2. Let E, E′ be elliptic curves over Fp. Then E′ is called a twist of degree d if there exists

an isomorphism φd : E′ → E defined over Fpd and d is minimal.

Suppose now that E admits a twist E′ defined over Fpk/d of degree d, with d | k. We set m = gcd(k, d)
and e = k/m. We consider G1 and G2 as above. Then for P ∈ G1, Q ∈ G2 we get [14]:

etwisted(P, Q) = fT e,P (Q)(p
k
−1)/r,

The twisted Ate pairing is also a power of the reduced Tate pairing. For curves with small trace of the
Frobenius, it is clear that the Ate and twisted Ate pairings should be preferred to the Tate pairing, as
the loop in Miller’s algorithm will be shorter. Other variants of twisted Ate pairing were obtained in [19]
replacing T e with T ie, for any i ∈ Z. All these variants were given in order to find the smallest possible
λ determining the length of the loop in Miller’s algorithm. Hess and Vercauteren exploit these ideas in
[13] and [23], respectively, by making use of lattices.

Optimal pairing Consider s an integer and h =
∑d

i=0 hix
i ∈ Z[x] with h(s) ≡ 0 mod r. Let R ∈ E(Fqk)

and fs,h,R the function whose divisor is

(fs,h,R) =

d
∑

i=0

hi((s
iR)− (P∞))

We denote ||h||1 =
∑d

i=0 |hi|.

Theorem 1. Let s be any primitive root of unity modulo r2 and n an integer dividing #Aut(E). Then

atwist
s,h : G1 ×G2 → µr

(P, Q)→ (fs,h,P (Q))(q
k
−1)/r.

defines a bilinear pairing which is non-degenerate if and only if h(s) 6≡ 0 mod r2. The relation with the

Tate pairing is

atwist
s,h (P, Q) = t(P, Q)h(s)/r.

There exists an efficiently computable h ∈ Z with h(s) ≡ 0 mod r, deg(h) ≤ ϕ(n) − 1 and ||h||1 =
O(r1/ϕ(n)) such that the above pairings are non-degenerate. The O-constant depends only on n.

Security aspect The security of a pairing based cryptosystem relies on two parameters: the bit length
of r, log2r and the bit size of the extension field klog2p. These parameters have to be chosen large enough
to ensure that the discrete logarithm problem will be hard in both the subgroup of points of order r of the
curve and the multiplicative group of the finite field Fpk . The fastest known attack on finite field is the in-

dex calculus method, whose complexity is O(Lr(
1
3)), where Lr(

1
3) = exp ((32/9)(1/3)(log r)

1

3 log(log(r))
2

3)
and c is a constant depending on the characteristic of the finite field [12]. Meanwhile the best attack known

Table 1. Level of security in bit

AES security bitsize of r bitsize of pk

80 160 1024
128 256 3072
192 384 7680
256 512 15360

on elliptic curves DLP is the Pollard-ρ method, whose complexity is O(
√

r) [9, Chap. 17]. As a conse-
quence, while the security level will increase, the bound on klog2(p) is expected to grow faster than the
bound on log2(r). Following NIST recommendations [1], Table 1 gives optimal bitsizes of r and pk for
different security levels.

On the other hand, in practice we are looking for curves for which the following value

ρ =
log p

log r

is as small as possible, in order to save bandwith during the calculation. This is due to the fact that for
a fixed level of security, efficient implementation of the pairing depends on the size of the ground field,
i.e. on the size of p. So taking greater k is a better solution than increasing the bit length of p.

3 Optimal pairing for k = 15

A first method that could be used in order to build curves with k = 15 is the Cocks-Pinch method [8].
This method generates curves with arbitrary r and ρ ∼ 2. Duan and all. [11] showed that by using the
Brezing-Weng method we can actually do better. They generated a family of curves with j-invariant 0,
embedding degree 15 and ρ ∼ 1.5. This family is given by the following polynomials:

p = 1/3x12 − 2/3x11 + 1/3x10 + 1/3x7 − 2/3x6 + 1/3x5 + 1/3x2 + 1/3x + 1/3

r = x8 − x7 + x5 − x4 + x3 − x + 1

t = x + 1.

The remainder of this paper will present efficient computation of pairings on this family of curves.
To emphasize the performance of our suggestion, we compare our results to those resulting from efficient
implementation of pairings on Barreto-Naehrig curves [4]. We briefly remind that these are curves of
embedding degree 12 and j-invariant 0, given by the following parametrization:

p = 36x4 + 36x3 + 24x2 + 6x + 1

r = 36x4 + 36x3 + 18x2 + 6x + 1

t = 6x2 + 1.

These curves are preferred in cryptographic applications because they have the ρ ∼ 1 and most
operations during the pairing computation are done in Fp or Fp2 , thanks to the existence of a twist of
degree 6.

3.1 Twists of degree 3

Let E be an elliptic curve of j-invariant 0, defined over Fp. Suppose its equation is y2 = x3 + b, with
b ∈ Fp. Consider E over the extension field Fpk/3 . Then it admits a cubic twist E′ of equation y2 = x3+ b

D ,

with D not a cubic residue D ∈ Fqk/3 . The morphism

Φ3 : E′ → E : Φ3(x, y) = (xD1/3, yD1/2)

maps points in E′(Fpk/3) to points in E(Fpk). In particular, as r | #E′, we may choose Q, the generator
of G2, as the image of an r order point under this morphism : Q = Φ3(Q

′), with Q′ ∈ E′(Fpk/3). So

Q = (D1/3x, D1/2y), with x, y ∈ Fpk/3 . As we will see later, for k = 15 this will imply that most
operations in pairing computation on G1 ×G2 (or G2 ×G1) are to be done in Fp or Fp5 .

3.2 Optimal pairing for k = 15

We can easily see that for the family of curves with k = 15 described above, the length of the Miller’s
loop for the twisted Ate pairing is 5

8 log2r. We will show that the complexity of the computation of the

optimal pairing for this family is O(log
2

r
2). Indeed, we apply theorem 1 with n = 3 and compute the

following polynomial using function field LLL ([21]):

h15(x, t) = (x3 − x2 + 1)t− x4 + x3 − x + 1

We compute

div (fs,h,P) = ((x3 − x2 + 1)(sP)− ((x3 − x2 + 1)sP)− (x3 − x2)(P∞)) + ((−x4 + x3 − x + 1)(P)

−((−x4 + x3 − x + 1)P)− (−x4 + x3 − x)(P∞)) + ((x3 − x2 + 1)tP)

+((−x4 + x3 − x + 1)P)− 2(P∞) = div (fx3
−x2+1,sP) + div (f−x4+x3

−x+1,P) + div v(x3−x2+1)tP

Now it was shown in [14] that G1 = E[r] ∩ Ker(ζ3 ◦ π5
p − [p5]) and G2 = E[r] ∩ Ker(ζ3 ◦ πp5 − [1]) and

that fT 5,ζ3◦π5
p(P) ◦ ζ3 ◦ π5

p = fT 5,P . We conclude that the optimal twisted Ate pairing for this family of
curves is given by the formula:

(fp5

x3−x2+1,P (Q)f−x4+x3
−x+1,P (Q))

p15
−1

r .

Note that the evaluation at Q of the vertical line v(x3
−x2+1)tP can actually be ignored because of the final

exponentiation. So we need to compute fx,P (Q), fx2,P (Q), fx3,P (Q) and fx4,P (Q) as well the evaluation
at Q of the lines lx3P,−x2P , l−x4,x3 , l(−x4+x3,−x). So we get a complexity of O(log r/2) for the pairing

computation. The twisted Ate pairing has loop length log r
2 for Barreto-Naehrig curves, as a search for

the optimal pairing on these curves gives, for example,

h12(x, t) = (2x + 6x2) ∗ t + 1 + 2x

So the complexity of Miller’s algorithm is
log

2
r

2 . The Ate pairing for k = 15 is given by fx,Q(P), so the

loop length is log r
8 , while the optimal Ate pairing computation for Barreto-Naehrig curves has complexity

O(log r
4), as shown in [23]. We have also verified with MAGMA that our formulas give bilinear non-

degenerated pairings.

3.3 Denominator elimination in pairing computation

We use an idea given in [18]. We observe that the expression of line h2 in Equation (1) can be written
as:

xT − xQ =
x3

T − x3
Q

x2
T + xT xQ + x2

Q

=
y2

T − y2
Q

x2
T + xT xQ + x2

Q

.

The element (y2
Q − y2

T) is in Fp5 and can be forgotten during the computation of the pairing, because of

the final exponentiation. Indeed, p5−1 is a divisor of p15
−1

r so multiplication by this term can be omitted.
Consequently at each iteration in Miller’s algorithm loop it suffices to multiply by x2

T +xT xQ+x2
Q, instead

of dividing by h2. This saves operations, as we no longer need to compute denominators at each step and
also avoids the final inversion, which is important on restricted devices.

3.4 Operation count

Pairing computation on elliptic curves in Weierstrass form is usually performed in Jacobian coordinates
(see [7], [3]), but we find that homogenous coordinates will give better results in our case. Our starting
point is a suggestion for pairing computation in homogenous coordinates given in [10]. A point (X, Y, Z)
in homogenous coordinates represents the affine point (X/Z, Y/Z) on the elliptic curve of affine equation
y=x3 + c. Due to denominator elimination, the doubling step of the Miller loop becomes:

(2i)P ← 2 · (iP)

f2i,P ← f2
i,P h1(Q)ST (Q)

where h1(Q) = 2Y ZyQ − 3X2xQ + Y 2 − 3cZ2 and ST (Q) = Z2x2
Q + XZxQ + X2. We compute (2i)P =

(X3, Y3, Z3) as

X3 = 2XY (Y 2 − 9Z2),

Y3 = (Y − Z)(Y + 3Z)3 − 8Y 3Z,

Z3 = 2Y 3Z.

We perform the operations in the following order:

A = Y 2

B = Z2

C = (Y + Z)2 −A−B

Z3 = 4A · C

E = X2

F = (X + Y)2 − E −A

X3 = F · (A− 9B)

Y3 = (A− 3B + C) · (A + 9B + 3C)− Z3.

We compute h1(Q) · ST (Q) as:

h1(Q)ST (Q) = (2Y ZyQ − 3X2xQ + Y 2 − 3cZ2)(Z2x2
Q + XZxQ + X2) =

2X2Y ZyQ + 2XY Z2xQyQ + 2Y Z3x2
QyQ − 3X4xQ − 3X3Zx2

Q − 3X2Z2x3
Q +

+(Y 2 − 3cZ2)X2 + (Y 2 − 3cZ2)XZxQ + (Y 2 − 3cZ2)Z2x2
Q

It follows that we need to perform the following operations:

G = B · C
H = B · F
I = E2

K =
(X + Z)2 − E −B

2

L = K2

M = F 2

N = (A− 3cB) ·K
O = E ·K
P = (A− 3cB) ·B

This gives the following computation for h1(Q)ST (Q):

h1(Q)ST (Q) = FyQ + HxQyQ + Gx2
QyQ − (3I −N)xQ − (3O − P)x2

Q − 3Lx3
Q + M − 3cL

We denote by Spn and Mpn the cost of a squaring and a multiplication, respectively, in the extension
field of degree n of Fp. We assume that the expressions of xQ, x2

Q, yQ, xQyQ, x2
QyQ are precomputed. As

explained in section 3.1, xQ and yQ can be chosen such as the multiplication of any of these expressions

with an element of Fp costs 5Mp. A count of the operations for the entire doubling step for the twisted
Ate pairing gives 9Sp + 38Mp + Sp15 + Mp15 . In the case of the Ate pairing doubling computation,
A, B, C, ...L are elements of Fp5 , so the operation count gives 30Mp + 9Sp5 + 8Mp5 + Sp15 + Mp15 . For
pairing computation on Barretto-Naehrig curves we only need to do the doubling of the point and compute
h1(Q). The operation count gives 5Sp + 15Mp + Sp12 + Mp12 for the doubling part of the twisted Ate
pairing and 4Mp + 5Sp2 + 3Mp2 + Sp12 + Mp12 for the Ate pairing.

3.5 First comparison

We compare the complexity of pairing computation for the families of curves presented above, using
Karatsuba and Toom Cook multiplication algorithms in the extension fields. The costs of multiplications
are given in Table 2. We denote by Ap the cost of an addition in Fp. Table 3 gives recommended sizes of
r and p for different security levels. Using a classical arithmetic, we count the number of multiplications
in Fp needed for a Miller loop; we do not take into account the cost of the polynomial reduction one has
to perform.when multiplying two elements of the extension field. Indeed, Fp12 is usually constructed as
an extension of Fp2 , which in turn is constructed as Fp/(X2 + 1). The polynomials used to construct the
extension fields of degree 2 and 3 over this field then have constant term δ in Fp2 ; depending on the choice
of delta (not a square, nor a cube) the multiplication cost may vary. However in this paper we consider
this influence negligeable. The resulting comparison for the Ate and twisted Ate pairings is given in Table
4.

Table 2. A performance evaluation: arithmetic of Fp15 versus arithmetic of Fp12

Mp2 Mp3 Mp5 Mp6 Mp12 Mp15

3Mp + 4Ap 5Mp + 20Ap 13Mp + 58Ap 15Mp + 72Ap 45Mp + 180Ap 65Mp + 390Ap

Table 3. A security evaluation: curves with embedding degree 15 versus Barreto-Naehrig curves

AES security recommended group sizes group sizes group sizes

bit length of r bit length of pk k = 15 k = 12
r p r p

80 160 1024 160 240 160 160
128 256 3072 256 384 256 256
192 384 7680 384 576 640 640
256 512 15360 682 1024 1280 1280

Table 4. Pairing evaluation: curves with embedding degree 15 versus Barreto-Naehrig curves

Ate pairing Twisted Ate pairing
Security level in bits k = 15 k = 12 k = 15 k = 12

80 6710Mp 4647Mp 12680Mp 7800Mp

128 10736Mp 7119Mp 20288Mp 12480Mp

192 16104Mp 17007Mp 30432Mp 31200Mp

256 28601Mp 33486Mp 54048Mp 62400Mp

It becomes clear that at 80 and 128 bits security levels Barreto-Naehrig curves give most efficient pair-
ing computation. On the other hand, for 192 and 256 security levels, the family of curves with embedding
degree 15 and ρ 1.5 gives pairing computations faster than on Barreto-Naehrig curves. Moreover, note
that Karatsuba is optimal for extensions of degree 2, so it seems quite natural to question these results.
We propose in the next Section an improvement of the arithmetic on Fp5 using the Newton interpolation
method to compute a multiplication between two elements of Fp5 .

4 Finite field arithmetic

In cryptography, and more generally in arithmetic, we need an efficient polynomial multiplication. The
optimization can be in time or elementary operations. Pairing Based Cryptography (PBC) follows the
same rules as PBC involves polynomial computations. Indeed A and B ∈ Fpk are represented as poly-
nomials of degree (k − 1) in γ, with γ a root in Fpk of a polynomial of degree k, irreducible over Fp.
If possible, the irreducible polynomial is chosen to be Xk − β, with β ∈ Fp. In the case of k = 5, this
condition is true for every prime p such that p ≡ 1mod(5) [17, Theorem 3.75].

Theorem 2. Let Fp be a finite field and β be an element of Fp such that β is not a k-th power of an

element of Fp. Then the polynomial Xk − β is irreducible over Fp.

In extensions of degree 2 or 3 the Karatsuba and Toom Cook multiplications are the most efficient. For
higher degree extension, one can use tower field extensions [16] and apply Karatsuba and Toom Cook [25],
or multiplication by interpolation [25]. Generally, interpolation methods have an important drawback:
they increase the number of additions during a multiplication. We present a multiplication by Newton
interpolation which, despite the extra additions, improves the global complexity of a multiplication in
Fp5 when compared to the Karatsuba multiplication.

4.1 Interpolation

We denote by A(X) = a0 + a1X + . . . + ak−1X
k−1, B(X) = b0 + b1X + . . . + bk−1X

k−1 the polynomials
obtained by substituting γ by X in the expressions of A and B in Fpk . Multiplications by interpolation
follow these steps:

• Find 2k − 1 different values in Fp {α0, α1, . . . , α2k−2}.
• Evaluate the polynomials A(X) and B(X) at these 2k−1 values: A(α0), . . . , A(α2k−2), B(α0), . . . , B(α0).
• Compute C(X) = A(X)×B(X) at these 2k − 1 values C(αi) = A(αi)B(αi).
• Interpolate C(X) polynomial of degree 2k − 2 either with Lagrange or Newton interpolation.

We describe our method of multiplication using the Newton interpolation, which is more efficient for
our purpose than Lagrange interpolation [25]. The use of FFT [25] is not interesting in our case. Indeed,
during a FFT multiplication, we have to multiply by roots of unity. As we do not have any control on the
characteristic p we work with, the roots of unity do not necessarily have a sparse representation, even after
recoding. It follows that multiplications by these roots are expensive. Furthermore, the choice of values
of interpolation in Section 4.3 is not interesting for the FFT method. Last but not least, FFT is very
interesting for extensions of large even degree, which is not the case for the finite field Fp5 . Consequently,
we focused on the Newton interpolation.

4.2 Newton interpolation

Newton interpolation constructs the polynomial C(X) in the following way:























c′0= C(α0)
c′1= (C(α1)− c′0)

1
(α1−α0)

c′2=
(

(C(α2)− c′0)
1

(α2−α0)
− c′1

)

1
(α2−α1)

... =
...

The reconstruction of C(X) is done by

C(X) = c′0 + c′1(X − α0) + c′2(X − α0)(X − α1) + . . . + c′2k−2(X − α0)(X − α1) . . . (X − α2k−2).

It can be computed using the Horner scheme:

C(X) = c′0 + (X − α0) [c′1 + (X − α1) (c′2 + (X − α2) 〈. . .〉)]
So, complexity in term of operation of Newton interpolation is the sum of the complexities of these

different operations:

1. the evaluations in αi of A(X) et B(X)
2. the 2k − 1 multiplications in Fp (A(αi)×B(αi))
3. computation of the c′i
4. the Horner scheme to find the expression of C(X) = A(X)×B(X) of degree 2k − 1.

4.3 Simplifying operations of the Newton interpolation for k = 5

We consider that k = 5, the 2k − 1 = 9 chosen values for the interpolation are:

α0 = 0, α1 = 1, α2 = −1, α3 = 2, α4 = −2, α5 = 4, α6 = −4, α7 = 3, α8 =∞.

We choose those value in order to minimize the number of additions and divisions by the differences of
the αi during the interpolation.

In the following section, we denote Ap an addition, Mp a multiplication, and Sp a square in Fp.

Complexity of the evaluations in αi of A and B First of all, we have to evaluate A(X) and B(X)
at the αi’s. With the chosen values, evaluations of A(X) and B(X) are done using only additions and
shifts in Fp. Indeed, a product by a power of 2 is composed of shifts in binary base, so in order to evaluate
A(X) at 2j, we compute the products ai × (2j)i, and perform the additions

∑ k−1
i=0 ai(2

j)i using a FFT
scheme.

Writing down 3 = 2 + 1, the evaluation in 3 is only composed of shifts and additions too. Indeed,
powers of 3 can be decomposed as sum of powers of 2: 32 = 23 + 1, 33 = 25 − 22 − 1 et 34 = 26 + 24 + 1.

Adding the different costs, evaluations of A(X) and B(X) have a complexity of 50Ap.
Once we have the evaluations, we have to compute the multiplications A(αi) × B(αi) which are

obtained with 9Mp. The complexity of the steps 1 and 2 altogether is then 50Ap + 9Mp.

Complexity of the computations of c
′

j In order to compute the coefficients c′j during a Newton
interpolation, one has to compute exact divisions by the differences of the αi ∈ Fp. We call an exact
division a division where the dividend is a multiple of the divisor. Among all the differences of the αi

we choose, eleven are not a power of 2. They are given in Table 5. In a binary basis, exact divisions by
power of 2 are very simple, they are only shift on the right of the bits. We have to analyze the complexity
of divisions by 3, 5 and 7. A precise analysis of these divisions shows they can be computed in only one
subtraction.

Table 5. The problematic differences

α3 − α2 = 3 α4 − α1 = −3 α5 − α1 = 3 α5 − α2 = 5
α5 − α4 = 6 α6 − α1 = −5 α6 − α2 = −3 α6 − α3 = −6
α7 − α0 = 3 α7 − α4 = 5 α7 − α6 = 7

We describe here the method to execute the exact division. We want to divide δ, a multiple of 3, by
3, i.e. δ verifies that δ = 3× σ and we want to find σ. This equality can be rewritten as σ = δ− 2× σ. If

δ =
∑

iδi2
i and σ =

∑

iσi2
i we can find σ bit after bit beginning with the less significant bit. Indeed,

σ = δ − 2× σ gives σ0 = δ0. Thus we can find σ1 as the result of the subtraction: δ1δ0 − σ00 = σ1σ0. By
extrapolation we find σ1, and then σ2 and the following as explained in Figure 1.

Fig. 1. Scheme for the division by 3 in one addition

Consequently, an exact division by 3 is theoretically done with exactly one subtraction in Fp. The
same scheme can be applied to an exact division by 5. Indeed, for χ = 5× κ (i. e. knowing χ we want to
find κ), we just have to consider that κ = χ− 4× κ. Then the exact division by 5 has the complexity of
a subtraction.

The cost of an exact division by 7 is the same as the one of an addition in Fp, provided that we find
first the negative of the result. We know µ = 7 × ν, and we want to find ν. We transform the equation:
−ν = µ− 8× ν. So first we find −ν with an addition in Fp, and then it is quite easy to find ν.

We consider that the complexity of a subtraction is equivalent to the complexity of an addition,
which is an upper bound for a subtraction. The implementation aspect is considered in Section 4.4. As
a consequence, the exact divisions by 3, 5 and 7 can be computed with only an addition. The eleven
divisions by these values have a complexity of 11Ap.

In order to have the complexity of the computation of the c′j , we must take into consideration the
subtractions. There are 28 subtractions in the formulas of the c′j .

Thus, the complexity of the computation of the c′j is 39Ap.

Complexity of the polynomial interpolation We use the Horner scheme to find the expression of
the product polynomial C = A×B. The Horner scheme consists in writing and computing:

C(X) = ((((c′8(X − α7) + c′7)(X − α6) + c′6)(X − α5) + c′5) . . . + c′1)(X − α1) + c′0.

We begin to compute from the inside (the parenthesis (c′8(X − α7) + c′7)) to the outside, i.e. we
compute ((c′8(X − α7) + c′7)(X − α6) + c′6), and we continue until we arrive at the coefficient c′0. Thus

the construction of the polynomial using the Horner scheme is composed of multiplications of the i-th
parenthesis by α7−i and additions. With the chosen values of α′

is the Horner scheme is composed only of
additions.

So the complexity of the polynomial expression with the Horner scheme is 29Ap.

4.4 Results and implementation aspects

We have described the multiplication by interpolation for an extension of degree 5 of a finite field. Table
6 gives the complexity of multiplications with several methods: the classical Karatsuba and Toom Cook
multiplications (KTC), the interpolation multiplication. The third line of Table 6 (Mix) gives the cost of
a multiplication in Fp15 using a tower of extension fields. We use our Newton multiplication in Fp5 and
the Toom Cook method for the extension field of degree 3 over Fp5 .

Table 6. Complexity of different method of multiplication

X
X

X
X

X
X

X
X

X
Method

Extension
Mp2 Mp5 Mp12 Mp15

KTC 3Mp + 4Ap 13Mp + 60Ap 45Mp + 180Ap 65Mp + 390Ap

Interpolation −− 9Mp + 107Ap 23Mp + 2070Ap 29Mp + 2136Ap

Mix −− −− 45Mp + 180Ap 45Mp + 635Ap

Using these results, it becomes clear that it is better to use a multiplication by interpolation instead
of a multiplication using Karatsuba Toom Cook for extension fields of degree 5. We save 4 multiplications
in Fp using interpolation whereas we add 47 additions. The extra cost due to these additions is not
as important as the cost to compute 4 multiplications in Fp. Indeed, the complexity of a Karatsuba
multiplication in Fp is

5N log2(3)Aw + N log2(3)Mw,

where N is the number of bytes of the considered integers, and where Aw and Mw represent an addition
and a multiplication of a word.
We designed the exact division by 3 on a Stratix 2 FPGA (speed grade 3). The result of this implemen-
tation is that the division we present can be done in the same time as an addition. We compute the
exact division of an integer of size 240 bits in 13.9 ns, which is an acceptable latency to be executed in
one clock cycle. In comparaison, on the same FPGA the ripple-carry adder, which takes benefit of carry
propagation mechanism, achieves a 14.2 ns latency on an integer addition of the same length. Thus our
hyptothesis in Section 4.3 is verified and the complexity we give is true.

On the contrary, for extensions of degree 12 and 15, using an interpolation to compute a multiplication
is not so interesting. The additional cost of the additions is huge in comparison to the saved multiplica-
tions. The interpolation method is very interesting for an extension of degree 5, because we can choose
the value of interpolation such that the number of additions does not increase too much in relation with
the saved multiplications. Table 7 gives the comparison of a pairing computation considering the number
of multiplications and additions at different security levels.

Table 7 gives our final comparison. We used our improved arithmetic for an extension of degree 5 to
compute a multiplication in Fp5 . We compare our result to the complexity of the pairing computation on
Barreto-Naehrig curves.

Note that we have only counted the number of operations in Fp, but the base field has different
bitsizes for each family of curves. This means that Barreto Naehrig curves still give the most efficient
pairing computation for 80 and 128-bits security levels. On the other hand, for 192 and 256-bits security

Table 7. A performance evaluation of the Ate pairing computation: curves with embedding degree 15 versus
Barreto-Naehrig curves

Ate pairing Twisted Ate pairing

AES security k=15 k=12 k=15 k=12

80 4830Mp + 53760Ap 4300Mp + 13600Ap 9880Mp + 88900Ap 7800Mp + 25200Ap

128 7728Mp + 86064Ap 6900Mp + 21760Ap 15808Mp + 142240Ap 12480Mp + 40320Ap

192 11592Mp + 129096Ap 17007Mp + 54400Ap 23712Mp + 213360Ap 31200Mp + 100800Ap

256 20587Mp + 172128Ap 33486Mp + 108800Ap 42113Mp + 284480Ap 62400Mp + 201600Ap

levels, pairing computation is more efficient on curves with embedding degree 15 and ρ ∼ 1.5 than on
Barreto-Naehrig curves (note that at these security levels the bitlength of p is shorter for k = 15).
We evaluated the cost of final exponentiation using the techniques proposed in [22] and our computations
showed that this operation has approximatively the same cost for curves with k = 15 and ρ ∼ 1.5 and for
Barretto-Naehrig curves at 256-bits security level (about 960 Sp15 for k = 15 and 940 Sp12 for k = 12).
However, for lower security levels the final exponentiation will be more expensive for the case k = 15
because it depends on the value of ρ ∼ 1.5. Further work needs to be done to find families of curves of
embedding degree 15 with better ρ value if we want to make this case interesting for lower security levels.

5 Conclusion

In this paper, we give efficient pairing computation for curves of embedding degree 15. We show that
existing constructions of families of curves of degree 15 and j-invariant 0 present multiple advantages.
First of all, we show that pairing computation on these curves has loop length log r

8 for the Ate pairing

and log r
2 for the twisted Ate pairing. Secondly, we show that by using twists of degree 3 we manage to

perform most of the operations in Fp or Fp5 . Moreover, denominator computation and the final inversion
can be avoided by making use of twists. By using of an interpolation technique, we also improve the
arithmetic of Fp5 in order to get better results.

References

1. Recommendations for Key Management, 2007. Special Publication 800-57 Part 1.
2. S. Vanstone A. Menezes, T. Okamoto. Reducing elliptic curve logarithms in a finite field. IEEE Transactions

on Information Theory, 39(5):1639–1646, 1993.
3. C. Arne, T. Lange, M. Naehrig, and C. Ritzenhaler. Faster Pairing Computation, 2009.

http://eprint.iacr.org/2009/155.
4. P. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In Selected Areas in Cryptography

- SAC 2005, volume 3897 of Lecture Notes in Computer Science, pages 319 –331. Springer, 2006.
5. D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. In Joe Kilian, editor, Advances

in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 213–229. Springer
Verlag, 2001.

6. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In Colin Boyd, editor,
Advances in Cryptology – ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, pages
514–532. Springer Verlag, 2001.

7. Sanjit Chatterjee, Palash Sarkar, and Rana Barua. Efficient computation of tate pairing in projective coor-
dinate over general characteristic fields, 2004.

8. C. Cocks and R.G.E. Pinch. Indentity-based cryptosystems based on the Weil pairing. unplublished
manuscript, 2001.

9. H. Cohen and G. Frey (editors). Handbook of elliptic and hyperelliptic curve cryptography. Discrete Math.
Appl., Chapman Hall/CRC, 2006.

10. C. Costello, H. Hisil, J.M.G. Nieto, and K.K.H. Wong. Faster Pairings on Special Weierstrass Curves. Pairing
2009, 2009. to appear.

11. P. Duan, S. Cui, and C.W. Chan. Special polynomial families for generating more suitable elliptic curves
for pairing-based cryptosystems. In The 5th WSEAS International Conference on Electronics, Hardware,
Wireless Optimal Communications, 2005.

12. R. Granger, A.J. Holt, D. Page, N.P. Smart, and F. Vercauteren. Function field sieve in characteristic three.
In Applied Cryptography and Network Security) 2004, volume 3076 of Lectures Notes in Computer Science,
pages 223–234. Springer, 2004.

13. F. Hess. Pairing Lattices. In Steven Galbraith and Kenny Peterson, editors, Pairing 2008, volume 5209 of
Lectures Notes in Computer Science, pages 18–38, 2008.

14. F. Hess, N. P. Smart, and F. Vercauteren. The Eta Pairing Revisited. IEEE Transactions on Information
Theory, 52:4595–4602, 2006.

15. A. Joux. A one round protocol for tripartite Diffie-Hellman. Journal of Cryptology, 17(4):263–276, September
2004.

16. Neal Koblitz and Alfred Menezes. Pairing-based cryptography at high security levels. In Nigel P. Smart,
editor, IMA Int. Conf., volume 3796 of Lectures Notes in Computer Science, pages 13–36, 2005.

17. R. Lidl and H. Niederreiter. Finite Fields. 2nd ed., Cambridge University Press, 1997.
18. X. Lin, C. Zhao, F. Zhang, and Y. Wang. Computing the Ate Pairing on Elliptic Curves with Embedding

Degree k = 9. IEICE Transactions, 91-A(9):2387–2393, 2008.
19. Seiichi Matsuda, Naoki Kanayama, Florian Hess, and Eiji Okamoto. Optimised versions of the ate and

twisted ate pairings. In the Eleventh IMA International Conference on Cryptography and Coding, pages
302–312. Springer-Verlag, 2007.

20. Victor S. Miller. The Weil pairing, and its efficient calculation. Journal of Cryptology, 17(4):235–261, Septem-
ber 2004.

21. S. Paulus. Lattice basis reduction in function fields. In Joe Buhler, editor, ANTS III, volume 1423 of Lectures
Notes in Computer Science, pages 567–575, 1998.

22. M. Scott, N. Benger, M. Charlemagne, L.J.D. Perez, and E.J. Kachisa. On the final exponentiation for
calculating pairings on ordinary elliptic curves. to appear in Pairing 2009, 2009.

23. Frederik Vercauteren. Optimal Pairings, 2008. http://eprint.iacr.org/2008/096.
24. André Weil. Courbes algébriques et variétés abéliennes (in french. Hermann, 1948.
25. J. Von ZurGathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, New York, NY,

USA, 2003.

