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Abstract

Traditionally, the definition of zero-knowledge states that an interactive proof of x ∈ L
provides zero (additional) knowledge if the view of any polynomial-time verifier can be recon-
structed by a polynomial-time simulator. Since this definition only requires that the worst-case
running-time of the verifier and simulator are polynomials, zero-knowledge becomes a worst-case
notion.

In STOC’06, Micali and Pass proposed a new notion of precise zero-knowledge, which cap-
tures the idea that the view of any verifier in every interaction can be reconstructed in (almost)
the same time (i.e., the view can be “indistinguishably reconstructed”). This is the strongest
notion among the known works towards precislization of the definition of zero-knowledge.

However, as we know, there are two kinds of computational resources (i.e. time and space)
that every algorithm consumes in computation. Although the view of a verifier in the interaction
of a precise zero-knowledge protocol can be reconstructed in almost the same time, the simulator
may run in very large space while at the same time the verifier only runs in very small space. In
this case it is still doubtful to take indifference for the verifier to take part in the interaction or
to run the simulator. Thus the notion of precise zero-knowledge may be still insufficient. This
shows that precislization of the definition of zero-knowledge needs further investigation.

In this paper, we propose a new notion of precise time and space simulatable zero-knowledge
(PTSSZK), which captures the idea that the view of any verifier in each interaction can be
reconstructed not only in the same time, but also in the same space. We construct the first
PTSSZK proofs and arguments with simultaneous linear time and linear space precisions for
all languages in NP. Our protocols do not use noticeably more rounds than the known precise
zero-knowledge protocols, and the probability analysis of the successful extraction of the new
simulation strategy may be of independent interests.

Keywords: Zero-Knowledge, Precise Zero-Knowledge, Proofs of Knowledge, Interactive Proofs
and Arguments
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1 Introduction

Zero-knowledge proofs were introduced by Goldwasser, Micali and Rackoff [14]. Their definition
essentially states that an interactive proof of x ∈ L provides zero (additional) knowledge if, for any
efficient verifier V ∗, the view of V ∗ in the interaction can be “indistinguishably reconstructed” by
an efficient simulator S -interacting with no one- on just input x. Since efficiency is formalized
as polynomial-time, a worst-case notion, zero-knowledge too automatically becomes a worst-case
notion. The refinement of [11] (Sec. 4.4.4.2) calls for a tighter coupling between the expected
running-time of V ∗ and that of S: a proof is zero-knowledge with tightness t(·) if there exists a
fixed polynomial p(·) such that the expected running-time of S(x) is upper-bounded by t(|x|) times
the expected running-time of V ∗(x) plus p(|x|).

Micali and Pass [15] argued, however, that such coupling may still be insufficient, even when
the tightness function is a constant and the polynomial p(·) is identically 0. Consider a family of
malicious verifiers {V ∗

i }i∈N, in which on input an instance x ∈ {0, 1}n, V ∗
i takes n10i computational

steps with probability 1
n , and n steps in the rest of the time. Since the expected running-time of

V ∗
i is Θ(n10i−1), zero-knowledge with optimal tightness only requires that V ∗

i ’s view be simulated
in expected time Θ(n10i−1). Assume S always takes Θ(n10i−1) time to reconstruct V ∗

i ’s view. Then
in the viewpoint of [11], it is indistinguishable for V ∗

i to get out and interact with the prover or to
stay home and run S for granted. However, by interacting with P , V ∗

i will almost always execute
n steps of computation, while (in absence of extra guarantees) running the simulator might always
cause him to invest n10i−1 steps of computation, which tends to infinite as i tends to infinite. Is
the view of V ∗

i “reconstructed indistinguishably”? This discussion shows that we need a stronger
notion of zero-knowledge.

Hence [15] put forward a notion of precise zero-knowledge. This notion captures the idea that
prover provides a zero-knowledge proof of x ∈ L if the view v of any verifier in an interaction with
the prover about x can be reconstructed in (almost) the same time. Informally, by [15] a proof
system is zero-knowledge with p(n, y) (time) precision if for every verifier V ∗, S’ running-time in
outputting a view is bounded by p(n, T) whenever V ∗’s running-time on this view is T. Following
this notion, [15] constructed ω(log n)-round (resp. ω(1)-round) (non-black-box) zero-knowledge
proofs and arguments with linear (resp. polynomial) precision for all languages in NP.

Further, [15] showed there do not exist black-box zero-knowledge protocols with polynomial
precision for languages outside BPP, and [19] showed the simulators of Barak’s non-black-box zero-
knowledge arguments [1] cannot provide polynomial precision. To achieve precise time simulation,
[15][19] developed a method, called the “cut-off” technique. That is, the simulator S still needs to
rewind a verifier V ∗ to extract secret information, but in the first run it records V ∗’s running-time
(steps) and then in the second run it uses this time to bound V ∗’s computing, i.e., S emulates V ∗

for at most such time (steps). If V ∗ needs more time then S terminates its computing. It can be
seen this simulation strategy uses verifiers in a non-black-box way.

However, as we know, there are two kinds of computational resources (i.e., time and space) that
every algorithm consumes in computation. Although the notion of precise zero-knowledge is quite
strong, it investigates precise simulation only with respect to the running-time of the simulator
and verifier, regardless of their running-space. Consider a family of malicious verifiers {V ∗

i }i∈N,
in which on input an instance x ∈ {0, 1}n (for sufficiently large n’s), V ∗

i takes n10i computational
steps and nc space for some c > 0 (note that an nc-space machine may take at most n2Θ(nc) time,
which is greater than n10i for arbitrary i when n is large enough). Zero-knowledge with linear
(time) precision only requires that V ∗

i ’s view be simulated in time Θ(n10i). Assume S always takes
Θ(n10i) time, but ni space, to reconstruct V ∗

i ’s view. In this case in the viewpoint of [15], it is
indistinguishable for V ∗

i to take part in the interaction or run the simulator. But it can be seen
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that (for sufficiently large n’s) V ∗
i ’s running-space in the interaction is nc, while the simulator needs

ni space to reconstruct V ∗
i ’s view, which is greater than any predetermined polynomial in nc as i

tends to infinite. Thus, is it really “indistinguishable” for V ∗
i to interact with the prover or to run

the simulator?
The above discussion shows the notion of precise zero-knowledge may be still insufficient and

precislization of the definition of zero-knowledge needs further investigation. A natural (and maybe
the strongest) avenue for extending precise zero-knowledge is to require that views be reconstructed
not only in the same time, but also in the same space. In this paper we will try to pursue this
avenue and to construct zero-knowledge proof systems which are precisely simulatable in this sense.

1.1 Our Results

We put forward a new notion of precise time and space simulatable zero-knowledge (PTSSZK),
which strengthens the notion of precise zero-knowledge [15] by additionally requiring the space
used in reconstructing the view of a verifier is also almost the same as that of the verifier in the
interaction. Informally, we say a proof system is zero-knowledge with time precision pt(n, y) and
space precision ps(n, y) if for every verifier V ∗ the simulator S’ running-time and running-space
in reconstructing a view are always respectively bounded by pt(n, T) and ps(n, S) whenever V ∗’s
running-time and running-space on this view are respectively T and S.

Since V ∗ and S are usually required to run in polynomial-time, it is less meaningful if pt(n, y)
or ps(n, y) is super-polynomial in n or y, or else it is meaningful. To the best of our knowledge,
all the known zero-knowledge protocols for languages outside BPP cannot obtain simultaneous
meaningful time and space precisions. We construct the first PTSSZK proofs and arguments with
simultaneous meaningful time and space precisions for all languages in NP. The formal results are
shown as follows.

Theorem 1.1. Assume the existence of constant-round perfectly-hiding commitments. Then for
every language L ∈ NP
1. there exist ω(log3 n)-round zero-knowledge proofs with time precision pt(n, y) = poly(n) + O(y)
and space precision ps(n, y) = poly(n) + O(y) for L.
2. there exist ω(log n)-round zero-knowledge proofs with time precision pt(n, y) = poly(n)+poly(n)O(y)
and space precision ps(n, y) = poly(n) + O(y) for L.

Theorem 1.2. Assume the existence of one-way functions. Then for every language L ∈ NP,
1. there exist ω(log3 n)-round zero-knowledge arguments with time precision pt(n, y) = poly(n) +
O(y) and space precision ps(n, y) = poly(n) + O(y) for L.
2. there exist ω(log n)-round zero-knowledge arguments with time precision pt(n, y) = poly(n) +
poly(n)O(y) and space precision ps(n, y) = poly(n) + O(y) for L.

Comments. We give some comments on our results.
1. We stress that our results are model-independent. (Of course, the precise quantities of the
poly(n)s depend on the underlying model.) Although this work concerns the precision of simulation,
we are oblivious of the details how machines work and of definitions of the complexity measures
of time and space. That is, we don’t need to explicitly refer to any concrete machine model and
definitions of the complexity measures of the two types of resource in that model. Instead, to
handle issues on the measures we simply use variables, say T and S, to denote the quantities of
time and space some machine consumes in computation, measured via some unspecified measures
in some unspecified model. This abstract handling makes our results hold in general models.
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2. Our precisions are pure in the sense that the simulator S’ running-time (resp. running-space)
are only related to V ∗’s running-time T (resp. V ∗’s running-space S), regardless of S (resp. T).
3. In Theorem 1.1 (or Theorem 1.2), the summand poly(n) in pt depends on both L and the
primitives underlying the constructions (e.g. commitments and one-way functions). The coefficient
poly(n) in pt (using ω(log n) rounds) is independent of L, but to depend on the primitives. The
poly(n) in ps depends on both L and the primitives. We did not try to minimize the poly(n) in
ps by letting our simulators employ subtle strategies for space recycling, as our primary interest is
just to obtain a fixed polynomial. The constant coefficients in O-notation of pt, ps are independent
of both L and the primitives.
4. We obtain simultaneous linear time precision (using ω(log3 n) rounds) and linear space precision.
Remark 4.7 further shows if we employ the model of (interactive) Turing machines, we can obtain
fully linear time precision (using ω(log3 n) rounds), i.e. pt(n, y) = O(y).

Our Technique. In the high level, our constructions follow the paradigm used in [19] (based on
[15]). To construct precise zero-knowledge protocols, [19] first constructed some proofs (arguments)
of knowledge with time precisions of extraction. Then using these proofs of knowledge as tools,
[19] showed how to construct the desired precise zero-knowledge protocols with corresponding time
precisions of simulation. Thus the task of constructing precise zero-knowledge protocols is reduced
to the constructions of the required proofs of knowledge. Following this paradigm, we show if
such proofs of knowledge possess simultaneous time and space precisions (of extraction), the zero-
knowledge protocols possess corresponding time and space precisions (of simulation). Thus the
main technical task in this work is to construct the proofs of knowledge with simultaneous time
and space precisions.

Technically, [19] constructed the proofs of knowledge with time precisions by using the “cut-off”
technique. As aforementioned, the simulators in [19] (as extractor in the proofs of knowledge) in
the first run record V ∗’s (as prover in the proofs of knowledge) running-time (steps) and then in
the second run use this time to bound V ∗’s computing, i.e., they emulate V ∗ for at most such
time (steps) and if V ∗ needs more time then they terminate its computing. Since this (original)
“cut-off” technique only concerns V ∗’s running-time, the simulators in [19] cannot automatically
provide simultaneous meaningful time and space precisions. Remark 5.2 shows an example that
the two types of precision indeed cannot be obtained by using the original “cut-off” technique.

We extend the “cut-off” technique to present an improved extraction strategy and thus construct
the proofs of knowledge with simultaneous meaningful time and space precisions. (This shows our
simulators use verifiers in the non-black-box way.) To extract secret information our simulators
not only record V ∗’s running-time (steps), but also record its running-space in the first run. In
the second run our simulators emulate V ∗ for at most such steps, times a factor, and keep track
of V ∗’s running-space. If V ∗ needs more time, or more space than the recorded space (in size) in
the rewind, our simulators terminate its computing. Remark 5.3 shows the usage of the factor for
the time in the rewind is necessary, or else our simulator cannot succeed in extraction for any V ∗.
Since there is one more necessary condition with respect to space for our simulators to succeed in
extraction, we shall present more subtle probability analysis of successful extraction, which is the
main technical novelty of this work.

1.2 Outline of This Paper

The rest of the paper is arranged as follows. In Section 2 we present the preliminaries throughout
this paper, which contains probabilistic notations and definitions and known constructions of basic
cryptographic primitives. In Section 3, we present the new notion of PTSSZK. In Section 4 we

4



present the high-level proofs of our results assuming the existence of the proofs of knowledge with
simultaneous time and space precisions. In Section 5, we present the constructions of the required
proofs of knowledge and complete the entire proofs.

2 Preliminaries

2.1 Basic Notations

We use [1,m] to denote all integers in {1, 2, · · · ,m}, and use symbol “◦” to denote concatenation
operation of two strings and use |s| to denote the bit-length of string s.
Set Notations. Let A and B be two sets. We use A,B (or AB) to denote the intersection of A
and B, A+B to denote the union of A and B if they are disjoint, A−B to denote the difference of
A and B, i.e., the set of points that belong to A but not to B, Ā to denote the complement of A.
Probabilistic Notations. We follow the standard notations in probability theory. Let Pr[A,B]
(resp. Pr[A + B],Pr[A − B],Pr[Ā]) denote the probability of the intersection of A and B (resp.
A + B, A − B, Ā), Pr[A|B] denote the conditional probability of A on the occurrence of B. A
decomposition of the sample space (resp. A) is a set of {D1, · · · , Dd} where d is a natural number,

satisfying that Di ∩ Dj = φ for any 1 ≤ i 6= j ≤ d and
d∑

i=1
Di equals the sample space (resp.

d∑
i=1

Di = A).

Definition 2.1. A function µ(·), where µ : N → [0, 1], is called negligible if µ(n) = n−ω(1) (i.e.,
µ(n) < 1

p(n) for all polynomial p(·) and large enough n’s). We say a random event happens with
overwhelming probability if it happens with probability 1− µ(n) for some negligible function µ(·).
We will sometimes use neg to denote an unspecified negligible function.

Definition 2.2. (Computational Indistinguishability) We say two probability ensembles {Xn}n∈N
and {Yn}n∈N are computationally indistinguishable, if for every family of polynomial-sized circuits
{Cn}n∈N |Pr[Cn(Xn) = 1] − Pr[Cn(Yn) = 1]| = neg(n). We will sometime abuse the notation and
say that Xn and Yn are computationally indistinguishable when each of them is a part of {Xn}n∈N
and {Yn}n∈N and {Xn}n∈N and {Yn}n∈N are computationally indistinguishable. We will drop the
index n if it can be inferred from the context. In most cases, n is the security parameter.

2.2 Commitment Schemes

Definition 2.3. (Perfectly-Binding Commitment) A (non-interactive perfectly binding computa-
tionally hiding) commitment scheme is a uniform polynomial-time computable sequence of func-
tions {Cn}n∈N where Cn : {0, 1}n×{0, 1}p(n) → {0, 1}q(n), and p(·), q(·) are some polynomials, that
satisfies:
Perfect Binding For every x 6= x′ ∈ {0, 1}n, C(x, {0, 1}p(n))∩ → C(x, {0, 1}p(n)) = φ.
Computational Hiding For every x, x′ ∈ {0, 1}n, the random variables C(x,Un) and C(x′, Un)
are computationally indistinguishable.

A perfectly-binding commitment scheme can be constructed under the assumption that one-
way permutations exist [4] (using the generic hard-core bit of [12]). Another construction, under
incomparable assumptions, was given by [2]. We can also use instead the two-round scheme of Naor
[16], which can be based on any one-way function.
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Perfectly-Hiding Commitment Schemes. In a perfectly-hiding commitment scheme, the bind-
ing property is guaranteed to hold only with respect to a probabilistic polynomial-time sender. On
the other hand, the hiding property is information-theoretic. That is, the distributions of commit-
ments different strings are identical, and thus even an all powerful receiver cannot know the value
committed to by the sender. We stress that the binding property guarantees that a cheating prob-
abilistic polynomial-time sender can find only one decommitment, even though decommitments
to different strings exist. See [11] (Sec. 4.8.2) for a full definition. Perfectly-hiding commitment
schemes can be constructed from any one-way permutation [17]. Constant-round schemes are only
known to exist under stronger assumptions of the existence of collision-resistant hash functions
[18][7] or the existence of a collection of certified claw-free functions [11] (Sec. 4.8.2.3).

2.3 Interactive Proofs and Arguments

An interactive proof [14] is a two-party protocol, where one party is called the prover and the other
party is called the verifier. We use the following definition:

Definition 2.4. An interactive protocol (P, V ) is called an interactive proof system for a language
L if the following conditions hold:
Efficiency: The number and total length of messages exchanged between P and V are polynomially
bounded and V is a probabilistic polynomial-time machine.
Perfect completeness: If x ∈ L, then V will always accept x.
Soundness: If x /∈ L, then for any cheating prover P ∗ the probability that P ∗ convinces V of x is
neg(n).

Let L be a NP language. An interactive argument for L [6] is the following variation on the
definition of an interactive proof:
1. The soundness requirement is relaxed to quantify only over prover strategies P ∗ that can be
implemented by a polynomial-sized circuit.
2. The system is required to have an efficient prover strategy.

2.4 Zero-Knowledge

Informally, a proof or argument system for L is zero-knowledge [14] if after seeing a proof that
x ∈ L, the verifier does not learn anything about x that it didn’t know before. Moreover this
holds even if the verifier does not follow its prescribed strategy for the proof system, as long as its
strategy can be implemented by an efficient algorithm. The formal definition is below:

Definition 2.5. Let L = L(R) be some language and let (P, V ) be an interactive proof (argument)
for L. We say (P, V ) is (perfect) zero-knowledge if there exists a probabilistic polynomial-time al-
gorithm, called simulator, such that for every polynomial-sized circuit V ∗ and every (x,w) ∈ R, the
following two probability variables are (identically distributed) computationally indistinguishable:
1. The view of V ∗ in the real execution of (P (w), V ∗)(x).
2. The output of the simulator on input (x, V ∗).

There are two classical constructions of 3-round zero-knowledge proofs for NP (without re-
quiring negligible soundness error probability) which are Blum’s proof for Hamilton Circuits (HC)
[5] and Goldreich, Micali and Wigderson’s proof for Graph 3-Coloring [13]. These two construc-
tions use a common paradigm. That is, the proofs consist of three steps: Prover firstly sends a
commitment (using a perfectly-binding commitment scheme) to verifier and then verifier responses
a random challenge (For Blum’s protocol, the challenge is one bit). Lastly, prover answers the
challenge by sending the decommitment. Verifier accepts the proof if the decommitment is valid.
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2.5 Witness Indistinguishability

Witness indistinguishability (WI) is a weaker property than zero-knowledge, introduced by [9]. In
a witness indistinguishable proof system if both w1 and w2 are witnesses that x ∈ L, then it is
infeasible for the verifier to distinguish whether the prover used w1 or w2 as the auxiliary input.
The formal definition is below:

Definition 2.6. Let L = L(R) be some language and (P, V ) be a proof (argument) for L. We
say that (P, V ) is witness indistinguishable if for any polynomial-sized circuit family {V ∗

n }n∈N, any
x,w1, w2 where (x,w1) ∈ R and (x,w2) ∈ R such that the view of V ∗ in the interacting with
P (x,w1) is computationally indistinguishable from the view of V ∗ in the interacting with P (x,w2).

[9] showed that WI property can be preserved in concurrent setting. Hence n parallel composi-
tion of Blum’s proof for NP is a construction of WI proofs for NP with negligible soundness error
probability.

2.6 Proofs of Knowledge

In a proof/argument system, the prover convinces the verifier that some string x is a member
of a language L. In a proof/argument of knowledge (POK/AOK) [8][3][14][20] the prover should
convince the verifier that it also knows a witness to the fact that x ∈ L. This is formalized
by requiring that if the verifier is convinced with some probability p′ by some (possibly cheating)
prover strategy, then by applying an efficient algorithm, called knowledge extractor, to the cheating
prover’s strategy and private inputs, it is possible to obtain a witness to the fact that x ∈ L, with
probability (almost equal to) p′. The formal definition is below:

Definition 2.7. Let L = L(R) and let (P, V ) be a proof (argument) system for L. We say that
(P, V ) is a proof (argument) of knowledge for L if there exists a probabilistic polynomial-time
algorithm E (called the knowledge extractor) such that for every polynomial-sized prover P ∗ and
for every x ∈ {0, 1}n, if we let p′ denote the probability that V accepts x when interacting with
P ∗, then Pr[E(P ∗, x) ∈ R(x)] ≥ p′ − neg(n).

Instantiated with a perfectly-binding (resp. perfectly-hiding) commitment scheme, the n parallel
executions of Blum’s protocol is a (resp. perfectly) WI POK (resp. AOK), ensured by the special
soundness property.

3 The New Notion

Counting Time and Space. If M is a probabilistic (non-interactive) machine, denote by Mr the
deterministic one obtained by fixing M ’s random coins to r, by TMr(x) and SMr(x) the running-
time and running-space of Mr on input x. (As aforementioned, we herein don’t explicitly refer to
any machine model and definitions of the complexity measures of running-time and running-space.
Each of general models and the appropriate definitions of the complexity measures in it are suitable
for this paper.)

Assume (P, V ) uses κ-round prover’s messages. For any interactive machine V ∗ with auxiliary
input z (w.l.o.g. assume V ∗ is deterministic), denote by v = (x, z, (m1,m2, ..., mκ)) the view of V ∗.
Then denote by TV ∗(v) and by SV ∗(v) the running-time and running-space of V ∗ on input x and
letting the jth message received be mj , 1 ≤ j ≤ κ. For convenience of statement, we will always
consider V ∗ to have x, z hardwired and refer the view of V ∗ to (m1,m2, ..., mκ) in the rest of this
paper (similarly for any P ∗).
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Definition 3.1. (PTSSZK) Let (P, V ) be an interactive proof (argument) for a language L =
L(R), pt : N ×N → N and ps : N ×N → N be two monotonically increasing 2-variate functions.
We say that (P, V ) is computational zero-knowledge, or just zero-knowledge, with time precision
pt and space precision ps if there exists a probabilistic polynomial-time algorithm S, called precise
simulator, such that for every polynomial-sized V ∗ and every {(x,w)} ∈ R the following conditions
hold:
1. The output of S(x, V ∗) is computationally indistinguishable from the view of V ∗ in an execution

of (P (w), V ∗)(x).
2. For every sufficiently long r ∈ {0, 1}∗, let v be the view generated by Sr(x, V ∗). Then TSr(x,V ∗) ≤

pt(n, TV ∗(v)) and SSr(x,V ∗) ≤ ps(n, SV ∗(v)).

Remark 3.2. If we only require the running-time of S and V ∗ satisfy the constraint pt(n, y),
regardless of the constraint ps(n, y) for their running-space, this is essentially the definition of
precise zero-knowledge given in [15].

It can be seen a main task of constructing a PTSSZK protocol is to construct a precise simulator
S. To output a simulated view, S usually needs to invoke an interaction in which it acts as prover
on one hand and emulates V ∗ to output verifier’s messages on the other hand. To make the
analysis of S’ running-space accurately, we make the following specifications on the decomposition
of running-space of S when emulating V ∗ (which are quite general).
Specifications. For our simulator S, SSr(x,V ∗) consists of three parts: (1) the space needed to em-
ulate V ∗, (2) the predetermined space (decided by the protocol) needed to store the communicated
messages (notice that V ∗’s computation is emulated by S and thus if S detects V ∗ tries to send a
message longer than what the protocol specifies it aborts) and (3) the space needed to perform the
prover’s strategy and extraction etc.
Time and Space Cost in Emulation. For universal machine S, we assume there are two
universal constants l1, l2 satisfying that the time taken by S in emulating V ∗ on view v is l1TV ∗(v)
[15], and the space taken by S in emulating V ∗ on v (i.e. part 1 described in the previous paragraph)
is l2SV ∗(v).

4 High-Level Proofs of Our Results

In this and next section we prove Theorem 1.1 and Theorem 1.2. This section only presents the high-
level constructions of the desired protocols. To do this we present a new primitive in Section 4.1,
called precise time and space emulatable proofs/arguments of knowledge (PTSEPOK/PTSEAOK).
In Section 4.2, we present the PTSSZK proofs and arguments under the assumption of the existence
of the PTSEPOKs and PTSEAOKs. In Section 5 we will present the detailed constructions of the
required PTSEPOKs and PTSEAOKs and thus complete the entire proofs.

4.1 PTSEPOKs and PTSEAOKs

The notion of PTSEPOKs and PTSEAOKs captures the idea that for any prover P ∗ and any x,
(1) the joint view of P ∗ and the honest verifier V and (2) the witness for x ∈ L whenever V ’s view
is accepting, can be simultaneously reconstructed (by an algorithm, called emulator-extractor) in
the time and space almost identical to those taken by P ∗ on the reconstructed view. The formal
description is shown as follows.

Definition 4.1. (PTSEPOK/PTSEAOK) Let L = L(R), (P, V ) be an interactive proof (argument)
for L, pt : N×N → N and ps : N×N → N be two monotonically increasing 2-variate functions. We
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Public Input: x ∈ {0, 1}n (statement to be proved is “x ∈ L”).
Auxiliary Input to Prover: w, a witness for x ∈ L.

Stage 1: V → P : V chooses σ ∈R {0, 1}n, s ∈R {0, 1}poly(n) and sends c = Com(σ; s).
V → P : V proves to P via the perfectly WI PTSEAOK of the statement: there

exist values σ and s such that c = Com(σ; s).

Stage 2: P → V : P proves to V in the (slightly modified) n parallel repetitions of Blum’s
proof [5] that x ∈ L, in which V opens c and uses the string σ as its challenge.

Protocol 4.4. The PTSSZK proof for L.

say (P, V ) is a proof (argument) of knowledge with time precision pt and space precision ps if there
exists a probabilistic polynomial-time algorithm E, called precise emulator-extractor, satisfying
that for every polynomial-sized prover P ∗ and for every x ∈ {0, 1}n the following conditions hold:
1. Let (viewP ∗ , viewV , w) denote the output of E(x, P ∗). Then (viewP ∗ , viewV ) is identically

distributed to the joint view in the interaction of (P ∗, V )(x). Further, if with non-negligible
probability p′ viewV is a convincing view, then w is a witness for x ∈ L with probability
p′ − neg(n).

2. For every sufficiently long r ∈ {0, 1}∗ let (vP ∗ , vV , w) ← Er(x, P ∗). Then TEr(x,P ∗) ≤ pt(n, TP ∗(vP ∗))
and SEr(x,P ∗) ≤ ps(n, SP ∗(vP ∗)).

Remark 4.2. To be a building block of our PTSSZK protocols, a PTSEPOK (or PTSEAOK)
(P, V ) should have one more property, i.e. (perfect) WI. That is, (P, V ) should additionally satisfy
that for every polynomial-sized V ∗ and for every x,w1, w2 where (x,w1) ∈ R and (x,w2) ∈ R V ∗’s
view in the interacting with P (x,w1) is (identical to) computationally indistinguishable from its
view in the interacting with P (x,w2).

4.2 The Constructions

Claim 4.3. Assume there exist constant-round perfectly-hiding commitments and m′-round per-
fectly WI PTSEAOKs with time precision poly(n) + O(y) (resp. poly(n) + O(ny)) and space
precision poly(n) + O(y) for each NP relation. Then for every language L ∈ NP, there exists
an m′ + O(1)-round zero-knowledge proof with time precision pt(n, y) = poly(n) + O(y) (resp.
poly(n) + poly(n)O(y)) and space precision ps(n, y) = poly(n) + O(y) for L.

Proof. Our protocol is depicted in Protocol 4.4 where Com is a constant-round perfectly-hiding
commitment. We show the protocol has all the required properties.
Completeness and Soundness. First, it is obvious completeness holds. Second, by perfect WI
of the PTSEAOK, it holds that the whole stage 1 is still a perfectly-hiding commitment. Thus
we deduce that when reaching stage 2 the prover has no idea about the value of challenge σ. In
other words, even though the cheating prover reaches the second stage after seeing all messages
in the first stage, the messages in the second stage are independent of the verifier’s messages in
stage 1. So a cheating prover violating the soundness of our protocol can be transformed to a full
power cheating prover violating the soundness of the n parallel executions of Blum’s proof. Thus
soundness holds.

Simulator S. For every polynomial-sized V ∗ and x ∈ L, S works as follows: It first emulates V ∗

to the commitment c. Then S uses the strategy of the emulator-extractor E of the PTSEAOK
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to generate (viewV ∗1, viewP1, (σ, s)). (Strictly speaking, the input to E should be c and V ∗’s code
as Definition 4.1 requires, not the residual V ∗ after sending c. But since the essential way that
E uses (the residual) V ∗ is to emulate it, as next section shows, our statement is still correct.) If
viewP1 is not a convincing view, S terminates the interaction. Otherwise, the extracted σ is that
one V ∗ chose. Then to generate the view in stage 2, S adopts the honest prover strategy using the
knowledge of the verifier challenge σ to interact with V ∗. Denote by viewV ∗2 the simulated view of
V ∗ in stage 2. Let T (resp. S) denote V ∗’s running-time (resp. running-space) on viewV ∗1 ◦viewV ∗2,
where “◦” denotes concatenation.

Output Distribution. First, the view output by E is identical to that of stage 1 in the real
interaction. Second, knowing the challenge in advance makes S’ output in stage 2 computationally
indistinguishable from a real view of V ∗ in stage 2, ensured by Blum’s simulation strategy. Using
a hybrid argument, we infer S’ output is computationally indistinguishable from the real view of
V ∗.

Running-Time. By the time precision of the PTSEAOK, it takes S at most poly(n)+O(T) time
(resp. poly(n)+poly(n)O(T), where the latter poly(n) is |c|) to finish the simulation of stage 1. In
stage 2 it takes S a poly(n) time to perform the honest prover’s strategy and O(T) time to emulate
V ∗. Consequently, there is a pt(n, y) as required satisfying S’ running-time is bounded by pt(n, T).

Running-Space. By the space precision of the PTSEAOK, S’ running-space in stage 1 is less
than poly(n) + O(S) (this poly(n) is within |(viewV ∗1, viewP1, (σ, s)| + poly(|c|), where the latter
poly is that one in the space precision of the PTSEAOK). Second, S’ running-space in stage 2 is
less than poly(n) + O(S) (this poly(n) denotes the space needed to perform the honest prover’s
strategy and store the view of stage 2). Consequently, there is a ps(n, y) as required satisfying S’
running-space is bounded by ps(n, S). The claim follows.

Claim 4.5. Assume there exist one-way functions and m′-round WI PTSEPOKs with time pre-
cision poly(n) + O(y) (resp. poly(n) + O(ny)) and space precision poly(n) + O(y) for each NP
relation. Then for every language L ∈ NP, there exists an m′ + O(1)-round zero-knowledge argu-
ment with time precision pt(n, y) = poly(n)+O(y) (resp. poly(n)+poly(n)O(y)) and space precision
ps(n, y) = poly(n) + O(y) for L.

Proof. Our protocol is shown in Protocol 4.6, where f is a one-way function. Since it is an instan-
tiation of Feige and Shamir’s protocol [10], completeness and computational soundness hold. The
simulator S works in almost the same way described in the previous proof. The difference is that
what S obtains by running E in stage 1 is r1 or r2 and then S uses r1 or r2 as a witness for the
combined statement to finish the interaction of stage 2. The desired time and space precisions are
also satisfied by using the same analysis in the previous proof. Lastly, we know the view output by
E is identical to that of stage 1 in the real interaction, and the protocol in stage 2 is WI. Then S’
output is computationally indistinguishable from the real view of V ∗. The claim follows.

Remark 4.7. If we use (interactive) Turing machines as the underlying model, better time pre-
cisions can be obtained, i.e. pt(n, y) = O(y) (resp. pt(n, y) = poly(n)O(y)), only with a slightly
modification introduced by [15] on the above constructions. That is, we add a step in the beginning
of the protocols, i.e., V sends 1W (n) to P , where W (n) is a polynomial bound on the summand
poly(n) in pt; then P verifies that V sent a string of length W (n) and if not it aborts. In the model
of interactive Turing machines (refer to [11], Sec 4.2.), writing/reading a string of length W (n)
to/from the communication tapes needs time at least W (n), which results in T ≥ W (n). Verifying
the validity of the 1-string costs O(W (n)) = O(T) time. Thus the pt(n, y) can be expressed as O(y)
(resp. pt(n, y) = poly(n)O(y)).
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Public Input: x ∈ {0, 1}n (statement to be proved is “x ∈ L”).
Auxiliary Input to Prover: w, a witness for x ∈ L.

Stage 1: V → P : V chooses r1, r2 ∈R {0, 1}n and sends v1 = f(r1), v2 = f(r2).
V → P : V proves to P via the WI PTSEPOK of the statement: either there

exists a r1 s.t. v1 = f(r1) or there exists a r2 s.t. v2 = f(r2).

Stage 2: P → V : P proves to V in the n parallel repetitions of Blum’s proof that x ∈ L or
there exists a r1 s.t. v1 = f(r1) or there exists a r2 s.t. v2 = f(r2).

Protocol 4.6. The PTSSZK argument for L.

In the high-level proofs, many details of S are hidden in E. In next section we will construct
the required PTSEPOKs and PTSEAOKs, in which the key task is to present all the details of E.

5 Constructions of the PTSEPOKs and PTSEAOKs

This section is devoted to the constructions of the required PTSEPOKs and PTSEAOKs. The
emphasis is the probability analysis of successful extraction of E. (Since it is actually a partial
strategy of S, E also follows the specifications on running-space shown in Section 3). We illustrate
the constructions of the PTSEPOKs in detail and then show the PTSEAOKs can be obtained
similarly. We also show two remarks on E’s extraction strategy and its comparison with the
original “cut-off” technique in [19].

Claim 5.1. Assume there exist one-way functions. Then for each NP relation R there exists an
ω(log3 n)-round WI PTSEPOK with time precision pt(n, y) = poly(n) + O(y) and space precision
ps(n, y) = poly(n) + O(y) for R.

Proof. Instantiate the commitment scheme in Blum’s proof for R with a constant-round perfectly-
binding commitment scheme. This proof is special-sound in the sense that there is a polynomial-
time algorithm, denoted ExR, which given the public input x and two different valid transcripts
w.r.t. a common commitment can compute a witness w for x. We call the n parallel repetitions
of this proof the atomic protocol. Let (P, V ) denote the m = ω(log3 n) sequential repetitions of
the atomic protocol, in each of which P proves to V the knowledge of a witness for x. We will
show (P, V ) is a WI PTSEPOK with the required properties. It can be seen that completeness and
soundness hold and WI is preserved. Thus we only need to construct a precise emulator-extractor
E for (P, V ), as the following shows.

The Construction of E. For any polynomial-sized (deterministic) P ∗ (we only need to consider
polynomial-sized provers) and x, and for each i ∈ {1, · · · ,m}:
Step i.1. E adopts the honest verifier’s strategy to interact with P ∗ in the ith atomic protocol
to output the joint view (this is the first run, used to gather the joint view), and at the same
time records P ∗’s running-time and running-space. If P ∗ sends an invalid message in this atomic
protocol, E halts outputting ⊥. Otherwise let ri denote E’s challenge in this atomic protocol,
vi denote the current prover’s view prior to ri (exclusive). Let ti denote P ∗’s running-time in
computing the response on receiving ri, si denote (the size of) P ∗’s running-space on view vi ◦ ri.
Step i.2. If the witness has not been extracted, E performs the extraction (this is the second run
only for extraction). It rewinds P ∗ to the point where ri is supposed to be sent, and chooses a
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new challenge r′i ∈R {0, 1}n and sends r′i to P ∗, and recycles the space used in emulating P ∗ of the
previous rewinds. It emulates P ∗ for at most 2ti steps, and at the same time keeps track of P ∗’s
running-space on view vi ◦ r′i and checks whether it is within si. If P ∗ can output a response to r′i
within 2ti time and its running-space on vi ◦ r′i is within si, E computes a witness w by running
ExR (in the case that the response is valid and r′i 6= ri or else E proceeds to next atomic protocol).
Otherwise, E cuts off P ∗’s computing and proceeds to next atomic protocol. (If i = m, E performs
the extraction and halts outputting w if it has been extracted.)
Properties of E. Let (viewP ∗ , viewV ) be the joint view output by E. By E’s strategy in the first
run, we have (viewP ∗ , viewV ) is identical to the joint view in a real interaction of (P ∗, V )(x). Let
T and S denote the running-time and running-space of P ∗ on viewP ∗ respectively. Hence we only
need to show E has the following properties.
Running-Time. Since P ∗’s running-time in the rewind of the ith atomic protocol is at most 2ti,
1 ≤ i ≤ m, P ∗’s running-time in all rewind runs is no more than 2 · ∑

i∈[1,m]

ti < 2T. Then it takes

E O(T) time to emulate P ∗ in the entire simulation. Further, sending prover’s messages, checking
if a transcript is accepting, and extracting a witness for two accepting transcripts, can be done in
a fixed polynomial time. Thus E’s running-time is bounded by poly(n) + O(T).
Running-Space. First, it takes E O(S) space to emulate P ∗’s computing on viewP ∗ . Second,
by the recycling strategy, it also takes E O(S) space to emulate all P ∗’s computing on vi ◦ r′i for
1 ≤ i ≤ m. Third, besides emulating P ∗, E needs a more fixed polynomial space to carry out other
computing and store the joint view. Thus E’s running-space is bounded by poly(n) + O(S).
Extractable Probability. Let Accept (resp. Reject) denote the event that viewV is an accepting
(resp. rejective) view. Let Suc denote the event E succeeds in extraction. Then what we need to
prove is Pr[Suc|Accept] = 1 − neg(n) if Pr[Accept] is non-negligible. On the occurrence of Reject,
we can regard the extraction as successful with probability 1, i.e. Pr[Suc|Reject] = 1 (note since E
is a partial strategy of S, if E’s view is rejective then S terminates the simulation and the view
output by S is still identical to the real view). Thus if we are able of proving Pr[Suc] = 1− neg(n),
then Pr[Accept] Pr[Suc|Accept] + Pr[Reject] Pr[Suc|Reject] = 1 − neg(n). By some calculation, we
have Pr[Accept](1−Pr[Suc|Accept]) = neg(n). Since Pr[Accept] is non-negligible, Pr[Suc|Accept] =
1 − neg(n)

Pr[Accept] = 1 − neg(n). Consequently, to prove Pr[Suc|Accept] = 1 − neg(n), we only need to
show Pr[Suc] = 1− neg(n). Actually, this is true, ensured by Claim 5.4. The claim follows.

Before proceeding to Claim 5.4, we show two remarks on E’s extraction strategy and its com-
parison with the original “cut-off” technique in [19]. If we modify E by only requiring it cuts off
P ∗’s computing in the second run of each atomic protocol iff P ∗ cannot output a response to r′i
within ti time, then this is the original “cut-off” technique. Notice that there are two differences
between it and the extraction strategy herein. The main difference is that E herein uses the “cut-
off” technique by simultaneously considering P ∗’s running-time and running-space instead of P ∗’s
running-time alone. Another difference is that E herein allows P ∗ to run 2ti time at most in the
second run instead of ti time. In Remark 5.2, we show the original “cut-off” technique cannot
obtain simultaneous meaningful time and space precisions. In Remark 5.3, we show the time for
P ∗ to run in the second run cannot be reduced to ti (if we require that the space for it to run is
at most si). That is, it is necessary for E to allow P ∗ to run ti times a factor (e.g. 2) steps in the
second run.

Remark 5.2. We now show if E adopts the original “cut-off” technique, although it can of course
obtain linear time precision it cannot obtain any meaningful space precision. To this end we need
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to show for any meaningful ps(n, y) there exists a P ∗ satisfying E’s running-space is more than
ps(n, S) with non-negligible probability (even if m can be any arbitrary polynomial).

First consider a prover P ′ defined below. P ′ proceeds just as the honest prover P , except that
P ′ receives a random 2-wise independent hash function h : {0, 1}n → {0, 1}n as the auxiliary input.
Let Q(n) be a polynomial bound on the running-space of P . Then in the 1st atomic protocol on
receiving a challenge (r1 or r′1) P ′ applies h to this challenge and generates a random string a. If
the first log n bits of a are not zeros, P ′ executes some instructions to consume ps(n,Q(n))2 more
space. Otherwise, it also executes some dummy instructions to consume the same time but no more
space. Then, it proceeds to do what P would on a challenge and also executes some instructions
(which don’t consume any more space), if needed, to adjust its running-time in this step to be same
in answering different challenges. In all the residual atomic protocols, P ′ behaves identically to P .

In the 1st atomic protocol, since P ′’s running-time on different challenges are always identical,
there is no possibility for E to cut off P ′’s computing in the second run and thus the extraction
always succeeds in case r1 6= r′1. However, it can be seen the event that P ′’s running-space on
view v1 ◦ r1 is less than Q(n) and its running-space on view v1 ◦ r′1 is at least ps(n,Q(n))2 occurs
with probability 1

n(1− 1
n). Thus E’s running-space is more than ps(n, S) with probability at least

1
n(1 − 1

n). By an averaging argument, there exists at least one auxiliary input z = h resulting in
the event occurs with that probability. Let P ∗ be P ′ having z hardwired and then P ∗ is the desired
one.

Remark 5.3. Now we show the factor (i.e. 2) for ti in E’s strategy in the second run cannot be
eliminated. That is, we show if we bound the time and space for a prover to run in the second run
are respectively ti and si, then there exists a P ∗ such that E fails in extraction with non-negligible
probability even if m can be any arbitrary polynomial.

Consider a prover P ∗ defined below. P ∗ proceeds just as P , except that the following differences.
According to P ∗’s running-time and running-space, all the N = 2n challenges in {0, 1}n can be
divided into nc0 > m disjoint classes, ordered in an arbitrary way, each of which has N

nc0 challenges,
such that for 1 ≤ i ≤ m when executing the ith atomic protocol (the view prior to this atomic
protocol is then fixed): 1. besides doing what P would, P ∗ also executes some instructions to
ensure its running-time (resp. running-space) on any of the challenges (resp. the generated view
concatenated with any of the challenges) from the same class are identical; 2. if denote by t

(j)
i

(resp. s
(j)
i ) P ∗’s running-time (resp. running-space) on any challenge (resp. the generated view

concatenated with any challenge) from the jth class, then t
(1)
i < t

(2)
i < · · · < t

(nc0 )
i but s

(1)
i > s

(2)
i >

· · · > s
(nc0 )
i .

Hence for each i a sufficient condition for the extraction to fail in the ith atomic protocol is that ri

and r′i are chosen from two different classes, which occurs with probability nc0 · 1
nc0 ·(1− 1

nc0 ) = 1− 1
nc0 .

Thus the extraction fails in all the m atomic protocols with probability at least (1 − 1
nc0 )m =

O((1
e )m/nc0 ) > c′ for a constant 0 < c′ < 1.

Claim 5.4. The E described in the proof of Claim 5.1 succeeds in extraction with probability
1− neg(n).

Proof. If there exists an i satisfying that the extraction always succeeds in the first i atomic
protocols for all outcomes of E’s coins used in the first and second runs of these protocols, the
claim of course holds. Thus in the following we prove this claim by assuming for all i’s there are
some outcomes of the E’s coins resulting in the extraction fails in the first i atomic protocols.

Fix any outcome of such E’s coins that result in the extraction fails in the first i − 1 atomic
protocols. Let us analyze the probability of successful extraction in the ith atomic protocol. We
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will present a uniform lower bound for this probability when further fixing any outcome of E’s
coins used in this atomic protocol before sending the challenge (ri). (Thus view vi is determined.)
In the case P ∗ outputs an invalid message on view vi, the probability of successful extraction is 1.
Thus we only need to consider the case the extraction can reach the step E sends the challenge as
follows.

We first (re)highlight some crucial random variables. Let ri (resp. r′i) denote the random
challenge in {0, 1}n sent to P ∗ in the first (resp. second) run. Let ti (resp. t′i) denote P ∗’s running-
time in answering ri (resp. r′i) in the first (resp. second) run. Let si (resp. s′i) denote (the size of)
P ∗’s running-space on view vi ◦ ri (resp. vi ◦ r′i). Since coins E uses are independent, we have that
ri and r′i are independently identically distributed (i.i.d.), ti and t′i are i.i.d., si and s′i are i.i.d..

If P ∗ outputs a valid response to ri in the first run, a necessary and sufficient condition for the
extraction to succeed is that s′i ≤ si, t

′
i ≤ 2ti, ri 6= r′i and P ∗ can output a valid response to r′i in

the second run. Otherwise, the extraction is regarded as successful. If we set ti, si (resp. t′i, s
′
i)

the values that are respectively greater than 2 times P ∗’s maximal running-time and P ∗’s maximal
running-space when P ∗ outputs an invalid response in the first (resp. second) run, then in the
former case the necessary and sufficient condition can be reduced to s′i ≤ si, t

′
i ≤ 2ti, ri 6= r′i and in

the latter case s′i ≤ si, t
′
i ≤ 2ti can be satisfied too. This means s′i ≤ si, t

′
i ≤ 2ti, ri 6= r′i can be used

as a uniform sufficient condition for the extraction to succeed.
Thus assuming P ∗’s running-time and running-space are bounded by 1

4nc − 1 for some non-
predetermined constant c > 0 and for sufficiently large n’s (the coefficients 1

4 and −1 were chosen
only for notational convenience), we set ti = 1

2nc−1 and si = 1
4nc (resp. t′i = 1

2nc−1 and s′i = 1
4nc)

if P ∗ outputs an invalid response in the first (resp. second) run. Hence, by the analysis in the
above paragraph, the probability the extraction succeeds is at least Pr[s′i ≤ si, t

′
i ≤ 2ti, ri 6= r′i].

Thus, our main task in this proof is to present a lower bound for this probability.
Since Pr[s′i ≤ si, t

′
i ≤ 2ti, ri 6= r′i] ≥ 1− Pr[s′i > si]− Pr[t′i > 2ti]− Pr[ri = r′i], and Pr[ri = r′i] =

2−n, we only need to evaluate Pr[s′i > si] and Pr[t′i > 2ti].
It follows from the symmetry property that Pr[s′i < si] = Pr[si < s′i]. Since Pr[s′i < si]+Pr[si <

s′i] + Pr[si = s′i] = 1, we have 2 · Pr[s′i > si] < 1. Thus, Pr[s′i > si] < 1
2 . For the same reason,

Pr[t′i < ti] = 1
2 − 1

2 Pr[ti = t′i], Pr[t′i ≤ ti] = 1
2 + 1

2 Pr[ti = t′i].
Let δ(n) = ( 1

m)1/3. (m(n) = ω(log3 n), shown in the proof of Claim 5.1.) Then δ(n) = 1
ω(log n) .

In the following we divide the evaluation of Pr[t′i ≤ 2ti] and Pr[s′i ≤ si, t
′
i ≤ 2ti, ri 6= r′i] into two

cases. Before proceeding we first define some notations and variables.

Notations and Variables. We define the following notations and variables.
(1) We use t(u) to denote the value of ti when the challenge to P ∗ is u ∈ {0, 1}n in the first run.

(Equivalently, t(u) is the value of t′i when the challenge to P ∗ is u in the second run.) We
order the N = 2n challenges in {0, 1}n as u1, u2, · · · , uN in an arbitrary way only if this order
satisfies t(u1) ≤ t(u2) ≤ · · · ≤ t(uN ). We also write u1 < u2 < · · · < uN by this order, and
say u1 is less than u2, u2 is less than u3 and so on. Then when we say “choose the minimal
challenge from set U ⊂ {0, 1}n, denoted u” we mean the chosen u ∈ U is less than any one in
U − {u}. For simplicity, let ak denote t(uk), 1 ≤ k ≤ N . (ak’s may not be mutually different
and 1 ≤ ak < 1

2nc for each k.)

(2) For each uk, we define a set Ak corresponding to uk as Ak
def= {u ∈ {0, 1}n : ak ≤ t(u) ≤ 2ak}.

(3) For each uk, we define Nk as the cardinal number of the set {u ∈ {0, 1}n : t(u) = ak}. It is
clear that |Ak| ≥ Nk for each k.

Case 1. Assume there is a k0 satisfying Nk0
N ≥ δ(n). Let B

def= {k ∈ [1, N ] : t(uk) =
ak0}. Then Nk0 = |B| = Nk for each k ∈ B. Since ri is independent of t′i, Pr[ti = t′i] =
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∑
k∈[1, N ]

Pr[ri = uk, t
′
i = ak] ≥

∑
k∈B

Pr[ri = uk, t
′
i = ak] =

∑
k∈B

1
N · Nk0

N = Nk0
N

Nk0
N ≥ δ2.

Thus, Pr[t′i ≤ 2ti] ≥ Pr[t′i ≤ ti] = 1
2 + 1

2 Pr[ti = t′i] ≥ 1
2 + 1

2δ2. Then Pr[t′i > 2ti] ≤ 1
2 − 1

2δ2.
Hence, Pr[s′i ≤ si, t

′
i ≤ 2ti, ri 6= r′i] > 1− 1

2 − (1
2 − 1

2δ2)− 2−n = 1
2δ2 − 2−n.

Case 2. Assume Nk
N < δ(n) for all k’s. Since Pr[t′i ≤ 2ti] = Pr[t′i < ti] + Pr[ti ≤ t′i ≤ 2ti] =

1
2(1 − Pr[ti = t′i]) + Pr[ti ≤ t′i ≤ 2ti], to evaluate Pr[t′i ≤ 2ti] we first compute Pr[ti ≤ t′i ≤ 2ti],
which is actually the main part of this case.

Our fundamental approach to computing Pr[ti ≤ t′i ≤ 2ti] is that we construct a decomposition
{D1, · · · , DH} of the sample space for some integer H > 0, and compute Pr[ti ≤ t′i ≤ 2ti|Dh] for
1 ≤ h ≤ H and then apply the formula of total probability to evaluate Pr[ti ≤ t′i ≤ 2ti]. Thus, in
the following we will show how to construct the desired decomposition and compute the conditional
probabilities.

We first show what D1 is. Choose the minimal challenge from {0, 1}n, denoted uk11 , 1 ≤ k11 ≤
N . (k11 = 1 actually.) If Ak11 doesn’t contain {0, 1}n, then choose the minimal challenge from
{0, 1}n −Ak11 , denoted uk12 , 1 ≤ k12 ≤ N . If Ak11 + Ak12 (note that Ak11 ∩Ak12 = φ) still doesn’t
contain {0, 1}n, continue to choose the minimal challenge from {0, 1}n−Ak11 −Ak12 , denoted uk13 ,
1 ≤ k13 ≤ N , and proceed. Since {0, 1}n is finite, using this selection method we can finally obtain a
sequence of challenges {uk11 , · · · , uk1d1

} for some d1 > 0, satisfying
∑

j∈[1,d1]

Ak1j
= {0, 1}n (note that

Ak1j
’s are disjoint). Let D1 denote the event of ri ∈ {uk11 , · · · , uk1d1

}, D∗
1 denote {uk11 , · · · , uk1d1

}.
Let us evaluate the value of d1. Since a1, · · · , aN are bounded by 1

2nc, and ak11 < 2ak11 < ak12 <
2ak12 < · · · < ak1d1

< 2ak1d1
, we have ak11 · 2d1−1 < ak1d1

< 1
2nc. Hence d1 < c log n. Further, as∑

j∈[1,d1]

Ak1j
= {0, 1}n, there is a K1, 1 ≤ K1 ≤ d1, satisfying |Ak1K1

| ≥ max[ N
d1

, Nk1K1
]. Then,

Pr[ti ≤ t′i ≤ 2ti|D1] =
1

Pr[D1]
Pr[ti ≤ t′i ≤ 2ti, D1] =

1
Pr[D1]

∑

j∈[1, d1]

Pr[ri = uk1j
, ak1j

≤ t′i ≤ 2ak1j
]

=
1

Pr[D1]

∑

j∈[1, d1]

Pr[ri = uk1j
] · Pr[ak1j

≤ t′i ≤ 2ak1j
] =

∑

j∈[1, d1]

Pr[ri = uk1j
|D1] · Pr[ak1j

≤ t′i ≤ 2ak1j
]

≥
∑

j∈[1, d1]−{K1}

1
d1

Nk1j

N
+

1
d1N

max[
N

d1
, Nk1K1

] =
∑

j∈[1, d1]

1
d1

Nk1j

N
+

1
d1N

max[
N

d1
−Nk1K1

, 0]

If D1 equals the sample space, the decomposition has only one element D1. Otherwise, we
need to construct D2 by using the similar way in constructing D1. Choose the minimal challenge
from {0, 1}n −D∗

1, denoted uk21 , 1 ≤ k21 ≤ N . If Ak21 doesn’t contain {0, 1}n −D∗
1, then choose

the minimal challenge from {0, 1}n − D∗
1 − Ak21 , denoted uk22 , 1 ≤ k22 ≤ N . If Ak21 + Ak22 still

doesn’t contain {0, 1}n−D∗
1, continue this selection. Finally, using this selection method we obtain a

sequence of challenges {uk21 , · · · , uk2d2
} for some d2 > 0 satisfying

∑
j∈[1,d2]

Ak2j
contains {0, 1}n−D∗

1.

Let D2 denote the event of ri ∈ {uk21 , · · · , uk2d2
}, D∗

2 denote {uk21 , · · · , uk2d2
}. Similarly, we have

d2 < c log n.
As

∑
j∈[1,d2]

Ak2j
⊃ {0, 1}n −D∗

1 and |D∗
1| = d1, there is a K2, 1 ≤ K2 ≤ d2, satisfying |Ak2K2

| ≥

max[N−d1
d2

, Nk2K2
]. Then in the same way,
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Pr[ti ≤ t′i ≤ 2ti|D2] =
∑

j∈[1, d2]

Pr[ri = uk2j
|D2] · Pr[ak2j

≤ t′i ≤ 2ak2j
]

≥
∑

j∈[1, d2]

1
d2

Nk2j

N
+

1
d2N

max[
N − d1

d2
−Nk2K2

, 0]

We now turn to describe the general case. Assume we have constructed D1 · · · , Dh−1 for
some h > 0. If D1 + · · · + Dh−1 equals the sample space, the decomposition is {D1 · · · , Dh−1}.
Otherwise, we need to construct Dh. Using the same selection method, we can select a sequence
of challenges {ukh1

, · · · , ukhdh
} for some dh > 0, 1 ≤ kh1, · · · , khdh

≤ N , satisfying
∑

j∈[1,dh]

Akhj

contains {0, 1}n −D∗
1 − · · · −D∗

h−1. Let Dh denote the event of ri ∈ {ukh1
, · · · , ukhdh

}, D∗
h denote

{ukh1
, · · · , ukhdh

}. Similarly, we have dh < c log n.
As

∑
j∈[1,dh]

Akhj
⊃ {0, 1}n −D∗

1 − · · · −D∗
h−1, there is a Kh, 1 ≤ Kh ≤ dh, satisfying |AkhKh

| ≥

max[N−d1−···−dh−1

dh
, NkhKh

]. Thus,

Pr[ti ≤ t′i ≤ 2ti|Dh] =
∑

j∈[1, dh]

Pr[ri = ukhj
|Dh] · Pr[akhj

≤ t′i ≤ 2akhj
]

≥
∑

j∈[1, dh]

1
dh

Nkhj

N
+

1
dhN

max[
N − d1 − · · · − dh−1

dh
−NkhKh

, 0]

Since the sample space is finite, the construction of the decomposition will halt certainly.
Namely, there is a number H satisfying

∑
h∈[1,H]

Dh contains the sample space. Thus the desired de-

composition is {D1, · · · , DH}. It can be seen {D∗
1, · · · , D∗

H} is actually a decomposition of {0, 1}n,
which shows khj ’s for all 1 ≤ h ≤ H, 1 ≤ j ≤ dh are a permutation of 1, · · · , N . Consequently, by
the formula of total probability,

Pr[ti ≤ t′i ≤ 2ti] =
∑

h∈[1, H]

Pr[Dh] · Pr[ti ≤ t′i ≤ 2ti|Dh]

≥
∑

h∈[1, H]

dh

N
· {

∑

j∈[1, dh]

1
dh

Nkhj

N
+

1
dhN

max[
N − d1 − · · · − dh−1

dh
−Nkhkh

, 0]}

=
∑

h∈[1, H]

∑

j∈[1, dh]

Nkhj

N2
+

∑

h∈[1, H]

1
N2

max[
N − d1 − · · · − dh−1

dh
−NkhKh

, 0]

=
∑

k∈[1, N ]

Nk

N2
+

∑

h∈[1, H]

1
N2

max[
N − d1 − · · · − dh−1

dh
−NkhKh

, 0]

=Pr[ti = t′i] +
∑

h∈[1, H]

1
N2dh

max[N − d1 − · · · − dh−1 −NkhKh
dh, 0]

In the last step of the above formula, we use the fact
∑

k∈[1, N ]

Nk
N2 = Pr[ti = t′i]. This is because

Pr[ti = t′i] =
∑

k∈[1, N ]

Pr[ri = uk, t
′
i = ak] =

∑
k∈[1, N ]

Pr[ri = uk] · Pr[t′i = ak] =
∑

k∈[1, N ]

Nk
N2 . Now let
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us evaluate the second item at the right hand of the last equal sign in the above formula. Since
NkhKh

< δN (by the assumption of Case 2), NkhKh
dh < δdhN < cδ log nN . Let γ denote cδ log n

and then γ(n) = o(1). Then NkhKh
dh < γN for 1 ≤ h ≤ H. Thus (for sufficiently large n’s),

The second item =
∑

h∈[1, H]

1
N2dh

·max[N − d1 − · · · − dh−1 −NkhKh
dh, 0]

>
1

N2c log n
·

∑

h∈[1, H]

max[N − d1 − · · · − dh−1 − γN, 0]

>
1

N2c log n
·

∑

h∈[1, H]

max[(1− γ)N − (h− 1)c log n, 0]

Denote by H ′ the largest integer satisfying (1− γ)N − (h− 1)c log n ≥ 0 for 1 ≤ h ≤ H ′. Then
H ′ = b 1−γ

c log nNc+ 1. Thus (for sufficiently large n’s),

The second item >
1

N2c log n
·

∑

h∈[1, H′]

{(1− γ)N − (h− 1)c log n}

>
1

N2c log n

(1− γ)2

c log n
N2 − 1

N2c log n

∑

h∈[1, H′]

(h− 1)c log n =
(1− γ)2

(c log n)2
− 1

N2

H ′(H ′ − 1)
2

≥ (1− γ)2

(c log n)2
− 1

2N2
{(1− γ)2N2

(c log n)2
+

1− γ

c log nN
} =

1
2

(1− γ)2

(c log n)2
− 1− γ

2N3c log n
>

1
4c2 log2 n

> δ2

Thus, Pr[ti ≤ t′i ≤ 2ti] > Pr[ti = t′i] + δ2. Consequently,

Pr[t′i ≤ 2ti] = Pr[t′i < ti]+Pr[ti ≤ t′i ≤ 2ti] >
1
2
(1−Pr[ti = t′i])+Pr[ti = t′i]+δ2 =

1
2
+

1
2

Pr[ti = t′i]+δ2 >
1
2
+δ2

Then Pr[t′i > 2ti] < 1
2−δ2. Hence in Case 2, Pr[s′i ≤ si, t

′
i ≤ 2ti, ri 6= r′i] > 1− 1

2−(1
2−δ2)−2−n =

δ2 − 2−n.
Combining the results of Cases 1 and 2 (and the case the extraction cannot reach the step E

sends ri), we conclude that for any outcome of E’s coins used in the ith atomic protocol prior to
ri the extraction succeeds with probability at least 1

2δ2 − 2−n. This means the extraction succeeds
in this atomic protocol with probability at least 1

2δ2 − 2−n. Namely, the extraction fails with
probability at most 1 − 1

2δ2 + 2−n. It follows from m = 1
δ3 that the extraction fails in all atomic

protocols with probability at most (1− 1
2δ2 + 2−n)m = O(e−1/(2δ)) = neg(n).

Claim 5.5. Assume there exist one-way functions. Then for each NP relation R there exists an
ω(log n)-round WI PTSEPOK with time precision poly(n) + O(ny) and space precision poly(n) +
O(y) for R.

Proof. The desired protocol (P, V ) and E are constructed in almost the same way as those in the
proof of Claim 5.1, except for two differences. One is m = ω(log n) herein. The other is E’s
extraction strategy in the second run. In the extraction of the ith atomic protocol, 1 ≤ i ≤ m, E
chooses a new challenge r′i ∈R {0, 1}n and sends r′i to P ∗, and recycles the space used in the previous
rewinds. The difference is that in the second run E emulates P ∗ for at most nti steps. E does
not cut off P ∗’s computing iff P ∗ can finish the computing within nti time and its running-space
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on vi ◦ r′i is no more than si. Others remain unchanged. We can show that E has all the required
properties using a similar analysis.

Let (viewP ∗ , viewV ) denote the joint view output by E. It is clear that (viewP ∗ , viewV ) is identical
to the real view in the interaction of (P ∗, V )(x). Further, by applying the analysis in the proof
of Claim 5.1, we have that E can provide time precision poly(n) + O(ny) and space precision
poly(n) + O(y). Thus, all that is left to prove is that E succeeds in extraction with overwhelming
probability, which can be shown by using the method in the proof of Claim 5.4.

Fix any outcome of E’s coins used in the first and second runs of the first i−1 atomic protocols
that results in E’s view in the first run of these protocols is accepting and the extraction fails. Let
us analyze the probability of successful extraction in the ith atomic protocol. We will also present
a uniform lower bound for this probability when further fixing any outcome of E’s coins used in
this atomic protocol prior to sending the challenge. (Thus view vi is determined.) In the same way,
we only need to consider the case the extraction can reach the step E sends ri as follows.

Assuming P ∗’s running-time and running-space are bounded by nc−2−1 for some non-predetermined
constant c > 0 (for sufficiently large n’s), we set ti = nc−1 − 1 and si = nc−2 (resp. t′i = nc−1 − 1
and s′i = nc−2) if P ∗ outputs an invalid response in the first (resp. second) run. Hence, by the
similar analysis in the proof of Claim 5.4, a uniform sufficient condition for the extraction succeeds
is s′i ≤ si, t

′
i ≤ nti, ri 6= r′i. Thus, our main task in this proof is to present a lower bound for

Pr[s′i ≤ si, t
′
i ≤ nti, ri 6= r′i], which is greater than ≥ 1 − Pr[s′i > si] − Pr[t′i > nti] − Pr[ri = r′i].

Since Pr[ri = r′i] = 2−n and Pr[s′i > si] < 1
2 , we only need to evaluate Pr[t′i > nti].

For m = ω(log n), we can choose two appropriate functions α, δ satisfying m = α
δ2 , α(n) =

ω(log n) and δ(n) = o(1). In the following we still divide the evaluation of Pr[t′i ≤ nti] and
Pr[s′i ≤ si, t

′
i ≤ nti, ri 6= r′i] into two cases, where we still use the notations and variables presented

in the proof of Claim 5.4, which admit the same definitions except for Ak. In this proof Ak
def= {u ∈

{0, 1}n : ak ≤ t(u) ≤ nak}. (1 ≤ ak < nc−1 for each k.)

Case 1. Assume there is a k0 satisfying Nk0
N ≥ δ(n). Using the analysis of Case 1 in the proof of

Claim 5.4, we have Pr[s′i ≤ si, t
′
i ≤ nti, ri 6= r′i] > 1

2δ2(n)− 2−n.

Case 2. Assume Nk
N < δ(n) for all k’s. In this case Pr[ti ≤ t′i ≤ nti] can be evaluated as follows.

Adopting the same selection method as the proof of Claim 5.4 shows, we can obtain a de-
composition {D1, · · · , DH} of the sample space and a decomposition {D∗

1, · · · , D∗
H} of {0, 1}n. It

is noticeable that the value of dh, 1 ≤ h ≤ H, differs from it in the proof of Claim 5.4 as we
modify the definition of Ak, 1 ≤ k ≤ N . We illustrate this difference with respect to d1. Assume
D∗

1 = {uk11 , · · · , uk1d1
}. Then ak11 < nak11 < ak12 < nak12 < · · · < ak1d1

< nak1d1
. It follows

ak11 · nd1−1 < ak1d1
< nc−1. Hence d1 < c. Similarly, we have dh < c for 1 ≤ h ≤ H. According to

the analysis in the proof of Claim 5.4, we infer that

Pr[ti ≤ t′i ≤ nti] = Pr[ti = t′i] +
∑

h∈[1, H]

1
N2dh

·max[N − d1 − · · · − dh−1 −Nihkh
dh, 0]

Now let us evaluate the second item at the right hand of the equal sign. Since Nihkh
< δN ,

Nihkh
dh < δdhN < cδN . Let γ = cδ. This shows Nihkh

dh < γN . Thus (for sufficiently large n’s),
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The second item =
∑

h∈[1, H]

1
N2dh

·max[N − d1 − · · · − dh−1 −Nihkh
dh, 0]

>
1

N2c
·

∑

h∈[1, H]

max[(N − d1 − · · · − dh−1 − γN), 0] >
1

N2c
·

∑

h∈[1, H]

max[(1− γ)N − (h− 1)c, 0]

Denote by H ′ the largest value satisfying (1−γ)N−(h−1)c ≥ 0 for 1 ≤ h ≤ H ′ (and sufficiently
large n’s). Then H ′ = b1−γ

c Nc+ 1. Thus (for sufficiently large n’s),

The second item >
1

N2c
·

∑

h∈[1, H′]

{(1− γ)N − (h− 1)c} >
1

N2c

(1− γ)2

c
N2 − 1

N2c

∑

h∈[1, H′]

(h− 1)c

=
(1− γ)2

c2
− 1

N2

H ′(H ′ − 1)
2

≥ (1− γ)2

c2
− 1

2N2
{(1− γ)2N2

c2
+

1− γ

cN
} =

1
2

(1− γ)2

c2
− 1− γ

2N3c

>
1

2c2
− γ

c2
− 1− γ

2N3c
>

1
3c2

> δ

Then Pr[ti ≤ t′i ≤ nti] > Pr[ti = t′i] + δ. Hence

Pr[t′i ≤ nti] = Pr[t′i < ti] + Pr[ti ≤ t′i ≤ nti] >
1
2
(1− Pr[ti = t′i]) + Pr[ti = t′i] + δ ≥ 1

2
+ δ

Thus, Pr[t′i > nti] < 1
2−δ. So in Case 2 Pr[s′i ≤ si, t

′
i ≤ nti, ri 6= r′i] > 1− 1

2−(1
2−δ)−2−n = δ−2−n.

Combining the results from Cases 1 and 2 (and the case the extraction cannot reach the step
E sends ri) we conclude that for any outcome of E’s coins used in the ith atomic protocol prior
to ri E succeeds in extraction in the ith atomic protocol with probability at least 1

2δ2 − 2−n. This
means the extraction succeeds in this atomic protocol with probability at least 1

2δ2− 2−n. Namely,
E fails with probability at most 1 − 1

2δ2 + neg(n). It follows from m = α
δ2 , E fails in all atomic

protocols with probability at most (1− 1
2δ2 + 2−n)m = O(e−

α
2 ) = neg(n).

Claim 5.6. Assume there exist constant-round perfectly-hiding commitments. Then for each NP
relation R there exists an ω(log3 n)-round (resp. ω(log n)-round) perfectly WI PTSEAOK with time
precision poly(n) + O(y) (resp. poly(n) + O(ny)) and space precision poly(n) + O(y) for R.

Proof. Instantiate the commitment scheme in Blum’s proof for R with a constant-round perfectly-
hiding commitment scheme. Then using the proofs of Claim 5.1, Claim 5.4 and Claim 5.5, we infer
this claim holds. Details omitted.

Combining Claim 5.6 with Claim 4.3, we have Theorem 1.1 follows. Combining Claim 5.1 and
Claim 5.5 with Claim 4.5, we have Theorem 1.2 follows.
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