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Abstract. Due to its universality oblivious transfer (OT) is a primitive of great importance in secure
multi-party computation. OT is impossible to implement from scratch in an unconditionally secure way,
but there are many reductions of OT to other variants of OT, as well as other primitives such as noisy
channels. It is important to know how efficient such unconditionally secure reductions can be in principle,
i.e., how many instances of a given primitive are at least needed to implement OT. For perfect (error-free)
implementations good lower bounds are known, e.g. the bounds by Beaver (STOC ’96) or by Dodis and
Micali (EUROCRYPT ’99). However, in practice one is usually willing to tolerate a small probability of
error and it is known that these statistical reductions can in general be much more efficient. Thus, the known
bounds have only limited application. In the first part of this work we provide bounds on the efficiency
of secure (one-sided) two-party computation of arbitrary finite functions from distributed randomness in
the statistical case. From these results we derive bounds on the efficiency of protocols that use (different
variants of) OT as a black-box. When applied to implementations of OT, our bounds generalize known
results to the statistical case. Our results hold in particular for transformations between a finite number of
primitives and for any error. Furthermore, we provide bounds on the efficiency of protocols implementing
Rabin OT.

In the second part we study the efficiency of quantum protocols implementing OT. Recently, Salvail,
Schaffner and Sotakova (ASIACRYPT ’09) showed that most classical lower bounds for perfectly secure
reductions of OT to distributed randomness still hold in a quantum setting. We present a statistically
secure protocol that violates these bounds by an arbitrarily large factor. We then present a weaker lower
bound that does hold in the statistical quantum setting. We use this bound to show that even quantum
protocols cannot extend OT. Finally, we present two lower bounds for reductions of OT to commitments
and a protocol based on string commitments that is optimal with respect to both of these bounds.
Keywords. Unconditional Security, Oblivious Transfer, Lower Bounds, Quantum Cryptography, Two-
Party Computation.

1 Introduction

Secure multi-party computation allows two or more distrustful players to jointly compute a function
of their inputs in a secure way ([60]). Security here means that the players compute the value of the
function correctly without learning more than what they can derive from their own input and output.

A primitive of central importance in secure multi-party computation is oblivious transfer (OT),
as it is sufficient to execute any multi-party computation securely [33,37]. The original form of OT
((3)-RabinOT!) has been introduced by Rabin in [47]. It allows a sender to send a bit z, which the
receiver will get with probability % Another variant of OT, called one-out-of-two bit-OT (@)-OTl)
was defined in [28] (see also [52]). Here, the sender has two input bits xg and z;. The receiver gives as
input a choice bit ¢ and receives x. without learning x1_.. The sender gets no information about the
choice bit c¢. Other important variants of OT are (’Z)—OT’“ where the inputs are strings of k bits and
the receiver can choose ¢t < n out of n secrets and (p)-RabinOT* where the inputs are strings of k bits
and the erasure probability is p € [0, 1].

If the players have access to noiseless (classical or quantum) communication only, it is impossible
to implement unconditionally secure OT, i.e. secure against an adversary with unlimited computing



power. It has been shown in [18] that (p)—RabinOTk and @)-OT1 are equally powerful, i.e., one can be
implemented from the other. Numerous reductions between different variants of (?)—OTk are known as
well: (f)—OTk can be implemented from (%)—OT1 [7,20,12,11], and (E‘)—OT’“ can be implemented from

(%)—OTk/ [10, 12, 26, 56]. There has also been a lot of interest in reductions of OT to weaker primitives.
It is known that OT can be realized from noisy channels [17, 19,23, 59], noisy correlations [54,44], or
weak variants of OT [17,13,25,11, 24, 58|.

In the quantum world, it has been shown in [8,61,22,51] that OT can be implemented from
black-box commitments, something that is impossible in the classical setting.

Given these positive results it is natural to ask how efficient such reductions can be in principle,
i.e., how many instances of a given primitive are needed to implement OT.

1.1 Previous Results

In the classical setting, several lower bounds for OT reductions are known. The first impossibility
result for unconditionally secure reductions of OT has been presented in [4]. There it has been shown
that the number of @)-OT1 cannot be extended?, i.e., there does not exist a protocol using n instances
of @)—OTl that perfectly implements m > n instances. Lower bounds for the number of instances of
OT needed to perfectly implement other variants of OT have been presented in [26] (see also [42]) and
generalized in [56, 55]. These bounds apply to both the semi-honest (where dishonest players follow the
protocol) and the malicious (where dishonest players behave arbitrarily) model. If we restrict ourselves
to the malicious model these bounds can be improved, as shown in [38]. Lower bounds on the number
of ANDs needed to implement general functions have been presented in [6].

All these results only consider perfect protocols and do not give much insight into the case of
statistical implementations. As pointed out in [38], their result only applies to the perfect case, because
there is a statistical protocol that is more efficient ([21]). The bounds for perfect and statistical
protocols can in fact be very far apart, as shown in [6]: The amount of OTs needed to compute the
equality function is exponentially bigger in the perfect case than in the statistical case. Therefore, it
is not true in general that a bound in the perfect case implies a similar bound in the statistical case.

So far very little is known in the statistical case. In [1] a proof sketch of a lower bound for statistical
implementations of @)-OTk has been presented. However, this result only holds in the asymptotic case,
where the number n of resource primitives goes to infinity and the error goes to zero as n goes to infinity.
In [6] a non-asymptotic lower bound on the number of ANDs needed for one-sided secure computation
of arbitrary functions with boolean output has been shown. This result directly implies lower bounds
for protocols that use (?)—OTk as a black-box. However, besides being restricted to boolean-valued
functions this result is not strong enough to show optimality of several known reductions and it does
not provide bounds for reductions to randomized primitives such as (%)—Ra binOT?.

In the quantum setting almost all negative results known show that a certain primitive is impossible
to implement from scratch. Commitment has been shown to be impossible in the quantum setting in
[43, 41]. Using a similar proof, it has been shown in [40] that general one-sided two-party computation
and in particular oblivious transfer are also impossible to implement securely in the quantum setting.

To our knowledge, the only lower bounds for quantum protocols where the players have access
to resource primitives (such as different variants of OT) have been presented in [48] where Theorem
4.7 shows that important lower bounds for classical protocols also apply to perfectly secure quantum
reductions.

3 Note that in the computational setting, OT can be extended, see [4,35].



1.2 Contribution

Classical Reductions. In Section 2 we consider statistically secure protocols in the semi-honest model
that compute a function between two parties from trusted randomness distributed to the players. We
provide two bounds on the efficiency of such reductions that allow in particular to derive bounds on
the minimal number of (?)—OT’“ or (p)-RabinOT* needed to compute any given function securely. Our
bounds do not involve any asymptotics, i.e., we consider a finite number of resource primitives and
our results hold for any error.

In Section 2.5 we provide an additional bound for the special case of statistical implementations of
(?)—OTk. Note that for implementations of OT bounds in the semi-honest model imply similar bounds
in the malicious model 4. The bounds for implementations of (?)—OTk (Theorem 3) imply the following
corollary that gives a general bound on the conversion rate between different variants of OT.

Corollary 1. For any reduction that implements M instances of (]f)—OTK from m instances of
(?) -OT* in the semi-honest model with an error of at most e, we have

(N-1)K K logN
(n—1)k "k’ logn

m2maux< )—7NK~(E+h(€)).
M

Corollary 1 generalizes the lower bounds from [26,56,55] to the statistical case and is strictly
stronger than the impossibility bounds from [1]. If we let M =m+1, N=n=2and K =k =1, we
obtain a stronger version of Theorem 3 from [4] which states that OT cannot be extended.

In Appendix B, we also derive new bounds in the statistical case for protocols implementing
(p)-Ra binOT¥, and show that our bounds imply bounds for implementations of oblivious linear function
evaluation (OLFE).

Our lower bounds show that the following protocols are (close to) optimal in the sense that they
use the minimal number of instances of the given primitive.

— The protocol in [12,26] which uses ¥=! instances of (?)-OTk to implement (JY )-OTk is optimal.

n—1

The protocol in [56] which uses t instances of (’f)-OT’l‘mti1 to implement (”;)—OTk is optimal.

— In the semi-honest model, the trivial protocol that implements (f)—OTk from k instances of @)—OT1
is optimal. In the malicious case, the protocol in [21] uses asymptotically (as k goes to infinity)
the same amount of instances and is therefore asymptotically optimal.

— The protocol in [49] that implements (f)—OTk from (3)-RabinOT! in the malicious model is asymp-

totically optimal.

Quantum Reductions. While previous result show that quantum protocols show similar limits as clas-
sical protocols for reductions between different variants of oblivious transfer, we present in Section 3.1
a statistically secure protocol that violates the classical bounds and the bound for perfectly secure
quantum protocols by an arbitrarily large factor. More precisely, we prove that, in the quantum setting,
string oblivious transfer can be reversed much more efficiently than by any classical protocol.

Theorem 4. There exists a protocol that implements (%)—OTkl with an error € from k = O(log1/¢)
instances of (?)-OTk in the opposite direction where ¥’ = 2(k) if k = 2(k).

4 For implementations of OT (and any other so-called deviation revealing functionality) security in the malicious model
implies security in the semi-honest model [46]. In Appendix A we show this implication for (?)—OTk and (p)-Ra binOT*
with explicit bounds on the simulation errors.



For classical and perfect quantum protocols k" is essentially upper bounded by x. In Theorem 5 we
show that a weaker lower bound for quantum reductions holds also for quantum protocols in the
statistical setting. Theorem 5 implies that quantum protocols cannot extend oblivious transfer, i.e.,
we show that there exists a constant ¢ > 0 such that any quantum reduction of m + 1 instances of
(%)—OT1 to m instances of (%)—OT1 must have an error of at least -~-.

Furthermore, Theorem 5 implies a lower bound for reductions between different variants of OT.

Corollary 2. For any quantum reduction that implements @)—OTK from m instances of (?)—OT’“
with an error smaller than €, we have

> ——— —3K+\/e—13h .
= 2nk + 2logn Ve (ve)

Finally, we also derive a lower bound on the number of commitments (Theorem 7) and on the total
number of bits the players need to commit to (Theorem 6) in any e-secure implementation of (%)—OT’g
from commitments.

Corollary 3. A protocol that implements (%)—OTk, using commitments only, with an error of at most
e must use at least log(1/e) — 6 commitments and needs to commit to at least k/2 — 12k\/e — Th(\/€)
bits in total.

Corollary 3 implies that bit commitments cannot be extended. More precisely, there exists a con-
stant ¢ > 0 such that any protocol that implements m + 1 bit commitments out of m bit commitments
must have an error of at least . Finally, in Section 8 we show that there exists a protocol that is
essentially optimal with respect to Corollary 3. We use the protocol from [8,22], but let the receiver
commit to blocks of measurements at once, to prove the following theorem.

Theorem 8. There exists a quantum protocol that implements @)-OTk with an error of at most &,

using k = O(log 1/¢) commitments to strings of size b, where kb = O(k + log 1/¢).

1.3 Notation

We use calligraphic letters to denote sets. We denote the distribution of a random variable X over
X by Px. Given the distribution Pxy over X x ), the marginal distribution is denoted by Px(x) :=
Zyey Pxy(z,y). A conditional distribution Px|y (7, y) over X x) defines for every y € ) a distribution
Px|y—y. Px|y can be seen as a randomized function that has input y and output z. The statistical
distance between the distributions Px and Pxs over the domain X is defined as the maximum, over
all (inefficient) distinguishers D : X — {0, 1}, of the distinguishing advantage

8(Px, Px/) =| Pr[D(X) = 1] — Pr[D(X') = 1] | .

If §(Px, Px/) < e, we may also say that Px is e-close to Pxs. The conditional Shannon entropy of X
given Y is defined as®

H(X | V) == Pxy(z,y)log Pyjy(z,y) ,
z,y

and the mutual information of X and Y as

I(X;Y) =H(X) - HX | Y).

5 All logarithms are binary, and we use the convention that 0 -log0 = 0.



We use the notation
h(p) = —plogp — (1 — p)log(1 — p)

for the binary entropy function. We say that X, Y and Z form a Markov-chain, denoted by X <«
Y < Z, it X and Z are independent given Y, which means that Px|y—, = Px|y—y z—. for all y,2
(;or Pzly—y = Pz|x—zy—y for all z,y, since the condition is symmetric in X and Z). Furthermore, we
write [k] to denote the set {1,...,k}. If x = (21,...,2,) and T := {i1,...,ix} C [n], then z|p denotes
the substring (x;,, xi,, ...,z ) of z. If x,y € {0,1}", then = & y denotes the bitwise XOR of = and y.

1.4 Primitives and Randomized Primitives

In the following we consider two-party primitives that take inputs x from Alice and y from Bob and
outputs Z to Alice and § to Bob, where (Z,y) are distributed according to Pgyxy- For simplicity,
we identify such a primitive with Pgy(xy . If the primitive has no input and outputs values (u,v)
distributed according to Pyy, we may simply write Pyy. If the primitive is deterministic and only
Bob gets an output, i.e., if there exists a function f : X x) — Z such that PXY|X:z,Y:y(J—v flxz,y) =1
for all x,y, then we identify the primitive with the function f.

Examples of such primitives are (?)—OTk, (p)-RabinOT*, EQ,, and IP,,.

- (?)—OT’“ is the primitive where Alice has an input z = (zo,...,2,_1) € {0,1}*", and Bob has an
input ¢ C {0,...,n — 1} with |c| = t. Bob receives y = z|. € {0, 1}**.

— (p)-Ra binOTF is the primitive where Alice has an input = € {0, 1}k. Bob receives y which is equal
to x with probability p and A otherwise.

— The equality function EQ,, : {0,1}" x {0,1}" — {0,1} is defined as

1, ifx=y,
EQn(z,y) = { Y

0, otherwise .

— The inner product modulo two function IP, : {0,1}" x {0,1}" — {0,1}" is defined as
IPn(z,y) = Bl 7y

We often allow a protocol to use a primitive Pyy that does not have any input. This is enough to
model reductions to (;‘)—OTk and (p)-RabinOTk , since these primitives are equivalent to distributed
randomness Py, i.e., there exist two protocols that are secure in the semi-honest model: one that
generates the distributed randomness using one instance of the primitive, and one that implements
one instance of the primitive using the distributed randomness as input to the two parties. The fact
that (f)—OT1 is equivalent to distributed randomness has been presented in [8,5]. The generalization
to (?)—OT’“ is straightforward. The randomized primitives are obtained by simply choosing all inputs
uniformly at random. For (p)-RabinOTk the implementation is straightforward. Hence, any protocol
that uses some instances of (?)—OT’“ or (p)—RabinOTk can be converted into a protocol that only uses
a primitive Pyy without any input.

2 Lower Bounds for Classical Two-Party Computation

2.1 Protocols and Security in the Semi-Honest Model

We will consider the semi-honest model, where both players behave honestly, but may save all the
information they get during the protocol to obtain extra information about the other player’s input
or output. A protocol securely implements Pgy|xy with an error of ¢, if the entire view of each player

5



can be simulatedwith an error of at most € in an ideal setting, where the players only have black-box
access to the primitive Pgy|xy. Note that this simulation is not allowed to change neither the input
nor the output. This definition of security follows Definition 7.2.1 from [32], but is adapted to the case
of computationally unbounded adversaries and statistical indistinguishability.

Definition 1. Let m be a protocol with black-box access to a primitive Pyy that implements a prim-
itive Pgy|xy. View}(z,y) and View(z,y) denote the views of the Alice and Bob on input (z,y)
defined as (x,u,my,...,m;,ra) and (x,v,my,...,m;,rg) respectively where r4 and rp is the pri-
vate randomness of the players, m; represents the i-th message and w,v is the output from Pyy .
Output’y(z,y) and Outputy(z,y) denote the outputs (that are implicit in the views) of Alice and Bob
respectively on input (x,y). The protocol is secure in the semi-honest model with an error of at most
e, if there exist two randomized functions S and Sp, called the simulators®, such that for all x and

y:
6((Viewi(z,y), Outputi(z,y)), (Z, Sa(z, 7)), y)) < e,
6((z, (¥, SB(y, ), (Outputy (z,y), Viewg(z,y))) < ¢,

where T,y are distributed according to Pxy|x—yy—y-

2.2 Sufficient Statistics

Intuitively speaking, the sufficient statistics” of X with respect to Y, denoted X \, Y, is the part of
X that is correlated with Y.

Definition 2. Let X and Y be random variables, and let f(x) := Py|x—,. The sufficient statistics of
X with respect to Y is defined as X Y = f(X).

It is easy to show (see for example [30]) that for any Pxy, we have X <+ X Y < Y. This immediately
implies that any protocol with access to a primitive Pyy can be transformed into a protocol with
access to Py vy o (without compromising the security) because the players can compute Py from
P vy~\u privately. Thus, in the following we only consider primitives Pyy where U = U \V and
V=V \U.

2.3 Common Part

Roughly speaking, the common part X AY of X and Y is the maximal element of the set of all random
variables (i.e., the finest random variable) that can be generated both from X and from Y without
any error. For example, if X = (Xg, X;) € {0,1}% and Y = (Y, Y]) € {0,1}2, and we have Xy = Y
and Pr[X; # Y7] = ¢ > 0, then the common part of X and Y is equivalent to Xy. The common part
was first introduced in [31]; in a cryptographic context, it was used in [54].

Definition 3. Let X and Y be random wvariables with distribution Pxy. Let X := supp(Px) and
Y :=supp(Py). Then X AY, the common part of X and Y, is constructed in the following way:

— Consider the bipartite graph G with vertex set X UY, and where two vertices x € X and y € ) are
connected by an edge if Pxy(x,y) > 0 holds.

— Let fx : X — 2% be the function that maps a vertex v € X of G to the set of vertices in the
connected component of G containing v. Let fy : Y — 29 be the function that does the same
for a vertex w € Y of G.

— XAY = fx(X) = fy(Y).

5 We do not require the simulator to be efficient.

" In [30], sufficient statistics has been called the dependent part.



2.4 Lower Bounds for Secure Function Evaluation

Let a protocol be an e-secure implementation of a primitive Pxyxy in the semi-honest model. Let
Pxy be the input distribution and let Pgy be the corresponding output distribution of the ideal
primitive, i.e., Pgy := Pxy Pxy|xy, and let M be the whole communication during the execution of
the protocol. Then the security of the protocol implies the following lemma that we will use in our
proofs.

Lemma 1.
H(X | VM) >H(X | YY) —¢elog(|X]) — h(e).

Proof. The security of the protocol implies that there exists a randomized function Sp, such that
5(PXYYSB(Y,Y)v Pyyyvar) < e. Using Lemma Bl and (B.6), we get

H(X | VM) > H(X | Sp(Y,Y)) — elog(|X]) — h(e)

>
> H(X | YY) = elog(|X]) — h(e) -

O

We will now give lower bounds for e-secure implementations of functions f : X x Y — Z from a
primitive Py in the semi-honest model. A function f has no redundant inputs for Alice if

VeAz e XIyed: flz,y) # f(@y). (2.1)

Clearly, a function f can be computed from a primitive Pyy with an error € in the semi-honest model
if and only if the function f’ obtained by combining all redundant inputs for Alice can be computed
with the same error.

Let Alice’s and Bob’s inputs X and Y be independent and uniformly distributed and let M be the
whole communication in the protocol. Loosely speaking, Alice must enter (almost) all the information
about X into the protocol as follows: If Bob’s input is y, then he must be able to compute f(X,y). But,
as Alice must not learn y, she has to enter all information about f(X,y) into the protocol independent
of Bob’s input. Thus, Alice must input all information about f(X,y) into the protocol for all y. If f
satisfies (2.1), then {f(z,y) : y € Y} allows to compute z. Thus, Alice must enter all information
about X into the protocol.

Lemma 2. For any protocol that is an e-secure implementation of f in the semi-honest model,
H(X | UM,Y =y) < (3|Y] - 2)(clog |Z] + h(2))

Proof. There exists a randomized function S4 such that §(Pxaujy—y, Pxs,(x)) < € forall y € Y.
Using the triangle inequality it follows that for any y, vy’

S(Pxpmuly=y: Pxmujy=y) < 2. (2.2)

It holds that X <» UM < Y Z. Furthermore, we have Pr[Z # f(X,Y) | Y = y] < e. Thus, it follows
from (B.9) that

H(f(X,y) [UM,Y =y) <H(f(X,y) | Z,Y =y) <e-log|Z| + h(e) . (2.3)
Together with (2.2) and Lemma B1 this implies that for any y, v’

H(f(X,y) |UM.,Y =) < 3elog|Z| + h(e) + h(2¢)
< 3(elog |Z] + h(e)) ,



where the second inequality follows from (B.1). Since X can be calculated from the values
f(X7y1)7 s 7f(X7y|y\)7 we get

H(X |UM,Y =y) < H(f(X, yl) (X)) [ UMY =y)

<> H( N UMY =vy)
ey

Y
< B[YI = 2)(elog |Z] + h(e)) -
O

The following theorem that gives a lower bound on the conditional entropy of Py can then be obtained
from Lemma 2.

Theorem 1. Let f : X x Y — Z be a function that satisfies (2.1). Let a protocol having access to
Pyy be an e-secure implementation of f in the semi-honest model. Then

HU V) 2 maxH(X | f(X,y)) — BIV] - 2)(elog | 2] + h(e)) — elog|¥]| — h(e) -

Proof. Let y € Y. From Lemma 2 and (B.3) follows that
HX |UVM)Y =y) <H(X |UM,Y =y) < (3|Y| —2)(clog |Z| + h(e)) .
Using (B.3), (B.2) and Lemma B1 ;| we get
HX | VMY =y)=HU |VM,Y =y)+ H(X |UVM,Y =y) —H{U | XVM,Y =y)

HU | VMY =y) + 3|Y| = 2)(clog 2] + h(e))

<
<SHU | V) + BY] = 2)(elog |Z] + h(e)) -

and from Lemma 1, we get
H(X | f(X,y)) —elog|X| —h(e) <H(X [ VMY =y)
The statement follows by maximizing over all y. O

Note that for some functions the bound of Theorem 1 can be improved by maximizing over all
restrictions of the function f, i.e., over all functions f/(z,y) : X' x ) — Z’ where X’ C X, Y ' C Y
and Z' C Z with f'(x,y) = f(z,y) that still satisfy condition (2.1). Clearly, if f can be computed
from a primitive Pyy with an error € in the semi-honest model, then f’ can be computed with the
same error. Thus, any lower bound for f’ then implies a lower bound for f. The following corollaries
follow immediately from Theorem 1.

Corollary 4. Let a protocol having access to Pyy be an e-secure implementation of (g‘)—OT"C in the
semi-honest model. Then

H(U | V) > (n—t)k — (3[n/t] —2)(etk + h(e)) — enk — h(e) .

Proof. We can choose subsets C; C {0,...,n — 1}, 1 < i < [n/t], of size t such that Uz{iéﬂ C; =
{1,...,n}, and restrict Bob to choose his input among these sets. It is easy to check that condition
(2.1) is satisfied. The statement follows from Theorem 1. O



Corollary 5. Let a protocol having access to Pyy be an e-secure implementation of EQ,, in the semi-
honest model. Then

H(UIV) > max ((1—¢)k—3- 2%+ h(e)) —1.

Proof. We can restrict the input domains of both players to the same subsets of size 2¥. Condition
(2.1) will still be satisfied.® Thus, the corollary follows immediately from Theorem 1. O

There exists a secure reduction of EQ,, to EQj ([6]): Alice and Bob compare k inner products of
their inputs with random strings using EQj. This protocol is secure in the semi-honest model with
an error? of at most 27%. Since there exists a circuit to implement EQ; with & XOR gates and k
AND gates, it follows from [33] that EQ can be securely implemented using k instances to (‘f)—OT1
or 3k instances of @)—OT1 in the semi-honest model. Since m instances of (f)—OT1 are equivalent to a
primitive Pyy with H(U|V') = m, the bound of Corollary 5 is optimal up to a factor of 3. This implies
that the term |)| in the statement of the bound given in Theorem 1 cannot be reduced significantly,

i.e., it is not possible to replace || with log || for example.

Corollary 6. Let a protocol having access to a primitive Pyy be an e-secure implementation of the
inner product function IP, in the semi-honest model. Then H(U|V) > n — 1 — 4n(e + h(e)).

Proof. Let e; € {0,1}"™ be the string that has a one at the i-th position and is zero otherwise. Let
S :={e; : 1<i<mn}. Then the protocol is an e-secure implementation of the restriction IP$ of the
inner-product function to {0,1}" x S. Since IP$ satisfies condition (2.1), the statement follows from
Theorem 1.

If e + h(e) < 1/8, then it immediately follows from Corollary 6 that we need at least n/2 — 1 calls
to (%)—OT1 to compute IP,, with an error of at most . From the protocol presented in [6] we know that
there exists a perfectly secure protocol that computes IP,, from n instances of (%)—OTI. Therefore, the
bound is optimal up to a factor of 2 (see Appendix B.2).

For our next lower-bound, the function f: X x )Y — Z must satisfy the following property. There
exist y1 € ) such that

Vo # e X f(xvyl) # f(xlvyl) ) (24)

and y2 € )Y such that
Va,a' € X f(z,y2) = f(2',92) . (2.5)

Let Alice’s input X be uniformly distributed. Loosely speaking, the security of the protocol implies
that the communication gives (almost) no information about Alice’s input X if Bob’s input is y2. But
the communication must be (almost) independent of Bob’s input, otherwise Alice could learn Bob’s
input. Thus, Alice’s input X is uniform with respect to the whole communication even when Bob’s
input is y;. Let now Bob’s input be fixed to y; and let M be the whole communication. Then the
following lower bound can be proved using the given intuition.

Lemma 3.

H(F(X,31) | MJUAV,Y = 11) > log|X| — 6¢ log |X| — 6h(2).

8 Note, however, that it is not possible to restrict Bob’s input without also restricting the input of Alice as well to the
same set.
9 Note that our security definition is different from the one used in [6].



Proof. Let gy, gy be the functions that compute the common part of Py . As in the proof of Lemma 2
we get for all y # ¢’ € Y that

S(Pxmuly=y> Pxmujy=y) < 26,
which implies that
S(Px Mgy ()Y =y> Px Mgy )|y =y') < 26, (2.6)

and

S(Px Prrgy )y =y» Px Patgy)ly=y) < 2¢ - (27)

Because the protocol is secure, there exists a simulator Sp such that

S(Pxamviy=ys» PxSp(ys.f(Xy2)) <€

From (2.5) follows that d(Px vy —y.s PX Psy(ys,f(X,y2))) < € Therefore, using the triangle inequality
we get that

S(Px Mgy ()Y =yos PX Pragy )y =y2) < 6(Pxaviy=ys> Px Prrviy=y,) (2.8)

<4
< 5(PXMV\Y:y2= PXPSB(yz,f(X7y2)))

+ 0(Px Psp (ya, (X 92)) Px Praviy=y,)
< 2e. (2.9)

Using the triangle inequality again it follows from (2.6), (2.7) and (2.9) that
8(Px Mgy ()Y =y1> PX Prtgy )y =y1) < 8(Px Mgy )y =y1> PX Mgy ()Y =y2)
+ 5(PXM9U(U)\Y=y2’PXPMgu(U)|Y=y2)

+ 6(Px Prrgy )y =yar Px Pragy )y =y1)
< 6¢e .

Using Lemma B1 we get

H(f(Xayl)|M7U/\‘/7Y2y1):H(X|M7U/\V7Y2yl)
> log |X| — 6elog |X| — h(6e)
> log |X| — 6elog |X| — 6h(e) .

O

The following lower bound on the mutual information of Py can then be obtained from Lemma 3.

Theorem 2. Let f : X x Y — Z be a function that satisfies (2.4) and (2.5). Then for any protocol
that implements f from a primitive Pyy with an error of at most € in the semi-honest model

L(U;V) > log|X| — Telog |X| — Th(e) .

Proof. Let Alice’s input X be uniformly distributed and Bob’s input be fixed to y;. Let Z be Bob’s
output and M the whole communication. Then Lemma 3 implies that

H(f(X,y1) | M,UANV) >log|X|— 6elog |X| — 6h(e) . (2.10)

10



Since Pr[Z # f(X,y1)] < e and X <> VM < Z, it follows from (B.6) and (B.9) that
H(f(X,y1) | VM) < H(f(X, 1) | Z) < elog|X| + he) . (2.11)
(2.10) and (2.11) imply, using X <» UM <« ZY'V, (B.8) and (B.4), that

UV [ M, UAV) ZI(f(X,31);V | M,UAYV)
=H(f(X,y) [ M,UAV) = H(f(X,y1) | VM, UAV)
> log |X| — Telog |X| — Th(e) .
Let M' := (My,...,M;), i.e., the sequence of all messages sent until the ith round. Without loss

of generality, let us assume that Alice sends the message of the (i + 1)th round. Since, we have
M« MU « V, it follows from (B.7) that

IU;V | MTYLUAV)<I(U;V | MLUAV) .
Then it follows by induction over all rounds that
U, VI M,UANV)IU;V|UAV).
The statement follows. O

Since properties (2.4) and (2.5) can be satisfied by restricting Alice’s input in (’Z)—OTk , we obtain
the following corollary.

Corollary 7. Let a protocol having access to Pyy be an e-secure implementation of (?)—OT’“ in the
semi-honest model where t < |n/2|. Then

I(U; V) >tk — Tetk — Th(e) .

Proof. Consider the function that is obtained by setting the first n — ¢ inputs to a fixed value (and
choosing the remaining ¢ inputs from {0, 1}%). 0

We further generalize Theorem 2 to arbitrary functions f : X x Y — Z in Section B.3 in the
appendix. In the case of perfect implementations the bound H(U) = H(U|V) 4+ I(U;V) > log |X|
follows from Theorem 1 and the generalization of Theorem 2. From this bound we get that any perfectly
secure protocol needs at least log |X| instances of (%)—OT1 to implement a function f: X x Y — Z,
which implies Theorem 6 from [6].

2.5 Lower Bounds for Protocols implementing OT

(%)—OT1 can be implemented from one instance of (%)—OTl in the opposite direction [57]|. Therefore,
it follows immediately from Corollary 4 that for any e-secure reduction of (%)—OT1 to Pyy, we must
also have

H(V |U)>1-5(e+h(e)),

since any violation of this bound could be used to construct a violation of the bound from Corollary 4.
We will show that a generalization of this bound also holds for n > 2. Note that we can assume that
k = 1. The resulting bound then also implies a bound for k£ > 1 because one instance of (T)—OT1

can be implemented from one instance of (?)-OTk . Furthermore, we consider implementations of m
independent copies of (’f)—OTk .
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Lemma 4. Let a protocol having access to Pyy be an e-secure implementation of m independent
copies of (?)—OT1 in the semi-honest model. Then

H(V |U) > mlogn —m(4logn + 7)(e + h(e)).

Proof. Let Alice and Bob choose their inputs X = (X!,..., X™) = ((X¢},..., X}
€ {0,1}™ and C = (C',...,C™) € {0,...,n—1}™ uniformly at random. Let Y = (Y1 .., Y"™) be the
output of Bob at the end of the protocol. Let us for the moment look that the jth instance of (?)—OTl,

forj € {1,...,m}. Let 4; := X({@Xf foralli € {1,...,n—1}. From the security of the protocol follows
that there exist a randomized function Sg(c,z.) such that for all a = (ay,...,a,—1) € {0,1}*71,

S(Pycovmia=a Pxoosgo,x0)) S € -
Hence, using the triangle inequality, we get for all a,a’ that

O(Pyicivm|a=as Pyicivmia=a) < 6(Pycvmia=a Pycovm|a=a’) (2.12)
< 2. (2.13)

We have Pr[Y7 # Xé | A=a] <eforall a. If A= (0,...,0), we have Xé = XJ. Since X7 < VM
Y7, it follows from (B.3) and (B.9) that

H(Y?|VM,A=(0,...,0)

| /\

H(Y7 | X7, A=(0,...,0)) (2.14)
HY7 | X],A=(0,...,0)) <&+ h(e) .
]
),

| /\

Now, let us map C7 to a bit- Strlng of size [logn , and let Cb be the bth bit of that bit string, where
b e {0,...,[logn] — 1}. Let a® = (ab,...,a’_,), where a® = 1 if and only if the bth bit of i is 1.

Conditioned on A = a®, we have X7, = X{ @ Cj. Tt follows from X7 > VM « Y7C7, (B.3) and (B.9)
that

HY ®Cy | VM, A=ad") <HY  ®Cy | X],A=a") <e+h(e). (2.15)
From (2.12) and (2.14), we get
H(YJ | VMA) < e+ h(e) + 2 + h(2e) < 3¢ + 3h(e).
It follows from (2.12) and (2.15) that for all b
HY ®Cy | VMA) < 3¢ + 3h(e) .
Since (C7,Y7) can be calculated from (Y7, Y7 @ Cyp,..., Y7 @ Cliogn]—1), this implies that
H(C'YT | VMA) < 3([logn] +1)(e + h(e)) .

From A < VM <« C7Y7, (B.3) and [logn] < logn + 1 follows that

H(C? | VM) < 3(logn + 2)(e + h(e)).
and, therefore,

H(C| VM) < En:H(Cj | VM)

j=1
< 3m(logn + 2)(e + h(e)).

12
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Using (B.3), (B.2) and Lemmas B1 and 1, we get

m(logn —elogn) — h(e) < H(C | UM)
—H(V |UM)+H(C | UVM) —H(V | CUM)
<H(V |UM) + 3m(logn + 2)(e + h(e))
<H(V |U)+ 3m(logn + 2)(c + h(g)) .

Together with the bounds from Theorem 1 and 2 we get the following theorem.

Theorem 3. Let a protocol having access to Pyy be an e-secure implementation of m instances of
(?)—OT’“ in the semi-honest model. Then

H(U | V) > m(n — 1)k — 4n(emk + h(e)),
H(V |U) > mlogn —m(4logn + 7)(e + h(e)),
L(U; V) > mk — Temk — Th(e) .

Since m instances of (E‘)—OT’“ are equivalent to a primitive Pyy with H(U | V) = m(n — 1)k,
I(U;V) = mk and H(V | U) = mlogn, any protocol that implements M instances of (7)-OTK from
m instances of (?)—OTk with an error of at most € needs to fulfill

m(n—1)k > M(N —1)K — (4N — 2)(e MK + h(e)),
mk > MK — TeMEK — Th(e),
mlogn > Mlog N — M(4log N + 7)(e + h(e)) .

Hence, we get

N-1K K logN
7?7

m (
Mzmax<(n_1)k >_7NK'(E+h(E))7

logn

which is the statement of Corollary 1.

In Appendix B we also derive new bounds for protocols implementing (p)-RabinOT* (Theorems B1-
B2), and show that our bounds imply bounds for implementations of oblivious linear function evalu-
ation (OLFE, Corollary B1). In Appendix A we show that our bounds on OT and RabinOT in the
semi-honest model imply similar bounds in the malicious model.

3 Quantum Reductions

3.1 Reversing String OT Efficiently

As the bounds of the last section generalize the known bounds for perfect implementations of OT from
[4, 26, 56, 55] to the statistical case, it is natural to ask whether similar bounds also hold for quantum
protocols, i.e., if the bounds presented in [48] can be generalized to the statistical case. We give a
negative answer to this question by presenting a statistically secure quantum protocol that violates
these bounds. Thereto we introduce the following functionality fpﬁ;&B’k that can be implemented from

(?)—OTk as we will show.
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Definition 4 (Multi-Commitment). The functionality fﬁ‘;‘CZ,}B’k behaves as follows: Upon (the first)
input (commit, b) with b € {0,1}* from Alice, send committed to Bob. Upon input (open,T) with
T C [k] from Alice send (open, br) to Bob. All communication/input/output is classical. We call Alice
the sender and Bob the recipient.

@)-OTk can be implemented from m = O(k+x) bit commitments with an error of 27(*) 8,61, 22].
In the protocol, Alice sends m BB84-states to Bob who measures them either in the computational or in
the diagonal basis. To ensure that he really measures Bob has to commit to the basis he has measured
in and the measurement outcome for every qubit received. Alice then asks Bob to open a small subset
T of size am of these pairs of commitments. OT can then be implemented using further classical
processing. (See [22] for a complete description of the protocol.) This protocol implements oblivious
transfer that is statistically secure in the quantum universal composability model [51]. Obviously the

. . . . . A— Bk .
construction remains secure if we replace the commitment scheme with Fyeqy " - The following lemma

that we prove in Appendix C shows that fpﬁz&B’k can be implemented from the oblivious transfer

functionality féé}r_)B’k (see [51] for a definition of féé}r_)B’k). Note that we assume as in the proofs of
[51] that all communication between the players is over secure channels and we only consider static

adversaries.

Inputs: Alice has an input b = (by,...,b;) € {0,1}* in Commit. Bob has an input 7" C [k] in Open.
Commit (b):
For all 1 <i < «k:

1. Alice and Bob invoke ]-'aé}r_)B’k with random inputs z}, 2} € {0,1}* and ¢ € {0,1}*.
. i i A— B,k
2. Bob receives y* = x; from Fyp .

3. Alice sends m* := x} @ 2% @ b to Bob.
Open(T):

1. Alice sends b|p, T and |7, z}|r for all 1 <4 <k to Bob.
2. If m*|p = zf|r ® i|r @ b'|r and y'|r = x%|p for all 1 < i < k, Bob accepts and outputs br,
otherwise he rejects.

Lemma 5. There exists a protocol that is statistically secure and universally composable that realizes

A—Bk - : , A~ Bk
Fiean " with an error of 27%/% using r instances of Fop ="

Since any protocol that is also statistically secure in the classical universal composability model [14] is
also secure in the quantum universal composability model [51], we get, together with the proofs from
[22, 51], the following theorem.

Theorem 4. There exists a protocol that implements (f) -OT¥ with an error ¢ from k = O(log1/e)
instances of (f) -OT* in the opposite direction where k' = (k) if k = 2(k).

Since we can choose k > &, this immediately implies that the bound of Corollary 4 does not hold for
quantum protocols. Similar violations can be shown for the other two lower bounds given in Theorem 7.
For example, statistically secure and universally composable!® commitments can be implemented from
shared randomness Py that is distributed according to (p)-RabinOT at a rate of H({U | V) =1—p
[53]. Using Theorem 8, one can implement f(ﬁﬁA’k with & € £2(n(1 — p)) from n copies of Pyy . Since
I(U; V) = p, quantum protocols can also violate the bound of Corollary 7.

10 Stand-alone statistically secure commitments based on stateless two-party primitives are universally composable [27].
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It has been an open question whether noiseless quantum communication can increase the commit-
ment capacity [53]. Our example implies a positive answer to this question.

3.2 Lower Bounds

The protocols presented in the previous section prove that the known impossibility results for perfectly
secure oblivious transfer reductions from [48] do not hold for statistically secure quantum protocols.
Thus, it is natural to ask whether quantum protocols can even extend oblivious transfer or, more
generally, how efficient statistically secure quantum protocols can be. In this section we prove an
impossibility result that holds for statistically secure quantum protocols and that implies in particular
that also quantum protocols cannot extend OT. Since, in contrast to the classical case, security against
semi-honest adversaries can be trivially achieved in the quantum setting, we consider in the following
protocols that are secure against malicious adversaries in the stand-alone model.

3.3 Preliminaries

We use the notation ,oAB for a state over the Hilbert space Ha4 ® Hp, and pA = trB(,oAB). Let dg
be the dimension of H 4 (We assume that all Hilbert spaces are finite-dimensional.). Furthermore, we
denote by 74 = % the fully mixed state on H 4. We call a state pX4 a c¢-state, if it has the form

pXA = Z P - ‘x><x‘X ®p;c4 :
z€{0,1}

The statistical distance between two states p and ¢ is defined as

5(p, 9) = max| Pr(D(p) = 1] ~ Pr[D() = 1]| .

where we maximize over all measurements D(-) that take a quantum state as input and output one
bit.
We need the von Neumann entropy, defined as

H(A | B), = H(p"®) ~ H(p").

where H(p) := tr(—plog(p)), and the following facts about the von Neumann entropy. First, from the
Alicki-Fannes inequality [2] follows that for any state pAB, §(pA8, 74 @ pP) < e implies

H(A|B),>(1—4¢)-logds — 2h(e) . (3.1)
If there exists a measurement on B with outcome X’ such that Pr[X’ # X] < ¢, then
HX|B),<HX|X')<h(e)+e-k (3.2)

for any cq-state pXZ. Finally, we use the fact that joint entropy of two systems satisfies subadditivity
and the triangle inequality

, (3.3)
|H(A) — H(B)|. (3.4)



This implies

H(A|B)— H(A| BC) = H(AB) — H(B) — H(ABC) + H(BC)
< H(AB) + H(C) — H(ABC)
< H(AB) + H(C) — |H(AB) — H(C)]
< 2min{H(AB), H(C)}
< 2H(C) (3.5)

for any state pABC.

3.4 Oblivious Transfer

A protocol is an e-secure implementation of OT if for any adversary A attacking the protocol (real
setting), there exists a simulator S using the ideal OT (ideal setting) such that for all inputs of the
honest players the real and the ideal setting can be distinguished with an advantage of at most €. This
definition implies the following three conditions (see also [29)]).

— Correctness: If both players are honest, then in the ideal setting, the receiver always gets y = z..
This implies that in an e-secure protocol, Bob must output a value Y where

PrlY £z <e. (3.6)

— Security for Alice: Let now Alice be honest and Bob malicious, and let Alice’s input be chosen
uniformly at random. In the ideal setting, the simulator must provide OT with a classical input
C’ € {0,1}. He gets back the output Y and then outputs a quantum state that may depend on C’
and Y. The output of the simulator together with classical values Xy, X; and C’ now define the
state gX0X1B¢",

Since X_¢v is random and independent of C’ and Y, we must have
O-lec’XC’BC/ _ TX1*C/ ®O_XC/BC’ and 5(0‘XOX1B,pXOX1B) <e (37)
where pX0X1B ig the resulting state of the protocol.'!

— Security for Bob: If Bob is honest and Alice malicious, the simulator outputs a quantum state o
that is independent of Bob’s input c. Let pf be the state that Alice has at the end of the protocol
if Bob’s input is c. The security definition now requires that §(c4, pA) < ¢ for ¢ € {0,1}. By the
triangle inequality, we get

A

5(pg, pi') < 2¢ . (3.8)

Note that the Conditions (3.6), (3.7) and (3.8) are only necessary for the security of a protocol,
they do not imply that a protocol is secure.

In the following we will give two lower bounds for quantum protocols that implement (f)—OTk
using a trusted resource such as trusted randomness distributed to the players or a bit commitment
functionality. Our proofs use similar techniques as the impossibility results in [43,41,40]. First, the
protocol is replaced by a purified version of the protocol that is equivalent in a certain sense. In partic-
ular the purified version has the same security properties as the original protocol and the impossibility

1 The standard security definition of OT considered here requires Bob’s choice bit to be fixed at the end of the protocol.
To show that a protocol is insecure, it suffices therefore to show that Bob can still choose after the termination of the
protocol if he wants to receive zo or 1. Lo in [40] shows impossibility of OT in a stronger sense, namely that Bob
can learn all of Alice’s inputs.
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of the former implies the impossibility of the latter. In this protocol the players defer all of their
measurements to the very end of the protocol. See [43, 41, 40] for details.

We use the following technical lemma that we prove in Appendix C which is also used in [43, 41,
40].

Lemma 6. For c € {0,1} let the states ]p>fBE be given. If 5(pg, pi) < e, then there exist a unitary
UBE such that
(19", (1% @ UPF)|p)1PF) < Ve . (3.9)

We first consider protocols where the players have access to a primitive that generates a pure state
\¢>AB E , distributes registers A and B to Alice and Bob respectively and keeps the purification in
its register FE. Let Alice choose her inputs Xy and X; uniformly at random and let Bob’s input be
c. When Alice and Bob execute the purified protocol honestly the final state just before the honest
players perform their measurements is a pure state | p>CAB E , where A and B are the registers of Alice
and Bob and E is the register of the trusted resource.

Theorem 5. To implement one instance of (%)—OT’“ over strings of size k with an error of at most €
from a primitive ]1/1>AB E with a quantum protocol we need

2H(E)y > (1 — 2le — 2/&) - k — 11h(e) — 2h(/E) .

Proof. Let the final state of the protocol be | p)fBE, when both players are honest and Bob has input

¢ € {0,1}. If Bob is executing the protocol honestly using input ¢ = 1, he must be able to calculate
X7 with an error of at most 1 — &. Since the protocol is e-secure for Alice, it follows from Lemma 11
in Appendix F that
8(pX08, X0 @ o) < 5e |
Eq. (3.1) implies that
H(Xo | B)y, > (1 —20¢e) -k —2h(5e) > (1 —20¢) - k — 10h(e) .

Since the protocol is e-secure for Bob, we have § (pf)“, p‘f) < 2e. From Lemma 6 follows that there exists
a unitary UPF such that Bob could transform the state p; into the state pb with (po, pi) < 24/¢, if
he had access to E. Since in pé(OB , Xo can be guessed from pf with probability 1 — ¢, it follows from

Lemma 10 in Appendix F that X can be guessed from pP¥ with a probability of at least 1 — & — 2,/z.
Using Eq. (3.2), we get

H(Xy | BE),, <h(e+2Ve)+ (e+2Ve) k
< h(e) + h(2Ve) + (e +2ve) - k.
Hence, using (3.5) the statement follows
2H(E)y = 2H(E),, > H(Xo | B)p, — H(Xo | BE),,
> (1—20e) -k — 10h(e) — h(e) — h(2/e) — (e + 2Ve) - k
= (1—21e — 2V/2) - k — 11h(e) — 2h( /%) .

A classical primitive Pyy can be modeled by the quantum primitive

[)APE =3V Pov(u,0) - Ju,0)'F @ [u, 0)F

that distributes the values u and v and keeps the purification in its register F. Therefore, we get the
following corollary from Theorem 5.
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Corollary 8. To implement one instance of (f) -OT* with an error of at most € from Py with a
quantum protocol, we need

QH(UV) > (1 — 21e — 2VE) - k — 11h(e) — 2h(\/Z) .

Since m instances of @)-OTk can be implemented from shared randomness with H(UV) = 2k + 1
we get the following corollary.

Corollary 9. To implement one instance of (?) -OT* with an error of at most € from n instances of
(%)—OT"C/ i either direction with a quantum protocol, we need

2n(2k" +1) > (1 — 21e — 2y/e) - k — 11h(e) — 2h(\/e) .

Next, we present a bound for implementations of (%)—OT’“ from commitments. We can model black-
box commitments by a trusted functionality that receives bits over a classical channel and stores them
in a register . When the committer sends the open command, the functionality sends the bits to
the receiver. We can replace the two classical channels with a quantum channel where the players
measure the qubits when sending and after receiving them. These measurements can then be purified
by the players. The following bound can then be obtained by adapting the proof of Theorem 5 to this
scenario.

Theorem 6. To implement a (f)—OTk with an error of at most € we need to commit to at least

(1 —21e — 2y/e)k/2 — 6h(e) — h(\/e) bits in total.

Proof. Let the final state of the protocol be | p)fBE, when both players are honest and Bob has input

c € {0,1}. As in the proof of Theorem 5 we get that
H(Xo | B),, > (1—20¢) - k — 2h(5¢) > (1 — 20e) - k — 10h(c) .
and
H(Xo | BE),, < h(e) + h(2Ve) + (e +2Ve) - k.
Let E contain at most n qubits. Then it follows from Eq. (3.5) that
H(Xo | SBE),, > H(X, | SB),, —2n.
Hence, the statement follows from

2n > H(Xo | B)y, — H(Xo | BE),
> (1 —20¢) - k — 10h(g) — h(e) — h(2Ve) — (e + 2V/e) - k
= (1 —21e — 2y/e) - k — 11h(e) — 2h(\/e) .

O

From Corollary 9 and Theorem 6 follows that OTs and commitments cannot be extended by
quantum protocols.

Corollary 10. Any quantum protocol that implement m + 1 instances of (f)—OT1 from m instances

5.10—6
m

of @)—OTl must have an error of at least for any m > 0.
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Corollary 11. Any quantum protocol that implements m+1 bit commitments out of m commitments
—10
must have an error of at least 107 for any m > 0.

Next, we give an additional lower bound for reductions of OT to commitments that shows that the
number of commitments (of arbitrary size) used in any e-secure protocol must be at least 2(log(1/¢)).
We model the commitments as before, but store the commitments of Alice and Bob separately in F4
and Ep. The proof idea is the following: We let the adversary guess a subset 7 of commitments that
he will be required to open during the protocol. He honestly executes all commitments in 7, but cheats
in all others. If the adversary guesses T right, he is able to cheat in the same way as in any protocol
that does not use any commitments.

Theorem 7. Any quantum protocol that implements (%)—OT"C using K commitments (of arbitrary
length) must have an error of at least 27" /36.

Proof. We assume that both Alice and Bob commit at most & times. We will show that there exists a
malicious Alice and a malicious Bob such that either Alice can break Bob’s security condition or vice
versa.

Let | p>?B EaPB 1,6 the final state of the protocol when both players are honest and Bob has input
c € {0,1}. We distinguish two cases. In the first case we assume that an honest Alice could guess ¢
with an advantage of at least ¢’ := 1/18, if she had access to AEy, i.e.,

e (3.10)

We let Bob be honest and let Alice apply the following strategy: She chooses a random subset T of
[k]. She executes all commitments in 7 honestly, but for all commitments not in 7 she sends |0) to
E 4 and keeps her state in her quantum register. Otherwise, she follows the whole protocol honestly.

During the protocol, Bob may ask Alice to open certain commitments. Let 7’ be the set of com-
mitments that Alice has to open. If 7/ = 7, which happens with probability 27 independent of
everything else, then at the end of the protocol the global state is |p)., with the difference that the
values normally in F4 are now part of A. Therefore, Alice has an advantage of more than ¢ to dis-
tinguish ¢ = 0 from ¢ = 1 in this case, and her total advantage is more than & - 27% > 2¢, which
contradicts condition (3.8).

In the second case, we assume that ¢ (pf)4 EA,p‘f‘ Eay < ¢, From condition (3.6) follows that honest
Bob can guess X7 with probability 1 — ¢ if ¢ = 1. We can apply Lemma 11, which tells us that X;
should be 5e-close to uniform with respect to pf . To get a contradiction to the security condition (3.7),
we can use equation (F.1) (which is implied by Lemma 10 in Appendix F): it suffices to show that
Bob can guess the first bit of Xy with a probability of at least % + be.

Let Alice be honest and Bob do the same attack as Alice in the first case, choosing ¢ = 1. Again,
if Bob guesses the set T right, which happens with probability 27, all qubits normally in Ep are in
B. Then Lemma 6 tells us that there exist a unitary UP“B such Bob can transform the state p; into
a state p} where §(po, pj) < V/2¢'. Bob can guess X with an error of at most € in py. Therefore, he
can guess Xp in p) with an error of at most v/2¢’ + €.

If he fails to guess 7T, he simply outputs a random bit as guess for the first bit of Xy. Since the
probability that he guesses 7 correctly is exactly 277, he can guess the first bit of Xy with probability

1 1
+27"%. (——5—\/2&?’)

(1—2—“)-%+2—“-(1—s—x/2_5')

2 2
1 1
v (12 v)
1 5 1
ATy
2 36 2
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3.5 Reduction of OT to String-Commitments

The protocol we described in Section 3.1 uses m = O(k + k) commitments to 2 bits to implement
(%)—OT’“ with an error of 27 If k = w(k) this it is not optimal with respect to Theorem 7. We
will now show how to construct a protocol that is optimal with respect to the lower bounds of both
Theorem 6 and Theorem 7. We modify the protocol by grouping the m pairs into s blocks of size
b := m/k. We let Bob commit to the blocks of b pairs of values at once. The subset 7 is now of
size ak, and defines the blocks to be opened by Bob. If Bob is able to open all commitments in 7
correctly, then with high probability, he must have correctly measured almost all qubits. We only
need to estimate the error probability of the sampling strategy that corresponds to the new checking
procedure which Alice applies and apply the proof of [22] to get the following theorem.

Theorem 8. There exists a quantum protocol that implements (%)—OT"C with an error of at most
out of Kk = O0(log1/e) commitments of size b, where kKb = O(k +log1/e).

Using Theorem 8, it can be shown that string-commitments cannot be extended. The proof of the
following corollary can be found in Appendix D.5.

Corollary 12. Let m > 0. If there exists a (quantum) protocol that implements string commitments
of length m' + 1 out of string commitments of length m’ for all m' > m with an error of at most ¢,
then there exists a constant ¢ > 0 such that € > %

4 Conclusions

The main contribution of this work are impossibility proofs for statistical oblivious transfer reductions.
In the classical case we have generalized several known lower bounds for perfect reductions to statistical
security. In the quantum case we have shown that the known bound for perfect reductions does not
apply to statistical reductions, and have presented a new bound that does hold in the statistical
quantum setting. Our bounds imply several important impossibility results, for example, that OT
cannot be extended, neither in the classical nor in the quantum setting.

There are many interesting open questions. For example, it is not known whether more than two
instances of (f)-OTl can be implemented (in the classical or the quantum setting) from two instances

of (f)-OTZ, one in each direction.
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A Malicious OT implies Semi-honest OT

In the malicious model the adversary is not required to follow the protocol. Therefore, a protocol that
is secure in the malicious model protects against a much bigger set of adversaries. On the other hand,
the security definition in the malicious model only implies that for any (also semi-honest) adversary

22



there exists a malicious simulator for the ideal primitive, i.e., the simulator is allowed to change his
input or output from the ideal primitive. Since this is not allowed in the semi-honest model, security in
the malicious model does not imply security in the semi-honest model in general. For implementations
of OT'2, however, it has been shown in [46] that this implication does hold, because if the adversary
is semi-honest, a simulator can only change the input with small probability. Otherwise, he is not able
to correctly simulate the input or the output of the protocol. Therefore, any impossibility result for
OT in the semi-honest model also implies impossibility in the malicious model.

We will state these results for (T)—OTk and (p)-RabinOT* with explicit bounds on the errors.

Lemma A1l If a protocol implementing (?)—OT’“ is secure in the malicious model with an error of at
most €, then it is also secure in the semi-honest model with an error of at most (2n + 1)e.

Proof. From the security of the protocol we know that there exists a (malicious) simulator that simu-
lates the view of honest Alice. If two honest players execute the protocol on input (xq, ..., z,—1) and ¢,
then with probability 1 — e the receiver gets y = x.. Thus, the simulator can change the input z; with
probability at most 2¢ for all 0 <7 < n — 1. We construct a new simulator that executes the malicious
simulator but never changes the input. This simulation is (2n + 1)e-close to the distribution of the
protocol. From the security of the protocol we also know that there exists a (malicious) simulator
that simulates the view of honest Bob. If two honest players execute the protocol with uniform input
(Xo,...,X,—1) and choice bit ¢, then with probability 1 — & the receiver gets y = z.. If the simulator
changes the choice bit ¢, he does not learn . and the simulated ¥ is not equal to x. with probability at
least 1/2. Therefore, the simulator can change ¢ or the output with probability at most 4. As above
we can construct a simulator for the semi-honest model with an error of at most 5e. O

Lemma A2 If a protocol implementing (p)-RabinOTk is secure in the malicious model with an error of
at most €, then it is also secure in the semi-honest model with an error of at most max(%ﬁ—%, 2e/p).

Proof. From the security of the protocol we know that there exists a (malicious) simulator that sim-
ulates the view of honest Alice. If two honest players execute the protocol on input x, then with
probability at most € the receiver gets an output 2’ ¢ {x, A}. Thus, the simulator can change the
input = with probability at most 2¢/p. From the security of the protocol we also know that there exists
a (malicious) simulator that simulates the view of honest Bob. Let the input be chosen uniformly. If
the simulator changes the output from A to g/, then with probability at most 1/2* it holds that ¢/ = .

Thus, the simulator may change the output with probability at most 2 /(1 —p) from A. Therefore

P
the simulator may change an output x # A with probability at most 22:—?15 /(1 = p) + 2e. Otherwise
the probability that 2’ ¢ {x, A} is greater than 2¢. As in lemma A1 we can now construct semi-honest
simulators with an error of at most max(%e /(1 —p)+ 2¢,2¢/p). O

Note that some of our proofs could easily be adapted to the malicious model to get slightly better
bounds than the ones that follow from the combination of the bounds in the semi-honest model and
Lemmas Al and A2.

12° And any other so-called deviation revealing functionality.
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B Lower Bounds for Classical Two-Party Computation

B.1 Information Theory

We will use the following tools from information theory!?® in our proofs. The conditional Shannon

entropy of X given Y is defined as'4

H(X |Y):= _ZPXY($7y) 10gPX|Y($7y) )

x?y

and the mutual information of X and Y given Z as
I(X;Y|Z)=HX|Z)-HX |YZ).

We use the notation
h(p) = —plogp — (1 — p)log(1 — p)

for the binary entropy function, i.e., h(p) is the Shannon entropy of a binary random variable that
takes on one value with probability p and the other with 1 —p. Note that the function h(p) is concave,

which implies that for any 0 < p <1 and 0 < ¢ < 1, we have
h(c-p)=c-h(p).
We will need the chain-rule
HXY | Z2)=HX | 2)+HY | X2),
and the following monotonicity inequalities

H(XY | Z)
(WX;Y | Z)

H(X|2Z2)>H(X|YZ),

>
>I(X;Y | Z) .

We will also need

H(X |YZ)=) Psz) - HX|Y,Z=2).

z

X <Y < Z implies that
HX|Z)>H(X|YZ)=H(X|Y).
It is easy to show that if W <> XZ < Y, then

I(X;Y | ZW)
I(W,Y | 2)

I(X;Y | Z) and

<
<I(X;Y | 2).

We will need the following lemma.

(B.1)

(B.2)

Lemma B1 Let (X,Y), and (X,Y) be random variables distributed according to Pxy and Py, and

let 6(PXY’PX?) <e. Then
H(X[Y) > H(X[Y) — elog(|X|) — h(e).

13 See [16] for a good introduction into information theory.
14 All logarithms are binary, and we use the convention that 0 -log 0 = 0.
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Proof. There exist random variables A, B such that Pxy|a—g = PX?\B:O and Pr[A = 0] = Pr[B =
0] = 1 —e. Thus, using the monotonicity of the entropy and the fact that H(X) < log(|X|) we get that

H(X|Y)>(1-e)HX|YA=0)+cHX|[YA=1)
> (1-eHXYB =0)
=H(X|YB)-eH(X|YB=1)
=H(XB|Y)-H(B|Y)—-eH(X|YB=1)
> H(X]Y) —h(e) — elog(|X]).
0
Lemma (B1) implies Fano’s inequality: For all X, X € X with Pr[X # X | <&, we have
H(X | X)<e-log|X|+ h(e) . (B.9)

B.2 Inner Product from OT

Proposition 1. There is a protocol that computes the function IP, in the semi-honest model perfectly
secure with n calls to @) -OT".

Proof. Consider the following protocol from [6] that is adapted to ( )- OT!: Alice chooses r = (r1,...,7n_1)
uniformly at random and sets r, := @]_;". Then, for each i Alice inputs a;o := r; and a;1 := z; ® r;
to the OT and Bob inputs y;. Bob receives z; from the OTs and outputs @ z;. Since @,z =
B (Y B ri) = (Bl qxiys) B (BFy1i) = B xiy; = IP,(z,y), the protocol is correct. The security
for Alice follows from the fact that z1, ..., z, is a uniformly random string subject to &' ;z; = IP,(z,y).

B.3 Generalization of Theorem 2

Let f : X x)Y — Z be a function. Then we represent f by a |X| x |YV|- matrix M; with
My (z,y) = f(z,y). In order to generalize Theorem 2 we define the following relation on the rows
of a matrix M.

Definition 5 ([39]). The relation ~ on the rows of a matriz My is defined as follows: z, 2’ € X
satisfy x ~ ' if there exists y € Y such that My(z,y) = Ms(2',y). The equivalence relation =, on
the rows of My is defined as the transitive closure of ~, i.e., x, 2’ € X satisfy x =, x' if there exist
T1,...,2T¢ such that x ~ x1 ~ -+ ~ xp ~ 2'. Furthermore, we say that v,2' € X are c-equivalent with
respect to =, with c € N, if there exist x1,...,xp such that x ~x1 ~ -~z ~ 2" and ¢ < c.

Lemma 7. Let f: X x Y — Z be a function such that all rows of My are c-equivalent with respect to
=,. Let X and Y be chosen uniformly at random. Then for all z,2' € X and ally € Y

O(Prr|x=a,y—=y> Prjx=ar,y—=y) < 2(1 +2(c+1))e = (6 + 4c)e.
Proof. As in the proof of Lemma 2 we get for all y # 3/ € ) that
(P x =2,y =y> PM|x=2,y=y) < 2¢,
From the security of the protocol there exists a simulator Sp such that for all x,y
0(Pat|x=a.v=y> Psp(v.f(e)) < &

25



Thus, for all z, 2,y with f(z,y) = f(2/,y), we have

S(Pr X =2y =y PM|X=2' Y=y) < 2.
Since all all rows of My are c-equivalent with respect to =,, we get
O(Prr|x=a,v=y> PM|X=a/,y=y) < 2(1+2(c+1))e = (6 + 4c)e.
|

Let f: X x Y — Z be a function such that there exists g € Y with [{f(z,9) : =z € X} > ¢t
and all rows of My are c-equivalent with respect to =,. There exists X’ C X with |X’| = ¢ and
f(z,9) # f(2,g) for all x # 2’ € X'. Let Alice’s input X be uniformly distributed over X’. Let Bob’s
input be fixed to . Let M be the whole communication. Then the following lemma holds for any
e-secure implementation of f.

Lemma 8.
H(f(X,9) | M) >log(t) — (6 + 4c)elog(t) — (6 + 4c)h(e).

Proof. From Lemma 7, we have
O(Prr|x=as Prrix=a) < 2(1+2(c+1))e = (6 +4c)e.
This implies that
5(PXM7 PXpM) < (6 + 40)6.
Using Lemma B1 we get

H(f(X,y) | M) = H(X | M)
> log(t) — (6 4 4c)elog(t) — (6 + 4c)h(e).

The following theorem follows from Lemma 8 using the proof of Theorem 2.

Theorem 9. Let f: X x Y — Z be a function such that all rows of My are c-equivalent with respect
to =, and such that there exists y € YV with |{f(z,y) : = € X}| > t. Then for any protocol that
implements f with an error of at most € in the semi-honest model from a primitive Py

L(U;V) >log(t) — (7 + 4c)elog(t) — (7 + 4c)h(e).

B.4 Lower Bounds for Protocols implementing RabinOT

Let a protocol P having access to Pyy be an e-secure implementation of (p)—RabinOTk in the semi-
honest model. In the following we assume 0 < ¢ < min(p,1 — p). Let X € {0,1}* be the uniformly
distributed input of Alice and Y € {0,1}* U A the output of Bob. Let M be the whole communication
during the execution of the protocol. Let Py x be the conditional distribution of an ideal RabinOT
and Py y := Px Py|x. Then the following two lemmas hold for any protocol.

Lemma B2
3(ek + h(e))

H(X M) < .
(X [UM) min(p,1 —p) — &
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Proof. From the security of the protocol follows that there exists a simulator S4(z) such that 6( Py g A(X)Y Pxvumy) <
e.Let D=1if Y # A and 0 otherwise, and D = 1 if Y # A and 0 otherwise. We have Pxs,x)p =
Pxs,x)Pp- From Lemma F2 follows that

2¢e
min(pv 1 _p) — £ .

§(Px puip=0: Pxmuip=1) < (B.10)

Since §(Pxy, Pyy) < €, we have
€ €
<

Pr[Y;&X|D:1]§Pr[D:1] <

We have X <> UM < Y. Thus, it follows from (B.6) and (B.9) that

H(X |UM,Y # A) <H(X |Y,Y # A)

< ek —|—h< € )ésk—l—h(e)‘ (B.11)
p—¢ p—¢ p—¢

Together (B.10) and (B.11) imply that

ek + h(e) n 2(ek + h(e))
p—e¢ min(p,1 —p) — ¢
3(ek + h(e))
~ min(p,1—p)—¢’ (B12)

H(X |UM,Y = A) <

and (B.5), (B.11) and (B.12) imply that

3(ek + h(e))

H(X | UMD) < .
(X1UMD) min(p,1 —p) —¢

Using X <» UM < Y D and (B.6) we get that H(X | UM) = H(X | UM D). The statement follows.
g

Lemma B3
H(X | VM) < (1—p)k+cek+h(e) .

Proof. There exists a simulator Sp(¥) such that §(Pxy g, v), Pxyvm) < e Since X < VM < Y, it
follows from (B.6) and Lemma B1 that

H(X | VM) <H(X |Y)
<H(X |Y)+¢ek+ h(e)
=(1-p)-k+ek+h(e).

O

Theorem B1 Let a protocol having access to Pyy be an e-secure implementation of (p)—RabinOTk mn
the semi-honest model. Then

4(ek + h(e))

H(U\V)z(1—p)k—min(p71_p)_€.
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Proof. From Lemma B2 and (B.3)

3(ek + h(e))

HX |UVM)<HX |UM) < .
(X | UVM) < B(X [UM) < 2 i S

Using Lemmas B1 and 1, (B.3) and (B.2) we get

m(1 —p)k —ek —h(e) = H(X | Y) — ek — h(e)

(

H(X | VM)
(
(

IN

H(U | VM) + H(X | UVM) — H(U | XV M)
3(ek + h(e))

min(p,1 —p) — ¢

3(ek + h(e))

min(p,1 —p) —¢

<H(U | VM) +

<H{U|V)+

The statement follows now from 1/(min(p,1 —p) —¢) > 1. 0

Lemma B4
5(ek + h(e))

~ min(p,1—p) — 2

H(X | M) >k

Proof. Let D be defined as before. Since the protocol is secure, there exists a simulator Sp(y) such
that 6(Pxymv, Pxyargv,) < € where (Mp,Vg) := Sp(Y). There also exists a simulator S (z) such
that 6(Pyy v, Pxymu) < &, where (M, Ua) := Sa(X). Let D =1if Y # A and 0 otherwise. We
have Py ;. p = Pxm,Pp. We have

6(Pxy aa» Pxymg) < 2€
since 0(Pxy s, Pxyam) < € and 6(Pyy py,, Pxym) < €. Together with Lemma F2 it follows that

4e
min(p, 1 —p) — 2e

O(Px My D=0s Pxpmp|p=1) <

Since H(X | Mp,Y = A) = k, together with Lemma B1 this implies

4(ek + h(e))

_ - ‘
HX | Mp, Y #4) 2k min(p,1 —p) — 2¢

From (B.5) follows

4(ek + h(e))
min(p,1 —p) — 2e

H(X | MgD) >k —

Therefore, using Lemma B1 again,

H(X | M) > H(X | MD)

4
>k — ek — h(e) - ——CEHRE)
min(p, 1 —p) — 2¢
The statement follows now from 1/(min(p,1 —p) — 2¢) > 1. 0
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Theorem B2 Let a protocol having access to Pyy be an e-secure implementation of (p)—RabinOTk m
the semi-honest model. Then

6(ck + h(e))
min(p,1 —p) — 2

L(U; V) = pk —
Proof. Let Alice input X be uniformly distributed. Let Y be Bob’s outputs and M be the whole

communication. Then Lemma B4 implies that

5k +n(e)
min(p,1 —p) — 2’

H(X | M) >k

and from Lemma B3 we have
H(X | VM) <(1—pk+ek+h(e).
Together this implies
[(U;V | M) >1(X;V | M)
=H(X | M)-H(X | VM)

__ 5(ek +h(e))
min(p, 1 —p) —2e

> pk — ek — h(e)

Let M' := (My,...,M;), i.e., the sequence of all messages sent until the ith round. Without loss
of generality, let us assume that Alice sends the message of the (i + 1)th round. Since, we have
M« MU « V, it follows from (B.7) that

LUV | M™Y) < I(U;V | M)
Then it follows by induction over all rounds that
U,V | M) <IU;V).
The statement follows now from 1/(min(p,1 —p) —2¢) > 1. 0

Note that as in the case of (?)—OTk , the statement of these theorems can be generalized to m
independent instances. We leave this to the full version [severin: ?] of this work.

B.5 Lower Bounds for Protocols implementing OLFE

We will now show that Theorem 3 also implies bounds for oblivious linear function evaluation ((¢)-OLFE),
which is defined as follows:

— For any finite field GF(q) of size ¢, (¢)-OLFE is the primitive where Alice has an input a,b € GF(q)
and Bob has an input ¢ € GF(q). Bob receives d =a+b-c € GF(q).

Our lower bound is a simple consequence of the fact that (¢)-OLFE can be used to implement
2 log(q)
(1)-0Teela),

Corollary B1 Let a protocol having access to Pyy be an e-secure implementation of m instances of
(q)-OLFE in the semi-honest model. Then

H(U | V) > mlogq— 5(emlogq + h(e)) , (B.13)
H(V | U) > mlogq— 5(emlogq+ h(e)) , (B.14)
L(U;V) > mlogq— T(emlogq+ h(e)) . (B.15)
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Proof. First of all, note that (f)-OTk can easily be generalized to the case where zg, 21 € {0,...,¢™ —
1}, for any ¢, m > 0. Theorem 1 and Theorem 2 easily generalize to this variant of oblivious transfer.
There exists a simple reduction from this oblivious transfer to m instances of (¢)-OLFE: Alice gets
input * = (v0,21) € {0,...,¢™ — 1}2. We can write x; = (27,...,2"" "), where 2/ € {0,...,q — 1}.
Alice sends o/ := xé and b = x]l - :L'é to the jth instance of (¢)-OLFE. Bob sends ¢ € {0, 1} to all
instances of (q)-OLFE. Bob receives y/ € GF(q) and outputs y := (y°,...,y™ 1). We have y = z,
since for ¢ = 0, ¥/ = o) + (¢} — ) -0 = ) and for ¢ = 1, v/ = ) + (¢} — ) -1 = 2. Tt is easy to see
that the protocol is also secure. Therefore, a violation of (B.13) or (B.15) would imply a violation of
Theorem 1 or Theorem 2. Furthermore, it has been shown in [57] that (¢)-OLFE is symmetric. Hence,

a violation of (B.14) would imply a violation of (B.13). O
From Corollary B1 follows immediately that

Corollary B2 Let a protocol P having access to m instances of (q)-OLFE be an e-secure implemen-
tation of m + 1 instances of (q¢)-OLFE in the semi-honest model. Then
log q

e-mlogq+ h(e) > .

C Quantum Reductions

Lemma 5. The protocol of Section 3.1 statistically UC-realizes }}fé&B’k with an error of 27/

A— B,k
For .

using
K instances of

Proof. Note that we assume that all communication between the players is over secure channels and
we only consider static adversaries. The statement is obviously true in the case of no corrupted parties
and in the case of both the sender and the recipient being corrupted. We construct for any adversary
A a simulator S that runs a copy of A as a black-box: In the case where the sender is corrupted, the
simulator S can extract the commitment b from the input to féé}r_)B’k and the messages except with
probability 27%/2 as follows: Define the extracted commitment as b; := maj(m} @ 3:(1)71- & 3:%71-, co,mE D

x5, @t ;) for all 1 <4 < k where maj denotes the majority function. Let 7" be a (non-empty) subset

of [k] and let b € {0,1}* such that b|7 # b|7. Then an honest recipient accepts b7 together with T in
Open with probability at most 27/2 as follows: There must exist j € T such that bj # b;. Then the

sender needs to change either 3:67 jor 3:’1 ; for at least /2 indices i. Thus, the simulator extracts the bit

b in the commit phase as specified before and gives (commit,b) to fQ&B’k. Upon getting (Z~), T) from

the adversary, the simulator gives (open,T) to ]-'Q&B’k, if b7 = b|7, otherwise it stops. Therefore, any
environment can distinguish the simulation and the real execution with an advantage of at most 27/2.
In the case where the recipient is corrupted, the simulator &, upon getting the message committed from
}}fé&B’k and the choice bits ¢!, chooses the outputs y* from ]:cf}r_}B’k and the messages m’ uniformly
and independently at random for all . In the open phase the simulator S gets (T, br) and simulates
the messages of an honest sender by setting |7 := m'|7 & y'|p @ blr and 2%, |7 := y'|7 for all i.

This simulation is perfectly indistinguishable from the real execution. O

D Lower Bounds for Quantum Protocols

D.1 Proof of Lemma 6
The fidelity between p and ¢ is defined as

F(p,0) :=tr\/\/ép\/o .
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The following lemma follows from Uhlmann’s theorem [50, 36].
Lemma D1 For any two pure states |p>AB and |¢>AB there exists a unitary U, such that
F(1p™%), 4 @ UP)}*%) = F(p*, %)

We say that p is e-close to ¢ if d(p, ¢) < e. It can be shown (see for example [45]) that

1

50, 8) = gllo— 6l = 5 tr (o~ )10~ 9)

F and ¢ are related by
1—F(p,¢) <d(p,¢) < /1= F(p,¢)?

and

1_5(P,¢) SF(p7¢) < Vl_é(p7¢)2 :

Lemma 6. For ¢ € {0,1} the states ]p>’c4BC be given. If §(pg', pi!) < ¢, then there exist a unitary
UBC such that

3(10)9 7, (14 @ UBY)|p)1PY) < Ve . (D.1)

Proof. 6(pdt, pit) < e implies that F(pg', pi') > 1 — . We can apply Lemma D1, which tells us that
there exists a unitary UPY, such that

F(lp)gPC, 14 @ UB9)p)PY) > 1-¢.

It follows that

V1= ()50, (14 @ UBC)|p)BC) > 1 - &

and hence,

3(1p)e "¢, (1t @ UBY)p)1PC < T —(1—€)? < V2e .

D.2 Proof of Corollary 10

Corollary 10. Any (quantum) protocol that implements m-1 instances of (f)—OT1 from m instances

of @)—OT1 must have an error of at least %_

Proof. Let us assume that there exists a protocol that implements m + 1 instances of (f)—OT1 with an
error of . We can apply this protocol iteratively, to implement 8m instances of (%)—OT1 with an error
of Tme. There exists a trivial protocol that implements (?)—OTsm from 8m instances of (T)—OTI: Bob
simply inputs always the same choice bit. From Corollary 9 follows that for any reduction of (%)—OTsm

to m instances of (%)—OT1 with an error of at most &/, we have

184Ve 413 - h(Ve') /m > 2.

Note that this bound also holds when Bob choosgs his inputs in the reduction above honestly. This
implies that ¢ > 41075 and, therefore, ¢ > 210° 0
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D.3 Proof of Corollary 11

Corollary 11. Any (quantum) protocol that implements m + 1 bit commitments out of m commit-

1
ments must have an error of at least 580028 (4m+50058) for any m > 0.

Proof. We assume that there exists a protocol that implements m + 1 bit commitments out of m
with an error of e. We can apply this protocol iteratively, to implement n := 28 - (4m + 50058) bit
commitments with an error of at most ne. Then, we can apply the protocol from [8] to implement
(%)—OT’“ . Using the analysis from [9] we get an error of at most

%2 5((1/4=2/2=h(0)(n=R) k) | /G excp(—52/100) + 2 exp(—=282(n — k) .

We choose k := 140000, § := 0.026, £ := 0.07 and k := 4m + 28. Since (1/4 — /2 — h(J)) > 1/28 we

get
(1/4—5—:/2—h(5))(n—/-e)—k_%—%—k—i&o

So the error of the last step is at most
1
V6 exp(—62k/100) + 2exp(—282(n — k) + 5 2715 < 0.0003
and the total error is at most

¢ := 28 - (4m + 50058)e + 0.0003 .

But any quantum reduction of (?)-OT4m+28 to m commitments must have an error of at least
1/2116, since otherwise we would have

1
(1 —23Ve')(4m + 28)/2 — Th(Ve') > L(4m +28) =T >m
which contradicts Theorem 6. It follows that

ne + 0.0003 > 1/2116

or

_1/2116-00003 1 1
= n = 5800-n 5800 - 28 - (4m + 50058)

D.4 Proof of Theorem 8

We now give a formal statement for the only part that needs to be modified in the security proof of
[22], which is the last part of the proof of Lemma 4.3. We need the following sampling lemma.

Lemma 9. Let « € [0, %] Let us take a bit-strings y = (y1, ... Ym) of length m := bk, that we group
into k blocks of size b. Let T* be a random subset of [k] of size ak, T the corresponding set of bits in
[m] and T the complement of T. Let T' be a random subset of T, where every element is chosen to be
in T with probability %, independent of everything else. With o/ := (1/2 — €)a we have for any e > 0

[,7-, Zyz_ Zyz—%] o

€T’ €T
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In the last part of Lemma 4.3 in [22], it is stated that

5(/0TestAE'7 ﬁTestAE) < Z PTest(tGSt”e#éstF = PI‘[X Q Btest] s
test

where Biest = {x € {0,1}"|rg (2|5, &|7) < ru(z|p, &|p) + €} and rg(z,2’) is the hamming distance
between x and z’, divided by their length. If we choose y := x & %, Lemma 9 implies that

/ , 2
Pr[a: € Btest] < 3e ¢ re?/8 < <2e—a n52/16> .

Therefore, prestarp and prestap are still 2—1(%)_close to each other. Everything else in the proof in
[22] remains the same. Therefore, we get

Theorem 8. There exists a quantum protocol that implements (%)—OT’“ with an error of at most ¢

out of Kk = O(log 1/¢) commitments of size b, where kb = O(k + log 1/¢).

D.5 Proof of Corollary 12

Using the sampling strategy of Lemma 9 and the proof of Theorem 4 from [9] we get the following
corollary.

Corollary 13. Consider an execution of the above described implementation of (%) -OT* from string
commitments. Let Xo and X1 be the strings from {0,1}* output by Alice. Then there exists a bit c
such that X1_. is close to uniform with respect to Bob’s view (given X.), i.e., for any e,§ > 0:

1

0(px1-cXcBogp L © pX.E)
< l . 2—%((%—%—h(5))(1—a)ﬁb—k) + 26—(1—5)0{/@52/32 + 26—252(1—(1)/@%).
-2

where E denotes the quantum state output by Bob and 1 the identity operator on c?",

Proof. As in the proof of Theorem 4 from [9] we consider the equivalent EPR-version of the protocol.
Let

loap,) € Ha, @ ... Ha, @ HE,,

be the state shared between Alice and Bob after Bob has committed to the bases  and the measurement
outcomes & where we can assume § = & = (0,...,0). Alice now chooses a subset 7 of size axb to be
opened by Bob. Let ' := (1/2 — §/2)a. Using Lemma 9 we can conclude that the state [pa.5,) is

)
Equant < Eglass < \/3 exp(—a’kd?/8)

close to being a superposition of states with Hamming weight of at most ¢ within A+ (if Alice does
not abort). The statement then follows from the proof given in [9].

Corollary 12. Let m > 0. If there exists a (quantum) protocol that implements string commitments
of length m’ + 1 out of string commitments of length m’ for all m’ > m with an error of at most &,
then there exists a constant ¢ > 0 such that

c
e> —.
m
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Proof. We assume that there exists a protocol that implements string commitments of length m’ + 1
out of string commitments of length m’ with an error of at most ¢ for any m’ > m. Then we can start
with k string commitments of length m and implement x string commitments of length n := 25(4m+1)
with an error of at most xkn -e. Then, we can apply the protocol from [8] using string commitments to
implement (f)-OTk . Using Corollary 13 we get an error of at most

.97 2((G=5—h(E) Aa)an—k) 4 2exp(—(1 — §)ard?/32) + 2exp(—28%(1 — a)km).

for any £, > 0. We choose k := 1300000, § := 0.02, € := 0.01, « := 0.6, and k := 4mk + 28. Since
(-5 -n(0)1 —a)>1/25 we get

1 £ Kn
Z — —k>——-—k> .
<4 5 h(5)> (1—-a)kn —k > o k> 60

So the error of the last step is at most
1
2exp(—(1 — §)ard?/32) + 2exp(—28%(1 — a)km) + 5 2739 < 0.00015

and the total error is at most
' :=kn-e+0.00015 .
But any quantum reduction of (f)-OT4m+28 to m commitments must have an error of at least
1/2116, since otherwise we would have
1
(1 —23Ve)(4m + 28)/2 — Th(Ve') > F(4m +28) =7 >m,
which contradicts Theorem 6. It follows that

kn - €+ 0.00015 > 1/2116

or
1/2116 — 0.00015 1

© = T 2%k(Am +1) 3100 25m(4m + 1)

The statement follows. O

E Proof of Lemma 9

We need the following two inequalities: The Chernoff/Hoeffding inequality and a uniform sampling
lemma, which follows from the Hoeffding-Azuma inequality.

Lemma E1 (Chernoff/Hoeffding Inequality [15,34]) Let Xo,...,X,,—1 be independent random
variables with X; € [0,1]. Let X := 1 Z?:_Ol Xi, and p = E[X]. Then, for anye >0, Pr[X > pu+e¢] <
e=2"* gnd Pr (X <p—eg] < e—2me?

Lemma E2 (Uniform Sampling [3]) Let (f1,...,08,) € [0,1]". Let T be a random subset of [n] of

size S.
Pr 125'<1§:ﬁ-—6 < e
S Z_n,l ‘ - '
1=

€T
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Lemma 9. Let a € |0, %] Let us take a bit-strings y = (y1,...Yym) of length m := bk, that we group
into k blocks of size b. Let 7* be a random subset of [k] of size ak, T the corresponding set of bits in
[m] and T the complement of 7. Let 7’ be a random subset of T, where every element is chosen to be
in 77 with probability 3, independent of everything else. With o/ := (1/2 — &)a we have for any & > 0

Pr[w‘/ Zyz_ 291—26] < 3ema're 2

€T’ €T

Proof. Let a; be the number bits where y is equal to 1 in the jth block, for j € [k], and let T* be the
complement of 7*. We apply Lemma E2 choosing §; := 1 — a;/b and get

K
1_@ Zyzz—Zy,—Fs =Pr 1_@ Za]_ ;aj—i-s (E.1)

JET*
< e—(l—a)ne2/2 ) (E2)

Let S € {0,...,am} be the size of T'. Even if we condition on the event that 7' has size s, i.e, S = s,
T is still a random subset of [m]. Hence, we can apply Lemma E2 again and get

Pr[ Zylg—Zyl—e‘S—.S] <e~ 55/2

€T’
which implies that

[ Zyz§—2y2—6‘5>am] Se—a’m52/2‘

€T’
From Lemma E1 follows that

1
Pr[S < o'm] = Pr [i <= z—:] < em20me’
am — 2
Hence,
1 1 ¢ —2ame? —a'ke? /2 —a'me?/2
r EZyiSEZyi—E <e +e < 2e . (E.3)
i€T! i=1
Combining Egs. (E.1) and (E.3), we get
Zyl— Zyz_2€ < 2" ama/2+e (1—a)ke? /2 (E4)
ZET/ 16T
< 36_0/"%2/2 ]

F Some Lemmas

F.1 Lemma 10

Lemma 10 shows that if two cq-states are close, then the probability to guess the classical bit from
the quantum part are close as well.
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Lemma 10. For any two cq-states p** and oX4, 5(pXA, O’XA) < ¢ implies that for any measurement
G on system A that outputs a bit, we have

!Pr[G(pA) = X] - Pr[G(c?) = X]| <e.
Proof. Let us assume that there exists a measurement G that outputs a bit such that
!Pr[G(pA) = X] - Pr[G(c?) = X]|>e€.

We can define the measurement D which on an input X4 outputs 1 if X = G(q/JA), and 0 otherwise.
We get

| Pr[D(p*4) = 1] — Pr[D(c™*4) = 1]| = | Pr[G(p?) = X] - Pr[G(c?) = X]| > €,
which contradicts the assumption that §(pX4,0X4) < e. 0

If we choose 0%4 := 7% ® ¢4, then X cannot be guessed from ¢* with probability bigger than
1/2. Lemma 10 therefore implies that if 6(pX4, 7% ® 04) < ¢, then

+e. (F.1)

F.2 Lemma 11

Lemma 11 shows that if Bob knows X7 with a small error, then the security condition implies that
X is close to uniform with respect to his state, if Alice chooses her inputs at random.

Lemma 11. Let pX0X1B satisfy condition (3.7). If there exists a measurement G on system B such
that Pr[G(pP) = X1] > 1 — ¢, then

§(pX0X1B X0 @ ;XiBY < 5
Proof. Let 0X0X1BC" he the state in condition (3.7). Using Lemma 10, we get
Pr[G(c®) = X1] > Pr[G(p®) = X1] —e >1—2¢.

In the state oX0X1BC" we can guess the first bit of X;_¢v if we output the first bit of G(o?)
whenever C’ = 0 and a random bit otherwise. We succeed with a probability of

g ::% -Pr[C’" = 1] + Pr[G(¢®) = X1 AC" = 0]
=5 (L= Pr{C" = 0]) + PrC" = 0] ~ Pr[G(0”) # X1 A C' = (]
2% (1 - Pr[C’ = 0]) + Pr[C" = 0] — 2¢
1 Pr[C" =0
— b e

Since X;_¢r is completely random and independent of the rest, we have g < %, and hence Pr[C’ =
0] < 4e. This implies that for 5X0X15¢" .= 7X0 @ X158 @ |1)(1| we have

§(oX1-0rXer BE' 56X, o1 Xer BC'Y < g

and hence

6(pX0X137TX0 ® leB) S (5(pX0X1B,O'X0X1B) + 5(0,X0X1376,X0X13)

< be.
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F.3 Lemma F1
Lemma F1 Let Pxy be a distribution over X x {0,1}. Then for any Px: over X, we have

(5(ny, PX/Py)

d(Pxjy—o, Pxjy=1) < min(Py (0), Py (1))

Proof. For y € {0,1}, we have

1
S(Pxy =y Px1) ==

Pxy (z,y)
2
X

Py (y)
1

) Ex: |Pxy (z,y) — Px/(x) Py (y)|

— Px:(x)

(Py(é) Py(1))%Z|PXY($,y) — Px/(z)Py (y)| -

T min
Hence,

§(Px|y=0, Px|y=1) < 0(Px|y—=0, Px') + §(Px|y=1, Px")

1 1

S (B 0. By (D) 2 > |Pxy(,y) — Pxo(z) Py (y)|
) Ty

1
- mm(PY(O),PY(1))5(PXY’PX’PY) '

F.4 Lemma F2

Lemma F2 Let Pxy be a distribution over X x {0,1}, Px/ over X and Py+ over {0,1}. Then
d(Pxy, Px'Py:) < € implies

2¢e

— = < )
0(Pxjy=0, Pxjy=1) < min(Py(0), Py/(1)) — ¢

Proof (Proof of Lemma F2). 6(Pxy, Px'Py+) < e implies §(Px, Px/) < € and hence
(5(PXpy/,PX/Py/) = 5(PX7PX’) <e.

We get
§(Pxy, Px/Py) < 6(Px Py, Px:Pyr) + 6(Px/ Pyr, Px/Py) < 2¢ .
0(Pxy, Px'Pys) < e also implies §(Py, Py+) < g, from which follows that for y € {0,1}, |Py(y) —
Pyi(y)] <e. We get

1 1
min(Py (0), Py (1)) = min(Py(0), Py (1)) —

The statement follows now by applying Lemma F1. O
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