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1 Introdu
tionCommonly, se
urity of a 
ryptographi
 proto
ol en
ompasses (very roughly) two aspe
ts: Theproto
ol should guarantee that the private data of the parties stays se
ret (priva
y), and itshould ensure that all data transferred or 
omputed is 
orre
t (integrity). Most se
urity de�ni-tions ensure one or both of these requirements, and many proto
ols are known to satisfy thesede�nitions (e.g., [GMW87, BOGW88, CCD88, CFGN96, CLOS02℄).There is, however, a requirement that does not fall into either 
ategory: 
oer
ion resistan
e(�rst noted by [Her91, BT94℄). To illustrate this property, we use the example of a voting s
heme.In a voting s
heme, it might be possible for a voter to a
quire a re
eipt that he 
ast a spe
i�
vote. This does not violate the anonymity of the voter sin
e the voter is not required to revealor even a
quire su
h a re
eipt. Thus priva
y is maintained. And getting a re
eipt does not allowto falsify the out
ome of the ele
tion. Thus the integrity of the s
heme is maintained. Yet themere possibility of a
quiring a re
eipt may make a party 
oer
ible. A 
oer
ive adversary maythreaten 
ertain reprisals if the party does not 
ast a spe
i�
 vote and proves this by deliveringa re
eipt to the adversary. Thus su
h an ele
tion proto
ol would not be 
oer
ion resistant (short:in
oer
ible).In
oer
ibility is an important property in any setting in whi
h some mali
ious agent has thepower to harm and thus threaten other proto
ol parti
ipants. Clearly, this is not restri
ted tothe setting of voting but may be the 
ase in other settings, too (e.g., when �nan
ial transa
tionsare involved). Unfortunately, in
oer
ibility turns out to be both di�
ult to de�ne and to a
hieve.Previous de�nitions of in
oer
ibility are usually restri
ted to spe
ial domains su
h as voting(e.g., [BT94, JCJ05, DKR09℄). An ex
eption are the models by Canetti and Gennaro [CG96℄ andby Moran and Naor [MN06℄ whi
h give general de�nitions of in
oer
ible multi-party 
omputation.Their de�nitions are, however, restri
ted to the 
ase of se
ure fun
tion evaluation. That is, theyonly 
onsider proto
ols in whi
h all parties need to �rst 
ontribute their inputs, and then fromthese inputs the outputs for the parties are 
omputed. Rea
tive proto
ols, proto
ols that havemultiple phases and where the inputs in one phase 
an depend on the outputs of an earlierphase, are ex
luded. For example, the se
urity of a 
ommitment proto
ol 
ould not be modelledin their settings.Besides the problem of rea
tive proto
ols, the issue of 
omposability arises. When buildinga 
omplex proto
ol, it is often ne
essary to abstra
t from 
ertain subproto
ols in the analysisto make the analysis manageable. For example, one might �rst analyse the proto
ol assuming aperfe
tly se
ure me
hanism for performing 
ommitments (modelled by a trusted ma
hine), andthen later on prove the se
urity of the subproto
ol that is a
tually used for the 
ommitments. Todo so, and also to have a guarantee that the proto
ol does not be
ome inse
ure when exe
utedtogether with other proto
ols or instan
es of itself, one needs a se
urity notion that 
omes witha 
omposition theorem.In the 
ase of normal se
ure multi-party 
omputation (i.e., without in
oer
ibility) both theproblem of modelling rea
tive proto
ols and of giving strong 
ompositionality guarantees hasbeen solved by Canetti's UC model [Can01℄. In this model, we 
an de�ne a proto
ol task byspe
ifying a trusted ma
hine, the ideal fun
tionality, whi
h by de�nition performs the requiredproto
ol task. Sin
e this ma
hine 
an intera
t with its environment in arbitrary ways, the se
u-rity of very general rea
tive proto
ols 
an be modelled. Furthermore, the UC model guaranteesthat if a proto
ol is se
ure when using (as opposed to realising) an ideal fun
tionality, then theproto
ol stays se
ure when instead of the ideal fun
tionality, a subproto
ol that se
urely realisesthe ideal fun
tionality is used. The UC model, however, does not guarantee in
oer
ibility.Our 
ontribution. We de�ne the Composable In
oer
ibility framework (UC/
) whi
h is anextension of the UC framework. Like UC, UC/
 allows to model very general rea
tive proto
ol2



tasks and gives strong 
ompositionality guarantees (universal 
omposition). Additionally, proto-
ols se
ure with respe
t to UC/
 are in
oer
ible. To illustrate the model, we show that a votings
heme that is UC/
 se
ure is also in
oer
ible with respe
t to a de�nition tailored spe
i�
allyto voting. Finally, we show that in the restri
ted 
ase of stati
 
oer
ions/de
eptions (all 
orrup-tions and 
oer
ions happen at the beginning of the proto
ol), arbitrary UC/
 se
ure two-party
omputation is possible assuming the availability of se
ure 
hannels.Organisation. In Se
tion 1.1, we explain the intuition behind the UC/
 framework. In Se
tion 2we de�ne the UC/
 framework and present the universal 
omposition theorem. In Se
tion 3 weillustrate our model by applying it to the setting of voting proto
ols. In Se
tion 4 we showthat UC/
 se
ure two-party proto
ols exist for arbitrary fun
tionalities. In Se
tion 5 we givedire
tions for further work.1.1 The intuition behind UC/
To understand the UC/
 model, we �rst need to get an intuition of how in
oer
ibility is a
hieved.The goal of an in
oer
ible proto
ol is the following: When an adversary tries to 
oer
e a partyinto performing a 
ertain a
tion (su
h as 
asting a parti
ular vote v∗), the party should be ableto perform the a
tion it originally intended to perform (
asting a vote v) without the adversarynoti
ing. That is, the adversary should not be able to tell the di�eren
e between a party P thatfollows the adversary's instru
tions (a 
orrupted party, 
asting the vote v∗) and a party P thatonly tries to make the adversary believe that it follows the adversary's instru
tions (a de
eivingparty, 
asting the vote v and giving fake eviden
e to the adversary that it 
ast the vote v∗).The most natural way to de�ne in
oer
ibility would be to require that the adversary 
annotdistinguish between a 
oer
ed and a de
eiving party. This, however, usually 
annot be a
hieved.For example, in a voting proto
ol the adversary will eventually learn the tally. The distributionof the tally will, sin
e there are only polynomially many voters, slightly but noti
eably 
hangewhen the vote of P 
hanges from v to v∗. The adversary 
an hen
e distinguish 
oer
ed andde
eiving parties by observing the tally.Thus, we have to weaken the requirement. The adversary should not be able to distinguish a
oer
ed and a de
eiving party any better than he 
ould do given only information that is �legally�available to him (the tally in our example). In general, however, it is not straightforward tode�ne what information is �legally� available to the adversary in any parti
ular situation. Neitheris it straightforward to determine how mu
h distinguishing advantage the adversary would getgiven only that information.In order to 
ir
umvent this problem, we use a slightly di�erent approa
h: We �rst de�nean ideal model in whi
h the adversary has, by de�nition, only a

ess to the �legally� availableinformation. In the 
ase of voting, su
h an ideal model would 
onsist of a trusted ma
hine (theideal voting fun
tionality F) that 
olle
ts the votes from all parties and gives only the tally tothe adversary. In the ideal model, the distinguishing advantage between a 
oer
ed party (thatgives v∗ to F) and a de
eiving party (that gives v to F) is, by de�nition, exa
tly the advantagethe adversary gets from the �legally� available information (the tally).To make this de�nition more formal, we introdu
e an additional entity, the de
eiver [For91℄.The task of the de
eiver is to instru
t a de
eiving party what it should do (i.e., how to de
eive theadversary). More formally, a de
eiving party will not run any program of its own, but insteadfollow the instru
tions of the de
eiver. (In a sense, the de
eiver models the party's free will.) Inparti
ular, the de
eiver may instru
t a party to 
ast a vote v and to send to the adversary thefake noti�
ation that it 
ast vote v∗. (Sin
e we are in the ideal model, no 
ryptographi
 re
eiptsor similar need to be faked.) A 
orrupted party, on the other hand, will follow the adversariesinstru
tions. 3



The 
ombination of adversary and de
eiver in the ideal model now allows to model any 
oer-
ion situation that 
an o

ur in the ideal model. To de�ne what it means that the real proto
olis in
oer
ible (or more pre
isely, as in
oer
ible as the ideal model), we will use the 
on
ept ofsimulation that underlies many 
ryptographi
 de�nitions su
h as multi-party 
omputation andzero-knowledge: We show that for any adversary in the real model that performs some 
oer
ionatta
k, there is another adversary in the ideal model (
alled the adversary-simulator) that per-forms a 
orresponding atta
k with as mu
h su

ess. In other words, we require that for anyde
eiver (spe
ifying what a party would ideally want to do), and for any adversary in the realmodel (trying to 
oer
e parties), there is an adversary-simulator in the ideal model su
h thatthe real and the ideal model are indistinguishable.We are, however, missing one ingredient: We need to spe
ify how the ideal de
eptions (spe
-i�ed in terms of inputs to the ideal fun
tionalities) translate into real de
eptions (spe
i�ed interms of faked messages et
.). This is done by introdu
ing a de
eiver in the real model, too,
alled the de
eiver-simulator. We then require that for any de
eiver in the ideal model (rep-resenting a possible de
eption) there is a de
eiver-simulator in the real model (that performsthe 
orresponding real de
eptions) su
h that for any adversary in the real model there is aadversary-simulator in the ideal model su
h that the two models are indistinguishable.Finally, to model the indistinguishability of the two models, we follow the ideas from theUC framework and introdu
e a further ma
hine, the environment, that either 
ommuni
ateswith the ma
hines in the real model or with the ma
hines in the ideal model and that has toguess whi
h model it is in. (For details on how this indistinguishability a
tually ensures thatthe adversary's advantage in distinguishing 
orrupted and de
eiving parties 
arries over fromthe ideal to the real model we refer to the example in Se
tion 3.)1.2 Related workWe are aware of only two works that ta
kle the problem of de�ning in
oer
ibility or a similarproperty in a general fashion (i.e., not spe
ialised to a parti
ular proto
ol task su
h as voting).In
oer
ible se
ure fun
tion evaluation. Canetti and Gennaro [CG96℄ present a model forde�ning in
oer
ible se
ure fun
tion evaluation whi
h was subsequently re�ned by Moran andNaor [MN06℄. The model by Moran and Naor is based on the so-
alled stand-alone model[Can00, Gol04, Ch. 7℄. In this model, one assumes that the inputs of all honest parties are �xedbefore the beginning of the proto
ol. This has several impli
ations: First, rea
tive proto
olswhere parties may de
ide on their inputs in later phases 
annot be modelled. Se
ond, whena
tually deploying the proto
ol, one would have to ensure very strong syn
hronisation: In ordernot to introdu
e possibilities for atta
ks not 
overed by the model, we have to ensure that noproto
ol message is sent until all honest parties have de
ided on their input. Third, the stand-alone model only guarantees sequential 
omposability.1 That is, we have no guarantee that theproto
ol stays se
ure when running 
on
urrently with other proto
ols (whi
h usually happensin real-life networks).Sin
e the model by Moran and Naor is based on the stand-alone model, in this model 
oer
edparties only need to lie about their initial inputs. Be
ause of this, Moran and Naor do not needto introdu
e an expli
it de
eiver; any de
eption a party might want to perform 
an be en
odedby spe
ifying a se
ond input, the so-
alled �fake input�. In 
ontrast, the more 
omplex de
eptionsthat are possible in our setting ne
essitate the introdu
tion of an expli
it ma
hine, the de
eiver,to spe
ify the de
eptions.1Note that it has not been shown that the variant of the stand-alone model presented by Moran and Naordoes 
ompose sequentially. But it does not seem unlikely that this 
ould be shown.4



Everything we said about the work by Moran and Naor also applies to the earlier work byCanetti and Gennaro [CG96℄. Furthermore, the model by Canetti and Gennaro only modelsa very weak form of 
oer
ion-resistan
e; the adversary may instru
t a 
oer
ed party to use adi�erent input, but he may not instru
t that party to deviate from the proto
ol. For a dis
ussionof the di�eren
e between the models by Moran and Naor and by Canetti and Gennaro, we referto [MN06℄.Externalized UC. Another approa
h to de�ne properties similar to in
oer
ibility for generalproto
ols is the Externalized UC (EUC) framework proposed by Canetti, Dodis, Pass, andWal�sh [CDPW07℄ (also known as Generalized UC, UC with global setup, or, proposed inde-pendently by Hofheinz, Müller-Quade, and Unruh [HUMQ07℄, UC with 
atalysts).This framework is, like ours, an extension of the UC framework and inherits its supportfor rea
tive proto
ols and its universal 
omposition theorem. The EUC framework di�ers fromthe UC framework by allowing the environment to dire
tly a

ess the ideal fun
tionality usedin the real proto
ol. As explained in [CDPW07℄, se
urity in the EUC framework implies aproperty 
alled deniability. This means that no (mali
ious) proto
ol party P 
an 
olle
t anyinformation during the proto
ol run that 
an later be used to prove to an outsider that someparty Q parti
ipated in the proto
ol. (An example for su
h in
riminating information wouldbe a message signed by Q.) In other words, Q 
an plausibly 
laim that the whole proto
ol didnot take pla
e. Obviously, su
h a 
laim is only realisti
 with respe
t to an outsider who didnot himself 
ommuni
ate with Q during the proto
ol exe
ution. In 
ontrast, in
oer
ibility asunderstood by this paper means that a party 
an lie about its a
tions towards an insider (e.g.,a party 
ould lie even towards another voter about the vote it has 
ast).Thus the two models (EUC and UC/
) have very di�erent aims. Te
hni
ally they are,however, related: In Se
tion 4.2 we show that under 
ertain 
onditions, EUC se
urity impliesUC/
 se
urity.2 The Composable In
oer
ibility Framework (UC/
)2.1 The UC frameworkOur model is based on the Universal Composability (UC) framwork [Can01℄. For self 
ontain-ment and to �x notation, we give a short overview over the UC framework. An intera
tiveTuring ma
hine (ITM) is a Turing ma
hine that has additional tapes for in
oming and for out-going 
ommuni
ation. An ITM may be a
tivated by a message on an in
oming 
ommuni
ationtape. At the end of an a
tivation, the ITM may send a message on an outgoing 
ommuni
ationtape to another ITM. The re
ipient of a message is addressed by the unique identity of thatITM. The a
tions of an ITM may depend on a global parameter k ∈ N, the so-
alled se
urityparameter.A network is modeled as a (possibly in�nite) set of ITMs.2 We 
all a network S exe
utableif it 
ontains an ITM Z with distinguished input and output tape and with the spe
ial identity
env. An exe
ution of S with input z ∈ {0, 1}∗ and se
urity parameter k ∈ N is the followingrandom pro
ess: First, Z is a
tivated with the message z on its input tape. Whenever an ITM
M1 ∈ S �nishes an a
tivation with an outgoing message m addressed to another ITM M2 ∈ S onits outgoing 
ommuni
ation tape, the other ITM M2 is invoked with in
oming message m on itsin
oming 
ommuni
ation tape (tagged with the identity of the sender M1). If an ITM terminatesits a
tivation without an outgoing message or sends a message to a non-existing ITM, the ITM2In the 
ase of in�nite networks we require the network to be uniform in the sense that given the identity ofan ITM, we 
an 
ompute the 
ode of that ITM in deterministi
 polynomial-time.5



Z is a
tivated. When the ITM Z sends a message on its output tape (not the 
ommuni
ationtape!), the exe
ution of S terminates. The output of Z we denote by EXECS(k, z). An ITM Zwith identity env we 
all an environment and an ITM A with identity adv we 
all an adversary.A proto
ol is a network that does not 
ontain an environment or an adversary.We 
all networks S, S′ indistinguishable if there is a negligible fun
tion µ su
h that for all
k ∈ N, z ∈ {0, 1}∗, we have that |Pr[EXECS(k, z) = 1] − Pr[EXECS′(k, z) = 1]| ≤ µ(k). We
all S, S′ perfe
tly indistinguishable if µ = 0.Using the above network model, se
urity is de�ned by 
omparison. We �rst de�ne an idealproto
ol ρthat spe
i�es the intended proto
ol behaviour. Then we de�ne what it means thatanother proto
ol π (se
urely) emulates ρ:De�nition 1 (UC [Can01℄) Let π and ρ be proto
ols. We say that π UC emulates ρ if forany polynomial-time adversary A there exists a polynomial-time adversary S (the adversary-simulator) su
h that for any polynomial-time environment Z the networks π∪{A,Z} (
alled thereal model) and ρ ∪ {S,Z} (
alled the ideal model) are indistinguishable.In the UC framework, one 
an model se
ure 
hannels (that do not even leak the length of thetransmitted message) by dire
t 
ommuni
ation between the ITMs; inse
ure 
hannels 
an bemodelled by sending messages to the adversary; se
ure 
hannels that leak the length of themessage, as well as authenti
ated 
hannels 
an be modelled as an ideal fun
tionality.Corruptions are modelled as follows: The environment Z 
an send spe
ial 
orruption requeststo proto
ol parties (whi
h are ITMs in π). If a proto
ol party re
eives su
h a request, it sends its
urrent state to the adversary and from then on is 
ontrolled by the adversary (i.e., it forwardsall in
oming 
ommuni
ation to the adversary and vi
e versa).Usually, the ideal model will be des
ribed by a so-
alled ideal fun
tionality. Su
h an idealfun
tionality is an in
orruptible ITM that 
an be seen as a trusted third party a

essible tothe proto
ol parties. The ideal proto
ol 
orresponding to F 
onsists of F itself and a so-
alleddummy-party P̃ for ea
h party P in the real model. The dummy-party P̃ simply forwardsall messages re
eived from the environment to F and vi
e versa. In slight abuse of notation,we write F for the ideal proto
ol 
orresponding to F . Note that the dummy-parties 
an be
orrupted, hen
e the inputs and outputs to F from 
orrupted parties 
an be in�uen
ed by theadversary-simulator. Using the 
on
ept of an ideal fun
tionality, we 
an express many proto
oltasks by �rst spe
ifying an ideal fun
tionality F that ful�ls the proto
ol task by de�nition, andthen requiring that the proto
ol π UC emulates F .We 
an also 
onsider real proto
ols π whi
h 
ontain ideal fun
tionalities F (e.g., a fun
tion-ality modelling a CRS). These fun
tionalities 
an then be a

essed by all parties. We then saythat π is a proto
ol in the F-hybrid model.For more details, we refer the reader to the full version of [Can01℄.2.2 The Composable In
oer
ibility framework (UC/
)In our framework (UC/
) the possibility of 
oer
ions is modelled by the presen
e of an additionaladversarial entity, 
alled the de
eiver. Formally, a de
eiver is an ITM D with the spe
ial identity
dec. We further re�ne the notion of a proto
ol: A proto
ol is a network that does not 
ontainan environment, adversary, or de
eiver.A typi
al network would 
onsist of a proto
ol π, an adversary A, a de
eiver D, and anenvironment Z (where the adversary and the de
eiver may also be 
alled adversary-simulatorand de
eiver-simulator for 
larity depending on their role in the proto
ol). Both the adversaryand the de
eiver may 
ontrol parties. The exa
t me
hanism of this is the following:6



A proto
ol party may be in one of three 
orruption states: Un
ontrolled , 
orrupted , andde
eiving . We say a party is 
ontrolled if it is 
orrupted or de
eiving. Initially, all ma
hinesare un
ontrolled. Un
ontrolled parties behave a

ording to the proto
ol spe
i�
ation. If theenvironment Z sends a 
orruption request to an un
ontrolled party, the party be
omes 
orrupted.If the environment sends a de
eption request to an un
ontrolled or a 
orrupted party, the partybe
omes de
eiving. When a party be
omes 
orrupted or de
eiving, it sends its state to theadversary or the de
eiver, respe
tively. From then on, it is 
ontrolled by the adversary or thede
eiver, respe
tively (that is, it forwards all in
oming 
ommuni
ation to the 
ontrolling ma
hineand sends messages as instru
ted by the 
ontrolling ma
hine). The only ex
eption is that if a
orrupted ma
hine re
eives a de
eption request, it will not forward that request to the adversary,be
ause in that moment, it will be
ome de
eiving and hen
e be under the 
ontrol of the de
eiver.We assume the existen
e of a globally readable register that 
ontains the state of ea
h party(whether it is un
ontrolled, 
orrupted, or de
eiving). However, when the adversary reads thisregister, the state of any de
eiving ma
hine will be reported as 
orrupted. (This re�e
ts the fa
tthat the adversary should not be able to know whi
h ma
hine is de
eiving.) Proto
ol partieswill not usually read this register; in some 
ases, however, it might be useful if the behaviour ofan ideal fun
tionality 
an depend on whether a ma
hine is 
ontrolled or not.3We are now ready to spe
ify the notion of UC/
 se
urity. In this notion, we do not onlyrequire the adversary-simulator (in the ideal model) to simulate the adversary's a
tions (in thereal model), but simultaneously require that the de
eiver-simulator (in the real model) simulatesthe a
tions of the de
eiver (in the ideal model).De�nition 2 (UC/
) Let π and ρ be proto
ols. We say that π UC/
 emulates ρ if for anypolynomial-time de
eiver D there exists a polynomial-time de
eiver DS (the de
eiver-simulator)su
h that for any polynomial-time adversary A there exists a polynomial-time adversary AS (theadversary-simulator) su
h that for any polynomial-time environment Z the following networksare indistinguishable:
π ∪ {A,DS ,Z} and ρ ∪ {AS ,D,Z}.Why is the adversary not informed about de
eiving parties? The reader may noti
ean asymmetry in the de�nition: While the de
eiver learns whi
h party is 
orrupted and whi
hparty is de
eiving, the adversary will be told that a party is 
orrupted even if it is de
eiving.This is ne
essary be
ause during a de
eption, the goal is to 
heat the adversary into thinkingthat one behaves as he instru
ts (i.e., that one is 
orrupted). Therefore 
orrupted and de
eivingparties should be indistinguishable from the point of view of the adversary.Why 
an de
eiving party not be
ome 
orrupted? Another asymmetry is that a 
orruptedparty 
an later be
ome de
eiving while the model does not allow to 
orrupt parties that arede
eiving. Although formally both dire
tions 
ould be allowed, we have ex
luded the latterbe
ause we 
ould not �nd an interpretation for su
h a s
enario. For an interpretation of theformer dire
tion (bad-guy 
oer
ions), see the next se
tion.2.3 Corruption s
hedulesThe notion of UC/
 (De�nition 2) allows the environment to 
orrupt or 
oer
e any party at anypoint of time. This leads to a very stri
t de�nition. To get a de�nition that is more lenient3A typi
al example is the key ex
hange fun
tionality, whi
h returns a random key for both parties [Can05℄. Ifone of the parties is 
orrupted, the key is instead 
hosen by the adversary. Thus the fun
tionality needs to knowwhi
h parties are 
orrupted. 7



but easier to ful�l, one 
an impose 
ertain restri
tions on the 
orruption and de
eption requestsperformed by the environment. We 
all su
h a restri
tion a 
orruption s
hedule.Bad-guy 
oer
ions. There are no restri
tions on the environment (ex
ept that the environment
annot 
orrupt a de
eiving party, this is impli
it in the modelling of the 
orruption me
hanism).We 
all this notion bad-guy 
oer
ions be
ause the environment may �rst 
orrupt a party(make it a �bad-guy�) and then later 
oer
e it. It is very di�
ult to design proto
ols that arese
ure against bad-guy 
oer
ions be
ause a 
orrupted party may be instru
ted by the adversaryto a
tively deviate from the proto
ol to produ
e eviden
e against itself and thus thwart its owndeniability. (In 
ontrast, a de
eiving party would, given the same instru
tions, only try to makethe adversary believe that it follows these instru
tions.)For example, in some proto
ol the ability to de
eive the adversary (and thus the in
oer
ibilityof the proto
ol) might be based on the following fa
t: When the adversary requests a privatese
ret m of some party, that party may send a di�erent se
ret m′ instead whi
h 
ontains atrapdoor. This trapdoor then is later essential for a
hieving in
oer
ibility. In the setting ofbad-guy 
oer
ions, a party might �rst be 
orrupted and then reveal the true se
ret m to theadversary. This se
ret m does not 
ontain a trapdoor. Then later, if the party be
omes de
eiving,it will be unable to follow its de
eption strategy be
ause it does not know any trapdoor for m.In a nutshell, while 
orrupted, a party may a
tively try to prevent its own in
oer
ibility. Thuswe expe
t that UC/
 se
urity with respe
t to bad-guy 
oer
ions is very hard to a
hieve.In pra
tise, bad-guy 
oer
ions are arguably a very rare event. A possible motivation forbad-guy 
oer
ions is the following thought experiment: A member (say, Bob) of a 
riminal or-ganisation is required by the rules of that organisation to a
tively produ
e and deliver someeviden
e (e.g., 
ertain keys) against himself to that organisation. While Bob still works for theorganisation, he will not try to 
ir
umvent these rules and will deliver this eviden
e. But ifBob later de
ides to leave the 
riminal organisation and to 
ooperate with the poli
e (under-
over), Bob may have to 
onvin
ingly a
t as if he was still following the 
riminal organisation'sinstru
tions. This is exa
tly the 
ase that is modelled by bad-guy 
oer
ions.In most 
ases, however, UC/
 with bad-guy 
oer
ions will be mu
h to strong a notion, andthe notion of good-guy 
oer
ions (below) will be preferred.Good-guy 
oer
ions. The environment may 
orrupt parties at any time and may send de-
eption requests to un
ontrolled parties at any time. The environment may not send de
eptionrequests to 
orrupted parties.Re
eipt-freeness. The environment may 
orrupt parties at any time, and may send de
eptionrequests to un
ontrolled parties after the end of the proto
ol (so that the adversary gets theirstate). The environment may not send de
eption requests to a 
orrupted party. Re
eipt-freenessimplies that an honest party does not learn any data during the proto
ol that 
ould later beused to prove after the proto
ol exe
ution that the party performed a 
ertain a
tion. (Note thatwith erasing parties, re
eipt-freeness is probably easy to a
hieve: an honest party simply erasesall intermediate proto
ol data.)Stati
 
orruptions/de
eptions. All 
orruption and de
eption requests must be sent at thevery beginning of the proto
ol exe
ution. In parti
ular, this implies that the environment 
annot
hoose whi
h parties to 
orrupt depending on messages it observes during the proto
ol exe
ution.Only 
orruptions. The environment may not send de
eption requests. UC/
 with only 
or-ruptions is equivalent to the UC notion from [Can01℄.Combinations. The above 
orruptions s
hedules may be 
ombined by requiring that the envi-ronment obeys a 
ertain s
hedule with respe
t to some parties and another with respe
t to other8



parties. For example, one might have proto
ols that are UC/
 se
ure with re
eipt-freeness forAli
e and good-guy 
oer
ions for Bob.2.4 Erasing and non-erasing partiesWe 
an distinguish two kinds of honest parties: Erasing and non-erasing parties. An erasingparty is able to delete information when the proto
ol instru
ts it to do so. In 
ontrast, a non-erasing party will make a snapshot of its whole memory in every 
omputation step in a spe
iallog; when the party be
omes 
oer
ed/de
eiving, the adversary/de
eiver gets the whole log. Non-erasing parties model the fa
t that it may be di�
ult to reliably erase information, a se
ret mayend up, e.g., in the swap partition. However, we allow 
orrupted parties to erase their state.This is due to the fa
t that we also 
annot expe
t to reliably re
over state whi
h the adversaryhas ordered destroyed. Sin
e a de
eiving party will stay in that state forever (the environmentis not allowed to send 
orruption requests to a de
eiving party), it does not matter whether ade
eiving party may or may not erase information. For 
on
reteness, we �x that a de
eivingparty may erase information.Summarising, a non-erasing party stores all its states when un
ontrolled, and may erase itsstate when 
ontrolled. An erasing party may erase its state at any point.In the following, we 
onsider non-erasing parties. We wish to stress, however, that ourmodelling applies to erasing parties as well. Being able to erase data may be very helpful in thedesign of in
oer
ible proto
ols: If a party deletes some data, it may later 
redibly 
laim thatit 
annot reveal that data. However, one should keep in mind that implementing non-erasingproto
ols may be more di�
ult be
ause one needs to a
tively keep tra
k of all 
opies of a 
ertaindatum in memory and on disk.It is also possible to imagine a setting in whi
h a ma
hine is partially erasing. Su
h a ma
hinewould have a 
ertain memory area that 
an be erased, while the main part of the memory isassumed to be non-erasable. Su
h a modelling might be motivated, e.g., by the use of trustedplatform modules [Tru07℄, or by operating system extensions that allo
ate blo
ks of memorythat are guaranteed never to be written to the disk.2.5 Basi
 propertiesTransitivity, re�exivity. The following lemma states that UC/
 emulation is a re�exive andtransitive relation. Re�exivity 
an be seen as a sanity 
he
k for the de�nition � if a proto
olwould not UC/
 emulate itself, something would probably be wrong. Transitivity is ne
essaryto use the universal 
omposition theorem, see Corollary 8 below.Lemma 3 (Re�exivity, transitivity) Let π, ρ, and σ be proto
ols. Then π UC/
 emulates π.If π UC/
 emulates ρ, and ρ UC/
 emulates σ, then π UC/
 emulates σ.Proof. For any polynomial-time de
eiver D, any polynomial-time adversary A, and anypolynomial-time environment Z, we have with DS := D, and AS := A that π ∪ {A,DS ,Z}and π ∪ {AS ,D,Z} are equal and thus (perfe
tly) indistinguishable. Hen
e π UC/
 emulates ρ.Assume now that π UC/
 emulates ρ, and ρ UC/
 emulates σ. Then, by de�nition, for anypolynomial-time de
eiver Dρ, there is a polynomial-time de
eiver-simulator Dπ
S(Dρ), and forany polynomial-time de
eiver Dρ and any polynomial-time adversary Aπ, there is an adversary-simulator Aρ

S(Dρ,Aπ) su
h that for all polynomial-time environments Z,
π ∪ {Aπ,Dπ

S(Dρ),Z} and ρ ∪ {Aρ
S(Dρ,Aπ),Dρ,Z} (1)9



are indistinguishable. Similarly, for any polynomial-time de
eiver Dσ, there is a polynomial-timede
eiver-simulator Dρ
S(Dσ), and for any polynomial-time de
eiver Dσ and any polynomial-timeadversary Aρ, there is an adversary simulator Aσ

S(Dσ,Aρ) su
h that for all polynomial-timeenvironments Z,
ρ ∪ {Aρ,Dρ

S(Dσ),Z} and σ ∪ {Aσ
S(Dσ,Aρ),Dσ,Z} (2)are indistinguishable.Then, for a given polynomial-time de
eiver D̂σ and a given polynomial-time adver-sary Âπ, set D̂π

S(Dσ) := Dπ
S(Dρ

S(D̂σ)) and Âσ
S(D̂σ, Âπ) := Aσ

S(D̂σ,Aρ
S(Dρ

S(D̂σ), Âπ)).From (1), we have that for all polynomial-time environments Z, π ∪ {Âπ, D̂π
S(D̂σ),Z}and ρ ∪ {Aρ

S(Dρ
S(D̂σ), Âπ),Dρ

S(D̂σ),Z} are indistinguishable. And from (2), we havethat for all polynomial-time environments Z, ρ ∪ {Aρ
S(Dρ

S(D̂σ), Âπ),Dρ
S(D̂σ),Z} and σ ∪

{Âσ
S(D̂σ, Âπ), D̂σ,Z} are indistinguishable. Sin
e indistinguishability is transitive, π ∪

{Âπ, D̂π
S(D̂σ),Z} and σ ∪ {Âσ

S(D̂σ, Âπ), D̂σ,Z} are indistinguishable for all polynomial-time Z.Thus, for every polynomial-time de
eiver Dσ there exists a polynomial-time de
eiver-simulator
D̂π

S := D̂π
S(D̂σ) su
h that for every polynomial-time adversary Âπ there exists a polynomial-time adversary-simulator Âσ

S := Âσ
S(D̂σ, Âπ) su
h that for all polynomial-time environments Z,

π ∪ {Âπ, D̂π
S ,Z} and σ ∪ {Âσ

S, D̂σ,Z} are indistinguishable. Thus π UC/
 emulates ρ. �Dummy adversary and de
eiver. A dummy-adversary is an adversary that just followsthe instru
tions of the environment. More pre
isely, it forwards all messages it re
eives to theenvironment, and sends only the messages the environment instru
ts it to send. It was shownby Canetti [Can01℄ in the UC setting that the dummy-adversary is 
omplete, that is, withoutloss of generality we 
an 
onsider only the dummy-adversary. Therefore we only have to spe
ifythe adversary-simulator for the dummy-adversary instead of having to spe
ify the adversary-simulator for every possible adversary. This simpli�es proofs.In the setting of UC/
, we 
an additionally 
onsider the dummy-de
eiver that just followsthe instru
tions of the environment. Below, we will show that both the dummy-adversary andthe dummy-de
eiver are 
omplete. Besides strongly simplifying proofs, the 
ompleteness of thedummy-de
eiver has an additional 
on
eptual advantage. The de
eiver-simulator 
orrespondingto the dummy-de
eiver en
odes a universal de
eption strategy. That is, for any �ideal de
eption�,it tells us how to perform this de
eption in the real proto
ol. The existen
e of su
h a universalde
eption strategy is very important in real life, proto
ol users need to have an expli
it strategyhow to lie in whi
h situation; it is not su�
ient that su
h a strategy exists for ea
h situation.De�nition 4 (Dummy-adversary, dummy-de
eiver) The dummy-adversary Ã is an ad-versary that, when re
eiving a message (id ,m) from the environment, sends m to the partywith identity id , and that, when re
eiving m from a party with identity id , sends (id ,m) to theenvironment. The dummy-de
eiver D̃ is de�ned analogously.De�nition 5 (UC/
 with respe
t to dummy-adversary/de
eiver) Let π and ρ be proto-
ols. We say that π UC/
 emulates ρ with respe
t to the dummy-adversary/de
eiver if thereexists a polynomial-time de
eiver D̃S (the dummy-de
eiver-simulator) and a polynomial-time ad-versary ÃS (the dummy-adversary-simulator) su
h that for any polynomial-time environment Zthe following networks are indistinguishable:
π ∪ {Ã, D̃S ,Z} and ρ ∪ {ÃS , D̃,Z}Lemma 6 (Completeness of dummy-adversary and dummy-de
eiver) Let π and ρ beproto
ols. Then π UC/
 emulates ρ i� π UC/
 emulates ρ with respe
t to the dummy-adversary/de
eiver. 10
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Figure 1: Networks in the proof of Lemma 6. Dashed lines denote ma
hines that internallysimulate other ma
hines.Proof. If π UC/
 emulates ρ, then we immediately have that π UC/
 emulates ρ with respe
tto the dummy-adversary/de
eiver. For the opposite dire
tion, assume that π UC/
 emulates ρwith respe
t to the dummy-adversary/de
eiver.Let D̃ and Ã be the dummy-de
eiver and the dummy-adversary. Let D̃S and ÃS be thedummy-de
eiver-simulator and the dummy-adversary-simulator (as in De�nition 5).For an environment Z, a de
eiver D, and an adversary A, we de�ne the environment ZD,Aas follows (see also Figures 1(b) and (
)): ZD,A internally simulates Z, D, and A. All 
ommu-ni
ation between the internally simulated Z and the (external) proto
ol is forwarded. Messagessent from Z to the de
eiver and adversary are forwarded to the internally simulated D and A.In
oming 
ommuni
ation for Z from D and A is is forwarded to Z. Messages m that D and Asend to a proto
ol party with identity id are sent by ZD,A as (id ,m) to the external de
eiveror adversary. That is, assuming the external de
eiver or adversary is the dummy-de
eiver ordummy-adversary, ZD,A instru
ts the dummy-de
eiver/adversary to deliver the message sent bythe internally simulated D orA. In
oming messages (id ,m) from the external adversary/de
eiverare passed to the internally simulated D and A as m.For an adversary A, we de�ne the adversary-simulator AS = AS(A) as follows (see alsoFigure 1(d)): AS internally simulates A and ÃS. Communi
ation between the external envi-ronment and the internally simulated A is forwarded. Communi
ation between the externalproto
ol and the internally simulated ÃS is forwarded. When A sends a message m to a proto-
ol ma
hine with identity id , (id ,m) is instead passed to ÃS as 
oming from the environment.Messages (id ,m) from the internally simulated ÃS to the environment are passed to A as m.(This is analogous to how ZD,A reroutes between A and the proto
ol.)For a de
eiver D, DS(D) is de�ned analogously to AS(A). See Figure 1(a).We then have that the following networks are perfe
tly indistinguishable for all environments
Z: π ∪ {A,DS ,Z} and π ∪ {Ã, D̃S ,ZD,A} (Figures 1(a) and (b)). This is due to the fa
t thatthe dummy-adversary Ã just forwards the messages between π and the adversary A simulatedby ZD,A, and that DS by de�nition 
onsists of D (simulated by Z in the se
ond network) and
D̃S .Analogously, the following networks are perfe
tly indistinguishable for all environments Z:
ρ ∪ {AS ,D,Z} and ρ ∪ {ÃS , D̃,ZD,A}. Cf. Figures 1(d) and (
).Furthermore, sin
e π UC/
 emulates ρ with respe
t to the dummy-adversary/de
eiver, forall polynomial-time environments ZD,A, π ∪ {Ã, D̃S ,ZD,A} and ρ ∪ {ÃS , D̃,ZD,A} are indistin-guishable. Cf. Figures 1(b) and (
).Sin
e indistinguishability is transitive, π∪{A,DS ,Z} and ρ∪{AS,D,Z} are indistinguishablefor all polynomial-time environments Z. Furthermore, DS and AS are polynomial-time, andtheir 
onstru
tion does not depend on Z, and the 
onstru
tion of DS does not depend on D.Thus π UC/
 emulates ρ. �11
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Ãi−1

D̃i−1
S

π

Ã
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Figure 2: Hybrid network π∪{Ã, D̃S ,Zi} in the proof of Theorem 7. The hybrid environment Ziis depi
ted by the dashed line. Conne
tions between Z and the de
eivers, as well as 
onne
tionsbetween σ and the instan
es of π are omitted. The 
onne
tions between Z and the de
eiversare analogous to those between Z and the adversaries.2.6 Universal 
ompositionOne of the main advantages of the UC framework is the universal 
omposition theorem. Thistheorem guarantees that a UC se
ure proto
ol π 
an be se
urely used as a subproto
ol of arbitraryother proto
ols σ, even when σ and polynomially many instan
es of π run 
on
urrently. Thesame 
ompositionality result also holds for the UC/
 se
urity notion.To formulate the 
omposition theorem, we introdu
e some notation. Let π and σ be proto
ols.Then let σπ denote the proto
ol where σ invokes a polynomial number of instan
es of thesubproto
ol π. That is, ma
hines in σ may give inputs to ma
hines in π, these inputs aretreated by π as 
oming from the environment. When the ma
hines in π give output ba
k to theenvironment, these are sent to the invoking ma
hines in σ. Thus, in a sense, in σπ, the proto
ol σplays the role of the environment for the instan
es of π. For example, if σF is a proto
ol usinga 
ommitment fun
tionality F (i.e., σF is a proto
ol in the F-hybrid model), then σπ would bethe proto
ol that uses the subproto
ol π instead of using the 
ommitment fun
tionality F . Thefollowing theorem guarantees that, if π UC/
 emulates some other proto
ol ρ (e.g., ρ = F), wedo not loose se
urity if we repla
e subproto
ol invo
ations of ρ by subproto
ol invo
ations of π.Theorem 7 (Universal 
omposition) Let π, ρ, and σ be polynomial-time proto
ols. Assumethat π UC/
 emulates ρ. Then σπ UC/
 emulates σρ.Proof. Let Ã and D̃ denote the dummy-adversary and the dummy-de
eiver. Due to Lemma 6,it is su�
ient to 
onstru
t a polynomial-time de
eiver-simulator D̃∗
S and a polynomial-timeadversary-simulator Ã∗

S su
h that for all polynomial-time environments Z, the networks σπ ∪
{Ã, D̃∗

S ,Z} and σρ∪{Ã∗
S, D̃,Z} are indistinguishable. (We write Ã∗

S and D̃∗
S to distinguish fromthe simulators ÃS and D̃S de�ned below.)By assumption, there are a polynomial-time de
eiver-simulator D̃S and a polynomial-timeadversary-simulator ÃS su
h that for all polynomial-time environments Z, the networks π ∪

{Ã, D̃S ,Z} and ρ ∪ {ÃS , D̃,Z} are indistinguishable.Let n be a polynomial upper bound on the number of instan
es of π or ρ that are invokedby σ.Given an environment Z, we de�ne the hybrid environment Zi. Zi is depi
ted in Figure 1by the area en
losed by a dashed line. Zi internally simulates the following ma
hines: Theoriginal environment Z; an instan
e of σ; i − 1 instan
es of π, denoted π1, . . . , πi−1; n − i − 1instan
es of ρ, denoted ρi+1, . . . , ρn; an instan
e of Ã, denoted Ãσ; i−1 instan
es of Ã, denoted
Ã1, . . . , Ãi−1; n − i − 1 instan
es of ÃS, denoted Ãi+1

S , . . . , Ãn
S ; an instan
e of D̃, denoted Dσ;

i − 1 instan
es of D̃S , denoted D̃1
S , . . . , D̃i−1

S ; n − i − 1 instan
es of D̃, denoted D̃i+1, . . . , D̃n.12



For the sake of 
on
reteness in the following spe
i�
ation of the behaviour of Z, assumethat Z is exe
uted in a network with the proto
ol π, the dummy-adversary Ã, and the dummy-de
eiver-simulator D̃S .Messages of the form (id ,m) that Z sends to the adversary (meaning that Z instru
ts theadversary to deliver m to the ma
hine with identity id) are routed to one of the instan
es of Ã or
ÃS: If id is a ma
hine in σ, the message (id ,m) is passed to the internally simulated Ãσ. If id isa ma
hine in the j-th instan
e of π, we distinguish three 
ases: If j < i, then (id ,m) is passed tothe internally simulated Ãj. If j = i, then (id ,m) is passed to the external adversary A. If j > i,then (id ,m) is passed to the internally simulated Ãj

S. Similarly, we pro
eed for messages from
Z to the de
eiver: These messages are forwarded to D̃σ, D̃j

S (j < i), the external D̃S (j = i),or D̃j (j > i). Messages in the opposite dire
tion are handled analogously. Communi
ationbetween σ and Z is forwarded normally. Communi
ation between σ and some instan
e of π or ρis forwarded to the 
orresponding instan
e of π. That is, if σ sends a message to a ma
hine in the
j-th instan
e of π or ρ, this message is forwarded to the 
orresponding ma
hine in the internallysimulated πj if j < i, in the external proto
ol π if j = i, and in the internally simulated ρj if
j > i.We observe the following fa
ts about Zi.First, by 
onstru
tion, the networks π ∪ {Ã, D̃S ,Zi} and ρ ∪ {ÃS , D̃,Zi+1} are perfe
tlyindistinguishable.Furthermore, sin
e the dummy-adversary only forwards messages between Z and the pro-to
ol, we 
an repla
e a single instan
e of the dummy-adversary that handles all instan
es of
π and σ (as in the network σπ ∪ {Ã, D̃∗

S ,Z}) by individual instan
es of the dummy-adversaryfor ea
h proto
ol instan
e (as in the network π ∪ {Ã, D̃S ,Zn}). More pre
isely, the networks
π ∪ {Ã, D̃S ,Zn} and σπ ∪ {Ã, D̃∗

S ,Z} are perfe
tly indistinguishable if we de�ne D̃∗
S to be the(polynomial-time) de
eiver-simulator that internally simulates D̃σ, D̃1

S , . . . , D̃n−1
S , D̃S .Similarly, we have that networks ρ ∪ {ÃS , D̃,Z1} and σρ ∪ {Ã∗

S , D̃,Z} are perfe
tly indis-tinguishable if we de�ne Ã∗
S to be the (polynomial-time) adversary-simulator that internallysimulates Ãσ, ÃS, Ã2

S , . . . , Ãn
S .Finally, we 
laim that the networks π∪{Ã, D̃S ,Zn} and ρ∪{ÃS , D̃,Z1} are indistinguishable(we show this below). If we have shown this 
laim, Theorem 7 follows sin
e then σπ∪{Ã, D̃∗

S ,Z}and σρ ∪ {Ã∗
S , D̃,Z} are indistinguishable, and Ã∗

S and D̃∗
S are 
onstru
ted independently of Zand polynomial-time.We pro
eed to show that π ∪ {Ã, D̃S ,Zn} and ρ ∪ {ÃS , D̃,Z1} are indistinguishable.Let Z∗ be the environment whi
h on input (i, z) simulates Zi with input z. By de�nitionof D̃S and ÃS, the networks π ∪ {Ã, D̃S ,Z∗} and ρ ∪ {ÃS , D̃,Z∗} are indistinguishable. Thus,there is a negligible fun
tion µ su
h that

|Pr[EXECπ∪{Ã,D̃S ,Z∗}(k, (i, z)) = 1] − Pr[EXECρ∪{ÃS ,D̃,Z∗}(k, (i, z)) = 1]| ≤ µ(k)for all k, i ∈ N, z ∈ {0, 1}∗. By 
onstru
tion of Z∗, this implies that
|Pr[EXECπ∪{Ã,D̃S ,Zi}

(k, z) = 1] − Pr[EXECρ∪{ÃS ,D̃,Zi}
(k, z) = 1]| ≤ µ(k)for all k, i ∈ N, z ∈ {0, 1}∗. Using the triangle inequality and the fa
t that π ∪ {Ã, D̃S ,Zi} and

ρ ∪ {ÃS , D̃,Zi+1} are perfe
tly indistinguishable, we get
|Pr[EXECπ∪{Ã,D̃S ,Zn}

(k, z) = 1] − Pr[EXECρ∪{ÃS ,D̃,Z1}
(k, z) = 1]| ≤ nµ(k).Sin
e n is a polynomial, nµ is negligible. Thus the networks π∪{Ã, D̃S ,Zn} and ρ∪{ÃS, D̃,Z1}are indistinguishable. �The most 
ommon use 
ase of the 
omposition theorem is given by the following 
orollary:13



Corollary 8 Let π and σ be polynomial-time proto
ols, and F and G be polynomial-time fun
-tionalities. Assume that π UC/
 emulates F and that σF UC/
 emulates G. Then σπ UC/
emulates G.Proof. Immediate from the universal 
omposition theorem (Theorem 7), and the transitivity ofUC/
 emulation (Lemma 3). �3 Voting s
hemesIn this se
tion we illustrate the UC/
 se
urity notion by applying it to the spe
ial 
ase of votings
hemes. We give a de�nition of in
oer
ibility that is tailored to the spe
i�
 
ase of votingproto
ols and show that this de�nition is implied by the UC/
 se
urity notion.De�nition 9 (Voting s
heme) Fix sets V (the set of votes), T (the set of tallies), P (the setof voters). A tally fun
tion is an e�
iently 
omputable fun
tion tally : (V ∪ {⊥})P → T .A voting s
heme for tally is a two-stage proto
ol. We 
all the stages voting phase and tallyingphase. In su
h a proto
ol, ea
h party Pi ∈ P gets an input vi ∈ V ∪{⊥} (the vote of Pi). vi = ⊥means that the Pi does not parti
ipate in the proto
ol (abstention). In the end of the tallyingphase a distinguished party T outputs a value t ∈ T .Typi
ally, V would be the set of all 
andidates. In more 
omplex s
hemes, elements of Vmight be, e.g., ordered lists of 
andidates in order of de
reasing pre
eden
e. The set of tallies
T usually is the set of all fun
tions V → N0. Alternatively, in a voting s
heme whi
h onlyannoun
es the winner, we would have have T = V. The tally fun
tion tally(v1, . . . , vn) spe
i�eswhat the 
orre
t tally is for the votes vi ∈ V ∪ {⊥} where vi = ⊥ denotes abstention.Note that we do not require that the parties Pi 6= T are aware whether they are in the tallyingor the voting phase. Su
h a requirement might be di�
ult to ensure in an asyn
hronous envi-ronment. In parti
ular, votes 
ast during the tallying phase (but before the tally is announ
ed)might or might not be 
ounted.An ideal voting s
heme is given by the following fun
tionality:De�nition 10 (Voting fun
tionality) The voting fun
tionality Fvote = F tally

vote expe
ts (atmost one) message vi ∈ V from ea
h party Pi ∈ P. When re
eiving tally from T , Fvotesets vi := ⊥ for all Pi ∈ P from whi
h it did not re
eive a message vi ∈ V yet. Then Fvote 
om-putes t := tally(vi, i ∈ P) (the tally) and sends t to the adversary. Then, when Fvote re
eives
deliver from the adversary, it sends t to the party T .This fun
tionality models that the tally output by T is 
orre
tly 
omputed using the tallyfun
tion (as long as T itself is not 
orrupted) and that the individual votes are se
ret (even if Tis 
orrupted).Natural properties of voting s
hemes are, e.g., 
orre
tness (the tally is 
orre
t even in thepresen
e of an adversary) and anonymity (the adversary 
annot tell who voted for whom, ex
eptas dedu
ible from the tally itself). We will not formalise these properties here, but it is easyto see that a voting s
heme that UC emulates the voting fun
tionality Fvote satis�es reasonableformalisations of these properties. Sin
e the UC/
 se
urity notion is stronger than UC, thisimplies that these elementary properties are satis�ed by UC/
 se
ure voting s
heme, too.In our 
ontext, the most interesting property of a voting s
heme is in
oer
ibility. We will �rstformalise what in
oer
ibility means for voting s
hemes (independently of our framework). Thenwe will show that in
oer
ibility of voting s
hemes is implied by se
urity in the UC/
 framework.Assume some party P that wants to 
ast a vote v. In an in
oer
ible voting s
heme, we expe
t14



that if the adversary A for
es a party P to deviate from the proto
ol, A should not be ableto tell the di�eren
e between P obeying the adversary A, or the party P 
asting the vote vanyway (we say P de
eives the adversary). Of 
ourse, sin
e the adversary learns the tally, thisgoal is una
hievable � the tally always leaks a non-negligible amount of information about thevote of P (at least if the number of voters is polynomial). We 
an only a
hieve the following:The adversary's advantage in distinguishing between P obeying and P de
eiving is not greaterthan the advantage with whi
h the adversary 
ould distinguish these two 
ases given only thetally. To formulate this de�nition, we �rst introdu
e some notation:Fix a voter P ∈ P and a vote v ∈ V ∪ {⊥}. Fix a distribution B on (V ∪ {⊥})P\{P}. (Brepresents the distribution of the votes of the other voters.) Given a vote v, let Bv denote thedistribution over (V ∪{⊥})P that 
hooses the votes for all Pi ∈ P \{P} a

ording to B and usesthe vote v for P . A

ordingly, tally(Bv) denotes the tally resulting from votes 
hosen a

ordingto Bv. Let Advideal (B, v) := maxv∗ ∆(Bv,Bv∗) where v∗ ranges over V ∪ {⊥} and ∆ denotes thestatisti
al distan
e. (Advideal des
ribes how well an adversary 
an distinguish between beingobeyed and being de
eived using only the tally.)A voting adversary is an adversary that 
ontrols a party P (however, depending on thesetting, P may 
hoose to ignore the instru
tions given by the adversary) and that may de
idewhen the tallying phase starts. We require that a voting adversary eventually starts the tallyingphase. Furthermore, when the party T outputs the tally, the tally is given to the voting adversary.In the end, the voting adversary output a bit b.Given a voting adversary A, let Probey(A,B) be the probability that A outputs 1 in the 
asethat the party P follows the instru
tions of the adversary (i.e., P is 
orrupted) and all otherparties honestly follow the proto
ol (with inputs 
hosen a

ording to B).Given some program 
ode d (the de
eption strategy for P ), let Prdeceive(A, d,B) denote theprobability that the adversary A outputs 1 if P follows the instru
tions in d and all other partieshonestly follow the proto
ol (with inputs 
hosen a

ording to B). (Intuitively, d is a strategythat tells P how to vote for v and simultaneously make the adversary believe that P obeys theadversary.) We assume that d gets v and the identity of P as input. In the same setting, let
Tallydeceive(A, d,B) denote the tally output by T .De�nition 11 (In
oer
ible voting s
hemes) A voting s
heme is in
oer
ible if there is a de-
eption strategy d su
h that for every polynomial-time voting adversary, every voter P ∈ P, everyvote v ∈ V, and every e�
iently sampleable distribution B the following holds:

• The de
eption strategy 
asts the right vote: The random variables Tallydeceive(A, d,B) and
tally(Bv) are 
omputationally indistinguishable.

• The adversary 
annot distinguish between being obeyed and being de
eived: For somenegligible fun
tion µ we have that
∣

∣Probey(A,B) − Prdeceive(A, d,B)
∣

∣ ≤ Advideal (B, v) + µ.Many variants of this de�nition are possible. For example, one 
ould allow the voting ad-versary to 
orrupt additional parties from P \ {P}. (In this 
ase, one would have to adapt thede�nition of Advideal .) For the sake of simpli
ity, we do not strive to �nd the most generalformulation of De�nition 11, espe
ially in view of the fa
t that the UC/
 framework alreadyprovides us with a very general de�nition of in
oer
ibility.We will now show that in
oer
ibility in the sense of De�nition 11 is already implied byUC/
 se
urity. We �nd that the proof of the following theorem is very instru
tive be
ause itgives some intuition for the UC/
 framework, and be
ause it illustrates how appli
ation-spe
i�
15



in
oer
ibility de�nitions (not restri
ted to the appli
ation of voting) 
an be proven to be impliedby UC/
 se
urity.Theorem 12 Let π be a voting s
heme for the tally fun
tion tally. Assume that π UC/
 emu-lates F tally
vote with stati
 
orruption/de
eption. Then π is an in
oer
ible voting s
heme.Proof. Fix a voting adversary A. We de�ne the UC/
 adversary A′ to behave like A, ex
eptthat when A starts the tallying phase, A′ instead sends tally to the environment. When Awould give an output b, A′ sends b to the environment.We de�ne an environment Zobey := ZP,v,B

obey as follows: Initially, Zobey sends a 
orruptionrequest to the party P . Then Zobey 
hooses votes v1, . . . , vn a

ording to the distribution B andgives these votes as input to the parties Pi ∈ P \{P} (or, if vi = ⊥, sends no input to Pi). Whenthe adversary sends tally to Zobey , Zobey sends tally to the party T . When the adversarysends b to Zobey , Zobey terminates with output b.Furthermore, we de�ne Zdeceive := ZP,v,B
deceive as follows: Initially, Zdeceive sends a de
eptionrequest to the party P . Then Zdeceive 
hooses votes v1, . . . , vn a

ording to the distribution Band gives these votes as input to the parties Pi ∈ P \ {P} (or, if vi = ⊥, sends no input to Pi).Then it sends v to the de
eiver. (This will make the de
eiver D de�ned below instru
t P to
ast vote v.) When the adversary sends tally to Zdeceive , Zdeceive sends tally to the party T .When the adversary sends b to Zdeceive , Zdeceive terminates with output b.We de�ne the de
eiver D as follows: When re
eiving a state from party P , D instru
ts P tosend this state to the adversary. (This is ne
essary only for formal reasons: sin
e the adversaryshould believe that P is 
orrupted, he expe
ts a state from P . Sin
e we are in the 
ase of stati

orruptions/de
eptions, the state is only sent before the start of the proto
ol and is thus empty.)When D re
eives v from the environment, D instru
ts P to send v to the fun
tionality Fvote.(I.e., P should 
ast the vote v.) Messages 
oming from the adversary are ignored. In parti
ular,when the adversary instru
ts P to 
ast some other vote, this is ignored.Sin
e π UC/
 emulates Fvote := F tally

vote , there exist a polynomial-time de
eiver-simulator DSand a polynomial-time adversary-simulator A′
S su
h that for all polynomial-time environments

Z, the networks π ∪ {A′,DS ,Z} and Fvote ∪ {A′
S ,D,Z} are indistinguishable. (We write Fvotefor the proto
ol 
ontaining Fvote and the dummy parties.)By 
onstru
tion,

Probey(A,B) = Pr[EXECπ∪{A′,DS ,Zobey} = 1]. (3)(We omit the arguments k, z from EXEC for brevity.) Note that sin
e no party is de
eiving, thede
eiver-simulator DS does nothing.We de�ne the de
eption strategy d as follows: A party P following d and wishing to 
ast thevote v internally simulates DS . Then P sends the empty state to DS . (This is done for formalreasons: in the UC/
 framework, DS would get su
h an empty state when P is de
eiving fromthe start. Hen
e this message informs DS that P is de
eiving.) Then P sends v to the internallysimulated DS as 
oming from the environment. Then P follows the instru
tions that DS givesto it. In the 
ase that only P is de
eiving, DS only sends instru
tions to P . Thus it is notne
essary that P simulates any other ma
hines 
ommuni
ating with DS .Then, by 
onstru
tion,
Prdeceive(A, d,B) = Pr[EXECπ∪{A′,DS,Zdeceive} = 1]. (4)Compare the networks Fvote ∪{A′

S ,D,Zdeceive} and Fvote ∪{A′
S ,D,Zobey}. In the �rst network,

Zdeceive instru
ts the dummy-party P̃ (via the de
eiver D) to send the vote v to Fvote. In these
ond network, A′
S instru
ts P̃ to send some other vote v∗ to Fvote (where we write v∗ = ⊥ to16



indi
ate that A′
S does not instru
t P̃ to vote before A′

S sends tally to the environment). Inthe ideal model, P̃ does not re
eive any in
oming messages from other parties. Thus, in bothnetworks, A′
S does not get any messages from P̃ . Thus, A′

S 
an only use the tally to distinguishthe networks. The distribution of the tally in the network Fvote ∪ {A′
S ,D,Zobey} is tally(Bv∗),and the distribution of the tally in the network Fvote∪{A′

S,D,Zdeceive} is tally(Bv). Sin
e Zobeyand Zdeceive output the bit b re
eived from A′
S, it follows that

∣

∣Pr[EXECFvote∪{A′

S
,D,Zobey} = 1] − Pr[EXECFvote∪{A′

S
,D,Zdeceive} = 1]

∣

∣

≤ max
v∗∈V∪{⊥}

∆(Bv,Bv∗) = Advideal (B, v).Sin
e for all polynomial-time Z, the networks π ∪ {A′,DS ,Z} and Fvote ∪ {A′
S ,D,Z} are indis-tinguishable, it follows that

∣

∣Pr[EXECπ∪{A′,DS ,Zobey} = 1] − Pr[EXECπ∪{A′,DS ,Zdeceive} = 1]
∣

∣ ≤ Advideal (B, v) + µfor some negligible fun
tion µ. Then with (3) and (4) we get that
∣

∣Probey(A,B) − Prdeceive(A, d,B)
∣

∣ ≤ Advideal (B, v) + µ.This shows that the proto
ol π satis�es the se
ond 
ondition in De�nition 11. (Noti
e that the
onstru
tion of the de
eption strategy d is independent of A and B.)We are left to show that Tallydeceive(A, d,B) and tally(Bv) are indistinguishable (�rst 
ondi-tion of De�nition 11).Let t denote the message re
eived by Zdeceive from the party T (t is the tally). In the network
Fvote ∪ {A′

S ,D,Zdeceive}, t is the output of Fvote. Thus the distribution of t is tally(Bv): Theparty P is instru
ted by D to send the vote v, all other parties 
ast votes 
hosen a

ording tothe distribution B.In the network π ∪ {A′,DS ,Zdeceive}, by 
onstru
tion of Zdeceive and of d, the distributionof t is Tallydeceive(A, d,B).For 
ontradi
tion, assume that Tallydeceive(A, d,B) and tally(Bv) were not 
omputationallyindistinguishable. Then there is an e�
iently 
omputable fun
tion f : {0, 1}∗ → {0, 1} su
hthat |Pr[f(Tallydeceive(A, d,B)) = 1] − Pr[f(tally(Bv)) = 1]| is not negligible. Then we de-�ne Z∗
deceive like Zdeceive , ex
ept that Z∗

deceive outputs f(t). Then |Pr[EXECπ∪{A′,DS,Z∗

deceive
} =

1] − Pr[EXECFvote∪{A′

S
,D,Z∗

deceive
} = 1]| is not negligible. This is a 
ontradi
tion to the fa
t thatfor all polynomial-time Z, the networks π∪{A′,DS ,Z} and Fvote∪{A′

S,D,Z} are indistinguish-able. Thus Tallydeceive(A, d,B) and tally(Bv) are 
omputationally indistinguishable and the �rst
ondition of De�nition 11 is satis�ed by π. �The design of voting proto
ols that are UC/
 se
ure is, of 
ourse, an open problem. Webelieve designing UC/
 se
ure remote voting s
hemes to be a 
hallenging problem that mayinvolve novel 
ryptographi
 te
hniques. In the 
ase of non-remote voting (i.e., involving votingbooths and other partially trusted setup su
h as in, e.g., [Cha04, CRS05, MN06, BMQR07℄),realising UC/
 se
urity might be mu
h easier. We therefore parti
ularly propose UC/
 as ase
urity de�nition for that setting.For
ed-abstention atta
ks. A proto
ol that UC/
 emulates the fun
tionality Fvote is alsose
ure against for
ed-abstention atta
ks: In the ideal model, a de
eiving party 
an 
ast a votewithout the adversary noti
ing. Thus in the real model, a party 
an also vote without theadversary noti
ing. In some settings, se
urity against for
ed-abstention atta
ks is impossible toa
hieve: If the adversary 
ontrols the network and 
an observe all 
ommuni
ation of a party P ,the adversary will always noti
e when a party parti
ipates in the proto
ol. To model a weaker17



form of in
oer
ibility that does not imply se
urity against for
ed-abstention atta
ks, one 
an
hange the de�nition of Fvote su
h that Fvote informs the adversary whenever a vote has been
ast (revealing the identity of the voter, but note the vote itself).4 In
oer
ible two-party proto
olsIn this se
tion, we show that at least with respe
t to stati
 
orruptions/de
eptions, UC/
 se
uretwo-party 
omputation is possible using natural setup assumptions (su
h as, e.g., a publi
 keyinfrastru
ture). We show this by proving that under 
ertain 
onditions, proto
ols se
ure in theso-
alled Externalized UC framework are also UC/
 se
ure. This allows us to reuse existingresults in that framework.4.1 Externalized UC frameworkWe �rst give a short overview over the Externalized UC (EUC) framework as proposed byCanetti, Dodis, Pass, and Wal�sh [CDPW07℄ (also known as Generalized UC, UC with globalsetup, or, proposed independently by Hofheinz, Müller-Quade, and Unruh [HUMQ07℄, UC with
atalysts).First, 
onsider the UC framework and assume that some real proto
ol π uses a fun
tionality
F , say a CRS fun
tionality. Then only the adversary and the proto
ol parties have dire
t a

essto the CRS. The environment learns the CRS only through the adversary. In the real model,this is as good as having dire
t a

ess be
ause without loss of generality, the adversary will notlie to the environment. In the ideal model, however, the simulator 
an 
hoose an arbitrary (fake)value for the CRS instead (
ontaining a trapdoor); the environment will not be able to noti
ethat the CRS was 
hosen di�erently. The se
urity proof of most UC se
ure proto
ols in theCRS-hybrid model are based on a simulator that 
hooses su
h a fake CRS. However, there aretwo disadvantages in letting the simulator 
hoose the value of the CRS. First, when 
omposingdi�erent proto
ols that all use a CRS, ea
h of them needs its own CRS. Se
ond, as pointed outby Pass [Pas03℄, a se
urity de�nition where the simulator may 
hoose the value of the CRS doesnot guarantee deniability.The EUC framework removes these two restri
tions by extending the UC framework. In theEUC framework, the environment is allowed to dire
tly query the fun
tionality F , both in thereal and in the ideal model. For example, in the 
ase of the CRS fun
tionality, the environmentwill know the true value of the CRS (as 
hosen by the fun
tionality), and the simulator will notbe able to make up a fake value.To make this more formal, we �rst introdu
e the notion of a shared fun
tionality. Su
h afun
tionality is derived from a normal fun
tionality but additionally honours requests from theenvironment. The environment 
an make requests in the name of any party and in the name ofthe adversary.De�nition 13 (Shared fun
tionality) Let F be a fun
tionality. The shared fun
tionality F̄behaves like F , with the following extension: When F̄ gets a message from some proto
ol party orthe adversary, the request is forwarded to an internally simulated F , and the answer m′ of F isforwarded ba
k to the party or adversary. When F̄ gets a message (P,m) from the environmentwhere P is the identity of some party, the message m is given to the internally simulated F as
oming from P . The answer m′ of F is forwarded ba
k to Z.Given this notion of a shared fun
tionality, it is easy to de�ne EUC se
urity. In the EUCframework, the environment has a

ess to the shared fun
tionality both in the real and in theideal model. 18



De�nition 14 (EUC se
urity) Let π be a proto
ol using a shared fun
tionality F̄ . Let ρ bea proto
ol. We say that π F̄-EUC emulates ρ if for any polynomial-time adversary A thereexists a polynomial-time adversary S (the adversary-simulator) su
h that for any polynomial-time environment Z the networks π ∪ {A,Z} and ρ ∪ {F̄ ,S,Z} are indistinguishable.Sin
e π already 
ontains F̄ , we have that F̄ is present both in the real and in the ideal model.Sin
e the simulator is not allowed to simulate the fun
tionality F̄ any more, EUC se
urity isstri
tly stronger than UC se
urity. In parti
ular, it was shown by Canetti et al. [CDPW07℄ thatin the EUC framework, it is not even possible to 
onstru
t se
ure 
ommitment proto
ols using aCRS. There are, however, alternative fun
tionalities that allow to design EUC se
ure proto
ols:The key registeration with knowledge (KRK) fun
tionality Fkrk is a fun
tionality where ea
hparty may register a publi
 key/se
ret key pair and every party may request the publi
 keys ofall parties and the se
ret key of itself. The restri
ted KRK fun
tionality F∗
krk is de�ned like Fkrkex
ept that un
orrupted parties are not allowed to retrieve their se
ret key.4The augmented CRS (ACRS) fun
tionality Facrs 
hooses a publi
 key and a 
orrespondingmaster se
ret key, and derives for ea
h party a 
orresponding individual se
ret key. The publi
key is given to all parties, the se
ret key of ea
h party is only given to that party. The restri
tedACRS fun
tionality F∗

acrs is de�ned like Facrs, ex
ept that un
orrupted parties are not allowedto retrieve their se
ret key.For details on the restri
ted KRK and ACRS fun
tionalities, see [CDPW07℄. (They aresimply 
alled KRK and ACRS fun
tionalities (Gkrk and Gacrs) there, we added the quali�er�restri
ted� for disambiguation.)The signature 
ard fun
tionality Fsc with owner P pi
ks a signing/veri�
ation key pair andreveals the veri�
ation key to all parties. The party P (the owner) may send arbitrary messages
m to Fsc and re
eives signatures of m ba
k. The signing key is never revealed. The restri
tedsignature 
ard fun
tionality F∗

sc additionally allows one proto
ol session to lo
k the signature
ard. While the signature 
ard is lo
ked by a given proto
ol session, in all other proto
ol sessions,even the owner P may not sign messages.5For details on the restri
ted signature 
ard fun
tionality, see [HUMQ07℄ (simply 
alled thesignature 
ard fun
tionality Fsc there).Theorem 15 (EUC multi-party 
omputation [HUMQ07, CDPW07℄) Let F̄ ∈
{F̄∗

krk, F̄
∗
acrs, F̄

∗
sc}. Let G be a well-formed6 fun
tionality. Then there is a proto
ol π inthe F̄-hybrid model su
h that π F̄-EUC emulates G with stati
 
orruptions.Proof. Canetti, Dodis, Pass, and Wal�sh [CDPW07℄ show that for F̄ ∈ {F̄∗

krk, F̄
∗
acrs}, there is aproto
ol πcom in the F̄-hybrid model su
h that F̄-EUC emulates the 
ommitment fun
tionality4The de�nition of Fkrk in [CDPW07℄ lets parties 
hoose the randomness used to generate their key pair whenregistering. Thus every party knows its own se
ret key and the restri
tion that un
orrupted parties are notallowed to retrieve their own se
ret keys is meaningless. We therefore assume that the intended de�nition in[CDPW07℄ is that only 
orrupted parties may 
hose the randomness while for un
orrupted ones the randomnessis 
hosen by the fun
tionality.5Stri
tly speaking, a fun
tionality with su
h a lo
king me
hanism does not �t our de�nition of shared fun
-tionalities: Su
h a lo
king fun
tionality will have to distinguish di�erent proto
ol sessions. In parti
ular, it mightanswer di�erently to a query sent by the owner, and the same query sent by the environment in the name ofthe owner, 
ontradi
ting De�nition 13. This 
an be remedied by a slight 
hange in the de�nition of the lo
kingme
hanism: Instead of lo
king with respe
t to a given session, lo
king requests are a

ompanied by a se
retrandom non
e N . Then only unlo
king and signing requests 
ontaining N will be honoured. As long as theun
orrupted parties do not divulge N , this has the same e�e
t as session-wise lo
king, and the fun
tionality willthen not have to distinguish between the environment and proto
ol parties.6A well-formed fun
tionality is one whose behaviour does not depend on whi
h parties are 
orrupted orde
eiving. 19



Fcom. Hofheinz, Müller-Quade, and Unruh [HUMQ07℄ show that for F̄ = F̄∗
sc, there is a proto
ol

πcom in the F̄-hybrid model su
h that F̄ -EUC emulates Fcom. [CDPW07, after Thm. 5℄ showthat for any shared fun
tionality F̄ and any well-formed fun
tionality G, given a proto
ol πcom

F̄-EUC emulating Fcom, we 
an 
onstru
t a proto
ol π that F̄-EUC emulates G with stati

orruptions. (Indeed, if G is not only well-formed, but even adaptively well-formed as de�nedby Canetti, Lindell, Ostrovsky, and Sahai [CLOS02℄, then π even F̄-EUC emulates G withadaptive 
orruptions. However, we do not need this fa
t in the following.) Note that this resultimpli
itly uses our 
onvention that we use se
ure 
hannels that do not leak anything to theadversary. Otherwise, we 
ould not realise all fun
tionalities G; only fun
tionalities that notifythe adversary when invoked would be possible. �4.2 EUC se
urity implies UC/
 se
urityIn this se
tion, we show that under 
ertain 
onditions, an EUC se
ure proto
ol is already UC/
se
ure with stati
 
orruptions/de
eptions. To state our result, we �rst introdu
e some additionalnotation.First, to 
apture the relation between F̄∗
krk, F̄

∗
acrs, F̄

∗
sc and Fkrk,Facrs,Fsc, we introdu
e thenotion of a restri
tion:De�nition 16 (Restri
tions) Let F and F∗ be fun
tionalities. We say F∗ is a restri
tionof F if F∗ behaves like F , ex
ept that for ea
h party P there is an e�
iently re
ognisable set CPof messages su
h that F∗ ignores any message m ∈ CP from P . Here CP may depend on themessages ex
hanged between F∗ and P so-far.We say F̄∗ is a shared restri
tion of F if there exists a restri
tion F∗ of F su
h that F̄∗ isthe shared fun
tionality 
orresponding to F∗.We 
all a proto
ol π ∋ F̄∗ restri
tion-
ompatible to F̄∗ if no honest party P in π ever sendsa message m ∈ CP to F̄∗.For example, in the 
ase of F̄∗ = F̄∗

krk, CP would be the set of messages requesting a se
retkey. Hen
e F̄∗
krk is a shared restri
tion of Fkrk. Similarly, F̄∗

acrs is a shared restri
tion of Facrs.In the 
ase of F̄∗ = F̄∗
sc, when the signature 
ard is lo
ked for the session with non
e N (seefootnote 5), CP would be the set of unlo
king and signing requests 
oming from the owner P ofthe 
ard but not tagged with N . When the signature 
ard is not lo
ked, CP is empty. Hen
e

F̄∗
sc is a shared restri
tion of Fsc.We additionally need to re�ne the notion of EUC se
urity to 
apture 
ertain te
hni
al re-quirements on the simulator:De�nition 17 (Spe
ial simulator) We say π F̄-EUC emulates ρ with a spe
ial simulator ifthe adversary-simulator ÃS 
orresponding to the dummy-adversary Ã has the following property:When the environment sends a message (F ,m) to the ÃS, ÃS sends m to F̄ . When F̄ sends

m to ÃS, ÃS sends (F ,m) to the environment. These messages are not re
orded in the state of
ÃS. ÃS never sends a message m to F̄ unless he got (F ,m) from the environment, and neversends a message (F ,m′) to the environment unless he got m′ from F̄ .In other words, ÃS provides a dire
t 
onne
tion between F̄ and Z whi
h he does not even listentoo. In the 
ase that no party is 
orrupted, the dummy-adversary Ã in the real model only hasa

ess to F̄ . Thus in this 
ase, the behaviour of ÃS is fully spe
i�ed by De�nition 17, namely
ÃS forwards messages between F̄ and the environment and does nothing else. In most proto
ols,this is the natural behaviour of ÃS in the un
orrupted 
ase anyway.If some party is 
orrupted, De�nition 17 implies that ÃS 
annot query F̄ (ex
ept whenforwarding messages from the environment). For example, if F̄ = F̄∗

krk, then ÃS 
ould not20



even query F̄ to get the publi
 keys of the parties. This seems to be a strong restri
tion. Theadversary-simulator ÃS 
an, however, instru
t the 
orrupted party to request the publi
 keysfrom the fun
tionality. Thus everything the adversary 
ould do by dire
tly 
onta
ting F̄ 
analso be done by giving suitable instru
tions to the 
orrupted party. Analogous reasoning holdsfor F̄ = F̄∗
acrs and F̄ = F̄∗

sc. Thus at least for these fun
tionalities, De�nition 17 does not posea restri
tion in the 
ase of a 
orrupted party.Corollary 18 (EUC multi-party 
omputation with spe
ial simulator) Let F̄∗ ∈
{F̄∗

krk, F̄
∗
acrs, F̄

∗
sc}. Let G be a well-formed fun
tionality. Then there is a proto
ol π in the

F̄∗-hybrid model su
h that π F̄∗-EUC emulates G with stati
 
orruptions and spe
ial simulator.Furthermore, π is restri
tion-
ompatible to F̄∗.Proof. The simulators in the 
onstru
tions from [HUMQ07, CDPW07℄ already 
onstru
t dummy-adversary-simulators that ful�l De�nition 17 in the un
orrupted 
ase. In the 
orrupted 
ase,their simulators 
an be made to ful�l De�nition 17 by repla
ing all dire
t requests to F̄∗ byindire
t 
alls through the 
orrupted party. The proto
ols 
onstru
ted in [HUMQ07, CDPW07℄are restri
tion-
ompatible to F̄∗. Then the proof is as for Theorem 15. �Finally, we will 
onsider a restri
ted 
lass of fun
tionalities:De�nition 19 (Silent fun
tionalities) A fun
tionality G is silent if it ignores all messagesfrom the adversary or the de
eiver and never sends messages to the adversary or the de
eiver.In other words, silent fun
tionalities are those that leak no information. Note that it is notex
luded that the adversary or de
eiver indire
tly gets a

ess to G through a 
orrupted orde
eiving party.The main result of this se
tion (Theorem 23) will be to show that, under 
ertain 
onditions,a proto
ol π UC/
 emulates a fun
tionality G with stati
 
orruptions/de
eptions if π EUCemulates G with stati
 
orruptions.The most important 
ase is 
overed by the following lemma:Lemma 20 Let G be a silent polynomial-time fun
tionality. Let F be a polynomial-time fun
-tionality and let F̄∗ be a shared restri
tion of F . Let π be a two-party proto
ol in the F-hybridmodel with parties P and Q. Let π0 := π \ F ∪ {F̄∗}. Assume that π0 is restri
tion-
ompatibleto F̄∗ and that π0 F̄∗-EUC emulates G for for stati
 
orruptions of Q.7Then π UC/
 emulates G for stati
ally 
orrupted Q and for stati
ally de
eiving Q.8Proof. To simplify the proof, we �rst introdu
e some alternative notation. In the de�nitionof the network model in the UC framework, ma
hines spe
ify the re
ipient of a message m byatta
hing the identity of the re
ipient to the message. Although this is 
onvenient for de�ningproto
ols, it makes 
ertain proofs relatively di�
ult to formulate: In intermediate proof steps,we often 
onsider 
hanged ma
hines that send their messages to di�erent re
ipients than theiroriginal program would pres
ribe (the ma
hines are �rewired�). Furthermore, ma
hines likethe dummy-adversary that simply forward messages expe
t headers with the re
ipients of themessages. Explaining the 
onstru
tions below in su
h a setting leads to 
ompli
ated and hard-to-read textual des
riptions even in the 
ase of relatively simple �rewiring�.To make presentation simpler, we instead assume that ea
h ma
hine has a number of namedports. Between two ports a and b we 
an have a 
onne
tion whi
h means that messages send on7That is, we assume a 
orruption s
hedule in whi
h P is never 
orrupted and Q may be 
orrupted, but onlybefore the proto
ol starts.8That is, we assume a 
orruption s
hedule in whi
h the environment always makes Q 
orrupted or de
eivingbefore the proto
ol start and never leaves Q un
ontrolled and always leaves P un
ontrolled.21



a are re
eived on b. Any network using this formalism 
an easily be 
onverted into a networkusing the original formalism with message-headers. The formalism using ports, however, has theadvantage that we 
an easily des
ribe the 
on�guration of a network by giving a pi
ture withlines indi
ating the 
onne
tions between ports. In the pi
tures, we follow the 
onvention thatin all o

urren
es of a given ma
hine, the relative position of its ports is the same. This allowsto 
ompare di�erent networks without having to pay attention to the (somewhat hard to read)port names.EUC se
urity, un
orrupted 
ase. By assumption, π0 F̄∗-EUC emulates G with a spe
ialsimulator. Consider an environment Z∗ that does not query the fun
tionality F̄∗ in the nameof P (but Z∗ may query F̄∗ in the name of Q). Let Â0 denote the dummy-adversary in this
ase. (We write Â instead of Ã to distinguish this dummy-adversary for the UC/
 setting, andwe write the supers
ript 0 to indi
ate that it is the dummy-adversary for the un
orrupted 
ase.)The resulting real model π0 ∪ {Â0,Z∗} is depi
ted in Figure 3, network A. (Here and in thefollowing pi
tures, we draw several boxes marked Z∗ or Z. These a supposed to denote a singlema
hine, the separation into several boxes is only for graphi
al reasons.)Note the following parti
ularities:Instead of F̄∗, we have written F in network A be
ause the shared fun
tionality F̄∗ and thefun
tionality F behave identi
ally, ex
ept that we allow Z∗ to a

ess F̄∗ in the name of Q andthat 
ertain messages from un
orrupted parties are ignored by F̄∗. The additional a

ess for Z∗,however, is already expressed by the 
onne
tions in network A. And the messages that would beignored by F̄∗ are not sent by honest parties anyway sin
e π0 is restri
tion-
ompatible to F̄∗.Furthermore, there are two 
onne
tions ending in the port fq of F . This is due to the fa
tthat both Z∗ and Q may a

ess F in the name of Q. Responses to messages from Z∗ and Qarriving at that port are sent ba
k to the Z∗ and Q, respe
tively. The dummy-adversary hasno 
onne
tions to the proto
ol parties P and Q be
ause they are un
orrupted and we assumese
ure 
hannels.The 
orresponding ideal model G ∪ {F̄∗, Â0
S ,Z∗} is depi
ted in Figure 3, network B. Herethe dummy-adversary-simulator Â0

S is a ma
hine that simply forwards all messages betweenits ports fa and fa ′. This is due to the fa
t that we assumed EUC-emulation with a spe
ialsimulator. The dummy-parties are denoted by P̃ and Q̃.Sin
e π0 F̄∗-EUC emulates G with a spe
ial simulator, we have that the networks A and Bare indistinguishable for all polynomial-time environments Z∗.EUC se
urity, Q 
orrupted. By assumption, π0 F̄∗-EUC emulates G in the 
ase of 
orrupted
Q. Consider an environment Z that does not query the fun
tionality F̄∗ (neither in the name of
P nor Q). Let Â denote the dummy-adversary in this 
ase. The resulting real model π0∪{Â,Z}is depi
ted in Figure 3, network C. In network C, we write Q∗ for the 
orrupted party Q for
larity (it will be important later to distinguish Q∗ from the un
orrupted Q). The ideal model
G∪{F̄∗, ÂS ,Z} is depi
ted in Figure 3, network D. We write Q̃∗ for the 
orrupted dummy-party
Q̃. We 
an use F instead of F̄∗ for the same reasons as in the 
ase of an honest Q. Note thatthe dummy-adversary-simulator ÂS routes all queries from Z on the port fa ′ dire
tly to thefun
tionality F . This is be
ause we assumed EUC emulation with spe
ial simulator. We thenhave that for all polynomial-time Z, the networks C and D are indistinguishable.UC/
 se
urity, Q 
orrupted. We now pro
eed to show that π UC/
 emulates G for stati
ally
orrupted Q. By Lemma 6, it is su�
ient to 
onstru
t an adversary-simulator ÃS and a de
eiver-simulator D̃0

S that for every environment Z that 
orrupts Q, the real model π ∪ {Ã, D̃0
S ,Z} andthe ideal model G ∪ {ÃS , D̃0,Z} are indistinguishable. Here Ã denotes the dummy-adversary,and D̃0 the dummy-de
eiver. (We use the supers
ript 0 to stress the fa
t that we are 
onsideringthe 
ase that no party is 
orrupted, and thus D̃0 and D̃0

S are trivial.) The real model is depi
ted22
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Figure 3: Networks A�H and ma
hines ÃS, D̃S , and Z∗ from the proof of Lemma 20.



in Figure 3, network E. The ideal model is depi
ted in network F. Note that the dummy-de
eiver
D̃0 has no 
onne
tions to the proto
ol or the fun
tionality G (the latter is silent by assumption),and therefore also no 
onne
tions to the environment. The same holds for D̃0

S . We 
an thus �x
D̃0

S to be the ma
hine that does nothing. We 
onstru
t the adversary-simulator ÃS as follows:It internally simulates an instan
e of the fun
tionality F , and an instan
e of the adversary-simulator ÂS (from the EUC setting). ÃS 
onne
ts these ma
hines between ea
h other and tothe ports of ÃS as depi
ted in Figure 3, bottom.With this de�nition of ÃS, we have that the networks C and E are perfe
tly indistinguishable,and the networks D and F are perfe
tly indistinguishable. (To see that two networks are perfe
tlyindistinguishable, 
he
k for ea
h port of the ma
hines Z, F , G, P , ÂS that the 
onne
tion, whenfollowing all forwardings, leads to the same port in both networks. E.g., in network D the port
q of Z is 
onne
ted to q of Q̃∗, from there to q′ of Q̃∗, to q of ÂS; in network F, the port q of Zis 
onne
ted to q of Q̃∗, to q′ of Q̃∗, to q of ÃS, and �nally to q of the internally simulated ÂS;thus in both networks, the port q of Z is 
onne
ted to the port q of ÂS .) Note that in networkD, the 
onne
tion between Z's and F 's ports fa is routed through ÂS , while in network F itdoes not rea
h ÂS. This is permissible be
ause by assumption, ÂS only forwards this 
onne
tionwithout a

essing the transferred data in any way. Sin
e we already know that networks C andD are indistinguishable, it follows that networks E and F are indistinguishable, thus we havethat π UC/
 emulates G for stati
ally 
orrupted Q.UC/
 se
urity, Q de
eiving. We now pro
eed to show that π UC/
 emulates G for stati
allyde
eiving Q. By Lemma 6, it is su�
ient to 
onstru
t an adversary-simulator ÃS and a de
eiver-simulator D̃S su
h that for every environment Z that makes Q de
eiving, the real model π ∪
{Ã, D̃S ,Z} and the ideal model G ∪ {ÃS , D̃,Z} are indistinguishable. Here Ã denotes thedummy-adversary, and D̃ the dummy-de
eiver. The real model is depi
ted in Figure 3, networkG. The ideal model is depi
ted in network H. We write Q† for the de
eiving party Q. Q† hasports com , fq , and q to P , F , and Z. Furthermore, sin
e from the point of view of the adversary,
Q† is supposed to look like the 
orrupted Q∗, it has ports coma , fqa, and qa that are 
onne
tedto the adversary (and that would, if Q† was 
orrupted, be 
onne
ted to the ports com , fq , and
q). Finally, sin
e Q† is 
ontrolled by the de
eiver-simulator, for ea
h port x, it has a port x′
onne
ted to the de
eiver-simulator. Analogously for the de
eiving dummy-party Q̃†.We use the same adversary-simulator ÃS as above (see Figure 3, bottom). The de
eiver-simulator D̃S internally simulates the ma
hines ÂS (the adversary-simulator from the EUCsetting) and the un
orrupted Q.9 The ports are 
onne
ted as shown in Figure 3, bottom. Notethat both ÂS and Q are 
onne
ted to D̃S 's port fq . This means that messages from both ÂSand Q are forwarded to that port, and answers are sent ba
k to the 
orresponding sender. (Aswas the 
ase with the port fq of F in network A.)To show that for any environment Z, the networks G and H are indistinguishable, we addi-tionally 
onstru
t an environment Z∗ internally simulating Z and ÂS with 
onne
tions as shownin Figure 3, bottom.With these de�nitions of D̃S , and Z∗, the networks A and G are perfe
tly indistinguishable.And with the de�nitions of ÃS and Z∗, the networks B and H are perfe
tly indistinguishable.Sin
e we know that for any polynomial-time Z∗, the networks A and B are indistinguishable, itfollows that the networks G and H are indistinguishable, thus π UC/
 emulates G for stati
allyde
eiving Q.Summing up. We have shown that π UC/
 emulates G for stati
ally 
orrupted Q and that
π UC/
 emulates G for stati
ally de
eiving Q. Thus π UC/
 emulates G for stati
 
orrup-9It is at this point that we use that fa
t that G is silent. If there was a 
onne
tion between G and ÂS, D̃Swould have to 
onne
t to G in the name of the adversary. But D̃S 
annot do this.24



tions/de
eptions of Q: The de
eiver-simulator behaves like D̃0
S above when Q is 
orrupted, andlike D̃S above when Q is de
eiving. The adversary-simulator is ÃS in both 
ases (this is impor-tant, sin
e the adversary-simulator 
annot distinguish whether a party is 
orrupted or de
eiving).

�Lemma 21 Let π be a proto
ol, let F ,G be fun
tionalities, and let F̄∗ be a shared restri
tion of
F . Let π0 := π \ {F} ∪ {F̄∗}. If π0 is restri
tion-
ompatible to F̄∗ and π0 F̄∗-EUC emulates Gwithout 
orruptions, then π UC/
 emulates G without 
orruptions/de
eptions.Proof. EUC emulation implies UC emulation. Hen
e π0 UC emulates G without 
orruptions.Sin
e π0 is restri
tion-
ompatible, π never sends a query to F that F̄∗ would ignore. Thus π UCemulates G without 
orruptions. In the 
ase without 
orruptions/de
eptions, UC/
 emulationis equivalent to UC emulation. Hen
e π UC/
 emulates G without 
orruptions/de
eptions. �Lemma 22 Let π be a two-party proto
ol with parties P and Q and using a polynomial-timefun
tionality F , and let G be a polynomial-time fun
tionality. Then π UC/
 emulates G forstati
ally 
orrupted or de
eiving P and Q.10Proof. Let Ã denote the dummy-adversary and D̃ the dummy-de
eiver. By Lemma 6, we needto show that there is a dummy-adversary-simulator ÃS and a dummy-de
eiver-simulator D̃Ssu
h that the real model π∪{Ã, D̃S ,Z} and the real model G∪{ÃS, D̃,Z} are indistinguishablefor polynomial-time environments Z where Z does one of the following at the beginning of theexe
ution: (i) Z 
orrupts P and Q, (ii) Z 
orrupts P and makes Q de
eiving, (iii) Z makes Pde
eiving and 
orrupts Q, (iv) Z makes P and Q de
eiving.We use the notation using ports des
ribed in the proof of Lemma 20. We de�ne ÃS tointernally simulate F and to forward messages between its ports as depi
ted in Figure 4, networkB. Then, in 
ase (i), the real model is network A, and the ideal model is network B. NetworksA and B are perfe
tly indistinguishable. (This 
an be seen by following the 
onne
tions inFigure 4.)In 
ase (ii), we de�ne D̃S to internally simulate G and to forward messages between itsports as depi
ted in Figure 4, network C. The real model is network C, and the ideal model isnetwork D. Note that in network D, we use the same de�nition for ÃS as in network B sin
e theadversary-simulator 
annot distinguish whether Q is 
orrupted or de
eiving. Networks C and Dare perfe
tly indistinguishable.Case (iii) is handled analogously to 
ase (ii).In 
ase (iv), we de�ne D̃S to internally simulate G and to forward messages between its portsas depi
ted in Figure 4, network E. (Note that D̃S is de�ned di�erently than in the previous 
ases.This is possible be
ause the de
eiver-simulator 
an distinguish whether parties are 
orrupted orde
eiving.) The real model is network E, and the ideal model is network F. Networks E and Fare perfe
tly indistinguishable.Thus, in all 
ases, the real and the ideal model are perfe
tly indistinguishable. Hen
e πUC/
 emulates G for stati
ally 
orrupted or de
eiving P and Q. �Theorem 23 Let G be a silent polynomial-time fun
tionality. Let F be a polynomial-time fun
-tionality and let F̄∗ be a shared restri
tion of F . Let π be a two-party proto
ol in the F-hybridmodel with parties P and Q. Let π0 := π \ F ∪ {F̄∗}. Assume that π0 is restri
tion-
ompatibleto F̄∗ and that π0 F̄-EUC emulates G with stati
 
orruptions and spe
ial simulator.Then π UC/
 emulates G with stati
 
orruptions/de
eptions.10That is, we 
onsider environments that stati
ally make P and Q 
orrupted or de
eiving, and that do notleave any of the ma
hines un
ontrolled. We do allow that one party is 
orrupted and the other de
eiving.25
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Q† Z

Z

ZG gqD̃S

p p com com q q

fp
fp

fq
fq

fa fa

fq
a

fq
co

m
a

co
m

q
a

q

p
′

p

c
o
m
′
c
o
m

p

fp
′

fp

fa′ fa

com′coma

fq′ fqa

q′ qa

fpa fp′

compa comp′

pa p′

q
′

q

q
a
′

q
a

c
o
m

a
′
c
o
m

a

fq
a
′

fq
a

c
o
m

′
c
o
m

fq
′

fq

q′ qd
qa′ qad

gqa′ gqad

gq′ gqd

Ffp fq

fa

ÃS
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Proof. From Lemmas 20, 21, and 22. �Corollary 24 (UC/
 two-party 
omputation) Let F ∈ {Fkrk,Facrs,Fsc}. Let G be a well-formed silent fun
tionality. Then there is a proto
ol π in the F-hybrid model su
h that π UC/
emulates G with stati
 
orruptions/de
eptions.Proof. From Corollary 18 and Theorem 23 and the fa
t that F̄∗
krk, F̄

∗
acrs, F̄

∗
sc are shared restri
tionsof Fkrk,Facrs,Fsc. �5 Con
lusions and open problemsWe have presented the UC/
 framework. This framework enables us to model the in
oer
ibilityof general multi-party proto
ols. The UC/
 framework 
omes with a strong 
omposition theo-rem (universal 
omposition). We have shown that with respe
t to stati
 
oer
ions/de
eptions,arbitrary two-party proto
ol tasks 
an be realised in the framework.Dire
tions for future work in
lude:

• Good-guy/bad-guy 
oer
ions. Our feasibility results only hold for stati
 
oer-
ions/de
eptions. We believe that feasibility results similar to those presented in Se
tion 4
an be shown for good-guy 
oer
ions. To a
hieve proto
ols that are se
ure with respe
t tobad-guy 
oer
ions, we believe that new 
ryptographi
 te
hniques will have to be developed.
• Inse
ure 
hannels. We assumed perfe
tly se
ure 
hannels, i.e., 
hannels where the ad-versary does not even noti
e that a message is sent. Can the results from Se
tion 4 begeneralised to a setting with weaker assumptions on the 
hannels?
• Multi-party proto
ols. Our feasibility results are restri
ted to two-party proto
ols. To 
ap-ture important 
ases like voting proto
ols we need to extend this to multi-party proto
ols.
• Impossibility results. Sin
e in
oer
ibility is a strong requirement, we also expe
t thatmany proto
ol tasks 
annot be ful�lled. For example, is it possible to realise a non-trivialproto
ol task using only a 
ommon referen
e string?A
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