Universally Composable Incoercibility*

Dominique Unruh Jorn Miiller-Quade
Saarland University Universitit Karlsruhe

October 27, 2009

Abstract

We present the UC/c framework, a general definition for secure and incoercible multi-party
protocols. Our framework allows to model arbitrary reactive protocol tasks (by specifying
an ideal functionality) and comes with a universal composition theorem. We show that
given natural setup assumptions, we can construct incoercible two-party protocols realising
arbitrary functionalities (with respect to static adversaries).

Contents
[1__Introduction 2 I3 Voting schemed 14

L2 Related worll 4 K Tncoercible two-party protocold 18
K1 _Externalized UC frameworkl . 18
4.2 EUC security implies UC/c se-

F

2 The Composable Incoercibility

Framework (UC/c) 5
_____ 5 curity 20
2.2 The Composable Incoercibil-
ity framework (UC/c) 6 I5__Conclusions and open problemd 27
0.3 Corruption scheduled 7
- g gl o | [Beforencel 21
D.5 Basic propertied 9

2.6 Universal compositiod 12 finded 29

*Partially funded by the Cluster of Excellence “Multimodal Computing and Interaction”. Errata will be
published on http://crypto.m2ci.org/unruh/publications/errata/ucc-errata.pdf.

http://crypto.m2ci.org/unruh/publications/errata/ucc-errata.pdf

1 Introduction

Commonly, security of a cryptographic protocol encompasses (very roughly) two aspects: The
protocol should guarantee that the private data of the parties stays secret (privacy), and it
should ensure that all data transferred or computed is correct (integrity). Most security defini-
tions ensure one or both of these requirements, and many protocols are known to satisfy these
definitions (e.g., [GMWST, BOGWSS, [CCD8Y, [CEGNI6, [CLOSO2]).

There is, however, a requirement that does not fall into either category: coercion resistance
(first noted by [Her1],[BT94]). To illustrate this property, we use the example of a voting scheme.
In a voting scheme, it might be possible for a voter to acquire a receipt that he cast a specific
vote. This does not violate the anonymity of the voter since the voter is not required to reveal
or even acquire such a receipt. Thus privacy is maintained. And getting a receipt does not allow
to falsify the outcome of the election. Thus the integrity of the scheme is maintained. Yet the
mere possibility of acquiring a receipt may make a party coercible. A coercive adversary may
threaten certain reprisals if the party does not cast a specific vote and proves this by delivering
a receipt to the adversary. Thus such an election protocol would not be coercion resistant (short:
incoercible).

Incoercibility is an important property in any setting in which some malicious agent has the
power to harm and thus threaten other protocol participants. Clearly, this is not restricted to
the setting of voting but may be the case in other settings, too (e.g., when financial transactions
are involved). Unfortunately, incoercibility turns out to be both difficult to define and to achieve.

Previous definitions of incoercibility are usually restricted to special domains such as voting
(e.g., [BT94, HICI05, IDKRNOY]). An exception are the models by Canetti and Gennaro [CG96] and
by Moran and Naor [MNQ6] which give general definitions of incoercible multi-party computation.
Their definitions are, however, restricted to the case of secure function evaluation. That is, they
only consider protocols in which all parties need to first contribute their inputs, and then from
these inputs the outputs for the parties are computed. Reactive protocols, protocols that have
multiple phases and where the inputs in one phase can depend on the outputs of an earlier
phase, are excluded. For example, the security of a commitment protocol could not be modelled
in their settings.

Besides the problem of reactive protocols, the issue of composability arises. When building
a complex protocol, it is often necessary to abstract from certain subprotocols in the analysis
to make the analysis manageable. For example, one might first analyse the protocol assuming a
perfectly secure mechanism for performing commitments (modelled by a trusted machine), and
then later on prove the security of the subprotocol that is actually used for the commitments. To
do so, and also to have a guarantee that the protocol does not become insecure when executed
together with other protocols or instances of itself, one needs a security notion that comes with
a composition theorem.

In the case of normal secure multi-party computation (i.e., without incoercibility) both the
problem of modelling reactive protocols and of giving strong compositionality guarantees has
been solved by Canetti’s UC model [Can(1]. In this model, we can define a protocol task by
specifying a trusted machine, the ideal functionality, which by definition performs the required
protocol task. Since this machine can interact with its environment in arbitrary ways, the secu-
rity of very general reactive protocols can be modelled. Furthermore, the UC model guarantees
that if a protocol is secure when using (as opposed to realising) an ideal functionality, then the
protocol stays secure when instead of the ideal functionality, a subprotocol that securely realises
the ideal functionality is used. The UC model, however, does not guarantee incoercibility.

Our contribution. We define the Composable Incoercibility framework (UC/c) which is an
extension of the UC framework. Like UC, UC/c allows to model very general reactive protocol

tasks and gives strong compositionality guarantees (universal composition). Additionally, proto-
cols secure with respect to UC/c are incoercible. To illustrate the model, we show that a voting
scheme that is UC/c secure is also incoercible with respect to a definition tailored specifically
to voting. Finally, we show that in the restricted case of static coercions/deceptions (all corrup-
tions and coercions happen at the beginning of the protocol), arbitrary UC/c secure two-party
computation is possible assuming the availability of secure channels.

Organisation. In[Secfion T.1l we explain the intuition behind the UC/c framework. InSeciion 2
we define the UC/c framework and present the universal composition theorem. In we
illustrate our model by applying it to the setting of voting protocols. In we show
that UC/c secure two-party protocols exist for arbitrary functionalities. In we give
directions for further work.

1.1 The intuition behind UC/c

To understand the UC/c model, we first need to get an intuition of how incoercibility is achieved.
The goal of an incoercible protocol is the following: When an adversary tries to coerce a party
into performing a certain action (such as casting a particular vote v*), the party should be able
to perform the action it originally intended to perform (casting a vote v) without the adversary
noticing. That is, the adversary should not be able to tell the difference between a party P that
follows the adversary’s instructions (a corrupted party, casting the vote v*) and a party P that
only tries to make the adversary believe that it follows the adversary’s instructions (a deceiving
party, casting the vote v and giving fake evidence to the adversary that it cast the vote v™*).

The most natural way to define incoercibility would be to require that the adversary cannot
distinguish between a coerced and a deceiving party. This, however, usually cannot be achieved.
For example, in a voting protocol the adversary will eventually learn the tally. The distribution
of the tally will, since there are only polynomially many voters, slightly but noticeably change
when the vote of P changes from v to v*. The adversary can hence distinguish coerced and
deceiving parties by observing the tally.

Thus, we have to weaken the requirement. The adversary should not be able to distinguish a
coerced and a deceiving party any better than he could do given only information that is “legally”
available to him (the tally in our example). In general, however, it is not straightforward to
define what information is “legally” available to the adversary in any particular situation. Neither
is it straightforward to determine how much distinguishing advantage the adversary would get
given only that information.

In order to circumvent this problem, we use a slightly different approach: We first define
an ideal model in which the adversary has, by definition, only access to the “legally” available
information. In the case of voting, such an ideal model would consist of a trusted machine (the
ideal voting functionality F) that collects the votes from all parties and gives only the tally to
the adversary. In the ideal model, the distinguishing advantage between a coerced party (that
gives v* to F) and a deceiving party (that gives v to F) is, by definition, exactly the advantage
the adversary gets from the “legally” available information (the tally).

To make this definition more formal, we introduce an additional entity, the deceiver [Eor91].
The task of the deceiver is to instruct a deceiving party what it should do (i.e., how to deceive the
adversary). More formally, a deceiving party will not run any program of its own, but instead
follow the instructions of the deceiver. (In a sense, the deceiver models the party’s free will.) In
particular, the deceiver may instruct a party to cast a vote v and to send to the adversary the
fake notification that it cast vote v*. (Since we are in the ideal model, no cryptographic receipts
or similar need to be faked.) A corrupted party, on the other hand, will follow the adversaries
instructions.

The combination of adversary and deceiver in the ideal model now allows to model any coer-
cion situation that can occur in the ideal model. To define what it means that the real protocol
is incoercible (or more precisely, as incoercible as the ideal model), we will use the concept of
simulation that underlies many cryptographic definitions such as multi-party computation and
zero-knowledge: We show that for any adversary in the real model that performs some coercion
attack, there is another adversary in the ideal model (called the adversary-simulator) that per-
forms a corresponding attack with as much success. In other words, we require that for any
deceiver (specifying what a party would ideally want to do), and for any adversary in the real
model (trying to coerce parties), there is an adversary-simulator in the ideal model such that
the real and the ideal model are indistinguishable.

We are, however, missing one ingredient: We need to specify how the ideal deceptions (spec-
ified in terms of inputs to the ideal functionalities) translate into real deceptions (specified in
terms of faked messages etc.). This is done by introducing a deceiver in the real model, too,
called the deceiver-simulator. We then require that for any deceiver in the ideal model (rep-
resenting a possible deception) there is a deceiver-simulator in the real model (that performs
the corresponding real deceptions) such that for any adversary in the real model there is a
adversary-simulator in the ideal model such that the two models are indistinguishable.

Finally, to model the indistinguishability of the two models, we follow the ideas from the
UC framework and introduce a further machine, the environment, that either communicates
with the machines in the real model or with the machines in the ideal model and that has to
guess which model it is in. (For details on how this indistinguishability actually ensures that
the adversary’s advantage in distinguishing corrupted and deceiving parties carries over from
the ideal to the real model we refer to the example in [Section 3.)

1.2 Related work

We are aware of only two works that tackle the problem of defining incoercibility or a similar
property in a general fashion (i.e., not specialised to a particular protocol task such as voting).

Incoercible secure function evaluation. Canetti and Gennaro [CG96| present a model for
defining incoercible secure function evaluation which was subsequently refined by Moran and
Naor [MN0O6]. The model by Moran and Naor is based on the so-called stand-alone model
[Can00), [Gol04), Ch. 7]. In this model, one assumes that the inputs of all honest parties are fixed
before the beginning of the protocol. This has several implications: First, reactive protocols
where parties may decide on their inputs in later phases cannot be modelled. Second, when
actually deploying the protocol, one would have to ensure very strong synchronisation: In order
not to introduce possibilities for attacks not covered by the model, we have to ensure that no
protocol message is sent until all honest parties have decided on their input. Third, the stand-
alone model only guarantees sequential composabilityﬂ That is, we have no guarantee that the
protocol stays secure when running concurrently with other protocols (which usually happens
in real-life networks).

Since the model by Moran and Naor is based on the stand-alone model, in this model coerced
parties only need to lie about their initial inputs. Because of this, Moran and Naor do not need
to introduce an explicit deceiver; any deception a party might want to perform can be encoded
by specifying a second input, the so-called “fake input”. In contrast, the more complex deceptions
that are possible in our setting necessitate the introduction of an explicit machine, the deceiver,
to specify the deceptions.

'Note that it has not been shown that the variant of the stand-alone model presented by Moran and Naor
does compose sequentially. But it does not seem unlikely that this could be shown.

Everything we said about the work by Moran and Naor also applies to the earlier work by

Canetti and Gennaro [CG96]. Furthermore, the model by Canetti and Gennaro only models
a very weak form of coercion-resistance; the adversary may instruct a coerced party to use a
different input, but he may not instruct that party to deviate from the protocol. For a discussion
of the difference between the models by Moran and Naor and by Canetti and Gennaro, we refer
to [MNO6).
Externalized UC. Another approach to define properties similar to incoercibility for general
protocols is the Externalized UC (EUC) framework proposed by Canetti, Dodis, Pass, and
Walfish [CDPW(7] (also known as Generalized UC, UC with global setup, or, proposed inde-
pendently by Hotheinz, Miiller-Quade, and Unruh [HUMQ07], UC with catalysts).

This framework is, like ours, an extension of the UC framework and inherits its support
for reactive protocols and its universal composition theorem. The EUC framework differs from
the UC framework by allowing the environment to directly access the ideal functionality used
in the real protocol. As explained in [CDPW07|, security in the EUC framework implies a
property called deniability. This means that no (malicious) protocol party P can collect any
information during the protocol run that can later be used to prove to an outsider that some
party @ participated in the protocol. (An example for such incriminating information would
be a message signed by @.) In other words, @ can plausibly claim that the whole protocol did
not take place. Obviously, such a claim is only realistic with respect to an outsider who did
not himself communicate with @@ during the protocol execution. In contrast, incoercibility as
understood by this paper means that a party can lie about its actions towards an insider (e.g.,
a party could lie even towards another voter about the vote it has cast).

Thus the two models (EUC and UC/c) have very different aims. Technically they are,
however, related: In we show that under certain conditions, EUC security implies
UC/c security.

2 The Composable Incoercibility Framework (UC/c)

2.1 The UC framework

Our model is based on the Universal Composability (UC) framwork [Can(T]|. For self contain-
ment and to fix notation, we give a short overview over the UC framework. An interactive
Turing machine (ITM) is a Turing machine that has additional tapes for incoming and for out-
going communication. An ITM may be activated by a message on an incoming communication
tape. At the end of an activation, the ITM may send a message on an outgoing communication
tape to another ITM. The recipient of a message is addressed by the unique identity of that
ITM. The actions of an I'TM may depend on a global parameter k& € N, the so-called security
parameter.

A network is modeled as a (possibly infinite) set of ITMsH We call a network S executable
if it contains an ITM Z with distinguished input and output tape and with the special identity
env. An execution of S with input z € {0,1}* and security parameter k € N is the following
random process: First, Z is activated with the message z on its input tape. Whenever an ['TM
M € S finishes an activation with an outgoing message m addressed to another ITM M5 € S on
its outgoing communication tape, the other ITM M, is invoked with incoming message m on its
incoming communication tape (tagged with the identity of the sender M7). If an ITM terminates
its activation without an outgoing message or sends a message to a non-existing [TM, the [TM

In the case of infinite networks we require the network to be uniform in the sense that given the identity of
an I'TM, we can compute the code of that ITM in deterministic polynomial-time.

Z is activated. When the ITM Z sends a message on its output tape (not the communication
tape!), the execution of S terminates. The output of Z we denote by EXECg(k, z). An ITM Z
with identity env we call an environment and an I'TM A with identity adv we call an adversary.
A protocol is a network that does not contain an environment or an adversary.

We call networks S,.S” indistinguishable if there is a negligible function p such that for all
k € N, z € {0,1}*, we have that |Pr[EXECg(k,z2) = 1] — Pr[EXECg/ (k, z) = 1]| < u(k). We
call S, S’ perfectly indistinguishable if = 0.

Using the above network model, security is defined by comparison. We first define an ideal
protocol pthat specifies the intended protocol behaviour. Then we define what it means that
another protocol 7 (securely) emulates p:

Definition 1 (UC [Can01]]) Let © and p be protocols. We say that # UC emulates p if for
any polynomial-time adversary A there exists a polynomial-time adversary S (the adversary-
simulator) such that for any polynomial-time environment Z the networks 1 U{A, Z} (called the
real model) and p U {S, Z} (called the ideal model) are indistinguishable.

In the UC framework, one can model secure channels (that do not even leak the length of the
transmitted message) by direct communication between the ITMs; insecure channels can be
modelled by sending messages to the adversary; secure channels that leak the length of the
message, as well as authenticated channels can be modelled as an ideal functionality.

Corruptions are modelled as follows: The environment Z can send special corruption requests
to protocol parties (which are ITMs in 7). If a protocol party receives such a request, it sends its
current state to the adversary and from then on is controlled by the adversary (i.e., it forwards
all incoming communication to the adversary and vice versa).

Usually, the ideal model will be described by a so-called ideal functionality. Such an ideal
functionality is an incorruptible ITM that can be seen as a trusted third party accessible to
the protocol parties. The ideal protocol corresponding to F consists of F itself and a so-called
dummy-party P for each party P in the real model. The dummy-party P simply forwards
all messages received from the environment to F and vice versa. In slight abuse of notation,
we write F for the ideal protocol corresponding to F. Note that the dummy-parties can be
corrupted, hence the inputs and outputs to F from corrupted parties can be influenced by the
adversary-simulator. Using the concept of an ideal functionality, we can express many protocol
tasks by first specifying an ideal functionality F that fulfils the protocol task by definition, and
then requiring that the protocol # UC emulates F.

We can also consider real protocols 7 which contain ideal functionalities F (e.g., a function-
ality modelling a CRS). These functionalities can then be accessed by all parties. We then say
that 7 is a protocol in the F-hybrid model.

For more details, we refer the reader to the full version of [Can(1].

2.2 The Composable Incoercibility framework (UC/c)

In our framework (UC/c) the possibility of coercions is modelled by the presence of an additional
adversarial entity, called the deceiver. Formally, a deceiver is an ITM D with the special identity
dec. We further refine the notion of a protocol: A protocol is a network that does not contain
an environment, adversary, or deceiver.

A typical network would consist of a protocol 7w, an adversary A, a deceiver D, and an
environment Z (where the adversary and the deceiver may also be called adversary-simulator
and deceiver-simulator for clarity depending on their role in the protocol). Both the adversary
and the deceiver may control parties. The exact mechanism of this is the following:

A protocol party may be in one of three corruption states: Uncontrolled, corrupted, and
deceiving. We say a party is controlled if it is corrupted or deceiving. Initially, all machines
are uncontrolled. Uncontrolled parties behave according to the protocol specification. If the
environment Z sends a corruption request to an uncontrolled party, the party becomes corrupted.
If the environment sends a deception request to an uncontrolled or a corrupted party, the party
becomes deceiving. When a party becomes corrupted or deceiving, it sends its state to the
adversary or the deceiver, respectively. From then on, it is controlled by the adversary or the
deceiver, respectively (that is, it forwards all incoming communication to the controlling machine
and sends messages as instructed by the controlling machine). The only exception is that if a
corrupted machine receives a deception request, it will not forward that request to the adversary,
because in that moment, it will become deceiving and hence be under the control of the deceiver.

We assume the existence of a globally readable register that contains the state of each party
(whether it is uncontrolled, corrupted, or deceiving). However, when the adversary reads this
register, the state of any deceiving machine will be reported as corrupted. (This reflects the fact
that the adversary should not be able to know which machine is deceiving.) Protocol parties
will not usually read this register; in some cases, however, it might be useful if the behaviour of
an ideal functionality can depend on whether a machine is controlled or not i

We are now ready to specify the notion of UC/c security. In this notion, we do not only
require the adversary-simulator (in the ideal model) to simulate the adversary’s actions (in the
real model), but simultaneously require that the deceiver-simulator (in the real model) simulates
the actions of the deceiver (in the ideal model).

Definition 2 (UC/c) Let m and p be protocols. We say that 7 UC/c emulates p if for any
polynomial-time deceiver D there exists a polynomial-time deceiver Dg (the deceiver-simulator)
such that for any polynomial-time adversary A there exists a polynomial-time adversary Ag (the
adversary-simulator) such that for any polynomial-time environment Z the following networks
are indistinguishable:

rU{A,Dg, Z} and pU{Ag,D,Z}.

Why is the adversary not informed about deceiving parties? The reader may notice
an asymmetry in the definition: While the deceiver learns which party is corrupted and which
party is deceiving, the adversary will be told that a party is corrupted even if it is deceiving.
This is necessary because during a deception, the goal is to cheat the adversary into thinking
that one behaves as he instructs (i.e., that one is corrupted). Therefore corrupted and deceiving
parties should be indistinguishable from the point of view of the adversary.

Why can deceiving party not become corrupted? Another asymmetry is that a corrupted
party can later become deceiving while the model does not allow to corrupt parties that are
deceiving. Although formally both directions could be allowed, we have excluded the latter
because we could not find an interpretation for such a scenario. For an interpretation of the
former direction (bad-guy coercions), see the next section.

2.3 Corruption schedules

The notion of UC/c (Definition 2) allows the environment to corrupt or coerce any party at any
point of time. This leads to a very strict definition. To get a definition that is more lenient

3 A typical example is the key exchange functionality, which returns a random key for both parties [Can05). If
one of the parties is corrupted, the key is instead chosen by the adversary. Thus the functionality needs to know
which parties are corrupted.

but easier to fulfil, one can impose certain restrictions on the corruption and deception requests
performed by the environment. We call such a restriction a corruption schedule.

Bad-guy coercions. There are no restrictions on the environment (except that the environment
cannot corrupt a deceiving party, this is implicit in the modelling of the corruption mechanism).

We call this notion bad-guy coercions because the environment may first corrupt a party
(make it a “bad-guy”) and then later coerce it. It is very difficult to design protocols that are
secure against bad-guy coercions because a corrupted party may be instructed by the adversary
to actively deviate from the protocol to produce evidence against itself and thus thwart its own
deniability. (In contrast, a deceiving party would, given the same instructions, only try to make
the adversary believe that it follows these instructions.)

For example, in some protocol the ability to deceive the adversary (and thus the incoercibility
of the protocol) might be based on the following fact: When the adversary requests a private
secret m of some party, that party may send a different secret m’ instead which contains a
trapdoor. This trapdoor then is later essential for achieving incoercibility. In the setting of
bad-guy coercions, a party might first be corrupted and then reveal the true secret m to the
adversary. This secret m does not contain a trapdoor. Then later, if the party becomes deceiving,
it will be unable to follow its deception strategy because it does not know any trapdoor for m.
In a nutshell, while corrupted, a party may actively try to prevent its own incoercibility. Thus
we expect that UC/c security with respect to bad-guy coercions is very hard to achieve.

In practise, bad-guy coercions are arguably a very rare event. A possible motivation for
bad-guy coercions is the following thought experiment: A member (say, Bob) of a criminal or-
ganisation is required by the rules of that organisation to actively produce and deliver some
evidence (e.g., certain keys) against himself to that organisation. While Bob still works for the
organisation, he will not try to circumvent these rules and will deliver this evidence. But if
Bob later decides to leave the criminal organisation and to cooperate with the police (under-
cover), Bob may have to convincingly act as if he was still following the criminal organisation’s
instructions. This is exactly the case that is modelled by bad-guy coercions.

In most cases, however, UC/c with bad-guy coercions will be much to strong a notion, and
the notion of good-guy coercions (below) will be preferred.

Good-guy coercions. The environment may corrupt parties at any time and may send de-
ception requests to uncontrolled parties at any time. The environment may not send deception
requests to corrupted parties.

Receipt-freeness. The environment may corrupt parties at any time, and may send deception
requests to uncontrolled parties after the end of the protocol (so that the adversary gets their
state). The environment may not send deception requests to a corrupted party. Receipt-freeness
implies that an honest party does not learn any data during the protocol that could later be
used to prove after the protocol execution that the party performed a certain action. (Note that
with erasing parties, receipt-freeness is probably easy to achieve: an honest party simply erases
all intermediate protocol data.)

Static corruptions/deceptions. All corruption and deception requests must be sent at the
very beginning of the protocol execution. In particular, this implies that the environment cannot
choose which parties to corrupt depending on messages it observes during the protocol execution.

Only corruptions. The environment may not send deception requests. UC/c with only cor-
ruptions is equivalent to the UC notion from [Can(1].

Combinations. The above corruptions schedules may be combined by requiring that the envi-
ronment obeys a certain schedule with respect to some parties and another with respect to other

parties. For example, one might have protocols that are UC/c secure with receipt-freeness for
Alice and good-guy coercions for Bob.

2.4 Erasing and non-erasing parties

We can distinguish two kinds of honest parties: Erasing and non-erasing parties. An erasing
party is able to delete information when the protocol instructs it to do so. In contrast, a non-
erasing party will make a snapshot of its whole memory in every computation step in a special
log; when the party becomes coerced/deceiving, the adversary/deceiver gets the whole log. Non-
erasing parties model the fact that it may be difficult to reliably erase information, a secret may
end up, e.g., in the swap partition. However, we allow corrupted parties to erase their state.
This is due to the fact that we also cannot expect to reliably recover state which the adversary
has ordered destroyed. Since a deceiving party will stay in that state forever (the environment
is not allowed to send corruption requests to a deceiving party), it does not matter whether a
deceiving party may or may not erase information. For concreteness, we fix that a deceiving
party may erase information.

Summarising, a non-erasing party stores all its states when uncontrolled, and may erase its
state when controlled. An erasing party may erase its state at any point.

In the following, we consider non-erasing parties. We wish to stress, however, that our
modelling applies to erasing parties as well. Being able to erase data may be very helpful in the
design of incoercible protocols: If a party deletes some data, it may later credibly claim that
it cannot reveal that data. However, one should keep in mind that implementing non-erasing
protocols may be more difficult because one needs to actively keep track of all copies of a certain
datum in memory and on disk.

It is also possible to imagine a setting in which a machine is partially erasing. Such a machine
would have a certain memory area that can be erased, while the main part of the memory is
assumed to be non-erasable. Such a modelling might be motivated, e.g., by the use of trusted
platform modules [Iru(7|, or by operating system extensions that allocate blocks of memory
that are guaranteed never to be written to the disk.

2.5 Basic properties

Transitivity, reflexivity. The following lemma states that UC/c emulation is a reflexive and
transitive relation. Reflexivity can be seen as a sanity check for the definition — if a protocol
would not UC/c emulate itself, something would probably be wrong. Transitivity is necessary
to use the universal composition theorem, see below.

Lemma 3 (Reflexivity, transitivity) Let 7, p, and o be protocols. Then m UC/c emulates 7.
If m UC/c emulates p, and p UC/c emulates o, then m UC/c emulates o.

Proof. For any polynomial-time deceiver D, any polynomial-time adversary A, and any
polynomial-time environment Z, we have with Dg := D, and Ag := A that 7 U {A, Dg, Z}
and m U {Ag, D, Z} are equal and thus (perfectly) indistinguishable. Hence = UC/c emulates p.

Assume now that 7 UC/c emulates p, and p UC/c emulates o. Then, by definition, for any
polynomial-time deceiver D, there is a polynomial-time deceiver-simulator Dg(D*), and for
any polynomial-time deceiver D? and any polynomial-time adversary A", there is an adversary-
simulator A%(D”, A™) such that for all polynomial-time environments Z,

TULAT,DYD?), 2} and pU{A5(D", A7), D°, 2} (1)

are indistinguishable. Similarly, for any polynomial-time deceiver D7, there is a polynomial-time
deceiver-simulator Dg(D"), and for any polynomial-time deceiver D? and any polynomial-time
adversary A”, there is an adversary simulator AZ(D?,.A”) such that for all polynomial-time
environments Z,

pU{A?, DYDY, 2} and oU{AY(D", A?), D", 2} 2)

are indistinguishable.

Then, for a given polynomial-time deceiver D% and a given polynomlal time adver-
sary AT, set DE(D?) := DI(DYD?)) and AZ(D?,A") := AELD’, A%L(DL(D?), A™)).
From ([]]), we have that for all polynomial-time environments Z, 7 U {A’T,DS(D"),Z}
and p U {A%(D4(D?), A7), D%(D?), 2} are indistinguishable. ~ And from (@), we have
that for all polynomial-time environments Z, p U {A%(DL(D), A7), De(D?), 2} and o U
{AZ(D?, A™),D?, 2} are indistinguishable. Since indistinguishability is transitive, 7 U
{A™, DL(D?), 2} and o U {AZ(D?, A7), D?, Z} are indistinguishable for all polynomial-time Z.
Thus, for every polynomial-time deceiver D7 there exists a polynomial-time deceiver-simulator
ﬁg = ﬁg(f)“) such that Afor every Polygomial—time adversary A™ there exists a polynomial-
time adversary-simulator A% := AZ(D?, A™) such that for all polynomial-time environments Z,
T U{A™,DE, 2} and o U {AZ, D7, Z} are indistinguishable. Thus = UC/c emulates p. O

Dummy adversary and deceiver. A dummy-adversary is an adversary that just follows
the instructions of the environment. More precisely, it forwards all messages it receives to the
environment, and sends only the messages the environment instructs it to send. It was shown
by Canetti [Can01] in the UC setting that the dummy-adversary is complete, that is, without
loss of generality we can consider only the dummy-adversary. Therefore we only have to specify
the adversary-simulator for the dummy-adversary instead of having to specify the adversary-
simulator for every possible adversary. This simplifies proofs.

In the setting of UC/c, we can additionally consider the dummy-deceiver that just follows
the instructions of the environment. Below, we will show that both the dummy-adversary and
the dummy-deceiver are complete. Besides strongly simplifying proofs, the completeness of the
dummy-deceiver has an additional conceptual advantage. The deceiver-simulator corresponding
to the dummy-deceiver encodes a universal deception strategy. That is, for any “ideal deception”,
it tells us how to perform this deception in the real protocol. The existence of such a universal
deception strategy is very important in real life, protocol users need to have an explicit strategy
how to lie in which situation; it is not sufficient that such a strategy exists for each situation.

Definition 4 (Dummy-adversary, dummy-deceiver) The dummy-adversary A is an ad-
versary that, when receiving a message (id,m) from the environment, sends m to the party
with identity id, and that, when receiving m from a party with identity id, sends (id,m) to the
environment. The dummy-deceiver D is defined analogously.

Definition 5 (UC/c with respect to dummy-adversary/deceiver) Let m and p be proto-
cols. We say that m UC/c emulates p with respect to the dummy-adversary/deceiver if there
ezists a polynomial-time deceiver Dg (the dummy-deceiver-simulator) and a polynomial-time ad-
versary Ag (the dummy-adversary-simulator) such that for any polynomial-time environment Z
the following networks are indistinguishable:

rU{A,Dg, 2} and pU{As,D, Z}

Lemma 6 (Completeness of dummy-adversary and dummy-deceiver) Let m and p be
protocols. Then m UC/c emulates p iff 1 UC/c emulates p with respect to the dummy-
adversary/deceiver.

10

- ~

z—4 | ’T’—A-\rA | ZTAds ZoA-dg)

Dsfp\ ~ o =~ IDX] ~ \
| ~| | \AT|/ \Jﬁ(/

l'DST_W Dg——m D P D——p

(a) (b) () (d)

Figure 1: Networks in the proof of Dashed lines denote machines that internally
simulate other machines.

Proof. If m UC/c emulates p, then we immediately have that 7 UC/c emulates p with respect
to the dummy-adversary/deceiver. For the opposite direction, assume that 7 UC/c emulates p
with respect to the dummy-adversary/deceiver.

Let D and A be the dummy-deceiver and the dummy-adversary. Let Dg and Ag be the
dummy-deceiver-simulator and the dummy-adversary-simulator (as in [Definition Hl).

For an environment Z, a deceiver D, and an adversary A, we define the environment Zp 4
as follows (see also Figures [[(b) and (c)): Zp 4 internally simulates Z, D, and A. All commu-
nication between the internally simulated Z and the (external) protocol is forwarded. Messages
sent from Z to the deceiver and adversary are forwarded to the internally simulated D and A.
Incoming communication for Z from D and A is is forwarded to Z. Messages m that D and A
send to a protocol party with identity id are sent by Zp 4 as (id,m) to the external deceiver
or adversary. That is, assuming the external deceiver or adversary is the dummy-deceiver or
dummy-adversary, Zp 4 instructs the dummy-deceiver/adversary to deliver the message sent by
the internally simulated D or A. Incoming messages (id, m) from the external adversary /deceiver
are passed to the internally simulated D and A as m.

For an adversary A, we define the adversary-simulator Ag = Ag(A) as follows (see also
[Figure 1|(d)): Ag internally simulates A and Ag. Communication between the external envi-
ronment and the internally simulated A is forwarded. Communication between the external
protocol and the internally simulated Ag is forwarded. When A sends a message m to a proto-
col machine with identity id, (id,m) is instead passed to Ag as coming from the environment.
Messages (id, m) from the internally simulated Ag to the environment are passed to A as m.
(This is analogous to how Zp 4 reroutes between A and the protocol.)

For a deceiver D, Dg(D) is defined analogously to Ag(A). See [Figure Ij(a).

We then have that the following networks are perfectly indistinguishable for all environments
Z: mU{A,Ds, Z} and w U{A, Dg, Zp 4} (Figures M(a) and (b)). This is due to the fact that
the dummy-adversary A just forwards the messages between 7 and the adversary A simulated
by Zp 4, and that Dg by definition consists of D (simulated by Z in the second network) and
Ds.

Analogously, the following networks are perfectly indistinguishable for all environments Z:
pU{As,D, 2} and pU{As,D, Zp 4}. Cf. Figures[(d) and (c).

Furthermore, since 7 UC/c emulates p with respect to the dummy-adversary/deceiver, for
all polynomial-time environments Zp 4, 7 U {A, Dg, Zp 4} and p U {Ag, D, Zp 4} are indistin-
guishable. Cf. Figures [[(b) and (c).

Since indistinguishability is transitive, 7U{ A, Dg, Z} and pU{Ag, D, Z} are indistinguishable
for all polynomial-time environments Z. Furthermore, Dg and Ag are polynomial-time, and
their construction does not depend on Z, and the construction of Dg does not depend on D.
Thus 7 UC/c emulates p. O

11

\

} \ \ W "7}7\\)] }
N R Y D S S
N N R N A
Z—<|7 7T|1 : 7Ti|—1 } 7|r } Pz‘|+1 x P|n }
! ‘ ! !
. | R \

}L Do 1)}9 D’S_l } Dg } pitl D J
777777777777777) | S ——

Figure 2: Hybrid network mU{A, Dg, Z;} in the proof of [heorem @ The hybrid environment Z;
is depicted by the dashed line. Connections between Z and the deceivers, as well as connections
between o and the instances of m are omitted. The connections between Z and the deceivers
are analogous to those between Z and the adversaries.

2.6 Universal composition

One of the main advantages of the UC framework is the universal composition theorem. This
theorem guarantees that a UC secure protocol 7 can be securely used as a subprotocol of arbitrary
other protocols o, even when ¢ and polynomially many instances of 7 run concurrently. The
same compositionality result also holds for the UC/c security notion.

To formulate the composition theorem, we introduce some notation. Let 7 and o be protocols.
Then let ¢™ denote the protocol where o invokes a polynomial number of instances of the
subprotocol 7. That is, machines in ¢ may give inputs to machines in m, these inputs are
treated by 7 as coming from the environment. When the machines in 7 give output back to the
environment, these are sent to the invoking machines in ¢. Thus, in a sense, in ¢”, the protocol o
plays the role of the environment for the instances of 7. For example, if 07 is a protocol using
a commitment functionality F (i.e., 07 is a protocol in the F-hybrid model), then ¢™ would be
the protocol that uses the subprotocol 7 instead of using the commitment functionality F. The
following theorem guarantees that, if 7 UC/c emulates some other protocol p (e.g., p = F), we
do not loose security if we replace subprotocol invocations of p by subprotocol invocations of 7.

Theorem 7 (Universal composition) Let m, p, and o be polynomial-time protocols. Assume
that m UC/c emulates p. Then o™ UC/c emulates o”.

Proof. Let A and D denote the dummy-adversary and the dummy-deceiver. Due to [Cemma 6]
it is sufficient to construct a polynomial-time deceiver-simulator ﬁg and a polynomial-time
adversary-simulator -’Zl*s such that for all polynomial-time environments Z, the networks ¢ U
{A, D%, 2} and o U{ A%, D, Z} are indistinguishable. (We write A% and D to distinguish from
the simulators Ag and Dg defined below.)

By assumption, there are a polynomial-time deceiver-simulator Dg and a polynomial-time
adversary-simulator Ag such that for all polynomial-time environments Z, the networks 7 U
{A,Dg, 2} and pU {Ag, D, Z} are indistinguishable.

Let n be a polynomial upper bound on the number of instances of m or p that are invoked
by o.

Given an environment Z, we define the hybrid environment Z;. Z; is depicted in
by the area enclosed by a dashed line. Z; internally simulates the following machines: The
original environment Z; an instance of ¢; i — 1 instances of 7, denoted 7y,...,m_1; n—i—1
instances of p, denoted p;i1,..., pn; an instance of A, denoted A7; i — 1 instances of A, denoted
AL .. AL — i — 1 instances of Ag, denoted fl?l, ey ~g; an instance of D, denoted D7;
i — 1 instances of Dg, denoted 15%, e ,ﬁgﬁl; n —i — 1 instances of D, denoted DL, ..., D"

12

For the sake of concreteness in the following specification of the behaviour of Z, assume
that Z is executed in a network with the protocol 7, the dummy-adversary A, and the dummy-
deceiver-simulator Dg.

Messages of the form (id, m) that Z sends to the adversary (meaning that Z instructs the
adversary to deliver m to the machine with identity id) are routed to one of the instances of Aor
Ag: If id is a machine in o, the message (id,m) is passed to the internally simulated A7 1fid is
a machine in the j-th instance of m, we distinguish three cases: If j < 4, then (id,m) is passed to
the internally simulated A7. If j = i, then (id,m) is passed to the external adversary A. If j > 1,
then (id, m) is passed to the internally simulated .[lfg Similarly, we proceed for messages from
Z to the deceiver: These messages are forwarded to D, @g (j < i), the external Dg (j = i),
or DI (j > i). Messages in the opposite direction are handled analogously. Communication
between ¢ and Z is forwarded normally. Communication between ¢ and some instance of = or p
is forwarded to the corresponding instance of w. That is, if o sends a message to a machine in the
j-th instance of 7 or p, this message is forwarded to the corresponding machine in the internally
simulated 7; if j < 4, in the external protocol 7 if j = ¢, and in the internally simulated p; if
j >
We observe the following facts about Z;.

First, by construction, the networks 7w U {A, Dy, Z;} and p U {Ag,D, Z;11} are perfectly
indistinguishable.

Furthermore, since the dummy-adversary only forwards messages between Z and the pro-
tocol, we can replace a single instance of the dummy-adversary that handles all instances of
7 and o (as in the network o™ U {A, D%, Z}) by individual instances of the dummy-adversary
for each protocol instance (as in the network 7 U {A,Dg, Z,}). More precisely, the networks
T U{A,Ds, 2,} and o™ U {A, D%, Z} are perfectly indistinguishable if we define DS to be the
(polynomial-time) deceiver-simulator that internally simulates D DS, . D” L Dg.

Similarly, we have that networks p U {Ag, D, Z1} and o U {A%, D, Z} are perfectly indis-
tinguishable if we define .A* to be the (polynomial-time) adversary-simulator that internally
simulates A, AS,AS,.. A”

Finally, we claim that the networks 7U{A, Dg, Z,} and pU{Ag, D, Z,} are indistinguishable
(we show this below). If we have shown this claim, [Theorem 7 follows since then o™ U{A, D}, Z}
and o” U {A%, D, Z} are indistinguishable, and .AS and DS are constructed independently of Z
and polynomial-time.

We proceed to show that 7 U {A, Dg, Z,} and pU {Ag, D, Z,} are indistinguishable.

Let Z* be the environment which on input (i, 2) simulates Z; with input z. By definition
of Dg and Ag, the networks m U {A,Dg, Z*} and p U {Ag, D, Z*} are indistinguishable. Thus,
there is a negligible function p such that

IPHEXEC,, 45,20 (ks (i:2)) = 1] = PHEXEC, 15 50y (K (5,2)) = 1]] < a(k)
for all k,7 € N, z € {0,1}*. By construction of Z*, this implies that
|Pr[EXEC7TU{A,5 Z~}<k’ z)=1] — Pr[EXECpu{AS @Z,}(k:, z) =1]| < p(k)

for all k,i € N, z € {0,1}*. Using the triangle inequality and the fact that = U {4, Dg, Z;} and
pU {AS,D ZZ+1} are perfectly indistinguishable, we get

’PT[EXECnu{AﬁS,Zn}(kv 2)=1] — Pr[EXECpU{A&ﬁZl}(ls, z) = 1]| < nu(k).
Since n is a polynomial, nu is negligible. Thus the networks 7 U {A, Dg, Z,} and pU {flg, D, Z}

are indistinguishable. O
The most common use case of the composition theorem is given by the following corollary:

13

Corollary 8 Let m and o be polynomial-time protocols, and F and G be polynomial-time func-
tionalities. Assume that 1 UC/c emulates F and that o> UC/c emulates G. Then o™ UC/c
emulates G.

Proof. Immediate from the universal composition theorem (Cheorem 1), and the transitivity of

UC/c emulation (Cemma 3). O

3 Voting schemes

In this section we illustrate the UC/c security notion by applying it to the special case of voting
schemes. We give a definition of incoercibility that is tailored to the specific case of voting
protocols and show that this definition is implied by the UC/c security notion.

Definition 9 (Voting scheme) Fix sets V (the set of votes), T (the set of tallies), P (the set
of voters). A tally function is an efficiently computable function tally : (VU {L})? — 7.

A wvoting scheme for tally is a two-stage protocol. We call the stages voting phase and tallying
phase. In such a protocol, each party P; € P gets an input v; € VU{L} (the vote of P;). v; = L
means that the P; does not participate in the protocol (abstention). In the end of the tallying
phase a distinguished party T outputs a value t € T .

Typically, ¥V would be the set of all candidates. In more complex schemes, elements of V
might be, e.g., ordered lists of candidates in order of decreasing precedence. The set of tallies
T usually is the set of all functions ¥V — Nj. Alternatively, in a voting scheme which only
announces the winner, we would have have 7 =). The tally function tally(vy,...,v,) specifies
what the correct tally is for the votes v; € VU { L} where v; = L denotes abstention.

Note that we do not require that the parties P; # T are aware whether they are in the tallying
or the voting phase. Such a requirement might be difficult to ensure in an asynchronous envi-
ronment. In particular, votes cast during the tallying phase (but before the tally is announced)
might or might not be counted.

An ideal voting scheme is given by the following functionality:

Definition 10 (Voting functionality) The wvoting functionality Fyote = \Eiiley expects (at

most one) message v; € V from each party P; € P. When receiving tally from T, Fyote
sets v; := L for all P; € P from which it did not receive a message v; € V yet. Then Fyote com-
putes t := tally(v;,i € P) (the tally) and sends t to the adversary. Then, when Fyore receives
deliver from the adversary, it sends t to the party T.

This functionality models that the tally output by T is correctly computed using the tally
function (as long as T itself is not corrupted) and that the individual votes are secret (even if T
is corrupted).

Natural properties of voting schemes are, e.g., correctness (the tally is correct even in the
presence of an adversary) and anonymity (the adversary cannot tell who voted for whom, except
as deducible from the tally itself). We will not formalise these properties here, but it is easy
to see that a voting scheme that UC emulates the voting functionality Fyote satisfies reasonable
formalisations of these properties. Since the UC/c security notion is stronger than UC, this
implies that these elementary properties are satisfied by UC/c secure voting scheme, too.

In our context, the most interesting property of a voting scheme is incoercibility. We will first
formalise what incoercibility means for voting schemes (independently of our framework). Then
we will show that incoercibility of voting schemes is implied by security in the UC/c framework.
Assume some party P that wants to cast a vote v. In an incoercible voting scheme, we expect

14

that if the adversary A forces a party P to deviate from the protocol, A should not be able
to tell the difference between P obeying the adversary A, or the party P casting the vote v
anyway (we say P deceives the adversary). Of course, since the adversary learns the tally, this
goal is unachievable — the tally always leaks a non-negligible amount of information about the
vote of P (at least if the number of voters is polynomial). We can only achieve the following:
The adversary’s advantage in distinguishing between P obeying and P deceiving is not greater
than the advantage with which the adversary could distinguish these two cases given only the
tally. To formulate this definition, we first introduce some notation:

Fix a voter P € P and a vote v € VU {L}. Fix a distribution B on (VU {L}HP\P}. (B
represents the distribution of the votes of the other voters.) Given a vote v, let B, denote the
distribution over (VU {L})” that chooses the votes for all P; € P\ {P} according to B and uses
the vote v for P. Accordingly, tally(B,) denotes the tally resulting from votes chosen according
to By. Let Advigeq (B, v) := max,~ A(B,, By+) where v* ranges over VU { L} and A denotes the
statistical distance. (Adv;geq describes how well an adversary can distinguish between being
obeyed and being deceived using only the tally.)

A voting adversary is an adversary that controls a party P (however, depending on the
setting, P may choose to ignore the instructions given by the adversary) and that may decide
when the tallying phase starts. We require that a voting adversary eventually starts the tallying
phase. Furthermore, when the party T outputs the tally, the tally is given to the voting adversary.
In the end, the voting adversary output a bit b.

Given a voting adversary A, let Pr e, (A, B) be the probability that A outputs 1 in the case
that the party P follows the instructions of the adversary (i.e., P is corrupted) and all other
parties honestly follow the protocol (with inputs chosen according to B).

Given some program code ? (the deception strategy for P), let Pryeceive (A, 0, B) denote the
probability that the adversary A outputs 1 if P follows the instructions in ® and all other parties
honestly follow the protocol (with inputs chosen according to B). (Intuitively, ? is a strategy
that tells P how to vote for v and simultaneously make the adversary believe that P obeys the
adversary.) We assume that 0 gets v and the identity of P as input. In the same setting, let
Tally geceive (A, 9, B) denote the tally output by 7.

Definition 11 (Incoercible voting schemes) A wvoting scheme is incoercible if there is a de-
ception strategy 0 such that for every polynomial-time voting adversary, every voter P € P, every
vote v € V, and every efficiently sampleable distribution B the following holds:

e The deception strategy casts the right vote: The random variables Tally j.ceive (A, 0, B) and
tally (B,) are computationally indistinguishable.

e The adversary cannot distinguish between being obeyed and being deceived: For some
negligible function u we have that

‘Probey(Aa B) - Prdeceive (A7 aa B)| S Advideal(87 U) + 22

Many variants of this definition are possible. For example, one could allow the voting ad-
versary to corrupt additional parties from P \ {P}. (In this case, one would have to adapt the
definition of Adv;gey.) For the sake of simplicity, we do not strive to find the most general
formulation of [Definifion 11l especially in view of the fact that the UC/c framework already
provides us with a very general definition of incoercibility.

We will now show that incoercibility in the sense of [Definition 11] is already implied by
UC/c security. We find that the proof of the following theorem is very instructive because it
gives some intuition for the UC/c framework, and because it illustrates how application-specific

15

incoercibility definitions (not restricted to the application of voting) can be proven to be implied
by UC/c security.

Theorem 12 Let 7 be a voting scheme for the tally function tally. Assume that m UC/c emu-
lates fﬁﬁ}cley with static corruption/deception. Then 7 is an incoercible voting scheme.

Proof. Fix a voting adversary A. We define the UC/c adversary A’ to behave like A, except
that when A starts the tallying phase, A’ instead sends tally to the environment. When A
would give an output b, A’ sends b to the environment.

We define an environment Z,pe, := Z;’gf as follows: Initially, Z,pe, sends a corruption
request to the party P. Then Z,., chooses votes vy, ..., v, according to the distribution B and

gives these votes as input to the parties P; € P\{P} (or, if v; = L, sends no input to ;). When
the adversary sends tally to Z,pey, Zobey sends tally to the party 7. When the adversary
sends b to Zgpey, Zobey terminates with output b.

Furthermore, we define Zgeceive := Zfe’ge’g . as follows: Initially, Zgeceive sSends a deception
request to the party P. Then Zje.eive chooses votes vy, ..., v, according to the distribution B
and gives these votes as input to the parties P; € P\ {P} (or, if v; = L, sends no input to ;).
Then it sends v to the deceiver. (This will make the deceiver D defined below instruct P to
cast vote v.) When the adversary sends tally to Zjeceive; Zdeceive S€Nds tally to the party 7.
When the adversary sends b t0 Zgeceive, Zdeceive t€rminates with output b.

We define the deceiver D as follows: When receiving a state from party P, D instructs P to

send this state to the adversary. (This is necessary only for formal reasons: since the adversary
should believe that P is corrupted, he expects a state from P. Since we are in the case of static
corruptions/deceptions, the state is only sent before the start of the protocol and is thus empty:.)
When D receives v from the environment, D instructs P to send v to the functionality Fyote-
(Le., P should cast the vote v.) Messages coming from the adversary are ignored. In particular,
when the adversary instructs P to cast some other vote, this is ignored.
Since 7 UC/c emulates Fyope 1= Fioty | there exist a polynomial-time deceiver-simulator Dg
and a polynomial-time adversary-simulator A’ such that for all polynomial-time environments
Z, the networks 7 U {A’, Dg, Z} and Fyote U { A, D, Z} are indistinguishable. (We write Fyote
for the protocol containing Fyote and the dummy parties.)

By construction,

Probey(-A’ B) = PT[EXECwU{A’,DS,ZObey} =1]. (3)

(We omit the arguments k, z from EXEC for brevity.) Note that since no party is deceiving, the
deceiver-simulator Dg does nothing.

We define the deception strategy 0 as follows: A party P following 0 and wishing to cast the
vote v internally simulates Dg. Then P sends the empty state to Dg. (This is done for formal
reasons: in the UC/c framework, Dg would get such an empty state when P is deceiving from
the start. Hence this message informs Dg that P is deceiving.) Then P sends v to the internally
simulated Dg as coming from the environment. Then P follows the instructions that Dg gives
to it. In the case that only P is deceiving, Dg only sends instructions to P. Thus it is not
necessary that P simulates any other machines communicating with Dg.

Then, by construction,

Prdeceive(Aa 0, B) = Pr[EXECWU{A’,DS,Z@CHW} = 1] (4)

Compare the networks Fyote U { A’ s D, Zgeceive } and Fuote U {A, D, Zypey }. In the first network,
Z deceve Instructs the dummy-party P (via the deceiver D) to send the vote v to Fypte- In the
second network, A/S instructs P to send some other vote v* to Fyote (Where we write v* = L to

16

indicate that A’y does not instruct P to vote before A sends tally to the environment). In
the ideal model, P does not receive any incoming messages from other parties. Thus, in both
networks, A’y does not get any messages from P. Thus, A’s can only use the tally to distinguish
the networks. The distribution of the tally in the network Fyote U { Ay, D, Zopey } is tally(By+),
and the distribution of the tally in the network Fyote U{A's, D, Zgeceive } 18 tally(By). Since Z,pey
and Zjeceive oOutput the bit b received from A’g, it follows that

‘Pr[EXchvoteU{Ag,D,Zobey} = 1] - Pr[EXECfvoteU{A,svaZdecewe} = 1”

< A BvaBU* = Ad idea B, .
< Doax () Videal (B, v)

Since for all polynomial-time Z, the networks 7 U { A", Dg, Z} and Fyore U { A}, D, Z} are indis-
tinguishable, it follows that

[PrEXEC s D5 2,0,,) = 1 = PHEXEC w0 D5 Ze} = | < AdVidear(B, v) + g
for some negligible function u. Then with ([Bl) and () we get that
‘Probey(Aa B) - Prdeceive (A7 0, B)| < Advideal(87 U) + @

This shows that the protocol 7 satisfies the second condition in [Definifion 111 (Notice that the
construction of the deception strategy 0 is independent of A and B.)

We are left to show that Tally j..eive (A, 0, B) and tally(B,) are indistinguishable (first condi-
tion of [Definifion TTI).

Let ¢ denote the message received by Zgeceive from the party T (¢ is the tally). In the network
Fuote U {As, D, Zgeceive }, t 18 the output of Fyge. Thus the distribution of ¢ is tally(B,): The
party P is instructed by D to send the vote v, all other parties cast votes chosen according to
the distribution B.

In the network m U {A’, Dg, Zeceive |, by construction of Zgeceive and of 0, the distribution
of ¢ is Tally jepeive (A, 0, B).

For contradiction, assume that Tally j.ceive (A, 0, B) and tally(B,) were not computationally
indistinguishable. Then there is an efficiently computable function f : {0,1}* — {0,1} such
that |Pr[f(Tally jeceive (A, 0,8)) = 1] — Pr[f(tally(B,)) = 1]| is not negligible. Then we de-
fine Z* like Zgeceive, €xcept that Z7% outputs f(¢). Then ’Pr[EXECT(U{A/,Ds,Z

. . * —
deceive deceive eceive

1] = Pr[EXECkg, . .u{4;,p,25 3 = 1]| is not negligible. This is a contradiction to the fact that
for all polynomial-time Z, the networks mU{A’, Dg, Z} and Fyote U{ A%, D, Z} are indistinguish-
able. Thus Tally jeceive (A, 0, B) and tally(B,) are computationally indistinguishable and the first
condition of [Definifion 11]is satisfied by . O

The design of voting protocols that are UC/c secure is, of course, an open problem. We
believe designing UC/c secure remote voting schemes to be a challenging problem that may
involve novel cryptographic techniques. In the case of non-remote voting (i.e., involving voting
booths and other partially trusted setup such as in, e.g., [Cha(4), [CRS05, MNO6, BMQR07]),
realising UC/c security might be much easier. We therefore particularly propose UC/c as a
security definition for that setting.

Forced-abstention attacks. A protocol that UC/c emulates the functionality Fyote is also
secure against forced-abstention attacks: In the ideal model, a deceiving party can cast a vote
without the adversary noticing. Thus in the real model, a party can also vote without the
adversary noticing. In some settings, security against forced-abstention attacks is impossible to
achieve: If the adversary controls the network and can observe all communication of a party P,
the adversary will always notice when a party participates in the protocol. To model a weaker

17

form of incoercibility that does not imply security against forced-abstention attacks, one can
change the definition of Fyote such that Fiote informs the adversary whenever a vote has been
cast (revealing the identity of the voter, but note the vote itself).

4 Incoercible two-party protocols

In this section, we show that at least with respect to static corruptions/deceptions, UC/c secure
two-party computation is possible using natural setup assumptions (such as, e.g., a public key
infrastructure). We show this by proving that under certain conditions, protocols secure in the
so-called Externalized UC framework are also UC/c secure. This allows us to reuse existing
results in that framework.

4.1 Externalized UC framework

We first give a short overview over the Externalized UC (EUC) framework as proposed by
Canetti, Dodis, Pass, and Walfish [CDPW07] (also known as Generalized UC, UC with global
setup, or, proposed independently by Hofheinz, Miiller-Quade, and Unruh [HUMQ07], UC with
catalysts).

First, consider the UC framework and assume that some real protocol 7 uses a functionality
F, say a CRS functionality. Then only the adversary and the protocol parties have direct access
to the CRS. The environment learns the CRS only through the adversary. In the real model,
this is as good as having direct access because without loss of generality, the adversary will not
lie to the environment. In the ideal model, however, the simulator can choose an arbitrary (fake)
value for the CRS instead (containing a trapdoor); the environment will not be able to notice
that the CRS was chosen differently. The security proof of most UC secure protocols in the
CRS-hybrid model are based on a simulator that chooses such a fake CRS. However, there are
two disadvantages in letting the simulator choose the value of the CRS. First, when composing
different protocols that all use a CRS, each of them needs its own CRS. Second, as pointed out
by Pass [Pas(3], a security definition where the simulator may choose the value of the CRS does
not guarantee deniability.

The EUC framework removes these two restrictions by extending the UC framework. In the
EUC framework, the environment is allowed to directly query the functionality JF, both in the
real and in the ideal model. For example, in the case of the CRS functionality, the environment
will know the true value of the CRS (as chosen by the functionality), and the simulator will not
be able to make up a fake value.

To make this more formal, we first introduce the notion of a shared functionality. Such a
functionality is derived from a normal functionality but additionally honours requests from the
environment. The environment can make requests in the name of any party and in the name of
the adversary.

Definition 13 (Shared functionality) Let F be a functionality. The shared functionality F
behaves like F, with the following extension: When F gets a message from some protocol party or
the adversary, the request is forwarded to an internally simulated F, and the answer m’ of F is
forwarded back to the party or adversary. When F gets a message (P, m) from the environment
where P is the identity of some party, the message m is given to the internally simulated F as
coming from P. The answer m’ of F is forwarded back to Z.

Given this notion of a shared functionality, it is easy to define EUC security. In the EUC
framework, the environment has access to the shared functionality both in the real and in the
ideal model.

18

Definition 14 (EUC security) Let w be a protocol using a shared functionality F. Let p be
a protocol. We say that m F-EUC emulates p if for any polynomial-time adversary A there
exists a polynomial-time adversary S (the adversary-simulator) such that for any polynomial-
time environment Z the networks m U {A, Z} and p U{F,S, Z} are indistinguishable.

Since 7 already contains F, we have that JF is present both in the real and in the ideal model.

Since the simulator is not allowed to simulate the functionality F any more, EUC security is
strictly stronger than UC security. In particular, it was shown by Canetti et al. [CDPW07) that
in the EUC framework, it is not even possible to construct secure commitment protocols using a
CRS. There are, however, alternative functionalities that allow to design EUC secure protocols:

The key registeration with knowledge (KRK) functionality Fiyk is a functionality where each
party may register a public key/secret key pair and every party may request the public keys of
all parties and the secret key of itself. The restricted KRK functionality F . is defined like Fiy
except that uncorrupted parties are not allowed to retrieve their secret key

The augmented CRS (ACRS) functionality Faers chooses a public key and a corresponding
master secret key, and derives for each party a corresponding individual secret key. The public
key is given to all parties, the secret key of each party is only given to that party. The restricted
ACRS functionality F.., is defined like F,q, except that uncorrupted parties are not allowed
to retrieve their secret key.

For details on the restricced KRK and ACRS functionalities, see [CDPW07|. (They are
simply called KRK and ACRS functionalities (G, and Gaes) there, we added the qualifier
“restricted” for disambiguation.)

The signature card functionality Fs. with owner P picks a signing/verification key pair and
reveals the verification key to all parties. The party P (the owner) may send arbitrary messages
m to Fg and receives signatures of m back. The signing key is never revealed. The restricted
signature card functionality FZ. additionally allows one protocol session to lock the signature
card. While the signature card is locked by a given protocol session, in all other protocol sessions,
even the owner P may not sign messages

For details on the restricted signature card functionality, see [HUMQ07] (simply called the
signature card functionality Fg. there).

Theorem 15 (EUC multi-party computation [HUMQO07, [CDPWOT|) Let F €

{Ff oo Frowss Fo . Let G be a well—formeaﬁ functionality. Then there is a protocol 7 in
the F-hybrid model such that 1 F-EUC emulates G with static corruptions.

Proof. Canetti, Dodis, Pass, and Walfish [CDPW0(7] show that for F € {F},,, Fi}, there is a
protocol Teom in the F-hybrid model such that F-EUC emulates the commitment functionality

4The definition of Fik in [CDPWO7] lets parties choose the randomness used to generate their key pair when
registering. Thus every party knows its own secret key and the restriction that uncorrupted parties are not
allowed to retrieve their own secret keys is meaningless. We therefore assume that the intended definition in
[CDPWI7] is that only corrupted parties may chose the randomness while for uncorrupted ones the randomness
is chosen by the functionality.

SStrictly speaking, a functionality with such a locking mechanism does not fit our definition of shared func-
tionalities: Such a locking functionality will have to distinguish different protocol sessions. In particular, it might
answer differently to a query sent by the owner, and the same query sent by the environment in the name of
the owner, contradicting [Definifion T3 This can be remedied by a slight change in the definition of the locking
mechanism: Instead of locking with respect to a given session, locking requests are accompanied by a secret
random nonce N. Then only unlocking and signing requests containing N will be honoured. As long as the
uncorrupted parties do not divulge N, this has the same effect as session-wise locking, and the functionality will
then not have to distinguish between the environment and protocol parties.

6A well-formed functionality is one whose behaviour does not depend on which parties are corrupted or
deceiving.

19

Feom- Hofheinz, Miiller-Quade, and Unruh [HUMQOT] show that for F = Fz,, there is a protocol
Teom i the F-hybrid model such that F-EUC emulates Feor. [CDPWOT, after Thm. 5] show
that for any shared functionality F and any well-formed functionality G, given a protocol Teom
F-EUC emulating Foom, we can construct a protocol m that F-EUC emulates G with static
corruptions. (Indeed, if G is not only well-formed, but even adaptively well-formed as defined
by Canetti, Lindell, Ostrovsky, and Sahai [CLOS02], then 7 even F-EUC emulates G with
adaptive corruptions. However, we do not need this fact in the following.) Note that this result
implicitly uses our convention that we use secure channels that do not leak anything to the
adversary. Otherwise, we could not realise all functionalities G; only functionalities that notify

the adversary when invoked would be possible. O

4.2 EUC security implies UC/c security

In this section, we show that under certain conditions, an EUC secure protocol is already UC/c
secure with static corruptions/deceptions. To state our result, we first introduce some additional
notation.

First, to capture the relation between F, , Fius,
notion of a restriction:

]:

o and Firk, Facrs, Fsc, we introduce the

Definition 16 (Restrictions) Let F and F* be functionalities. We say F* is a restriction
of F if F* behaves like F, except that for each party P there is an efficiently recognisable set Cp
of messages such that F* ignores any message m € Cp from P. Here Cp may depend on the
messages exchanged between F* and P so-far.

We say F* is a shared restriction of F if there exists a restriction F* of F such that F* is
the shared functionality corresponding to F*.

We call a protocol ™ > F* restriction-compatible to F* if no honest party P in 7 ever sends
a message m € Cp to F*.

For example, in the case of F* = F},, Cp would be the set of messages requesting a secret
key. Hence]:'lfrk is a shared restriction of Fi. Similarly, f;‘crs is a shared restriction of Facrs.
In the case of F* = F%, when the signature card is locked for the session with nonce N (see
footnote H), Cp would be the set of unlocking and signing requests coming from the owner P of
the card but not tagged with N. When the signature card is not locked, Cp is empty. Hence
F is a shared restriction of Fy.

We additionally need to refine the notion of EUC security to capture certain technical re-

quirements on the simulator:

Definition 17 (Special 51mu1ator) We say m F-EUC emulates p with a special simulator if
the adversary-simulator Ag corresponding to the dummy- adversary A has the following property:

When the environment sends a message (F,m) to the Ag, As sendsm to F. When F sends
m to .Ag, Ag sends (F,m) to the environment. These messages are not recorded in the state of
As. Ag never sends a message m to F unless he got (F, m) from the environment, and never
sends a message (F,m’) to the environment unless he got m' from F.

In other words, Ag provides a direct connection between F and Z which he does not even listen
too. In the case that no party is corrupted, the dummy-adversary A in the real model only has
access to F. Thus in this case, the behaviour of Ag is fully specified by [Definition 17, namely
Ag forwards messages between F and the environment and does nothing else. In most protocols,
this is the natural behaviour of Ag in the uncorrupted case anyway.

If some party is corrupted, [Delinition 17 implies that Ag cannot query F (except when
forwarding messages from the environment). For example, if F = F},, then Ag could not

20

even query F to get the public keys of the parties. This seems to be a strong restriction. The
adversary-simulator Ag can, however, instruct the corrupted party to request the public keys
from the functionality. Thus everything the adversary could do by directly contacting F can
also be done by giving suitable instructions to the corrupted party. Analogous reasoning holds
for F = Fr, and F = FZ. Thus at least for these functionalities, [Definition 17 does not pose
a restriction in the case of a corrupted party.

Corollary 18 (EUC multi-party computation with special simulator) Let F* €
{Ff e Frovss Foo . Let G be a well-formed functionality. Then there is a protocol m in the
F*-hybrid model such that 1 F*-EUC emulates G with static corruptions and special simulator.
Furthermore, 7 is restriction-compatible to F*.

Proof. The simulators in the constructions from [HUMQ07, [CDPW07] already construct dummy-

adversary-simulators that fulfil Definition 11 in the uncorrupted case. In the corrupted case,

their simulators can be made to fulfil Definition 174 by replacing all direct requests to F* by

indirect calls through the corrupted party. The protocols constructed in [HUMQOT, (CDPW{O7]

are restriction-compatible to F*. Then the proof is as for O
Finally, we will consider a restricted class of functionalities:

Definition 19 (Silent functionalities) A functionality G is silent if it ignores all messages
from the adversary or the deceiver and never sends messages to the adversary or the deceiver.

In other words, silent functionalities are those that leak no information. Note that it is not
excluded that the adversary or deceiver indirectly gets access to G through a corrupted or
deceiving party.

The main result of this section (Theorem 23)) will be to show that, under certain conditions,
a protocol m UC/c emulates a functionality G with static corruptions/deceptions if 7 EUC
emulates G with static corruptions.

The most important case is covered by the following lemma:

Lemma 20 Let G be a silent polynomial-time functionality. Let F be a polynomial-time func-
tionality and let F* be a shared restriction of F. Let m be a two-party protocol in the F-hybrid
model with parties P and Q. Let wy := 7\ F U {F*}. Assume that my_is restriction-compatible
to F* and that my F*-EUC emulates G for for static corruptions of Qﬁ

Then m UC/c emulates G for statically corrupted @ and for statically deceiving QE

Proof. To simplify the proof, we first introduce some alternative notation. In the definition
of the network model in the UC framework, machines specify the recipient of a message m by
attaching the identity of the recipient to the message. Although this is convenient for defining
protocols, it makes certain proofs relatively difficult to formulate: In intermediate proof steps,
we often consider changed machines that send their messages to different recipients than their
original program would prescribe (the machines are “rewired”). Furthermore, machines like
the dummy-adversary that simply forward messages expect headers with the recipients of the
messages. Explaining the constructions below in such a setting leads to complicated and hard-
to-read textual descriptions even in the case of relatively simple “rewiring”.

To make presentation simpler, we instead assume that each machine has a number of named
ports. Between two ports a and b we can have a connection which means that messages send on

"That is, we assume a corruption schedule in which P is never corrupted and @ may be corrupted, but only
before the protocol starts.

8That is, we assume a corruption schedule in which the environment always makes @Q corrupted or deceiving
before the protocol start and never leaves @ uncontrolled and always leaves P uncontrolled.

21

a are received on b. Any network using this formalism can easily be converted into a network
using the original formalism with message-headers. The formalism using ports, however, has the
advantage that we can easily describe the configuration of a network by giving a picture with
lines indicating the connections between ports. In the pictures, we follow the convention that
in all occurrences of a given machine, the relative position of its ports is the same. This allows
to compare different networks without having to pay attention to the (somewhat hard to read)
port names.

EUC security, uncorrupted case. By assumption, 7y F*-EUC emulates G with a special
simulator. Consider an environment Z* that does not query the functionality F* in the name
of P (but Z* may query F* in the name of Q). Let A% denote the dummy-adversary in this
case. (We write A instead of A to distinguish this dummy-adversary for the UC /c setting, and
we write the superscript 0 to indicate that it is the dummy-adversary for the uncorrupted case.)
The resulting real model my U {A°, Z2*} is depicted in [Figure 3} network A. (Here and in the
following pictures, we draw several boxes marked Z* or Z. These a supposed to denote a single
machine, the separation into several boxes is only for graphical reasons.)

Note the following particularities:

Instead of F*, we have written F in network A because the shared functionality 7* and the
functionality F behave identically, except that we allow Z* to access F* in the name of @ and
that certain messages from uncorrupted parties are ignored by F*. The additional access for Z*,
however, is already expressed by the connections in network A. And the messages that would be
ignored by F* are not sent by honest parties anyway since g is restriction-compatible to F*.

Furthermore, there are two connections ending in the port fq of F. This is due to the fact
that both Z* and) may access F in the name of). Responses to messages from Z* and @
arriving at that port are sent back to the Z* and @, respectively. The dummy-adversary has
no connections to the protocol parties P and) because they are uncorrupted and we assume
secure channels.

The corresponding ideal model G U {F*, A%, Z*} is depicted in [Figure 3| network B. Here
the dummy-adversary-simulator fl% is a machine that simply forwards all messages between
its ports fa and fa’. This is due to the fact that we assumed EUC-emulation with a special
simulator. The dummy-parties are denoted by P and Q.

Since my F*-EUC emulates G with a special simulator, we have that the networks A and B
are indistinguishable for all polynomial-time environments Z*.

EUC security, Q corrupted. By assumption, my F*-EUC emulates G in the case of corrupted
Q. Consider an environment Z that does not query the functionality F* (neither in the name of
P nor Q). Let A denote the dummy-adversary in this case. The resulting real model 7oU {fl, Z}
is depicted in [Figure 3} network C. In network C, we write Q* for the corrupted party @ for
clarity (it will be important later to distinguish @Q* from the uncorrupted Q). The ideal model
GU{F*, Asg, Z} is depicted in [Figure 3] network D. We write Q* for the corrupted dummy-party
Q. We can use F instead of F* for the same reasons as in the case of an honest Q. Note that
the dummy-adversary-simulator Ag routes all queries from Z on the port fa’ directly to the
functionality F. This is because we assumed EUC emulation with special simulator. We then
have that for all polynomial-time Z, the networks C and D are indistinguishable.

UC/c security, Q corrupted. We now proceed to show that 7 UC/c emulates G for statically
corrupted Q. By [Cemmaf it is sufficient to construct an adversary-simulator Ag and a deceiver-
simulator ZNDg that for every environment Z that corrupts @, the real model 7 U {ft, DY Z } and
the ideal model G U {Ag,D°, Z} are indistinguishable. Here A denotes the dummy-adversary,
and DY the dummy-deceiver. (We use the superscript 0 to stress the fact that we are considering
the case that no party is corrupted, and thus D° and ﬁg are trivial.) The real model is depicted

22

from the proof of [Lemma 20l

and Z*

Figure 3: Networks A-H and machines Ag, Dg,

in [Figure 3 network E. The ideal model is depicted in network F. Note that the dummy-deceiver
D has no connections to the protocol or the functionality G (the latter is silent by assumption),
and therefore also no connections to the environment. The same holds for ZNDg. We can thus fix
75% to be the machine that does nothing. We construct the adversary-simulator Ag as follows:
It internally simulates an instance of the functionality F, and an instance of the adversary-
simulator Ag (from the EUC setting). Ag connects these machines between each other and to
the ports of Ag as depicted in bottom.

With this definition of Ag, we have that the networks C and E are perfectly indistinguishable,
and the networks D and F are perfectly indistinguishable. (To see that two networks are perfectly
indistinguishable, check for each port of the machines Z, F, G, P, Ag that the connection, when
following all forwardings, leads to the same port in both networks. E.g., in network D the port
g of Z is connected to ¢ of Q*, from there to ¢’ of Q*, to ¢ of fls; in network F, the port ¢ of Z
is connected to ¢ of Q*, to ¢’ of Q*, to ¢ of Ag, and finally to ¢ of the internally simulated Ag;
thus in both networks, the port ¢ of Z is connected to the port g of Ag) Note that in network
D, the connection between Z’s and F’s ports fa is routed through Ag, while in network F it
does not reach Ag. This is permissible because by assumption, Ag only forwards this connection
without accessing the transferred data in any way. Since we already know that networks C and
D are indistinguishable, it follows that networks E and F are indistinguishable, thus we have
that 7 UC/c emulates G for statically corrupted Q.

UC/c security, @ deceiving. We now proceed to show that 7 UC/c emulates G for statically
deceiving Q. By [Cemma), it is sufficient to construct an adversary-simulator Ag and a deceiver-
simulator Dg such that for every environment Z that makes () deceiving, the real model 7 U
{A,Dg, Z} and the ideal model G U {Ag, D, Z} are indistinguishable. Here A denotes the
dummy-adversary, and D the dummy-deceiver. The real model is depicted in [Figure 3 network
G. The ideal model is depicted in network H. We write Q' for the deceiving party Q. Q' has
ports com, fq, and g to P, F, and Z. Furthermore, since from the point of view of the adversary,
Q' is supposed to look like the corrupted Q*, it has ports coma, fqa, and ga that are connected
to the adversary (and that would, if QT was corrupted, be connected to the ports com, fq, and
q). Finally, since Q' is controlled by the deceiver-simulator, for each port x, it has a port z’
connected to the deceiver-simulator. Analogously for the deceiving dummy-party Q7.

We use the same adversary-simulator Ag as above (see [Figure 9} bottom). The deceiver-
simulator Dg internally simulates the machines Ag (the adversary-simulator from the EUC
setting) and the uncorrupted Q[The ports are connected as shown in [| bottom. Note
that both Ag and Q are connected to Dg’s port fg. This means that messages from both Ag
and @ are forwarded to that port, and answers are sent back to the corresponding sender. (As
was the case with the port fg of F in network A.)

To show that for any environment Z, the networks G and H are indistinguishable, we addi-
tionally construct an environment Z* internally simulating Z and Ag with connections as shown
in [Figure 3} bottom.

With these definitions of Dg, and Z*, the networks A and G are perfectly indistinguishable.
And with the definitions of Ag and Z*, the networks B and H are perfectly indistinguishable.
Since we know that for any polynomial-time Z*, the networks A and B are indistinguishable, it
follows that the networks G and H are indistinguishable, thus 7 UC/c emulates G for statically
deceiving Q.

Summing up. We have shown that 7 UC/c emulates G for statically corrupted @ and that
m UC/c emulates G for statically deceiving . Thus 7 UC/c emulates G for static corrup-

°It is at this point that we use that fact that G is silent. If there was a connection between G and As, Ds
would have to connect to G in the name of the adversary. But Dgs cannot do this.

24

tions/deceptions of @Q): The deceiver-simulator behaves like ZNDg above when (@ is corrupted, and
like Dg above when @ is deceiving. The adversary-simulator is Ag in both cases (this is impor-
tant, since the adversary-simulator cannot distinguish whether a party is corrupted or deceiving).
O

Lemma 21 Let 7 be a protocol, let F,G be functionalities, and let F* be a shared restriction of
F. Let mo :== n \ {F} U{F*}. If my is restriction-compatible to F* and my F*-EUC emulates G
without corruptions, then m UC/c emulates G without corruptions/deceptions.

Proof. EUC emulation implies UC emulation. Hence mg UC emulates G without corruptions.
Since T is restriction-compatible, 7 never sends a query to F that F* would ignore. Thus 7 UC
emulates G without corruptions. In the case without corruptions/deceptions, UC/c emulation
is equivalent to UC emulation. Hence 7 UC/c emulates G without corruptions/deceptions. [

Lemma 22 Let m be a two-party protocol with parties P and Q) and using a polynomial-time
functionality F, and let G be a polynomial-time functionality. Then m UC/c emulates G for
statically corrupted or deceiving P and Q.

Proof. Let A denote the dummy-adversary and D the dummy-deceiver. By [Cemma @, we need
to show that there is a dummy-adversary-simulator Ag and a dummy-deceiver-simulator Dg
such that the real model 7U{A, Dg, Z} and the real model GU{Ag, D, Z} are indistinguishable
for polynomial-time environments Z where Z does one of the following at the beginning of the
execution: (i) Z corrupts P and @, (ii) Z corrupts P and makes @) deceiving, (iii) Z makes P
deceiving and corrupts @, (iv) Z makes P and @ deceiving.

We use the notation using ports described in the proof of [Lemma 20 We define Ag to
internally simulate F and to forward messages between its ports as depicted in [Figure 4} network
B. Then, in case (fl), the real model is network A, and the ideal model is network B. Networks
A and B are perfectly indistinguishable. (This can be seen by following the connections in

gure 4)

In case (), we define Dg to internally simulate G and to forward messages between its
ports as depicted in network C. The real model is network C, and the ideal model is
network D. Note that in network D, we use the same definition for Ag as in network B since the
adversary-simulator cannot distinguish whether @) is corrupted or deceiving. Networks C and D
are perfectly indistinguishable.

Case () is handled analogously to case ().

In case (), we define Dg to internally simulate G and to forward messages between its ports
as depicted in [Figure 4, network E. (Note that Dg is defined differently than in the previous cases.
This is possible because the deceiver-simulator can distinguish whether parties are corrupted or
deceiving.) The real model is network E, and the ideal model is network F. Networks E and F
are perfectly indistinguishable.

Thus, in all cases, the real and the ideal model are perfectly indistinguishable. Hence 7
UC/c emulates G for statically corrupted or deceiving P and Q. O

Theorem 23 Let G be a silent polynomial-time functionality. Let F be a polynomial-time func-
tionality and let F* be a shared restriction of F. Let m be a two-party protocol in the F-hybrid
model with parties P and Q. Let my := m \ F U {F*}. Assume that mq is restriction-compatible
to F* and that mo F-EUC emulates G with static corruptions and special simulator.

Then m UC/c emulates G with static corruptions/deceptions.

0That is, we consider environments that statically make P and @ corrupted or deceiving, and that do not
leave any of the machines uncontrolled. We do allow that one party is corrupted and the other deceiving.

25

!

pd p' OO
(S

i S

Figure 4: Networks A-F from the proof of [Lemma 22]

26

Proof. From Lemmas 20, 1 and 22 O

Corollary 24 (UC/c two-party computation) Let F € {Fiwk, Facrs, Fsc - Let G be a well-
formed silent functionality. Then there is a protocol 7 in the F-hybrid model such that m1 UC/c
emulates G with static corruptions/deceptions.

Proof. From [Corollary 18 and [Theorem 23 and the fact that i, , Fr o, F2 are shared restrictions
of fkrkafacrmfsc- U

5 Conclusions and open problems

We have presented the UC/c framework. This framework enables us to model the incoercibility
of general multi-party protocols. The UC/c framework comes with a strong composition theo-
rem (universal composition). We have shown that with respect to static coercions/deceptions,
arbitrary two-party protocol tasks can be realised in the framework.

Directions for future work include:

e Good-guy/bad-guy coercions. Our feasibility results only hold for static coer-
cions/deceptions. We believe that feasibility results similar to those presented in Seciion 4l
can be shown for good-guy coercions. To achieve protocols that are secure with respect to
bad-guy coercions, we believe that new cryptographic techniques will have to be developed.

e [Insecure channels. We assumed perfectly secure channels, i.e., channels where the ad-
versary does not even notice that a message is sent. Can the results from be
generalised to a setting with weaker assumptions on the channels?

o Multi-party protocols. Our feasibility results are restricted to two-party protocols. To cap-
ture important cases like voting protocols we need to extend this to multi-party protocols.

e Impossibility results. Since incoercibility is a strong requirement, we also expect that
many protocol tasks cannot be fulfilled. For example, is it possible to realise a non-trivial
protocol task using only a common reference string?

Acknowledgements. We thank Yevgeniy Dodis and Daniel Wichs for extensive discussions.

References

[BMQRO7] Jens-Matthias Bohli, Jorn Miiller-Quade, and Stefan Rohrich. Bingo voting: Secure
and coercion-free voting using a trusted random number generator. In E-Voting and
Identity, VOTE-ID 2007, volume 4896 of LNCS, pages 111-124, Berlin/Heidelberg,
2007. Springer.

[BOGWS8S8| Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In Twentieth Annual
ACM Symposium on Theory of Computing, Proceedings of STOC 1988, pages 1-10.
ACM Press, 1988.

[BT94] Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections (extended
abstract). In STOC ’94, pages 544-553. ACM, 1994.

27

[Can00]

[Can01]

[Can05]

[CCDSS]

[CDPWO7]

[CFGNO6)|

[CGO6]

[Cha04]

[CLOS02

[CRS05]

[DKR09]

[For91]

Ran Canetti. Security and composition of multi-party cryptographic protocols. Jour-
nal of Cryptology, 3(1):143-202, 2000.

Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings of FOCS 2001, pages 136-145. IEEE Computer So-
ciety, 2001. Full version online available at http://www.eccc.uni-trier.de/
eccc-reports/2001/TR01-016/revisnOl.ps, a strongly revised full version ap-

peared as [Can(5)].

Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. TACR ePrint Archive, December 2005. Full and revised version of [Can(1],
online available at http://eprint.iacr.org/2000/067.

David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally
secure protocols. In Twentieth Annual ACM Symposium on Theory of Computing,
Proceedings of STOC 1988, pages 11-19. ACM Press, 1988. Online available at
http://www.cs.mcgill.ca/ crepeau/GZIP/CCD88.ps.gz.

Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-
posable security with global setup. In Theory of Cryptography, Proceedings of TCC
2007, volume 4392 of Lecture Notes in Computer Science, pages 61-85. Springer-
Verlag, March 2007. Preprint on TACR ePrint 2006/432.

Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-
party computation. In Twenty-Fighth Annual ACM Symposium on Theory of Com-
puting, Proceedings of STOC 1995, pages 639-648. ACM Press, 1996. Extended ver-
sion online available at http://www.wisdom.weizmann.ac.il/~oded/PS/tr682.ps.

R. Canetti and R. Gennaro. Incoercible multiparty computation. In FOCS ’96:
Proceedings of the 37th Annual Symposium on Foundations of Computer Science,
page 504, Washington, DC, USA, 1996. IEEE Computer Society. Long version
available at http://eprint ./iacr.org/1996/001.

David Chaum. Secret-ballot receipts: True voter-verifiable elections. IEEFE Security
€ Privacy, 2(1):38-47, 2004.

Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In 84th Annual ACM Sym-
posium on Theory of Computing, Proceedings of STOC 2002, pages 494-503. ACM
Press, 2002. Extended abstract, full version online available at http://eprint.
iacr.org/2002/140.ps.

David Chaum, Peter Y. A. Ryan, and Steve A. Schneider. A practical voter-verifiable
election scheme. In ESORICS, pages 118-139, 2005.

Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-type prop-
erties of electronic voting protocols. Journal of Computer Security, 17(4):435-487,
July 2009.

Frederick Forsyth. The Deceiver. Bantam Books, 1991. Summary available at
http://tinyurl. com/ycvhuod.

28

http://www.eccc.uni-trier.de/eccc-reports/2001/TR01-016/revisn01.ps
http://eprint.iacr.org/2000/067
http://www.cs.mcgill.ca/~crepeau/GZIP/CCD88.ps.gz
http://www.wisdom.weizmann.ac.il/~oded/PS/tr682.ps
http://eprint.iacr.org/1996/001
http://eprint.iacr.org/2002/140.ps
http://tinyurl.com/ycvhuod

[GMWS7]

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
— or — a completeness theorem for protocols with honest majority. In Proc. 19th
Annual ACM Symposium on Theory of Computing (STOC), pages 218-229, 1987.

[Gol04] Oded Goldreich. Foundations of Cryptography — Volume 2 (Basic Applications).
Cambridge University Press, May 2004. Preliminary version online available at
http://www.wisdom.weizmann.ac.il/ oded/frag.html.

[Her91] Amir Herzberg. Rumpsession, Crypto ’91, 1991.

[HUMQO7] Dennis Hofheinz, Dominique Unruh, and Jérn Miiller-Quade. Universally compos-
able zero-knowledge arguments and commitments from signature cards. Tatra Mt.
Math. Pub., pages 93-103, 2007.

[JCJO5] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic
elections. In Proc. Jnd ACM Workshop on Privacy in the Electronic Society (WPES),
pages 61-70. ACM Press, 2005.

[MNO6| Tal Moran and Moni Naor. Receipt-free universally-verifiable voting with everlasting
privacy. In CRYPTO 2006, volume 4117 of LNCS, pages 373-392. Springer, 2006.

[Pas03] Rafael Pass. On deniability in the common reference string and random oracle model.
In Dan Boneh, editor, Advances in Cryptology, Proceedings of CRYPTO 2003, num-
ber 2729 in Lecture Notes in Computer Science, pages 316-337. Springer-Verlag,
2003. Online available at http://www.nada.kth.se/ rafael/papers/denzk.ps.

[Tru07] Trusted Computing Group. TPM main specification level 2 version 1.2, 2007. on-
line available at http://www.trustedcomputinggroup.org/resources/tpm_main_
specification, adopted as ISO/IEC standard 11889.

Index

abstention, [[4 completeness

forced, I dummy-adversary/deceiver,
ACRS functionality, composable incoercibility, see UC/c
adversary composition theorem
dummy-, universal,
voting, conclusions,
adversary-simulator, [controlled
dummy, corruption state, [
augmented CRS, see ACRS corrupted

authenticated channel,

bad-guy coercions, B

corruption state, [
corruption state
corrupted, [

catalysts corruption schedule,
UC with, see EUC bad-guy coercions,
channel good-guy coercions,
authenticated, only corruptions,
insecure, receipt-freeness,
secure, [0l static corruption/deception,
coercion resistance, see incoercibility corruption state, [

29

http://www.wisdom.weizmann.ac.il/~oded/frag.html
http://www.nada.kth.se/~rafael/papers/denzk.ps
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

controlled, [ideal model,

uncontrolled, [incoercibility

‘ composable, see UC/c
deceiver incoercible

dummy-, secure function evaluation, Hl
deceiver-simulator, [voting scheme,

dummy,

indistinguishable networks

perfectly,
indistinguishable networks,
insecure channel,

deceiving
corruption state, [
deception strategy
universal,

deception strategy, key registration with knowledge, see KRK
dummy-adversary, KRK functionality,
completeness, [
UC/c, model
dummy-adversary-simulator, F-hybrid,
dummy-deceiver, ideal,
completeness, real,

UC/c w.r.t.,
dummy-deceiver-simulator,
dummy-party,

network,
non-erasing party,

only corruptions, B

emulate
EUC, party
ue, dummy-,
UC/c, [

erasing,
non-erasing,

perfectly indistinguishable
networks,

erasing party,
EUC, B, 0§
EUC emulate,

executable phase
network, tallying, [[4]
externalized UC, see EUC voting, [

forced-abstention, [protocol,

functionality . real model,
ACRS, receipt-freeness,
ideal, reflexivity,
KRK,

restriction
of a functionality,
restriction-compatible,

shared,

signature card,

silent, 211

well-formed, secure function evaluation
incoercible, H

secure channel,

security parameter,

shared functionality,

shared restriction

generalized UC, see EUC
global setup

UC with, see EUC
good-guy coercions,

hybrid model of a functionality,
)
signature card functionality,
ideal functionality, silent functionality, BTl

30

simulator
adversary-, [
deceiver-, [
dummy-adversary,
dummy-deceiver,
special,

special simulator,

static corruption/deception,

tally function, [[4]
tallying phase, [4
transitivity,

ucC,
externalized, see EUC
generalized, see EUC
with catalysts, see EUC
with global setup, see EUC
UC emulate,

UC/c, [
dummy-adversary/deceiver,
intuition,

UC/c emulate, [

uncontrolled
corruption state, [

Universal Composability, see UC

universal composition theorem,

universal deception strategy,

voting scheme
incoercible,
voting adversary,
voting phase, [[4
voting scheme, [[4

well-formed
functionality,

31

	Introduction
	The intuition behind UC/c
	Related work

	The Composable Incoercibility Framework (UC/c)
	The UC framework
	The Composable Incoercibility framework (UC/c)
	Corruption schedules
	Erasing and non-erasing parties
	Basic properties
	Universal composition

	Voting schemes
	Incoercible two-party protocols
	Externalized UC framework
	EUC security implies UC/c security

	Conclusions and open problems
	References
	Index

