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Abstract. Lossy Trapdoor Functions (LTDFs), introduced by Peikert and Waters (STOC 2008) have
been useful for building many cryptographic primitives. In particular, by using an LTDF that loses a
(1 − 1/ω(log n)) fraction of all its input bits, it is possible to achieve CCA security using the LTDF as a
black-box. Unfortunately, not all candidate LTDFs achieve such a high level of lossiness. In this paper we
drastically improve upon previous results and show that an LTDF that loses only a non-negligible fraction
of a single bit can be used in a black-box way to build numerous cryptographic primitives, including one-
way injective trapdoor functions, CPA secure public-key encryption (PKE), and CCA-secure PKE. We
then describe a novel technique for constructing such slightly-lossy LTDFs and give a construction based
on modular squaring.
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1 Introduction

Lossy Trapdoor Functions (LTDFs), recently introduced by Peikert and Waters [15], have proven to
be a useful tool both for giving new constructions of traditional cryptographic primitives and also
for constructing new primitives. Specifically, Peikert and Waters used LTDFs to construct one-way
injective trapdoor functions, collision-resistant hash functions, CPA and CCA-secure encryption1, and
more. More recently, LTDFs were used to construct deterministic PKE schemes secure in the standard
model [3], as well as PKE schemes secure under selective-opening attack [1].

Informally, an LTDF is an injective trapdoor function with a function description g that is (com-
putationally) indistinguishable from the description ĝ of another function that statistically loses in-
formation about its input. In other words, the function ĝ is non-injective, with some images having
potentially many preimages. We say an LTDF g (computationally) loses ` bits if the effective range
size of the indistinguishable function ĝ is at most a 1/2`-fraction of its domain size. LTDFs allow a
useful and simple proof technique: in the honest execution of a protocol we use the injective function
to get the correct functionality, while in the proof the “challenge” given to an adversary will use the
lossy function. One can then do a statistical argument to complete the proof.

Using LTDFs and this proof technique, Peikert and Waters show that an LTDF f with input
size a polynomial n(λ) (where λ is the security parameter) that loses ω(log λ) bits is one-way. This
is easy to see since if an inverter is given ĝ(x), where ĝ is the indistinguishable lossy function, then
there are on average ω(log λ) possible preimages; thus the adversary has only a negligible probability
of outputting the correct one. Applying known results, these one-way TDFs immediately give CPA
secure encryption using generic hardcore predicates [7]. Additionally, Peikert and Waters go on to
show that LTDFs admit simple hardcore functions, resulting in efficient multi-bit encryption schemes.

To achieve CCA security from LTDFs, Peikert and Waters then show that any LTDF with enough
lossiness can be used to construct an all-but-one trapdoor function (ABO), which can then be used
1 By CCA-secure we mean CCA2-secure. See [9] for a good overview of all the ways currently used to achieve CCA
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to achieve CCA security. “Enough” lossiness turns out to be almost all of the input bits, which can
be difficult to achieve. Peikert and Waters can get enough lossiness from a DDH-based construction,
however their latticed-based construction only loses a constant fraction of the input bits which turns
out to be insufficient for the general construction. Thus, to get CCA security from lattice-based
assumptions, they need to give a more complex direct construction of an ABO.

Since the original paper, more constructions of LTDFs have been proposed. Rosen and Segev [20]
and Boldyreva, Fehr, and O’Neill [3] both gave a construction based on the decisional composite
residuosity (DCR) assumption, while Kiltz and O’Neill recently announced at the Eurocrypt ’09 rump
session [10] that the RSA trapdoor permutation is lossy under the phi-hiding assumption of [4]. While
the DCR-based LTDF has enough lossiness to construct ABOs and achieve CCA security, RSA only
loses a constant fraction (less than one-half) of the input bits and thus cannot be used to construct
an ABO using the general construction [14].

Correlated Products. Rosen and Segev [21] recently generalized the ABO technique for achieving
CCA security by giving a sufficient, strictly computational assumption on the underlying TDFs. They
called their notion one-wayness under correlated products. It is well known that for a polynomially-
bounded w, sampling w functions independently from a family of one-way functions and applying them
to independent uniform inputs still results in a one-way function, and even amplifies the one-wayness.
Rosen and Segev investigated the case when the inputs are not necessarily independent and uniform
but are instead correlated in some way. They went on to show how to get CCA security from a function
family that is one-way with respect to specific distributions Cw of w correlated inputs. Specifically, the
distributions they use have the property that given any d < w of the inputs the entire input vector can
be reconstructed. (We call such distributions (d,w)-subset reconstructible; see Section 3 for details.)
The simplest such distribution happens when d = 1, which Rosen and Segev call the w-repetition
distribution. In this case, independently sampled functions are each applied to the same input2.

Of course, this notion is useful only if there exist TDFs that are one-way under such correlations.
Rosen and Segev show that LTDFs with enough lossiness satisfy the requirements. The amount of
lossiness they require turns out to be approximately the same amount needed by Peikert and Waters
to go from an LTDF to an ABO. This amount, as we said, is more than any constant fraction of the
input bits, ruling out numerous LTDFs.

Our Results. We significantly extend the results of [15] and [21] and show that only a non-negligible
fraction of a single bit of lossiness is sufficient for building one-way injective trapdoor functions, IND-
CPA secure encryption, and, perhaps most surprisingly, even IND-CCA secure encryption. Our results
on CCA security drastically improve upon the previous results by lowering the required lossiness from
a (1− 1/ω(log λ))-fraction of all the input bits to just a 1/poly fraction of one bit.

Our results rely on a type of lossiness amplification. In particular, we show a straightforward way
to take an LTDF that loses less than 1 bit and construct an LTDF that loses poly(λ) bits. To the best
of our knowledge, no one has yet to observe that lossiness can be increased in this way. For our CCA
result, we also need to carefully instantiate the error-correcting code and correctly choose parameters
in the Rosen-Segev (RS) construction.

Finally, while some existing constructions such as the DDH-based construction in [15] can be easily
modified to lose less bits, we also describe a novel technique for constructing LTDFs that are slightly
lossy. We then use this technique to give an LTDF based on modular squaring that loses a constant
fraction of one bit. Because of the results discussed above, this gives us a CCA-secure encryption

2 Rosen and Segev focused on the w-repetition case in the proceedings version of their paper [21]. See their full version [19]
for details on the more general case.
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scheme from the assumption that it is hard to distinguish a product of two primes from a product of
three primes, which might be of independent interest3.

A Closer Look. To see why slightly lossy LTDFs are sufficient for building a variety of cryptographic
primitives, let us first focus on building one-way injective trapdoor functions. For simplicity, say that
we have a family F of LTDFs with domain {0, 1}n that (computationally) loses 1 bit. Now consider a
new family of LTDFs which is simply the w-wise product of F for w = poly(λ), where λ is the security
parameter. This means that to sample a function from the product family we independently sample
w functions from F ; the domain of the product family is {0, 1}nw. It is easy to see that such a family
computationally loses w = poly(λ) bits and, applying the results of [15], is thus one-way. Applying
generic hardcore predicates, this also immediately gives us CPA-secure encryption.

For our CCA result, we make use of the above amplification techniques within the generalized
construction of Rosen and Segev. However, in that case the input distribution is no longer uniform
but instead correlated (recall that it is what we call (d,w)-subset reconstructible). Nevertheless, we
show that by choosing an appropriate error-correcting code in the RS construction and by carefully
setting the parameters, we can still get enough entropy in the input distribution to argue one-wayness
and achieve security. The result is CCA-security from LTDFs that only lose a 1/ poly fraction of 1
bit, meaning we can get CCA-secure from all known constructions of LTDFs, including those based
on lattice assumptions and RSA under the phi-hiding assumption.

Constructing Slightly Lossy LTDFs. As we stated above, another central contribution of this
paper is constructing new LTDFs that lose small amounts of their input. Recall that all previous
constructions of LTDFs resulted in a loss of at least a constant fraction of the input bits. Intuitively,
one would think that it should be easier to lose only a single bit (or less) of the input.

We use a new technique to create an LTDF that loses a small amount of bits. Our technique, which
we call LIL (for “Lossy-to-Injective-to-Lossy”), consists of first finding two non-injective trapdoor
functions that are computationally indistinguishable from each other. One of the functions g should
statistically lose, say, c bits, while the other function ĝ should statistically lose more bits, say c′ > c.
We then try to make g injective. To do so, when we evaluate g(x), we append to the result enough
extra information about x to make the function injective. However, we make sure not to add too much
information so as to still have lossiness when g is replaced by ĝ. We use this technique to construct
an LTDF from modular squaring that loses a fraction of one bit under the assumption that it is hard
to distinguish the product of two primes from the product of three primes. We hope that our CCA
results and this new technique for constructing LTDFs will be useful in the future for achieving CCA
security from weaker assumptions than those currently known to imply IND-CCA.

2 Preliminaries

Notation. Throughout the paper, λ denotes a security paramter. For a random variable X, we let
x←$ X denote choosing a value uniformly at random according to X and assigning it to x. We say a
function µ(·) is negligible if µ(λ) ∈ λ−ω(1) and is non-negligible if µ(λ) ∈ λ−O(1). We let negl(λ) denote
an arbitrary negligible function while poly(λ) denotes an arbitrary non-negligible function.

Probability Background. Let X,Y be two (discrete) random variables distributed over a countable
set V according to DX and DY respectively. The statistical distance between X and Y (or between DX
and DY ) is defined as

∆(X,Y ) =
1
2

∑
v∈V
|Pr [X = v ]− Pr [ Y = v ] |

3 It should be noted that this assumption is stronger than the quadratic residuosity assumption, from which we already
know how to achieve CCA security. (c.f. [5])
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For two random variable ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N indexed by a (security) parameter
λ, we say that X and Y are statistically indistinguishable (denoted X

s
≈ Y) if ∆(Xλ, Yλ) = negl(λ).

Likewise, we say that X and Y are computationally indistinguishable (denoted X
c
≈ Y) if

|Pr [A(Xλ) = 1 ]− Pr [A(Yλ) = 1 ] | = negl(λ)

for any PPT algorithm A (where the probability is taken over the randomness of A and the random
variables Xλ, Yλ).

For a random variable X defined over a domain X , we define its min-entropy as

H∞(X) = − log(max
x∈X

Pr [X = x ]).

where maxx∈X Pr [X = x ] = 2−H∞(X) denotes the predictability of the random variable X.
Another useful notion of entropy is the average min-entropy (defined in [6]) of a random variable

X (given Y ) which is defined as follows:

H̃∞(X|Y ) = − log
(

E
y←Y

[
2−H∞(X | Y=y)

])
= − log

(
E

y←Y

[
max
x∈X

Pr [X = x | Y = y ]
])

The average min-entropy expresses the average maximum probability of predicting X given Y. The
following lemma gives a useful bound on the remaining entropy of a random variable X conditioned
on a value of Y.

Lemma 1 ([6], Lemma 2.2b). Let X,Y, Z be random variables such that Y takes at most 2k values.
Then

H̃∞(X | (Y,Z)) ≥ H̃∞((X,Y ) | Z)− k ≥ H̃∞(X|Z)− k.

In particular, if X is independent of Z then H̃∞(X | (Y,Z)) ≥ H∞(X)− k.
The following lemma (proved in [6]) provides the conditions under which one can derive almost uniform
bits from weakly random sources with high entropy.

Lemma 2 (The Generalized Leftover Hash Lemma). Let H be a universal family of hash func-
tions from X to Y. Let h denote a random variable with the uniform distribution on H. Then for any
random variables X ∈ X and Z ∈ Z (independent of h),

∆((h, h(X), Z)), (h, UX , Z)) ≤ 1
2

√
2−H̃∞(X|Z) · |Y|

Trapdoor Functions. We define injective trapdoor functions (TDFs) and also two different security
properties for TDFs: one-wayness and lossiness. Note that this somewhat departs from other papers on
lossy trapdoor functions in that we first define an injective trapdoor function as a syntactic object and
then define security properties of the syntactic object, instead of mixing the two into one definition.

Definition 1 (Injective Trapdoor Functions). A collection of injective trapdoor functions is a
tuple of PT algorithms F = (G,F, F−1) such that (probabilistic) algorithm G outputs a pair (s, t)
consisting of function index s and a corresponding trapdoor t. Deterministic algorithm F , on input a
function index s and x ∈ {0, 1}n outputs fs(x). Algorithm F−1, given the trapdoor t, computes the
inverse function f−1

s (·).

Definition 2 (One-Way Trapdoor Functions). Let λ be a security parameter and F = (G,F, F−1)
be a collection of injective trapdoor functions with domain {0, 1}n(λ). Let X(1λ) be a distribution over
{0, 1}n(λ). We say F is one-way with respect to X if for all PPT adversaries A and every polynomial
p(·) it follows that for all sufficiently large λ

Pr
[
A(1λ, s, F (s, x)) = F−1(t, F (s, x))

]
<

1
p(λ)

,

where (s, t)←$ G(1λ) and x←$ X(1λ).
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Definition 3 (Lossy Trapdoor Functions). Let λ be a security parameter and F = (G,F, F−1) be
a collection of injective trapdoor functions with domain {0, 1}n(λ). We say that F is (n(λ), `(λ))-lossy
if there exists a PPT algorithm Ĝ that, on input security parameter 1λ, outputs ŝ and t̂ such that

– The first outputs of G and Ĝ are computationally indistinguishable.
– For any (ŝ, t̂) outputted by Ĝ, the map F (ŝ, ·) has image size at most 2n−`. We call ` the lossiness.

We will sometimes call a TDF that is lossy a lossy trapdoor function (LTDF).

Public-Key Encryption. A public-key encryption scheme is a triplet AE = (K, E ,D) of PPT
algorithms. The key generation algorithm K, on input the security parameter 1λ, outputs a pair of keys
(pk, sk). The encryption algorithm E gets as its input the public key pk and a messagem ∈M (for some
message spaceM) and outputs a ciphertext c. The decryption algorithm D on input the secret key sk
and a ciphertext c, outputs a message m or ⊥ (failure). It is required that Pr [D(sk, E(pk,m)) 6= m ] =
negl(λ), where the probability is taken over the randomness of K, E and D.

A standard security requirement for a public key cryptosystem AE = (K, E ,D) is indistinguisha-
bility of ciphertexts under a chosen plaintext attack (IND-CPA) [8]. We define IND-CPA security as
a game between and adversary A and an environment as follows. The environment runs K(1n) to get
a keypair (pk, sk) and flips a bit b. It gives pk to A. A outputs a pair of messages m0,m1 ∈ M with
|m0| = |m0|. The environment returns the challenge ciphertext c←$ E(pk,mb) to A and A returns a
guess bit b′.

We say that A wins the above game if b′ = b. Likewise, we define the IND-CPA advantage of A as

Advind-cpa
A,AE (λ) = 2 · Pr [A wins ]− 1 .

We say that AE is CPA-secure if Advind-cpa
A,AE (λ) is negligible in λ for all PPT adversaries A.

Additionally, we can consider a stronger notion of security called indistinguishability under (adap-
tive) chosen-ciphertext attack (IND-CCA) [13, 17] . The IND-CCA security game is the same as above
but with the additional property that throughout the entire game the adversary has access to a de-
cryption oracle Dec that, on input c, outputs D(sk, c). The one restriction we place on the adversary
is that it may not query the challenge ciphertext to the decryption oracle, as this would lead to a
trivial win. We define the IND-CCA advantage of an adversary A as

Advind-cca
A,AE (λ) = 2 · Pr [A wins ]− 1 .

We say that AE is CCA-secure if Advind-cca
A,AE (λ) is negligible in λ for all PPT adversaries A.

Error Correcting Codes. We will use error correcting codes for the construction of the CCA secure
scheme4. In this section we review some basic definitions and facts from coding theory. We restrict our
attention only to the material that is required for the security proof of our CCA construction. The
reader is referred to [11] for a detailed treatment of the subject.

Let Σ be a set of symbols (alphabet) with |Σ| = q. For two strings x,y ∈ Σw, the Hamming
distance dH(x,y) is defined as the number of coordinates where x differs from y. Consider now an
encoding map ECC : Σk → Σw. A code C is simply the image of such a map (that is C ⊆ Σw), with
|C| = qk. The minimum distance of a code C is defined as

d(C) = min
x,y∈C
x 6=y

{dh(x,y)}

We will use [w, k, d]q to denote a code C with block length w (C ⊆ Σw), message length k = logq |C|,
minimum distance d(C) = d and alphabet size |Σ| = q.

For the CCA construction we need a code whose words are as “far apart” as possible. In particular,
for a fixed k, we need a code which minimizes d/w under the restriction that w is polynomial to k.
4 For the purposes of the construction, we only need an appropriate encoding scheme and not a full -fledged error

correcting scheme. (Decoding is irrelevant in the construction.)
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By the Singleton bound [24], d ≤ w − k + 1 for any code and alphabet size which immediately gives
an upper bound 1− k−1

w for d/w. Codes that meet the Singleton bound are called Maximum Distance
Separable (MDS) codes.

Reed-Solomon Codes. Reed-Solomon codes (introduced in [18]) are an example of MDS codes. We
describe a (simplified) construction of a family of asymptotic Reed-Solomon codes. Let RSqw,k denote
a Reed-Solomon code (or more precisely a family of RS codes) with message length k, block length w
and alphabet size |Σ| = q (with q ≥ w). The construction works as follows:
• Generation: Pick a field Fq (for convenience we use Zq as the underlying field where q is the smallest

prime such that q ≥ w). Pick also w distinct elements α1, ..., αw ∈ Zq (evaluation points).
• Encoding: Let m = (m0, ...,mk−1) ∈ Σk be a message and let m(x) =

∑k−1
j=0 mjx

j be the corre-
sponding polynomial. The encoding of the message is defined as

ECC(m) = 〈m(α1), ...,m(αw)〉 ∈ Zq
where the evaluation takes place over Zq.

Lemma 3. The Reed-Solomon code RSqw,k has minimum distance d = w − k + 1. Also both the code
length and the time complexity of the encoding are polynomial in w.

3 Products and Correlated Inputs

In this section we define w-wise products, prove the lossiness amplification lemma that we use through-
out the paper, and finally present the types of correlated input distributions we are interested in for
our CCA result.

3.1 Products and Lossiness Amplification

We now define the w-wise product of a collection of functions and then show how such a product can
amplify lossiness.

Definition 4 (w-wise product, Definition 3.1 in [21]). Let F = (G,F ) be a collection of ef-
ficiently computable functions. For any integer w, we define the w-wise product Fw = (Gw, Fw) as
follows:

– The generation algorithm Gw on input 1λ invokes G(1λ) for w times independently and outputs
(s1, . . . , sw). That is, a function is sampled from Fw by independently sampling w functions from F .

– The evaluation algorithm Fw on input (s1, . . . , sw, x1, . . . , xw) invokes F to evaluate each function
si on xi. That is, Fw(s1, . . . , sw, x1, . . . , xw) = (F (s1, x1), . . . , F (sw, xw)).

We will use the following lemma throughout the rest of the paper. It states that w-wise products
amplify lossiness5.

Lemma 4 (Lossiness Amplification). Let λ be a security parameter. For any family of TDFs
F = (G,F, F−1) with message space n(λ), if F is (n(λ), `(λ))-lossy, then the w(·)-wise product family
Fw (defined above) built from F is (n(λ) · w(λ), `(λ) · w(λ))-lossy.

Proof. First, if there exists an efficient lossy key generation algorithm Ĝ that outputs indistinguishable
function indices from G, then by a straightforward hybrid argument it follows that Ĝw, the algorithm
that runs Ĝ independently w times to get (s1, t1), . . . , (sw, tw) and outputs (s, t) where s = (s1, . . . , sw)
and t = (t1, . . . , tw), outputs indistinguishable keys from Gw.

Second, since for each si outputted by Ĝ the map F (si, ·) has range size at most 2n−`, it follows
that for each s outputted by Ĝw, map Fw(s, ·) has range size at most (2n−`)w = 2nw−`w. ut
5 Our amplification construction increases the amount of lossiness, but not the lossiness-to-input-length ratio.
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3.2 Subset Reconstructible Distributions

While it is well-known that if F is one-way with respect to the uniform distribution on {0, 1}n, then
the product Fw is one-way with respect to {0, 1}nw, we will be interested in the security of products
when the inputs are correlated and not necessarily uniform. We will be interested in input distributions
that are what we call (d,w)-subset reconstructible.

Definition 5 ((d,w)- Subset Reconstructible Distribution (SRD)). Let d,w ∈ N such that
d ≤ w, S be a domain and D a distribution with support Supp(D) ⊆ Sw. We say that D is (d,w)-
Subset Reconstructible (and denote SRDd,w) if, each w-tuple (x1, ..., xw) ∈ Supp(D) is fully and
uniquely reconstructible from any subset {xi1 , ..., xid} of d distinct elements of the tuple.

It is easy to see that the special case where d = 1 and S = {0, 1}n gives the uniform w-repetition
distribution used in the simplified construction of the CCA secure cryptosystems in [21]. For our CPA
construction we will choose d = w in which case the distribution contains all w-tuples (x1, ..., xw) where
each xi is chosen independently and uniformly at random from {0, 1}n. For the CCA-construction,
we need to choose a value for d smaller than w (this is necessary for almost perfect simulation of the
decryption oracle) but as close to w as possible in order to minimize the required lossiness of the TDF
(the closer to 1 the value d

m is, the less lossiness we need for the CCA construction).
Before describing how to sample efficiently from SRDd,w we note the similarity of the above

definition with two well studied notions from Coding Theory and Cryptography, namely erasure codes
and secret sharing schemes. Even though our sampling algorithm for SRDd,w uses techniques identical
to those used in the construction of the most popular erasure codes and secret sharing schemes, we
introduce this new definition here since, in principle, the goals (properties) of the two aforementioned
notions are slightly different from those of a (d,w)-subset reconstructible distribution. In particular,
the goal of an erasure code is to recover the initial message and not necessarily the full codeword (even
though the full codeword can trivially be constructed by re-encoding the recovered initial message)
when at most w−d symbols of the codeword have been lost during transmission. Likewise, in a (d,w)-
threshold secret sharing scheme the goal is to recover a secret s when any d out of w distinct values
are known (again here there is no requirement to recover all w values from the d known ones).

Sampling via Polynomial Interpolation. We use polynomial interpolation as a way to sample
efficiently from SRDd,w for any value of d and w. The construction is identical to the one used by
Shamir [22] for a (d,w)-threshold secret sharing scheme. On input a prime Q (with logQ = O(poly(λ)))
and integers d,w, the sampling algorithm picks independently d values p0, ..., pd−1 uniformly at random
from ZQ (these correspond to the d coefficients of a (d−1)-degree polynomial p ∈ ZQ[x]). The algorithm
then simply outputs (x1, ..., xw) = (p(1), ..., p(w)) where evaluation takes place in ZQ and xi’s are
represented by binary strings of length at most logQ. 6

Lemma 5. Let w = poly(λ). Then the above algorithm is a poly(λ)-sampling algorithm for SRDd,w.
Also the min-entropy of the distribution SRDd,w is d · logQ.

Proof. It is easy to verify that any distinct d values (xi1 = p(i1), ..., xid = p(id)) (with ij ∈ [w] ∀j =
1, ..., d) uniquely determine the polynomial p and hence the whole tuple (x1, ..., xw). Also for any set
S = {i1, ..., id} ⊆ [w] of distinct indices and any y = (y1, ..., yd) ∈ ZdQ

Pr [ xi1 = y1 ∧ ... ∧ xi1d = yd ] = Pr [ Vi1,...,idp = y ] = Pr
[

p = V −1
i1,...,id

y
]

=
1
Qd

where p corresponds to the vector [p0, ..., pd−1]T and Vi1,...,id is the (invertible) Vandermonde matrix
with j-th row [x0

ij
, ..., xd−1

ij
]. It follows that H∞((x1, ..., xw)) = d · logQ.

6 Any (fixed and public) distinct values a1, ..., aw ∈ Zq instead of 1, ..., w would work just fine.
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As for the running time, the sampling algorithm, upon picking d random values from ZQ (each
of length poly(λ)), evaluates the (d − 1)-degree polynomial p ∈ ZQ[x] on w = poly(λ) points. Each
evaluation takes polynomial time (recall that d ≤ w = poly(λ)) and hence the overall sampling runs
in time polynomial in λ. ut

4 One-Way Functions and CPA-Secure Encryption from Small Lossiness

As a warm-up for our main result, in this section we prove that slightly lossy LTDFs give one-way
trapdoor functions and cpa-secure encryption.

Let λ be a security parameter and F = (G,F, F−1) be family of TDFs with message space {0, 1}n(λ).
We let family of TDFs Fw = (Gw, Fw, F−1

w ) with message space {0, 1}n(λ)·w(λ) be the w-wise product
of . (See the previous section for the definition of w-wise product.) We claim that if F is an LTDF
losing 1/poly bits of input, then Fw is one-way for an appropriate choice of w. This is easy to see
from the following lemma.

Lemma 6. Let λ be a security parameter. For any family of TDFs F = (G,F, F−1) with message
space n(λ). If F is (n(λ), 1/p(λ))-lossy for some polynomial p(·), then the family w-wise product Fw
built from F is (n(λ) · w(λ), w(λ)/p(λ))-lossy.

The lemma is an immediate consequence of Lemma 4. If we set w(λ) = p(λ)·ω(log λ) it immediately
follows that Fw is one-way (w.r.t. the uniform distribution) from Lemma 3.3 in [15], since Fw is
(poly(λ), ω(log λ))-lossy. We will be interested in other input distributions than just the uniform
distribution, so we also prove the following (more general) lemma.

Lemma 7. Let F = (G,F, F−1) be a collection of (n, `)-lossy trapdoor functions and let Fw =
(Gw, Fw) be its w-wise product for w = poly(λ). Let Cw be an input distribution with min-entropy
µ. Then F is secure under a Cw-correlated product as long as

` ≥ n− µ

w
+
ω(log λ)

w
.

Proof. For contradiction assume there is an inverter I that succeeds at inverting Fw with probability
1/p(λ) for some polynomial p. We want to build an adversary that can distinguish between the lossy
keys and real keys. Because of a standard hybrid argument, it suffices to show that there is an adversary
A that can distinguish with non-negligible probability the case where it is given w = poly(λ) lossy
keys (generated with Ĝ) from the case where it is given w = poly(λ) real keys (generated with G).
Adversary A, on input keys s = (s1, . . . , sw), samples x = (x1, . . . , xw) from Cw(1λ) and runs the
inverter I(1λ, s, Fw(s,x)). If the s are real keys and come from G, then I will output x with non-
negligible probability. If, however, s come from Ĝ, then the probability of success for I is at most
2−H̃∞(x | (s,Fw(s,x))).

To bound this probability, we use Lemma 1 to see that

H̃∞(X | (s, F (s,X))) ≥ H∞(X |s)− w(n− `) . (1)

Since the choice of the functions is independent from the choices of X, the first term on the right of
the above equation is simply H∞(X) and thus µ. Combining with (1), we get that

H̃∞(X | (s, F (s,X))) ≥ µ− w(n− `) ≥ ω(log λ)

where in the last inequality we used the hypothesis for `. It follows that the probability that I succeeds
in the case when A is given lossy keys is upper bounded by 2−ω(log λ) = negl(λ). Therefore, for that
choice of ` the inverter has negligible success probability. It follows that A can distinguish between
keys from G and keys from Ĝ which gives us our contradiction. ut
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Since we can construct a one-way injective trapdoor function from an (n(λ), 1/poly(λ))-LTDF, we
immediately get CPA-secure encryption using standard techniques (i.e., generic hardcore predicates).
In addition, recall that Peikert and Waters showed in [15] that from LTDFs they could extract more
hardcore bits and get a more efficient encryption scheme; their proof applies equally well to our setting.

5 CCA Security from Functions with Small Lossiness

We first describe the encryption scheme from [21] and then show how to instantiate the error correcting
code ECC and how to sample correlated inputs in order to achieve CCA security from lossy functions
with minimal lossiness requirements.

For ease of presentation, we describe a single-bit encryption scheme. Due to a recent result [12],
this directly implies the existence of multi-bit CCA-secure schemes. We mention however that one
can get a multi-bit encryption scheme directly by simply replacing the hardcore predicate h with a
universal hash function, as in the PKE schemes of [15].

5.1 The Rosen-Segev Construction

We recall the cryptosystem from [21]. Let F = (G,F, F−1) be a collection of injective trapdoor
functions, Cw be an input distribution such that any x = (x1, . . . , xw) outputted by Cw(1λ) can
be reconstructed given any size d < w subset of x. Let h : {0, 1}∗ → {0, 1} be a predicate. Let
ECC : Σk → Σw be the PT encoding function for an error-correcting code with distance d. Let
Π = (Kg,Sign,Ver) be a one-time signature scheme whose verification keys are elements in Σk. (We
could always use a universal hash to hash keys into this space.) We define the encryption scheme
AERS = (K, E ,D) as follows:

Key Generation K(1λ)
On input security parameter 1λ, for each σ ∈ Σ and each 1 ≤ i ≤ w, run (sσi , t

σ
i )←$ G(1λ), the

key generation for the injective trapdoor function family. Return the pair (pk, sk) where
pk = ({sσ1}σ∈Σ , . . . , {sσw}σ∈Σ)
sk = ({tσ1}σ∈Σ , . . . , {tσw}σ∈Σ)

Encryption E(pk,m)
On input public key pk and one-bit message m, run (VK , SK)←$ Kg(1λ) and sample (x1, . . . , xw)
from Cw(1λ). Apply the error correcting code to VK to get ECC(VK) = (σ1, . . . , σw). The output
is c = (VK , y1, . . . , yw, c1, c2) where VK is as above and

yi = F (sσi
i , xi), 1 ≤ i ≤ w

c1 = m⊕ h(sσ1
1 , . . . , s

σw
w , x1, . . . , xw)

c2 = Sign(SK , (y1, . . . , yw, c1)) .

Decryption D(sk, c)
On input secret key sk and ciphertext c = (VK , y1, . . . , yw, c1, c2) check if Ver(VK , (y1, . . . , yw, c1), c2)
equals 1. If not output ⊥. Otherwise, compute ECC(VK) = (σ1, . . . , σw) and pick d distinct indices
i1, ..., id. Use the trapdoors t

σi1
i1
, ..., t

σid
id

to compute xi1 = F−1(t
σi1
i1
, yi1), . . . , xid = F−1(t

σid
id
, yid).

Use these xi’s to reconstruct the entire vector x1, . . . , xw. If yj = F (sσj

j , xj) for all 1 ≤ j ≤ w
output c1 ⊕ h(sσ1

1 , . . . , s
σw
w , x1, . . . , xw) and otherwise output ⊥.

Rosen and Segev then proved the following theorem:

Theorem 1 (Theorem 5.1 in [19]). If Π is a one-time strongly unforgeable signature scheme, F
is secure under a Cw-correlated product, and h is a hardcore predicate for Fw with respect to Cw, then
the above PKE scheme is IND-CCA secure.
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5.2 Our Result

The following theorem shows that by combining lossiness amplification with appropriate instantiation
of the error correcting ECC and the correlated inputs distribution Cw in the Rosen-Segev scheme, we
can construct a CCA-secure scheme directly from any (n, 1

poly(λ))-lossy function.

Theorem 2 (Main Theorem). CCA-secure schemes can be constructed in a black-box way from
LTDFs that lose 1

poly(λ) bits.

Proof. Let n = poly(λ). Let also ECC ∈ RSqw,k be a Reed-Solomon code with k = nε (for some constant
ε with 0 < ε < 1) , w = nc for some constant c > 1 + ε, q the smallest prime such that q ≥ w and
distance d = w− k+ 1. Let also Cw be the distribution SRDd,w sampled via polynomial interpolation
(see Section 3.2) for some prime Q such that n − 1 ≤ logQ ≤ n. Let finally F = (G,F, F−1) be
a collection of (n, 2)-lossy trapdoor functions and let Fw = (Gw, Fw) be its w-wise product. By
construction (Lemma 5, Section 3.2) Cw has min-entropy µ = H∞(Cw) = d · logQ and can be sampled
in time poly(w) = poly(λ). In addition, by properties of the Reed-Solomon codes we have

d

w
=
w − k + 1

w
≥ 1− k

w
= 1− 1

nc−ε

and hence
µ

w
=
d

w
logQ ≥ (n− 1) ·

(
1− 1

nc−ε

)
= n− 1− 1

nc−ε−1
+

1
nc−ε

Therefore, we have that

n− µ

w
+
ω(log λ)

w
≤ n−

(
n− 1− 1

nc−ε−1
+

1
nc−ε

)
+
ω(log λ)

w

= 1 +
1

nc−ε−1
− 1
nc−ε

+
ω(log λ)
nc

< 2

for some ω(log λ)- function. Applying Lemma 7, we get that F is secure under the aforementioned
Cw-correlated product. Let h be a hardcore predicate for the w-wise product Fw (with respect to
Cw). Applying the construction of Rosen and Segev from Section 5.1 and Theorem 1 we get that
(n, 2)-lossy functions imply CCA-security (in a black-box sense). The theorem then follows by the fact
that (n, 2)-lossy functions can be constructed by (n′, 1

poly(λ))-lossy functions (where n = poly(n′)) via
lossiness amplification constructions (see Lemma 4 from Section 3.1). ut

6 An Explicit Construction of a Slightly Lossy TDF

The Idea. In this section we construct an LTDF that loses 1/4 bits. Our technique generalizes
previous approaches in constructing LTDFs and might serve as a paradigm for the construction of
LTDFs from other hardness assumptions. Let g be a trapdoor function (with trapdoor t) that loses
` bits (where ` ≥ 0, and ` = 0 corresponds to an injective trapdoor function). Let also ĝ be a
deterministic function such that ĝ

c
≈ g (under some computational assumption CA) and ĝ loses ˆ̀

bits (that is |Img(Dom(ĝ))| ≤ Dom(ĝ)

2ˆ̀ ). Consider now a function h such that ‖h(x)‖ = ` (where ‖ · ‖
denotes bitsize) and (g(x), h(x)) uniquely determines the preimage x (which can be efficiently recovered
given the trapdoor t) for all inputs x. Define s = (g, h) and ŝ = (ĝ, h). Then it is clear that s is a
description of an injective trapdoor function whereas ŝ corresponds to an (ˆ̀−`)-lossy function. Indeed
|Img(ŝ)| ≤ |Img(Dom(ĝ))| · 2` ≤ Dom(ĝ)

2ˆ̀−`
. Finally the indistinguishability of ĝ and g implies that s

c
≈ ŝ.
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Hardness assumption. Let n = poly(λ) where λ is the security parameter. Consider the following
two distributions

TwoPrimesn = {N
∣∣ ‖N‖ = n; p, q distinct primes such that p ≡ q ≡ 3 (mod 4); N = pq}

ThreePrimesn = {N
∣∣ ‖N‖ = n; p, q, r distinct primes such that pqr ≡ 1 (mod 4); N = pqr}

where ‖N‖ denotes the bitsize of N and ‖N‖ = n implies that the most significant bit of N is 1.

Assumption 1 (2v3Primes) For any PPT algorithm D and any polynomial p(·)∣∣Pr [D(TwoPrimesn) = 1 ]− Pr [D(ThreePrimesn) = 1 ]
∣∣ ≤ 1

p(n)
where the probability is taken over the randomness of sampling N and the internal randomness of D.

This assumption (in a slightly different form) was introduced in [2] under the name 2OR3A.

The Construction. For our function g we use squaring modulo the product N of two large primes
p and q. This function was the basis for the Rabin cryptosystem [16]. Let n = poly(λ). We define a
family of injective trapdoor functions F = (G,F, F−1) as follows:

G(1λ)
Choose two large primes p, q such that p ≡ q ≡ 3 (mod 4) and pq has bitsize n + 1. Let N = pq.
That is N ←$ TwoPrimesn+1. Return (s, t) where s = N and t = (p, q).

Ĝ(1λ)
Choose three large (balanced) primes p, q and r such that pqr ≡ 1 (mod 4) 7 and pqr has bitsize
n+ 1. Let N = pqr, that is N ←$ ThreePrimesn+1. Return (s,⊥) where s = N.

F (s, x)
Parse s as N. On input x ∈ {0, 1}n compute y = x2 mod N. Let PN (x) = 1 if x > N/2 and
PN (x) = 0 otherwise. Let also QN (x) = 1 if JN (x) = 1 and QN (x) = 0 otherwise where JN (x) is
the Jacobi symbol of x modulo N. Return (y,PN (x),QN (x)).

F−1(t, y′)
Parse t as (p, q) and y′ as (y, b1, b2). Compute the square roots x1, ..., xk of y using p and q (the
number of square roots is bounded by Lemma 8). Compute PN (xi) and QN (xi) for all i ∈ [k] and
output the xi such that PN (xi) = b1 and QN (xi) = b2 (Lemma 9 says that there exists a unique
xi that is consistent with both b1 and b2).

Note that even though the modulus N has bitsize n+ 1 (that is N > 2n) the domain of the functions
is {0, 1}n. For the proof we will need the following two standard lemmas. For completeness, proofs are
provided in Appendices A and B.

Lemma 8. Let N = Πk
i=1pi be a product of k distinct primes. Then the function f(x) = x2 mod N

defined over Z∗N is 2k-to-1.

We also need the following lemma in order to prove the family F = (G,F, F−1) is injective.

Lemma 9. Let N = pq where p, q are primes such that p ≡ q ≡ 3 (mod N). Let also x, y ∈ Z∗N such
that x 6= ±y and x2 ≡ y2 ≡ z (mod N). Then JN (x) = −JN (y).

We are now ready to prove the following theorem.

7 The requirement pqr ≡ 1 (mod 4) is essential since otherwise there exists a trivial algorithm that distinguishes between
Ns sampled according to G and those sampled according to Ĝ.
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Theorem 3. F as described above is a family of (n, 1
4)-lossy functions under the 2v3Primes assump-

tion.

Proof. We prove the properties one by one

• Injectivity/Trapdoor: Notice first that the Jacobi symbol JN (x) can be efficiently computed even
if the factorization of N is unknown (the reader is referred to [23, Chapter 13] for more details).
Hence F (s, x) can be evaluated in polynomial time. Let now (s, t) ← G(1λ) (in particular s = N
where N is a Blum integer) and let y′ = F (s, x) = (y, b1, b2). We distinguish between the following
two cases
1. y ∈ Z∗N : Because of Lemma 8, y has 4 square roots modulo N which can be recovered using

the trapdoor (p, q) (by first recovering the pairs of square roots modulo p and q separately and
then combining them using the Chinese Remainder Theorem). Let ±x,±z be the 4 square roots
of y modulo N. Since PN (x) = −PN (−x) ∀x only one of x,−x and one of z,−z is consistent
with b1. Assume wlog that x, z are consistent with b1. Using Lemma 9 and since x 6= ±z
JN (z) = −JN (x) and hence only one of x, z is consistent with b2 (recall that x, z ∈ Z∗N and
hence their Jacobi symbols are non-zero).

2. gcd(y,N) > 1 : Assume without loss of generality that gcd(y,N) = p. We claim that in this
case y has exactly 2 square roots x and −x. Indeed, assume that x2 ≡ z2 ≡ y (mod N). Since
p/y it follows that p divides both x and z and hence x = up, z = vp for some u, v ∈ Zq. We
then have

x2 ≡ z2 (mod N)⇒ N/p2(u2 − v2)⇒ q/(u2 − v2)⇒ q/(u+ v)(u− v)⇒ u = v or u = q − v
This implies that either x ≡ z (mod N) or x ≡ −z (mod N).Hence every y such that gcd(y,N) >
1 has exactly two preimages (that can be recovered using the CRT) out of which, only one is
consistent with b1 (in this case we only need to check which of x,−x satisfies PN (·) = b1).

This means that for all (n+ 1)-bit Blum Integers N output by G(1λ) and all x ∈ {0, 1}n the triple
(x2 mod N,PN (x),QN (x)) uniquely determines x. In addition, given (p, q), one can efficiently
recover this unique preimage which concludes that F (defined over {0, 1}n) is a collection of
injective trapdoor functions.
• Lossiness: Let (ŝ = N,⊥)← Ĝ(1λ). Consider the following sets

S1 =
{
x ∈ {0, 1}n

∣∣∣∣ x ∈ Z∗N and x <
N

2

}
S2 =

{
x ∈ {0, 1}n

∣∣ gcd(x,N) > 1 and x <
N

2

}
S3 =

{
x ∈ {0, 1}n

∣∣ x ≥ N

2

}
Clearly S1, S2 and S3 partition {0, 1}n. Also, because of lemma 8, squaring modulo N = pqr is
an 8-to-1 function over Z∗N . That means that y takes at most φ(N)

8 values. Also for all x ∈ S1

PN (x) = 0 by definition. Hence (x2modN,PN (x),QN (x)) for x ∈ S1 takes at most φ(N)
8 · 2 values,

that is

|Img(S1)| ≤ φ(N)
4

(2)

Also it is clear that |S2| = N−φ(N)
2 (there are N −φ(N) elements that are not coprime with N and

exactly half of them are smaller than N/2). Finally, |S3| ≤ 2n − N
2 . We then have that

|Img(S2)| ≤ |S2| ≤
N − φ(N)

2
and |Img(S3)| ≤ |S3| ≤ 2n − N

2
. (3)
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Combining equations (2) and (3) we get

|Img({0, 1}n)| ≤ |Img(S1)|+ |Img(S2)|+ |Img(S3)| ≤ φ(N)
4

+
N − φ(N)

2
+ 2n − N

2

= 2n − φ(N)
4
≤ 2n − 2n

5
=

4
5

2n ≤ 2n2−
1
4

where in the last but one inequality we used the fact that (for balanced primes p, q, r) φ(N) =
N − O(N

2
3 ) and hence φ(N)

4 > N
5 > 2n

5 . Therefore the image of {0, 1}n when N is a product of 3
primes is at most 2n

2
1
4

which implies that in this case F (ŝ, ·) loses 1
4 -bits.

• Indistinguishability: The fact that s
c
≈ ŝ (where (s, ·)← G(1λ) and (ŝ, ·)← Ĝ(1λ)) follows directly

from the 2v3Primes assumption.

This concludes the proof that F as defined in the construction above is (n, 1
4)-lossy. ut
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A Proof of Lemma 8

Consider the isomorphism ρ : Z∗N ↔ Z∗p1 × · · · × Z∗pk
defined as

ρ(x) = (xp1 , ..., xpk
) where xpi = x mod pi

Let z = (zp1 , ..., zpk
) ∈ QRN be an element of the image of f.Let x = (xp1 , ..., xpk

) ∈ Z∗N such that
x2 ≡ z (mod N). It is not hard to see that the 2k numbers x′ of the form x′ = (±xp1 , ...,±xpk

) are all
distinct and such that x′2 ≡ x2 (mod N).

Conversly, let y = (yp1 , ..., ypk
) be such that y2 ≡ z (mod N). Then it should be the case that

y2
pi
≡ zpi (mod pi) for all i ∈ [k]. However since pi’s are all primes, each zpi has exactly two square

roots modulo pi, namely ±xpi . That means that the square roots of z modulo N are exactly those
that have the form (±xp1 , ...,±xpk

) which conludes the proof. ut

B Proof of Lemma 9

Let z = (zp, zq) where zp = z mod p and zq = z mod q. Since z ∈ QRN there exists an element x ∈ Z∗N
such that x2 ≡ z (mod N). let x = (xp, xq). Then (see Lemma 8), z has 4 square roots modulo N,
namely (xp, xq), (−xp, xq), (xp,−xq) and (−xp,−xq). Since y 6= ±x and y2 ≡ z (mod N), it must be
the case that y equals either (−xp, xq) or (xp,−xq). Assume wlog that y = (−xp, xq) (the other case
is completely symmetric). Using the properties of the Jacobi symbol we have

JN (x) · JN (y) = Jp(x) · Jq(x)Jp(y) · Jq(y)
= Jp(xp) · Jq(xq)Jp(−xp) · Jq(xq)
= −J 2

p (xp) · J 2
q (xq) = −1

where in the last but one equality we used the fact that Jp(−x) = −Jp(x) for all x ∈ Z∗p and all primes
p such that p ≡ 3 (mod 4). ut
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