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Abstract

The covering radius problem in any dimension is not known to be solvable in
nondeterministic polynomial time, but when in dimension two, we give a deterministic
polynomial time algorithm by computing a reduced basis using Gauss’ algorithm in
this paper.
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1 Introduction

The covering radius of a lattice Λ in Euclidean space, denoted by ρ(Λ), is defined as the
smallest radius ρ such that the closed spheres of radius ρ centered at all lattice points
cover the entire space, i.e., any point in span(Λ) is within distance ρ from the lattice. The
covering radius problem is to find ρ(Λ) for a given lattice Λ. To solve this problem we
need to find a point in span(Λ) at distance ρ(Λ) from the lattice, a so called deep hole.
However, given a point t ∈ span(Λ), computing the distance of t from Λ is not easy than
CVP (Closest Vector Problem), which is NP-complete [8], and then we should compare
all the distance when t ranges over span(Λ). So the (exact) covering radius problem is in
Π2 at the second level of the polynomial hierarchy, a presumably strictly bigger class than
NP.

Lattices have been widely used in cryptology, both in cryptanalysis [2] and cryptog-
raphy [1][5]. Micciancio [7] reduced finding collisions of some hash function to GAPCRP
(approximate Covering Radius Problem) of lattices. Fukshansky and Robins [3] and Kan-
nan [6] related Frobenius problem with the covering radius of a lattice with respect to a
given input norm (different from the Euclidean one) defined by a convex polytope specified
as a system of linear inequalities. Guruswami, Micciancio and Regev [4] showed that, for an
n-dimensional lattice, GAPCRPγ(n) lie in AM for γ(n) = 2, in coAM for γ(n) =

√
n/ log n,

and in NP∩ coNP for γ(n) =
√

n.
So it is interesting to find a polynomial time algorithm for the covering radius of a

lattice with low dimension under the Euclidean norm. In this paper, for a two-dimensional
lattice with given basis, we first use the polynomial time Gauss’ algorithm [8] to obtain a
reduced basis, then we prove a theorem concerning the deep holes of the lattice for which
it can be easily found. Further the covering radius of the lattice is obtained.
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2 Closest Lattice Points

Let m be a positive integer, Rm the m-dimensional Euclidean space consisting of m-
tuples (x1, . . . , xm) where each xi ∈ R for 1 6 i 6 m. For x = (x1, . . . , xm), ‖ x ‖=√

x2
1 + . . . + x2

m is the Euclidean norm. Vectors considered in this paper are all in Rm.
Let a, b be two linearly independent vectors in Rm. The two-dimensional lattice Λ

generated by a and b is the set Λ = {ia + jb | i, j ∈ Z} and [a, b] is called a basis of the
lattice. According to [8], a lattice basis [a, b] is reduced if

‖ a ‖, ‖ b ‖6‖ a + b ‖, ‖ a− b ‖ .

Geometrically, this definition means that the diagonals of the fundamental parallelogram
associated to the basis of the lattice are at least as long as the edges. It is well known
that there is a polynomial time algorithm known as Gauss’ algorithm, from any basis of
a two-dimensional lattice, we can obtain a reduced basis of the same lattice( see [8]). We
first introduce two lemmas which can be used on this kind of basis.

Lemma 2.1. [8] Consider three vectors on a line, x,x+y, and x+αy, where α ∈ [1,∞).
If ‖ x ‖6‖ x + y ‖, then ‖ x + y ‖6‖ x + αy ‖.
Lemma 2.2. The conditions are as above Lemma 2.1. If 1 6 α < β, then ‖ x + αy ‖6‖
x + βy ‖.
Proof. For α = 1, this is just Lemma 2.1. Now suppose α > 1. By Lemma 2.1, we have
‖ x + y ‖6‖ x + αy ‖. We set X = x + y and Y = (α− 1)y. Hence ‖ X ‖6‖ X + Y ‖.
Since β−1

α−1 > 1, by Lemma 2.1, we have

‖ X + Y ‖6‖ X +
β − 1
α− 1

Y ‖ .

This is just ‖ x + αy ‖6‖ x + βy ‖.
Then we can get the main theorem by using the above lemmas.

Theorem 2.3. Let [a, b] be a reduced basis of Λ, then for every point in the area {sa+tb
| 06s,t<1}, the closest lattice point from it must be one of 0, a, b, a + b.

Proof. Divide the lattice points into four parts I, II, III, IV each with one of the four
points as a vertex respectively(see the figure below).
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Then for each p ∈ {sa + tb | 0 6 s, t < 1},

dist(p,Λ) = min{dist(p, I), dist(p, II), dist(p, III), dist(p, IV )}.

When p ∈ {sa + tb | 0 6 s, t < 1}, if we have dist(p, I) = dist(p,a + b), dist(p, II) =
dist(p, b), dist(p, III) = dist(p,0), dist(p, IV ) = dist(p,a), then we get the theorem. Let
p = sa + tb, 0 6 s, t < 1. First we prove all these reduce the following fact

‖ (1− u)a + (1− v)b ‖6‖ (m− u)a + (n− v)b ‖,m, n ∈ Z>1, 0 6 u, v 6 1. (2.1)

Since I={ma + nb | m,n ∈ Z,m, n > 1}, dist(p, I) = dist(p,a + b) means that
‖ (1−s)a+(1−t)b ‖6‖ (m−s)a+(n−t)b ‖. Since II={ma+nb | m,n ∈ Z,m 6 0, n > 1},
dist(p, II) = dist(p, b) means that ‖ (1 − (1 − s))(−a) + (1 − t)b ‖6‖ ((1 − m) − (1 −
s))(−a) + (n− t)b ‖. Since III={ma + nb | m,n ∈ Z,m, n 6 0}, dist(p, III) = dist(p,0)
means that ‖ (1− (1−s))a+(1− (1− t))b ‖6‖ ((1−m)− (1−s))a+((1−n)− (1− t))b ‖.
Since IV={ma + nb | m,n ∈ Z,m > 1, n 6 0}, dist(p, IV ) = dist(p,a) means that
‖ (1− s)a + (1− (1− t))(−b) ‖6‖ (m− s)a + ((1− n)− (1− t))(−b) ‖. Because [a, b] is
reduced, then [−a, b] and [a,−b] are also reduced. Therefore, to obtain the theorem, we
only need to prove (2.1).

When m = n = 1, it’s trivial. When m = 1, n > 2, if u = 1, it is trivial. Suppose
u < 1. As n−v

1−u > 1−v
1−u , if 1−v

1−u > 1, then by Lemma 2.2, we have

‖ a +
1− v

1− u
b ‖6‖ a +

n− v

1− u
b ‖ .

Multipling by 1− u on both sides then we obtain

‖ (1− u)a + (1− v)b ‖6‖ (1− u)a + (n− v)b ‖ .

If 0 6 1−v
1−u < 1, sine ‖ a ‖6‖ a+ b ‖, we have ‖ a+ 1−v

1−ub ‖=‖ (1− 1−v
1−u)a+ 1−v

1−u(a+ b) ‖6
(1− 1−v

1−u) ‖ a ‖ + 1−v
1−u ‖ a + b ‖6‖ a + b ‖6‖ a + n−v

1−ub ‖. The last inequality follows from

Lemma 2.1, as n−v
1−u > 1. This completes the proof for the case m = 1 and n > 2.

When m > 2, n = 1, the proof is the same. We only left when m > 2, n > 2. If
n−v
m−u > 1, since n−v

m−u > n−1−v
m−u , then similar to the above proof we have ‖ (m − u)a +

(n − v)b ‖>‖ (m − u)a + (n − 1 − v)b ‖. If 0 < n−v
m−u < 1, then m−u

n−v > 1. Similarly, we
have ‖ (m − u)a + (n − v)b ‖>‖ (m − 1 − u)a + (n − v)b ‖. Therefore we always have
‖ (m−u)a+(n−v)b ‖> min(‖ (m−u)a+(n−1−v)b ‖, ‖ (m−1−u)a+(n−v)b ‖). So
we can reduce the case (m,n) to (m− 1, n) or to (m,n− 1). Continuing this process, we
can reduce to m = 1 or n = 1 ultimately. This completes the proof of the theorem.

Using the result of the above theorem, for a given point of span(Λ), the closest lattice
point from it must be a vertex of the parallelogram it locates. What left to do is to find
the smallest radius such that the closed circles centered at vertices of the parallelogram
cover the parallelogram.
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3 Covering the Parallelogram

Let’s define covering radius and deep hole for a polygon. The covering radius is the
smallest radius such that the closed circles centered at vertices cover the polygon and the
deep hole is the points as far as possible from the vertices. We have the following lemma.

Lemma 3.1. For an acute (right) triangle, the deep hole is its circumcenter and the
covering radius is the radius of its circumcircle.

Proof. First consider acute triangle. As the following figure shows, denoted O to be the
circumcenter of 4ABC and r the radius of its circumcircle.
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Because 4ABC is an acute triangle, O is in 4ABC. Since | OA |=| OB |=| OC |= r,
the covering radius is at least r. In the figure the triangle is divided into six small right
triangles with hypotenuse length r, and each point in a small triangle has distance at most
r from the corresponding vertex of the big triangle. So the covering radius is r and the
circumcenter is the deep hole. When the triangle is right, the proof is similar and more
simple, and the deep hole is the middle point of the hypotenuse.

Let [a, b] be a reduced basis. We can set the angle of a and b to be acute(right),
for else let −b instead of b, then the fundamental parallelogram generated by it can be
divided into two congruent acute(right) triangle, and we have the following theorem.

Theorem 3.2. Suppose we have a parallelogram generated by a reduced basis as the above.
Then its deep holes are the deep holes of the two acute (right) triangles and its covering
radius is the covering radius of the triangles.

Proof. As the following figure shows that, in parallelogram ABDC, ∠BAC is acute(or
right), because of | BC |>| AB |, | BC |>| AC |, so ∠BAC is the biggest angle of 4ABC
and 4ABC is an acute( or a right) triangle. Again let O, r denote its deep hole and
covering radius.
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By Lemma 3.1, the covering radius of the parallelogram is at most r. For closed circles
centered at A,B, C with radius r can cover 4ABC, and closed circles centered at B,C, D
with radius r can also cover 4BCD. We have | OA |=| OB |=| OC |= r. If | OD |> r,
then by Theorem 2.3 the covering radius is r. Let’s assume | OD |< r, then ∠ODC >
∠OCD,∠ODB > ∠OBD, so

∠BDC = ∠ODC + ∠ODB > ∠OCD + ∠OBD > ∠BCD + ∠CBD = ∠ABD.

But we have ∠BDC + ∠ABD = π, so ∠BDC > π/2, contradicting with ∠BAC is
acute(right). Moreover, when ∠BAC is right, then the two deep holes coincide, and the
deep hole is the center of the parallelogram. The proof is completed.

4 Algorithm

By the above Theorem 3.2, we can devise an algorithm to compute the covering radius
and deep holes of a two-dimensional lattice.

Algorithm
Input: A two-dimensional lattice Λ given by a basis [x,y].
Output: The covering radius and a deep hole of the lattice Λ.
1. Compute a reduced basis [a, b] of the lattice Λ by Gauss’ algorithm;
2. If it is necessary, we let the angle between a and b be acute or right;

3. Let O be the origin, and let A,B be two points such that a =
−→
OA and b =

−−→
OB.

Compute a point D such that | OD |=| AD |=| BD |. Output point D as a deep hole and
positive real | OD | as the covering radius of the lattice Λ.

By Theorem 3.2, the above algorithm correctly compute a deep hole and the covering
radius of the lattice. The main algorithmic problem is Gauss’ algorithm, for if we get the
reduced basis, finding a deep hole is only to solve two linear equations and then we can get
the covering radius by direct computation. As we mentioned before, the Gauss’ algorithm
is polynomial time, so we have a polynomial time algorithm to solve the covering radius
problem in two-dimensional lattice.

5 Conclusion

The covering radius problem of lattices in Euclidean spaces in any dimension is not known
to be solvable in nondeterministic polynomial time. In fact, the (exact) covering radius
problem is in Π2 at the second level of the polynomial hierarchy, a presumably strictly
bigger class than NP. But when in dimension two, we give a deterministic polynomial time
algorithm by computing a reduced basis using Gauss’ algorithm.
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