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Abstract. This paper describes an extremely efficient squaring opera-
tion in the so-called ‘cyclotomic subgroup’ of ]F:G, for ¢ = 1 mod 6. This
result arises from considering the Weil restriction of scalars of this group
from Fy6 to IF 2, and provides efficiency improvements for both pairing-
based and torus-based cryptographic protocols.
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1 Introduction

Pairing-based cryptography has provoked a wealth of research activity since
the first cryptographically constructive application of pairings was proposed by
Joux in 2000 [21]. Since then, numerous further applications of pairings have
been proposed and their place in the modern cryptographers’ toolkit is now
well established. As a result, much research activity has focused on algorithmic,
arithmetic and implementation issues in the computation of pairings themselves,
in order to ensure the viability of such systems [4,13,3,19].

In practise, pairings are typically instantiated using an elliptic or a hyperel-
liptic curve over a finite field, via the Weil or Tate pairing (see [7]) - or a variant
of the latter such as the ate [19], or R-ate pairing [25]. These pairings map pairs
of points on such curves to elements of a subgroup of the multiplicative group
of an extension field, which is contained in the so-called cyclotomic subgroup.

Properties of the cyclotomic subgroup can be exploited to obtain faster arith-
metic or more compact representations than are possible for general elements of
the extension field. Cryptosystems such as LUC [33] and XTR [26], and the ob-
servations of Stam and Lenstra [34] and Granger, Page and Stam [17], all exploit
membership of this subgroup to achieve fast exponentiation. Many pairing-based
protocols require exponentiation in the cyclotomic subgroup, as does the ‘hard’
part of the final exponentiation of a pairing computation, and so these ideas can
naturally be applied in this context [31,18].
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Currently there is a huge range of parametrisation options and algorithmic
choices to be made when implementing pairings, and in order to facilitate a sim-
ple and unified approach to the construction of extension fields used in pairings,
in 2005 Koblitz and Menezes introduced the concept of Pairing-Friendly Fields
(PFFs) [24]. These are extension fields F,. with p = 1 mod 12 and k = 273", with
a > 1 and b > 0. Such specialisation enables algorithms and implementations to
be highly optimised. Indeed the IEEE 2008 ‘Draft Standard for Identity-based
Public-key Cryptography using Pairings’ (P1636.3/D1) deals exclusively with
fields of this form [20].

In 2006 Granger, Page and Smart proposed a method for fast squaring in
the cyclotomic subgroup of PFFs [16]. However even for degree six extensions
the method was almost 50% slower than the Stam-Lenstra result [34]; the latter
however does not permit the use of the highly efficient sextic twists available to
the former, and so is not practical in this context. Both of these methods rely
on taking the Weil restriction of scalars of the equation that defines membership
of the cyclotomic subgroup, in order to obtain a variety over F,. The defining
equations of this variety are then exploited to improve squaring efficiency. Rather
than descend to the base field IF,, in this paper we show that descending to only
a cubic subfield enables one to square with the same efficiency as Stam-Lenstra
for degree six extensions, and for between 60% and 75% the cost of the next best
method for the cryptographically interesting extension degrees 12,18 and 24.

In tandem with the results of [6] which show that PFFs are not always the
most efficient field constructions for pairing-based cryptography, we present a
compelling argument for the adoption of a single approach to optimised field
arithmetic for pairing-based cryptography, based on the use of fields of the form
F s, for ¢ =1 mod 6, which includes all those listed in [20].

The sequel is organised as follows. In §2 we describe our field construction and
in §3 present our fast squaring formulae. Then in §4 we compare our approach
with previous results, and in §5 and §6 apply our result to pairing-based and
torus-based cryptography respectively. We conclude in §7.

2 Pairing, Towering and Squaring-Friendly Fields

Pairing-friendly fields were introduced to allow the easy construction of, and ef-
ficient arithmetic within extension fields relevant to pairing-based cryptography
(PBC), and are very closely related to Optimal Extension Fields [2]. In particular
we have the following result from [24]:

Theorem 1. Let [Fx be a PFF, and let 3 be an element of I, that is neither a
square nor a cube in F,. Then the polynomial X* — 3 is irreducible over Fp.

Observe that for ‘small’ 3, reduction modulo X* — 3 can be implemented
very efficiently. Observe that the form of the extension degree is important for
applications. When 6 | k the presence of sextic twists for elliptic curves with
discriminant D = 3 allows for very efficient pairing computation, while for 4 | k
one can use the slightly less efficient quartic twists. Such extensions also permit



the use of compression methods based on taking traces [33,26], or utilising the
rationality of algebraic tori [30]. Furthermore F,» may be constructed as a se-
quence of Kummer extensions, by successively adjoining the square or cube root
of 3, then the square or cube root of that, as appropriate, until the full extension
is reached.

As shown in [6], the condition p = 1 mod 12 is somewhat spurious in that
PFFs do not always yield the most efficient extension towers, and does not allow
for families of pairing-friendly curves that have since been discovered [22]. For
the Barreto-Naehrig curves for example [5], which have embedding degree twelve,
p = 3 mod 4 is preferred since one can use the highly efficient quadratic subfield
Fp2 = Fp[z]/(z* 4+ 1). To allow for the inclusion of such fields, Benger and Scott

p
introduced the following concept [6]:

Definition 1. A Towering-Friendly Field (TFF) is a field of the form Fgm for
which all prime divisors of m also divide q — 1.

As with PFFs, TFFs allow a given tower of field extensions to be constructed
via successive root extractions, but importantly stipulate less exclusive congru-
ency conditions on the base field cardinality. For example, as above for BN-curves
with p = 3 mod 4, the extension F:2 is not a PFF, whereas the degree six exten-
sion of IF 2 is towering-friendly, since p?—1 = 0 mod 6, cf. §5. This definition thus
captures those considerations relevant to pairing-based cryptography (PBC). We
refer the reader to [6] for details of the construction of efficient TFFs.

All of the fields for PBC that follow shall be TFFs of special extension degree
k = 223% with a,b > 1, i.e., with 6 | k. Should it not cause confusion, we also
refer to any field of the form Fye for which ¢ = 1 mod 6 as a Squaring-Friendly
Field (SFF), a name whose aptness will become clear in §3. Thus all SFFs are
TFFs and all TFFs used for PBC in this paper are SFFs.

3 New fast squaring in the Cyclotomic Subgroup

In this section we derive efficient squaring formulae for elements of the cyclotomic
subgroup of TFFs, when the extension degree is of the form k = 23% with
a,b > 1, i.e., for SFFs. This is the subgroup of F;k of order @ (p), where Py, is

the k-th cyclotomic polynomial, which for 6 | k is always of the form:

pa—lab—1 a—1qb—1
@2::,3}7 (ZE) = Jj2 2 3 - -TZ 3 + 1.

We denote the cyclotomic subgroup by Gg, (), the membership of which can be
defined as follows:
Gopp) = {0 €Fp | a™@ =1}, (1)
The condition on a in (1) defines a variety V over F . For d | k let Fpa C F.
We write Resg , /p , V' for the Weil restriction of scalars of V' from Fpx to Fa.
Then Resg , /¢ ,V is a variety defined over Fya for which we have a morphism
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defined over F,» that induces an isomorphism
n: (RGSFpk /]de V) (de) — V(]Fpk)

We refer the reader to Section 1.3 of [37] for more on the restriction of scalars.

While not stated explicitly, all prior results for fast squaring in G, () exploit
the form of the Weil restriction of this variety to a subfield. Stam and Lenstra
restrict Ggg(p) from Fue to F, and Gg,(p) from F,2 to F), [34], and similarly
Granger et al. restrict G, () from Fpr to I, [16].

Observe that ®g.z(z) = (22" 3" ) and so we have the following simpli-
fication:

Gaop(p) = Gag(ph/o)-

We therefore need only consider G (4) where ¢ = pF/6. Observe also that $4(q) |
@5(q%) and so
Gag(g) C Gay(e®)-

Hence one can alternatively employ the simplest non-trivial restriction of Gg (),
or rather of Gg,(gs), from Fge to Fgs, as in [34]. This reduces the cost of squar-
ing in Gg,(43), and hence in Ggg(y), from two Fgs multiplications to two Fys
squarings, as we shall see in §3.1.

Our simple idea is to use the next non-trivial Weil restriction of Gg,(q),
which is from Fgs to F 2. This rather fortuitously provides the fastest squaring
formulae yet discovered for the cyclotomic subgroups of SFFs, making an even
greater efficiency gain than the Stam-Lenstra formulae for Gg,(gsy (cf. Table 1).
Restrictions to other subfields for higher extension degrees of interest do not
seem to yield better results, however we leave this as an open problem.

3.1 Fast squaring in Res]gq2 /P, Goa(F,)

Let Fp2 = Fy[z]/(x? — i) with ¢ a quadratic non-residue in F,, and consider the
square of a generic element o = a + bx:

o? = (a+xb)? = a*+2abr+b*2? = a®+ib*+2abx = (a+ib)(a+b)—ab(1+i)+2abx.

This operation can be performed at the cost of two F, multiplications, and a
few additions.
If however a € Gg,(r,), We have aPtl =1, or a? - a = 1. Observe that:

ol =(a+ab)? =a+bx? =a+bx? /2. g =502 5 = g — b,
since 7 is a quadratic non-residue. Hence the variety defined by the cyclotomic
subgroup membership equation (1) is (a + zb)(a — zb) = 1, or a® — 2%b? = 1,
or a® —ib?> = 1. Note that this results in just one equation over F,, rather than
two. Substituting from this equation into the squaring formula, one obtains

o® = (a+xb)* =2a® — 1+ [(a +b)? — a® — (a® — 1) /i),

where now the main cost of computing this is just two F, squarings. Observe
that if 4 is ‘small’ (for example if 4 = —1 for p = 3 mod 4 when F, = F,), then
the above simplifies considerably.



3.2 Fast squaring in Res]Fq,3 /F 2 Ggy(r,)

Let Fyo = F,[2]/(2% — i), with i € F, a sextic non-residue. The standard repre-
sentation for a general element of this extension is

a=0qp+ o1z + oz22'2 + a323 + a4z4 + a525.
However, in order to make the subfield structure explicit, we write elements of
Fs in two possible ways, each of which will be convenient depending on the
context: firstly as a compositum of F 2 and F s, and secondly as cubic extension
of a quadratic extension.

Fqe as a compositum: Let
a = (ao + ary) + (bo + biy)z + (co + cry)a® = a + bz + ca?, (2)

where F 2 = F[y]/(y* — i) with y = 2%, and F s = F,[z]/(2® — i) with z = 2%
Note that a,b,c € F;2. One can therefore regard this extension as the composi-
tum of the stated degree two and degree three extensions of F:

Fqs = ]Fq(z) = Fqs (y) = ]qu (33),

with the isomorphisms as given above. Viewing « in the latter form its square
is simply:

o® = (a+bx + cx®)? = a® + 2abx + (2ac + b?)x? + 2bea® + Aat
= (a® + 2ibc) + (2ab + ic®)z + (2ac + b*)2* = A + Bz + Ca? (3)

As before we use the characterising equation (1) for membership of G, ),

which in this case is a?’ =91 = 1. To Weil restrict to Fg2, we first calculate
how the Frobenius automorphism acts on our chosen basis. Firstly, since i is a

quadratic non-residue, we have

(¢—1)/2 (g—1)/2

y' =y’ Y =i Yy =—y.
Hence a? = (ap + a1y)? = ag — a1y, which for simplicity we write as a, and

similarly for % and c¢?. Furthermore, since ¢ is a cubic non-residue we have
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where w is a primitive cube root of unity in F,. Applying the Frobenius again
gives 27 = w?z. Note that the above computations necessitate ¢ = 1 (mod 6),
which is satisfied thanks to the definition of SFFs.

The cyclotomic subgroup membership equation, rewritten as a? o =adis
therefore:

(a4 b’z + cw*z?)(a + bz + cx?) = @ + bwz + aw’a?,



which upon expanding, reducing modulo z* —i, and modulo ®3(w) = w? +w+1,
becomes

(a® —a — bei) +w(ic® — b — ab)x + w? (b — & — ac)z® = 0. (4)

This equation defines the variety ReSFqﬁ JF 2 Ga4(r,), as each F 2 coefficient of 2t
equals zero. Solving for bc, ab, ac, one obtains:

bc:(aQ—d)/i
ab=1ic? —b
ac="b%>—¢

Substituting these into the original squaring formula (3) then gives
A = a® + 2ibc = a® + 2i(a® — a) /i = 3a* — 2a,
B =ic® 4 2ab = ic® + 2(ic? — b) = 3ic? — 20,
C =b*+ 2ac = b* + 2(b* — ¢) = 3b* — 2.

F4e¢ as a cubic over a quadratic extension: As before let Fys = F,[2]/(2°—1),
with ¢ € F,; a sextic non-residue. Let the tower of extensions be given explicitly
by Fpe = F,[y]/(y? — i), and Fe = Fya[x]/(2® — V/i), with elements represented
in the basis:

a = (ag + a1y) + (bo + b1y)x + (co + c1y)a” = a + bz + ca?,

which is superficially the same as equation (2), but where now the isomorphism
is given by y = 2%, 2 = 2. The squaring formula is identical to (3) with i « /3.

With this representation one can see that the Frobenius automorphism acts
on z as multiplication by a sixth root of unity in F,, which we shall also call w.
Noting that ¢ =1 (mod 6) observe that:

2l — p0-1 . g = g3a0/3 o T a-nse

Since i is a sextic non-residue in F,, we have that w = i‘@"1/6 is a primitive

sixth root of unity in F,. Hence z? = wz, and similarly 29 = (wr)? = wiz.

This simplifies the cyclotomic subgroup membership equation (1) to:
(a4 b’z + cwtz?)(a + bx + cx?) = a + bwz + aw’a?,

which upon expanding, reducing modulo z3 —+/i, and modulo &g (w) = w? —w+1,
becomes

(a® — @ — bevi) — w(Vic® + b — ab)x + w2 (b? — ¢ — ac)z? = 0. (5)
Solving for bc, ab, ac, one obtains:
be = (a®> —a)/Vi
ab=ic* +b

ac=1b>—¢



Substituting these into the revised squaring formula gives

A=a?+2Vibe = a® + 2Vi(a® — @) /Vi = 3a* — 2a
B = Vic? 4 2ab = Vic® + 2(Vic? +b) = 3Vic? 4 2b
C = V> +2ac = b* + 2(b* — ¢) = 30> — 2¢

3.3 Observations

Both sets of formulae for these degree six extensions are remarkably simple, re-
quiring just three F,2 squarings to square an element of G, (r,), which is analo-
gous to the result in §3.1 that requires two IF, squarings to square an element of
G, (r,)- Combining the result from §3.1 for squaring a generic element of Fz,
means that for SFFs squaring in Gg,r,) requires only six F, multiplications,
which matches the result of Stam and Lenstra.

Strictly speaking, the formulae require knowledge of the action of the Frobe-
nius on elements of g2, which although as simple as it is, does entail Weil
restriction of equations (4) and (5) to F,. However, if one ignores the arithmetic
of F g2 and restricts directly to IF, as in [16], then the above formulae are obscured
and indeed were missed by Granger et al. So it is in the sense that the formulae
were discovered in this way that we mean the restriction is to [F 2 only.

Observe also that for the extension tower, one needs to multiply by v/i € Fge,
whereas for the compositum one has ¢ € F,;. The cost of the former is however
not much more than the latter since the basis for F2/F, is {1,v/i} and so
multiplication by v/i of a value in Fg2 involves just a component swap and a
multiplication by i.

4 Comparison with prior work

In this section we compare the efficiency of the squaring formulae derived in §3
with the most efficient results in the literature.

4.1 Operation Counts

Let m and s be the time required to perform an F, multiplication and squaring
respectively. Since the cost of computing a squaring using our formulae or others
reduces to computing squarings in a subfield, we use the notation S; and My
to denote the time required to compute the square of one or the product of two
generic elements of [F,«. In our estimates we do not include the time for modular
additions and subtractions since although not negligible, are not the dominant
operations. This assumes that multiplication by the elements 4, j used in §3 can
be effected with very few modular shifts and additions when needed, see [6] for
justification of this assumption.

We focus on TFFs with extension degrees 6,12, 18 and 24 over F,, which are
the main extension degrees of interest in PBC. However one can easily extrapo-
late cost estimates for any field whose extension degree is of the form k = 2¢3°.



To estimate the cost of a multiplication in IF», we use the function v(k)m where
v(k) = 326°. The 3 and 6 in this estimate arise from the use of Karatsuba-Ofman
multiplication [23] for each quadratic and each cubic extension respectively. Our
cost function differs from that in [24] and [16], which is 3%5°, because these as-
sume that the Toom-Cook multiplication [36] of two degree three polynomials is
more efficient than Karatsuba-Ofman multiplication, however this is not usually
the case [10]. Hence the cost of an F,x multiplication for the given extension
degrees is 18m, 54m, 108m, 162m respectively.

The cost of squaring a generic element of IF,,» is more complicated, since there
are several squaring techniques and one needs to determine which is faster for
a given application. Using the observation in [34], one can deduce that Sy =
2My 5 = 2 - 3°716". In addition, the results due to Chung and Hasan [9] give
three alternative formulae for squaring using the final degree three polynomial
at a cost of 3Mj, /3 + 25} /3, 2M}, /3 + 35Sk 3 and My, /3 + 4}, /3. For simplicity we
use the second of the Chung-Hasan formulae, which incidentally for the above
extension degrees requires exactly the same number of F, multiplications as
with [34].

Table 1 contains counts of the number of IF, multiplications and squarings
that are required to perform a squaring in F,» and Gg,(,), via the methods
arising from Weil restriction to the quadratic, cubic and IF), subfields respectively.

Table 1. Operation counts for squaring in various Weil restrictions of G, () for 6 | k.

k| Fp R’eSJFpk /F k2 G%(Fpk/z) ReS]Fpk/JFpk/S G%(Fpk/a) ReS]Fpk- /]FPG%(Fpk/s)
(Stam-Lenstra [34]) (Present result) (Granger et al. [16])

6|12m 253 = 4m + 6s 352 = 6m 3m + 6s

12| 36m 256 = 24m 354 =18m 18m + 12s

18] 2m 259 = 24m + 30s 356 = 36m

24(108m 2512 = 72m 3Ss = 54m 84m + 24s

As is clear from the table, with the present result we have reduced the squar-
ing cost for generic elements in each of these fields by a factor of two for every
degree, which greatly improves the speed of an exponentiation. If we assume for
the moment also that m = s, then our squaring takes approximately 2/3-rds
the time of the Stam-Lenstra result in the third column. In comparison with the
final column, one sees that we beat this comprehensively; indeed for & = 24 the
result from [16] is worse than when using Res[ppk /F /2 G%(Fpk /2)) and is barely
better than Karatsuba-Ofman. Hence restricting to the cubic subfield is clearly
the most efficient for fields of this form.

Remark 1. Note that we have not included the Stam-Lenstra squaring cost for
k = 6 because this requires p = 2 or 5 mod 9 whereas the use of the sextic twist
requires D = 3 and hence p = 1 mod 3, thus making them less desirable for



pairings. An open problem posed in [16] asked for a generalisation of the Stam-
Lenstra result to cyclotomic fields of degree different from six, for pairings. We
have shown that our formula for squaring in the cyclotomic subgroup of IFqXG when
¢ = 1 mod 6 matches the extremely efficient degree six squaring of [34] (while
also permitting the use of sextic twists), and extends efficiently to higher degree
extensions. Hence in the sense that we have provided an efficient tailor-made
solution for pairings, we believe we have answered this question affirmatively.

4.2 Applicability of method to higher powerings

As we have shown, all of the techniques to date for producing faster arithmetic
in the cyclotomic subgroup result from an application of the Weil restriction of
scalars of the equation defining membership of this group. A natural question to
ask is whether this will work for extensions of any other degree? The answer is
that it does, but that it appears very unlikely to provide a faster alternative to
squaring.

Let §(k) be the degree of the equation a® ) = 1, once expanded and the
linear Frobenius operation has been incorporated. If § = 2, then the variety
resulting from the Weil restriction down to any intermediate subfield may help
with squaring. If § > 2 then the resulting equations may help when raising
an element of the cyclotomic subgroup to the d-th power [34]. However this is
unlikely to be faster than sequential squaring for an exponentiation, even when
squaring is slow. For example, for Gg,,), one finds that 6 = 3 and the resulting
equations aid cubing. However the ratio of the cost of a cubing to a squaring
is > log, 3, and thus it better to square than cube during an exponentiation in
this case.

Complementary to this is the fact that § < 2 only for extensions of degree
k = 223" for @ > 1,b > 0. Hence pairings with embedding degrees of this form
are ideally suited to exploit our, and the Stam-Lenstra fast squaring technique.

5 Application to pairing-based cryptography

In this section we apply our squaring formula to extension field arithmetic re-
quired in the final exponentiation of a pairing computation, and post-pairing
exponentations, for two concrete examples. Its use is possible because for any
pairing, the codomain is a subgroup of Gg, (,) C F;k where k is the embedding
degree of the curve. For instance, the Tate pairing on an elliptic curve has the
following form: for r coprime to p we have

et B(Fp)[r] x E(Fp)/rE(Fp) — F5 /(F5)".

In order to obtain a unique coset representative the output is usually powered
by (p*¥ —1)/r. Since

(" = 1)/r = (" —1)/Dk(p) - Dr(p)/r,



the first term (p* — 1)/@4(p) can be computed easily using the Frobenius and
a few multiplications and a division, while the remaining ‘hard’ part must be
computed as a proper exponentiation. Since for any element a € IF;,“ we have

aP*=1)/2(p) ¢ Gg, (p), fast arithmetic for this group can be used.

5.1 MNT curves

MNT curves were discovered in 2001 by Miyaji et al. and constitute a family of
ordinary elliptic curves with embedding degree six [28]. The parametrisation of
the base field, group cardinality and trace of Frobenius are given by:

plz) =2%+1
rz)=2> -z +1
tz)=ac+1

Using the method of Scott et al. [32] the final exponentiation reduces to the pow-
ering of an element of Gp2_,11 by 2. The maximum twist available has degree
two and so for efficiency one would like to use Fps arithmetic with a quadratic
extension of this field to give Fys. This implies that one should use the com-
posite construction of §3.2. One can alternatively use a quadratic extension of
cubic extension for the Miller loop computation, and then switch to the isomor-
phic tower construction of §3.2 for the final exponentiation. This isomorphism is
just a permutation of basis elements, and so switching between representations,
even during the Miller loop, is viable, and therefore permits the use of the fast
multiplication results of [10].

The one condition that must be satisfied in order for our method to apply
is that p = 1 mod 6 which requires = 0 mod 6, which eliminates 2/3-rds of
potential MNT curves. While this is restrictive, the benefits of ensuring this
condition are clear.

5.2 BN curves

The Barreto-Naehrig family of pairing-friendly curves were reported in 2005
and have embedding degree 12 [5]. The parametrisation of the base field, group
cardinality and trace of Frobenius are given by:

p(x) = 362* + 362° + 242 + 62 + 1
r(z) = 36z + 362% + 1827 + 62 + 1
t(r) = 62> + 1

Again the efficient final exponentiation of Scott et al. [32] can be applied to
reduce the final powering to essentially just three exponentiations by x. Here p
is congruent to 1 mod 6, and so the degree 12 extension is squaring-friendly. Note
that for odd x this combination would not be pairing-friendly. However, choosing
p = 3 mod 4 enables the use of the initial extension Fj2 = F,[z]/(z* + 1) which

10



permits highly efficient arithmetic. Since BN curves possess a sextic twist, such
efficient subfield arithmetic is very desirable. With this choice of extension, Fge
is towering-friendly with IF, = Fp- since p = 3 mod 4 = p? =1 mod 4.

In practise, it is recommended that x should be chosen to have as low a Ham-
ming weight as possible, to minimise the resulting cost of the Miller loop [11].
Hence for the final exponentiation, the entries in Table 1 imply that this cost
will be ~ 75% the cost of the previous fastest. Furthermore without allowing
p = 3 mod 4, the arithmetic for PFFs would be even slower.

With regard to post-pairing exponentiation, one is free to use the method
of [14] which uses a clever application of the GLV decomposition [15]. For BN
curves one obtains a four-dimensional decomposition and hence uses quadruple
exponentiation to achieve this speed-up. Since there will be more multiplications
than for the final powering the impact of our squaring formulae on the cost of
exponentiation will be less pronounced, but still significant.

We also note that the trace-based methods of LUC [33], XTR [26, 35] (and
XTR over extension fields [27]) are known to be faster than [34] and [17] for
a single exponentiation. However the methods just described for computing the
final powering and performing a post-pairing exponentiation require several mul-
tiplications, which are not efficiently implementable when using traces [14]. Fur-
thermore any scheme that requires the product of pairings to be computed such
as [8] or [1] will not be efficient with traces. Hence the above methods currently
offer the most efficient way to implement these pairings for any schemes.

6 Application to torus-based cryptography

Our central result may also be applied to algebraic tori, which were introduced
to cryptography by Rubin and Silverberg in 2003 [30]. While for degree six
extensions of prime fields, our squaring formulae only match the fastest imple-
mentation of CEILIDH [17], which uses [34], for nearly all sixth degree extensions
of non-prime fields our squaring method is the most efficient.

The implementation of T3¢(F,) = Gg,,(p) by van Dijk et al. used the Stam-
Lenstra result for p = 2 or 5 mod 9 [12]. This condition implies that ¢ = p* =
or 5 mod 9 whenever k = 5™. Hence the family of fields of extension degree 6-5™
over F, for ¢ = 2 or 5 mod 9 matches our squaring efficiency for the cyclotomic
subgroup. On the other hand, the condition ¢ = 1 mod 6 for SFFs is far less
restrictive and in fact can be said to apply to 3/4 of all finite fields.

With regard to compression of torus elements, which is the central function
of torus-based cryptography, let F, = F,» with p = 1 mod 6 and let the field
construction for Fge be a compositum as given in §3.2. We reorder the basis as
so:

a = (ag + a1x + axx®) + (bo + brz + box?)y = a + by.

Assuming a € G2_ 441, then as in [18] and explicitly in [29], a straightforward
analysis of condition (1) yields that such elements - excepting the identity - can

11



be represented by two elements of F,. To compress, one writes o # 1 as

aza—&—byzilj

where ¢ = —(a + 1)/b for b # 0 and ib/(1 — a) otherwise. Condition (1) now

becomes )
_ q"—q+1
(=) -t
cty

and leads to the equation 3cg+i—3iclcg = 0, where ¢ = cg+c¢i2+co2?. Therefore
there is redundancy between the ¢;’s. One can eliminate ¢y for instance which
can be recovered from ¢y and c;. The decompression map is just the inverse of
this:

3icocr + 3ictx + (3¢3 + i)x? — icyy
3icocr + 3ictx + (3¢3 + i)x2 + Zicyy’

W AMFy) — To(Fq) \ {1} : (co,c1) —

with the condition ¢; # 0, which therefore represents all ¢> — ¢ non-identity
elements in Gg2_g41.

Since this compression method works for all fields for which p = 1 mod 6,
achieves the maximum known compression for any algebraic torus, and has the
fastest squaring available, we propose that such fields should be considered ideal
candidates for torus-based cryptography.

Furthermore, as stated in [14], torus-based cryptography (TBC) parame-
ters can be easily generated from pairing-friendly elliptic curves. And as stated
in §5.2, the multi-exponentiation techniques acquired from PBC when TBC pa-
rameters are generated in this way mean that exponentiation in T4(F,) is faster
than the trace-based methods when F, is an extension field. Therefore while
it could be argued that the main application of TBC is to PBC - in terms of
offering faster arithmetic and compression mechanisms for systems that may be
used in practise - here TBC really benefits from PBC, as indicated in [14].

7 Conclusion

We have presented a method to perform squaring extremely efficiently in the
cyclotomic subgroup of ]FqXG, for ¢ = 1 mod 6. We have shown how to apply this
result to fields of interest in pairing-based cryptography to obtain the fastest
final- and post-pairing exponentiation algorithms, and also detailed why these
fields are ideally suited for torus-based cryptography.

Since these fields include all those listed in the IEEE’s draft standard for
identity-based public-key cryptography, which use pairings over ordinary elliptic
curves that permit the fastest pairing, our result strongly supports their stan-
dardisation, but also demonstrates that the squaring-friendly fields introduced
here should be seriously considered as well.

We leave it as an open problem to find similarly efficient squaring formulae
for the remaining case ¢ = —1 mod 6.
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