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Abstract

In this paper, we present a new addition operation on Hessian curves

with low cost. It can be applied to resist the side channel attacks for scalar

multiplication, and also can be used to compute precomputation points for

window-based scalar multiplication on Hessian curves over prime fields.

We propose two new precomputation schemes that are shown to achieve

the lowest cost among all known methods. By using the fractional wNAF

and fractional wmbNAF, if n = 192 bits and 1I ≈ 30M , scheme 1 can

save up to 31M , scheme 2 can save up to 28M with w ≥ 6, where I, M

represent the inversion and the multiplication, respectively.

Keywords: Elliptic curve cryptosystem, scalar multiplication, Hes-

sian curves

1 Introduction

Since Elliptic Curve Cryptography (ECC) was introduced by Koblitz and Miller

in 1985, this cryptosystem has attracted increasing attention due to its shorter

key size requirement in comparison to other public-key cryptosystem. Scalar

multiplication ([n]P ) is the central operation of elliptic curve cryptosystem,

where n is the scalar and P is a point on an elliptic curve over Fp. Important

methods for scalar multiplication are window non-adjacent form (wNAF) and

fractional window non-adjacent form (Frac-wNAF) [9], they are based on the

binary expansion of number. This means that the binary expansion can be

directly translated to computation using the simplest elementary ECC point

operation, namely point doubling and addition. The Hamming weight of the
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binary expansion of the scalar can be reduced by precomputation, and thus

reduce the number of addition operation, furthermore, reduce the cost of scalar

multiplication. In 2007, Longa and Miri [7] have proposed the multibase non-

adjacent form (mbNAF) and fractional window multibase non-adjacent form

(Frac-wmbNAF), they used a very efficient representation of integer using mul-

tiple base. Efficiently of these methods depend on the cost of addition operation

and doubling operation. The addition operation has the form of dP (i)+Q, where

d is small integer (≥ 2), Q is in the set of {3P, 5P, ..., (2L+ 1)P}. Thus, it is a
critical task to reduce the computing cost of these operations, to further speed

up the executive time of scalar multiplication.

In 2006, Meloni [5] introduced a special addition operation in Jacobian coor-

dinate on Elliptic curves. In 2008, Patrick Longa [2] proposed a new methodol-

ogy to perform the precomputation in Frac-wNAF using this addition operation,

which used only one field inversion to convert all points in precomputation set

{3P, 5P, ..., (2k + 1)P} to affine coordinates, and use the mixed coordinates

addition to achieve the addition operation, then reduce the cost of scalar mul-

tiplication.

In this paper, we introduce a new technique to perform addition operation

on Hessian curves with low cost, which add two points with same z coordinate.

For any fixed n, we can get the addition sequence v using the method in [5],

where

v = (v1, ..., vs), v1 = 1, vs = n,

and satisfying vi = vi−1+vj where 1 ≤ j < i−1. By combining our method and

the addition chains, we have an iterative computation of the form Pi = Pi−1+Pj ,

where P1 = P, Ps = nP , and every addition can be computed with the identi-

cal z coordinate. Thus, scalar multiplication can be performed efficiently with

only point addition (no doubling), that can resist the side channel attacks. Our

method can also be used to drive faster the window-based scalar multiplica-

tion. Given that precomputation points in window-based algorithm follow the

form diP , where di is an odd integer ≥ 3. In the second part of this paper,

we propose two schemes to perform the precomputation. In scheme 1, we use

the iterative computation of the form diP = 2P + ... + 2P + 2P + P , which

perform the point addition with new operation, and all points are converted to

affine representation using the method in [2], the conversion need only one point

inversion. Thus, we can use mixed coordinates addition to perform scalar multi-

plication. In comparison to the method in projective coordinates, if I/M ≈ 30,

n = 192 bits, scheme 1 could save 47M by using Frac-wNAF, and 36M by

using Frac-wmbNAF. In scheme 2, we use the new addition operation to per-

form precomputation in projective coordinates. In comparison to the previous

method, scheme 2 could save up to 28M with w ≥ 6 by using Frac-wNAF and

Frac-wmbNAF.
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This paper is organized as follows. Section 2 introduces the basic of Hessian

curves and special addition operation by Meloni. Section 3 introduces a new

addition operation on Hessian Curves and the method to perform the scalar

multiplication which can resist the side channel attacks. Section 4 proposes

two schemes for precomputation and the comparison to traditional methods.

Section 5 analyse the cost of our schemes and the traditional methods for scalar

multiplication by using Frac-wNAF and Frac-wmbNAF. Section 6 states the

conclusion.

2 Preliminaries

2.1 Basic of Hessian Curves

Hessian curves in cryptology are explained by Joye and Quisquater [3], and

Smart [4]. An elliptic curve over K in Hessian form is defined by

x3 + y3 + 1 = 3dxy,

where d ∈ K with d3 ̸= 1. Hessian-form elliptic curve is birationally equivalent

to the Weierstrass-form elliptic curve

v2 = u3 − 27d(d3 + 8)u+ 54(d6 − 20d3 − 8).

A typical point (x, y) on the Hessian curve corresponds to the point (u, v) on

the Weierstrass curve defined by u = p − 9d2 and v = 3p(y − x), where p =

12(d3−1)/(d+x+y). The identity element is the point at infinity. The negative

of a point (x, y) is (y, x). The addition formula is (x3, y3) = (x1, y1)+(x2, y2),

where

x3 =
y21x2 − y22x1

x2y2 − x1y1
, y3 =

x2
1y2 − x2

2y1
x2y2 − x1y1

.

The doubling formula is (x3, y3) = 2(x1, y1), where

x3 =
y1(1− x3

1)

x3
1 − y31

, y3 =
x1(y

3
1 − 1)

x3
1 − y31

.

On projective coordinates, each point is represented by the triplet (X : Y : Z)

which satisfies the projective curve X3+Y 3+Z3 = 3dXY Z and corresponds to

the affine point (X/Z : Y/Z) with Z ̸= 0. The identity element is represented

by (1 : −1 : 0). The negative of (X : Y : Z) is (Y : X : Z). For all nonzero

λ ∈ K, (X : Y : Z) = (λX : λY : λZ). The point addition formula in projective

coordinates is given by (X3 : Y3 : Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2), where

X3 = Y 2
1 X2Z2 − Y 2

2 X1Z1,

Y3 = X2
1Y2Z2 −X2

2Y1Z1,

Z3 = Z2
1X2Y2 − Z2

2X1Y1.
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The point doubling formula in projective coordinates is given by (X3 : Y3 :

Z3) = 2(X1 : Y1 : Z1), where

X3 = Y1(Z
3
1 −X3

1 ),

Y3 = X1(Y
3
1 − Z3

1 ),

Z3 = Z1(X
3
1 − Y 3

1 ).

The point addition costs 12M with the projective coordinates, 10M with the

affine-projective mixed coordinates addition, point doubling costs 7M +1S and

tripling costs 8M + 6S.

2.2 Special Addition Operation by Meloni

In 2006, Nicolas Meloni [5] proposed a new addition operation with low cost in

Jacobian coordinate on Elliptic curves, which is described in the follow.

Let P = (X1 : Y1 : Z) and Q = (X2 : Y2 : Z) be two points with the same z

coordinate in jacobian coordinates on the elliptic curve E, two points addition

P +Q = (X3 : Y3 : Z3) can be obtained as follows:

X3 = (Y2 − Y1)
2 − (X2 −X1)

3 − 2X1(X2 −X1)
2,

Y3 = (Y2 − Y1)(X1(X2 −X1)
2 −X3)− Y1(X2 −X1)

3, (1)

Z3 = Z(X2 −X1).

This special addition operation costs 5M + 2S. Meloni applied this addition

operation to compute the scalar multiplication by using the addition chains. An

addition chains which compute an integer n is given by two sequences v and w

such that

v = (v1, ..., vs), v1 = 1, v2 = 2, v3 = 3, vs = k,

w = (w4, ..., ws) ∈ {0, 1}s−2, where (2)

vi+1 = vi + vj

{
wi+1 = 0 : j = i− 1

wi+1 = 1 : 1 ≤ j < i− 1.

Let Pi+1 = Pi+Pi−1 and Pi = Pi−1+Pj , where Pi−1 and Pj have the same

z coordinate, we can use the formulae (1) to perform Pi = Pi−1 + Pj . Because

the coordinate of Pi−1 can be written as

(Xi−1 : Yi−1 : Zi−1) ≡ (Xi−1(Xj −Xi−1)
2 : Yi−1(Xj −Xi−1)

3

: Zi−1(Xj −Xi−1))

= (Xi−1(Xj −Xi−1)
2 : Yi−1(Xj −Xi−1)

3 : Zi).

Thus, it is possible to perform Pi+1 = Pi+Pi−1 use the formulae (1) without any

extra addition. In total, it costs (5s−6)M +(2s+2)S for scalar multiplication,
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where s is the length of the addition chains. In 2008, Patrick Longa [2] use

this addition operation to compute the precomputation of window-based scalar

multiplication. He use this operation to convert all percomputation points to

affine coordinates with only one point inversion. In comparison to previous

methods, his schemes deliver the lowest cost for scalar multiplication by using

Frac-wNAF.

3 New Addition Operation on Hessian curves

This section introduces the new addition operation on Hessian curves. Let

P = (X1 : Y1 : Z) and Q = (X2 : Y2 : Z) be two points with the same

z coordinate in projective coordinates on the Hessian curves. The addition

P +Q = (X3 : Y3 : Z3) can be obtained as follows:

X3 = Z(Y 2
1 X2 − Y 2

2 X1),

Y3 = Z(X2
1Y2 −X2

2Y1),

Z3 = Z2(X2Y2 −X1Y1).

(X3 : Y3 : Z3) can alteratively be written as

X3 = (Y2 − Y1)(X2Y2 − (Y1 + Y2)(X1 +X2)) + Y1(X2Y2 −X1Y1),

Y3 = (X2 −X1)(X2Y2 − (Y1 + Y2)(X1 +X2)) +X1(X2Y2 −X1Y1),

Z3 = Z(X2Y2 −X1Y1). (3)

Using formulae (3), two points with same z coordinate addition only costs 8M .

Using the addition sequences (2) in section 2.1, we can perform the scalar

multiplication with low cost. Let P1 = (X1 : Y1 : Z1) be a point in Hessian

curves and n is a positive integer, the point doubling

P2 = 2P1 = (Y1(Z
3
1 −X3

1 ) : X1(Y
3
1 − Z3

1 ) : Z1(X
3
1 − Y 3

1 )) = (X2 : Y2 : Z2).

Then the point P1 can be represented as

P1 = (X1 : Y1 : Z1) ≡ (X1(X
3
1 − Y 3

1 ) : Y1(X
3
1 − Y 3

1 ) : Z1(X
3
1 − Y 3

1 )).

Thus P1 and P2 have the same z coordinate, we can use the formulae (3) to

compute P1 + P2 = P3, it costs 7M + 1S for 2P , 2M for precomputation and

8M for addition.

Assuming w4 in the formulae (2) is 1, and P3+P1 will be computed according

to the addition chains. Because the coordinates of P1 can be represented as

(X1(X2Y2 −X1Y1) : Y1(X2Y2 −X1Y1) : Z1(X2Y2 −X1Y1)),
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it was computed in the course of P1 + P2, so we can use the formulae (3) to

perform the addition P1+P3, it does not require any precomputation. In total,

scalar multiplication require (s−2) times additions with same z coordinate and

one doubling, all of these operations cost (8s − 7)M + 1S, where s represents

the length of addition chains.

Side channel attacks have been discovered by Kocher in 1996. The attacker

can deduce secret information by the method to analyse the amount of time

required to perform secret operation. This weakness mainly depends on the

fact that during the computation of scalar multiplication, addition operation is

more expensive than doubling operation. Thus a side-channel analysis allows

to deduce what kind of operation is computed, and further to guess the bit of

the exponent. The efficient measure to avoid this attack is using the dummy

operations, that makes the group operation look identical during the computing

process. By combining the new addition operation in this paper and addition

chains, we can perform the scalar multiplication using only point additions with

low cost, so it is possible to perform scalar multiplication efficiently and resist

the side channel attacks efficaciously.

4 Application in Precomputation

By using windows-based method to perform scalar multiplication, it is required

to precompute the following set:

{3P, 5P..., (2L+ 1)P} = {3P, 5P...,mP}, (4)

where L is number of precomputation points. In this section, we will propose two

schemes for precomputation on Hessian curves using the new addition operation,

then analyse the cost in comparison to traditional methods for Frac-wNAF .

4.1 Method for Precomputation

The precomputation set can be proposed as follows:

diP = ...+ 2P + 2P + 2P + P. (5)

Scheme 1 : Let point P = (x1 : y1) is assumed originally to be in affine coor-

dinates.

Step 1. We can compute doubling 2P in affine coordinates and yield result

in projective coordinates as follows:

X2 = y1(1− x3
1) = y1 − y41 − α,

Y2 = x1(y
3
1 − 1) = x4

1 − x1 − β, (6)

Z2 = x3
1 − y31 = (x1 − y1)(x

2
1 + x1y1 + y21),
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where α = y1(x
3
1 − y31), β = x1(x

3
1 − y31). This formula is easily derived from

the doubling formula in section 2 and only costs 3M + 5S. Then, by fixing

λ = x3
1 − y31 , we can assume the following equivalent point to P ,

P (1) = (X
(1)
1 : Y

(1)
1 : Z

(1)
1 ) = (x1(x

3
1 − y31) : y1(x

3
1 − y31) : (x

3
1 − y31)),

which does not require any extra costs since its coordinates have already been

computed in formulae (6).

Step 2. We will compute precomputation points diP in projective coordi-

nates, which be computed using formulae (6) as follows.

1st,

3P = 2P + P (1) = (X2 : Y2 : Z2) + (X
(1)
1 : Y

(1)
1 : Z

(1)
1 ) = (X3 : Y3 : Z3),

X3 = (Y
(1)
1 − Y2)(X

(1)
1 Y

(1)
1 − (Y2 + Y

(1)
1 )(X2 +X

(1)
1 )) + Y2(X

(1)
1 Y

(1)
1 −X2Y2),

Y3 = (X
(1)
1 −X2)(X

(1)
1 Y

(1)
1 − (Y2 + Y

(1)
1 )(X2 +X

(1)
1 )) +X2(X

(1)
1 Y

(1)
1 −X2Y2),

Z3 = Z2(X
(1)
1 Y

(1)
1 −X2Y2).

2st,

(2P )(1) = (X
(1)
2 : Y

(1)
2 : Z

(1)
2 ) = (X2(X

(1)
1 Y

(1)
1 −X2Y2) : Y2(X

(1)
1 Y

(1)
1 −X2Y2) :

Z2(X
(1)
1 Y

(1)
1 −X2Y2)) ≡ (X2 : Y2 : Z2),

5P = 3P + (2P )(1) = (X3 : Y3 : Z3) + (X
(1)
2 : Y

(1)
2 : Z

(1)
2 ) = (X4 : Y4 : Z4),

X4 = (Y3 − Y
(1)
2 )(X3Y3 − (Y

(1)
2 + Y3)(X

(1)
2 +X3)) + Y

(1)
2 (X3Y3 −X

(1)
2 Y

(1)
2 ),

Y4 = (X3 −X
(1)
2 )(X3Y3 − (Y

(1)
2 + Y3)(X

(1)
2 +X3)) +X

(1)
2 (X3Y3 −X

(1)
2 Y

(1)
2 ),

Z4 = Z
(1)
2 (X3Y3 −X

(1)
2 Y

(1)
2 ), A4 = (X3Y3 −X

(1)
2 Y

(1)
2 ).

...

...

((m− 1)/2)st,

(2P )((m−3)/2) = (X
((m−3)/2)
2 : Y

((m−3)/2)
2 : Z

((m−3)/2)
2 ) = (X

((m−5)/2)
2 (X(m−3)/2

Y(m−3)/2 −X
((m−5)/2)
2 Y

((m−5)/2)
2 ) : Y

((m−5)/2)
2 (X(m−3)/2Y(m−3)/2 −X

((m−5)/2)
2

Y
((m−5)/2)
2 ) : Z

((m−5)/2)
2 (X(m−3)/2Y(m−3)/2 −X

((m−5)/2)
2 Y

((m−5)/2)
2 )),

mP = (2P )((m−3)/2) + (m− 2)P = (X
((m−3)/2)
2 : Y

((m−3)/2)
2 : Z

((m−3)/2)
2 ) +

(X(m+1)/2 : Y(m+1)/2 : Z(m+1)/2) = (X(m+3)/2 : Y(m+3)/2 : Z(m+3)/2),

X(m+3)/2 = (Y(m+1)/2−Y
((m−3)/2)
2 )(X(m+1)/2Y(m+1)/2−(Y

((m−3)/2)
2 +Y(m+1)/2)

(X
((m−3)/2)
2 +X(m+1)/2))+Y

((m−3)/2)
2 (X(m+1)/2Y(m+1)/2−X

((m−3)/2)
2 Y

((m−3)/2)
2 ),

Y(m+3)/2 = (X(m+1)/2−X
((m−3)/2)
2 )(X(m+1)/2Y(m+1)/2−(Y

((m−3)/2)
2 +Y(m+1)/2)

(X
((m−3)/2)
2 +X(m+1)/2))+X

((m−3)/2)
2 (X(m+1)/2Y(m+1)/2−X

((m−3)/2)
2 Y

((m−3)/2)
2 ),

Z(m+3)/2 = Z
((m−3)/2)
2 (X(m+1)/2Y(m+1)/2 −X

((m−3)/2)
2 Y

((m−3)/2)
2 ),
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A(m+3)/2 = (X(m+1)/2Y(m+1)/2 −X
((m−3)/2)
2 Y

((m−3)/2)
2 ).

Value Ai, for i = 4 to (m + 3)/2, are stored and used in the following for

converting all points to affine coordinates.

Step 3. Converting points (Xi : Yi : Zi), for i from 3 to (m+ 3)/2 to affine

coordinates. Thus, we can use the mixed coordinates addition to perform scaler

multiplication. The conversion can be achieved by means of (Xi/Zi : Yi/Zi : 1).

We first compute the inversion r = Z−1
(m+3)/2, and then recover every point as

follows.

mP : x(m+3)/2 = rX(m+3)/2, y(m+3)/2 = rY(m+3)/2,

(m− 2)P : r = rA(m+3)/2, x(m+1)/2 = rX(m+1)/2, y(m+1)/2 = rY(m+1)/2,

...

...

3P : r = rA4, x3 = rX3, y3 = rY3.

Theorem 1 In total, this methodology cost

Costscheme 1 = 1I + (11L+ 2)M + 5S (7)

to compute [3]P, [5]P.....[m]P , where L = (m − 1)/2 represents the number of

precomputation points. Furthermore, this methodology requires 3L+ 2 registers

for temporary calculations and points storage, for L = 1, the requirement is fixed

at 5 registers.

Proof. Step 1 costs 3M+5S for computing 2P and P (1), step 2 costs (8L)M for

computing the points diP in projective coordinates, step 3 costs (3L−1)M+1I

for converting all points to affine coordinates. Then the sum of all steps cost

1I + (11L+ 2)M + 5S.

Regarding memory requirements. The point P needs two registers T
(1)
1 and

T
(1)
2 to store x1 and y1. Doubling computation 2P need T

(1)
3 , T

(1)
4 and T

(1)
5 to

store X2, Y2 and Z2, T
(1)
1 and T

(1)
2 are reused to store α and β. For the first

addition 2P +P (1), T
(1)
3 , T

(1)
4 and T

(1)
5 are reused to store X3, Y3 and Z3, T

(1)
1

and T
(1)
2 are reused to store X

(1)
2 and Y

(1)
2 . Thus, if L = 1, we need 5 registers

to preform the addition. For the second addition, we need T
(2)
1 , T

(2)
2 and T

(2)
3

to store X4, Y4 and A4. T
(1)
1 , T

(1)
2 and T

(1)
5 are reused to store X

(2)
2 , Y

(2)
2 and

Z4. Similarly, we need 3 extra registers to store the new points for each addition

when L ≥ 2. In conclusion, this method requires 3L+ 2 registers in the end of

step 4.

There are different efficient schemes to compute precomputation points in the

literature. The simplest approaches suggest performing computation in A or
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P using the chains P → 3P → 5P → ... → mP , which requires one doubling

and L = (m − 1)/2 additions, where A and P represent affine coordinates

and projective coordinates, respectively. For the precomputation in A, which

requires 3M + 3S + 1I for the doubling 2P and 6M + 1I for each addition.

For the precomputation in P, we consider that doubling 2P is computed as

2A → P with cost of 3M + 3S, the first addition P + 2P is computed using a

mixed addition as A+P → P with cost of 10M , the following (L−1) additions

have the form of P + P → P (12M). In total,

CostA = (L+ 1)I + (6L+ 3)M + 3S, (8)

CostP = (12L+ 1)M + 3S. (9)

Storing the points requires 2L + 2 registers for affine coordinates and 3L + 3

registers for projective coordinates.

Scheme 2 : The doubling 2P is computed as the formulae (6) with the cost of

3M + 5S, the first addition P + 2P is computed using new addition operation

with same z coordinate, and the following (L − 1) additions is also computed

using the new addition operation too. In this case, all of the precomputation

points are in projective coordinates.

Theorem 2 In total, this methodology cost

Costscheme 2 = (8L+ 5)M + 3S (10)

to compute [3]P, [5]P.....[m]P , where L = (m − 1)/2 represents the number of

points. Furthermore, this methodology also requires 3L+ 2 registers for tempo-

rary calculations and storing precomputation points, for L = 1,the requirement

is fixed at 5 registers.

Similar proof as theorem 1.

4.2 Performance Comparison

The advantage of a method depends on the ratio of inversions and multiplication

I/M and the ratio of squaring and multiplication S/M , where I, S and M

represent the inversion, squaring and multiplication operation, respectively. In

this analysis, the S/M ratio is set to 1S ≈ 0.8M . Then we estimate the I/M

ratio of our method and the straightforward precomputation in A.

Table 1. I/M ranges for scheme 1 and the straightforward precomputation in A
points 2 3 4 5 6 7 8

Schema 1 ≥ 5.3 ≥ 5.2 ≥ 5.15 ≥ 5.12 ≥ 5.1 ≥ 5.09 ≥ 5.07

Affine ≤ 5.3 ≤ 5.2 ≤ 5.15 ≤ 5.12 ≤ 5.1 ≤ 5.09 ≤ 5.07
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Table 1 shows the I/M values for scheme 1 and the straightforward precom-

putation in A for a given number of precomputation points. As it can be seen,

scheme 1 is superior to the straightforward precomputation in A when inversion

is more then 5.3 times of the cost of multiplication, and it is usually expected

that I/M ≥ 30.

Furthermore, by using Frac-wNAF for scalar multiplication, we compare

the cost of scheme 1, scheme 2 and P-based method, whose cost is given by the

formula (8), (11) and (10), respectively. When precomputation is preformed

in P, we would use the form P + P → P to compute additions (12M), and

2P → P to compute every doubling (7M +1S). Then the scalar multiplication

costs including precomputation are as follows,

[nD(19M + 1S) + n(1−D)(7M + 1S)] + [(12L+ 1)M + 3S], (11)

where D represents the average non-zero density in Frac-wNAF, and

D = [⌊log2m⌋+ (m+ 1)

2⌊log2m⌋ + 1]−1. (12)

If we use the scheme 2 to compute precomputation, costs of scalar multiplication

are as follows,

[nD(19M + 1S) + n(1−D)(7M + 1S)] + [(8L+ 5)M + 3S]. (13)

For scheme 1, we use P + A → P to perform mixed additions (10M), and

2P → P to every doubling (7M + 1S). Then the scalar multiplication costs

including precomputation are as follows,

[nD(17M + 1S) + n(1−D)(7M + 1S)] + [1I + (11L+ 2)M + 5S]. (14)

1 2 3 4 5 6 7 8

1900

1950

2000

2050

2100 d
d d d d d d d

t t t t t t t t

d P-basedt schema 1
schema 2

Number of precomputation points

Fig.1 cost performance of scheme 1, scheme 2 and P-based method

Fig.1 represents costs performance of scheme 1 (14), scheme 2 (13) and P-based
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method (12) to perform scalar multiplication including precomputation by using

Frac-wNAF, assuming 1I ≈ 30M, 1S ≈ 0.8M,n = 192bits. As we can see, the

total cost for scalar multiplication is minimal if L = 7 or m = 15. In comparison

with the P-based method, scheme 1 can save up to 39M , it can also save 47M

or 2.35% with w = 4, scheme 2 can save up to 28M with w ≥ 6.

5 Application in Frac-wmbNAF

Multibase NAF (mbNAF) was proposed by Longa in 2007 [12], using this

method we can find a multibase chain which has balance in the number of

addition and all the other point operations. It has the form

k =

m∑
i=1

si

J∏
j=1

a
ci(j)
j ,

where aj is prime integer from a set of base {a1 · · · aJ}, m is the length of the

expansion. If a larger window size is allowed, we could reduce further the average

number of nonzero terms in scalar multiplication, this technique is named Frac-

wmbNAF.

If we use the base {2, 3}, window size is w and L is the number of precom-

putation points, then the average densities of addition, doubling and triplings

is

Da =
2w

8(L+ 1)− 3(u+ v) + 2w−2(4w − 1)
,

D2 =
8(L+ 1) + 2w(w − 1)

8(L+ 1)− 3(u+ v) + 2w−2(4w − 1)
, (15)

D3 =
3(2w−2 − (u+ v))

8(L+ 1)− 3(u+ v) + 2w−2(4w − 1)
,

where u = ⌊(L+2)/3⌋ and v = ⌊(2w−2−L)/3⌋. Then, we will analysis the cost of
scalar multiplication using Frac-wmbNAF on Hessian curves. If precomputation

points coordinates are in P, then the total cost of scalar multiplication is

CostFrac−wmbNAF
P−based = (Da12M +D2(7M + 1S) +D3(8M + 6S))digits

+CostP , (16)

CostFrac−wmbNAF
scheme 2 = (Da12M +D2(7M + 1S) +D3(8M + 6S))digits

+Costscheme 2, (17)

where CostP is given by formula (10) and Costschema 2 is given by (11), digits

represents the total number of digits in the expansion,

digits =
(n− 1) lg 2

D2 lg 2 +D3 lg 3
.
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If the precomputation points coordinates are in A, then the total cost of scalar

multiplication is,

CostFrac−wmbNAF
scheme 1 = (Da10M +D2(7M + 1S) +D3(8M + 6S))digits

+Costscheme 1. (18)

where Costscheme 1 is given by formula (8). Table 2 shows costs of Frac-wNAF
with scheme 1 (14), scheme 2 (13), P-based method (12), and Frac-wmbNAF
with scheme 1 (18), scheme 2 (17) and P-based method (16) on Hessian curves
over prime field. Assuming n = 192 bits, 1S ≈ 0.8M , L represents the number
of precomputation point.

Table 2, costs of Frac-wNAF and Frac-wmbNAF with various precomputation methods

L 1 2 3 4

CostFrac−wNAF
P−based 2089M 2037M 1997M 1988M

CostFrac−wNAF
scheme 1 1994M + 1I 1952M + 1I 1920M + 1I 1913M + 1I

CostFrac−wNAF
scheme 2 2089M 2033M 1989M 1976M

CostFrac−wmbNAF
P−based 2021M 1920M 1926M 1931M

CostFrac−wmbNAF
scheme 1 1939M + 1I 1850M + 1I 1860M + 1I 1865M + 1I

CostFrac−wmbNAF
scheme 2 2021M 1916M 1917M 1918M

L 5 6 7 8

CostFrac−wNAF
P−based 1980M 1974M 1969M 1973M

CostFrac−wNAF
scheme 1 1907M + 1I 1903M + 1I 1900M + 1I 1905M + 1I

CostFrac−wNAF
scheme 2 1964M 1954M 1945M 1945M

CostFrac−wmbNAF
P−based 1927M 1916M 1922M 1914M

CostFrac−wmbNAF
scheme 1 1872M + 1I 1855M + 1I 1861M + 1I 1854M + 1I

CostFrac−wmbNAF
scheme 2 1911M 1896M 1898M 1885M

We have computed the cost of Frac-wNAF and Frac-wmbNAF with different

window size for 192 bits scalar multiplication. In the case of Frac-wmbNAF, we

use the base set of {2, 3}. For each of method, we consider three cases: precom-

putation points are left in projective coordinates with the ordinary computa-

tion (refer to the case CostFrac−wNAF
P−based and CostFrac−wmbNAF

P−based ), precomputation

points are left in projective coordinates with the new addition operation (re-

fer to the case CostFrac−wNAF
scheme 2 and CostFrac−wmbNAF

scheme 2 ), precomputation points

are converted to affine coordinates using one point inversion (refer to the case

CostFrac−wNAF
scheme 1 and CostFrac−wmbNAF

scheme 1 ). As it can be seen, when w ≥ 6, using

scheme 2 for precomputation in P could reduce up to 28M comparing to the

ordinary method. If the I/M was small, we could convert the precomputation

points to A using scheme 1. When I/M ≈ 30, the cost could be saved up to

31M . When w = 4, scheme 1 could save 47M by using Frac-wNAF, and 36M

by using Frac-wmbNAF. We also give the lowest performance of scalar multi-

plication on Hessian curves, when w = 6 and 6 points for precomputation with

12



scheme 1 by using Frac-wmbNAF. Furthermore, it is important to note that

the improvement would be even more significant in implementations where a

hardware multiplier executes both squaring and multiplication (i.e., 1S ≈ 1M).

6 conclusion

In this paper, we have described the new addition operation on Hessian curves,

it only costs 8M in addition computation with same z coordinate, and we also

remarked that scalar multiplication could avoid the side-channel attacks by us-

ing the new addition operation and addition chains. In the second part of

this paper, we presented two efficient precomputation method using the new

addition operation, scheme 1 need only one inversion to convert all of precom-

putation point to affine coordinates, scheme 2 reduce the cost of precomputation

in projective coordinates. Then we described that proposed methods are more

efficient than the general method for scalar multiplication over prime fields. We

also showed that our methods offer the lowest costs.
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