
Differential Fault Analysis of the Advanced Encryption

Standard using a Single Fault

Michael Tunstall1, Debdeep Mukhopadhyay2, and Subidh Ali2

1 Department of Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road,

Bristol BS8 1UB, United Kingdom.
tunstall@cs.bris.ac.uk

2 Computer Sc. and Engg, IIT Kharagpur, India.
{debdeep,subidh}@cse.iitkgp.ernet.in

Abstract. In this paper we present a differential fault attack that can be applied to
the AES using a single fault. We demonstrate that when a single random byte fault
is induced at the input of the eighth round, the AES key can be deduced using a two
stage algorithm. The first step has a statistical expectation of reducing the possible
key hypotheses to 232, and the second step to a mere 28. Furthermore, we show that,
with certain faults, this can be reduced to two key hypothesis.

Keywords: Differential Fault Analysis, Fault Attack, Advanced Encryption Stan-
dard.

1 Introduction

The Advanced Encryption Standard (AES) [21] has been a de-facto standard for symmetric
key cryptography since October 2000. Smart cards and secure microprocessors, therefore,
typically include implementations of AES to protect the confidentiality and the integrity
of sensitive information. To satisfy the high throughput requirements of such applications,
these implementations are typically VLSI devices (crypto-accelerators) or highly optimized
software routines (crypto-libraries).

The use of faults to deduce a cryptographic key was first presented in September 1996
by Boneh et al. [6, 7]. This fault attack was applicable to public key cryptosystems, specif-
ically RSA [26] when computed using the Chinese Remainder Theorem. Subsequently, the
idea of analyzing faults in an implementation of a cryptographic algorithm was applied to
block ciphers, such as DES [20], this technique is referred to as Differential Fault Analysis
(DFA) [4].

With the reported work on inducing faults, such as optical fault induction reported
in [28], research in the field of fault-based cryptanalysis of AES has gained considerable
attention. Other methods for fault injection include variations in the power supply to cre-
ate a glitch or spike [5], characteristics of the supplied clock [2], laser light [3] and eddy
currents [27].

Several applications of DFA to AES have been reported in the literature, and most attacks
exploit the properties of the encryption function. In [11], authors describe an analysis based
on faults induced in one byte of the ninth round of AES that requires 250 faulty ciphertexts.
An attack reported in [5] allows an attacker to recover the secret key with around 128 to
256 faulty ciphertexts. In [9], Dusart et al. show that using a fault which affects one byte
anywhere between the eighth round MixColumn and ninth round MixColumn, an attacker
would be able to derive the secret key using 40 faulty ciphertexts. The authors of [25] describe
an attack on AES with single byte faults that requires two faulty outputs, where a fault is
induced in the input of the eighth or ninth round. In [18], the authors present a fault attack

on AES when the fault is induced in a 32-bit word of AES in the ninth round. The authors
propose two models for fault induction. In the first model, they assume that at least one of
the bytes among the four targeted bytes are uncorrupted. While in the second model they
assume that four bytes are corrupted. The former fault would require 6 faulty ciphertexts
to deriver the secret key, while the latter would require around 1500 faulty ciphertexts to
derive the key. Other authors have considered faults in the key schedule [29, 30], where the
most recent publication has demonstrated that the secret key can be derived with two faulty
ciphertexts [13].

We can note that when the assumptions are on the value of a byte (either it being faulty
or uncorrupted) the number of faulty pairs is quite small. However, it is difficult to be able
to affect a given value with any certainty. When numerous faulty ciphertexts are required
this problem is amplified, since an attacker needs to find a method of determining which
faulty ciphertexts correspond to the desired model. We can, therefore, state that the attacks
that are most likely to be realizable require the least faulty ciphertexts and assumptions on
the effect of the fault.

In [19] a fault attack against AES was proposed, which suggested that a secret key
can be derived using a single byte fault induction at the input of the eighth round. The
attack exploited the inter-relations between the fault values in the state matrix after the
ninth round MixColumn operation and reduced the number of possible keys to around 232.
However it may be noted that this work, like the previous fault attacks on AES does not use
the effect of the fault maximally in an information theoretic sense [16]. The work proposed
in this paper improves the previous fault analysis on AES-128 and reduces the key space to
its minimal possible set of hypotheses attainable using a single byte fault. In this paper, we
describe the extended version of this attack, where an attacker could reduce the exhaustive
search to 28.

We also show that with certain assumptions on the fault induced the key can be reduced
to two.

Notation

In this paper, multiplications are considered to be polynomial multiplications over F28 mod-
ulo the irreducible polynomial x8+x4+x3+x+1. It should be clear from the context when
a mathematical expression contains integer multiplication.

Organization

The paper is organized as follows: In Section 2 we describe the background to this paper.
In Section 3 we describe an attack based on one of the fault models given in Section 2.
In Section 4 we extend this attack by using a different model. In Section 5 we described
some experimental results. In Section 6 we compare the attacks described in this paper with
previous work, and we conclude in Section 7.

2 Background

2.1 The Advanced Encryption Standard

The structure of the Advanced Encryption Standard (AES) , as used to perform encryp-
tion, is illustrated in Algorithm 1. Note that we restrict ourselves to considering AES-128
and that the description above omits a permutation typically used to convert the plaintext
P = (p1, p2, . . . , p16)(256) and key K = (k1, k2, . . . , k16)(256) into a 4×4 array of bytes, known

Algorithm 1: The AES-128 encryption function.

Input: The 128-bit plaintext block P and key K.
Output: The 128-bit ciphertext block C.

X ← AddRoundKey(P, K)
for i← 1 to 10 do

X ← SubBytes(X)
X ← ShiftRows(X)
if i 6= 10 then

X ← MixColumns(X)
end

K ← KeySchedule(K)
X ← AddRoundKey(X,K)

end

C ← X

return C

as the state matrix. For example, the 128-bit plaintext input block to AES is arranged in
the following fashion









p1 p5 p9 p13
p2 p6 p10 p14
p3 p7 p11 p15
p4 p8 p12 p16









The corresponding fault free (CT) and faulty ciphertexts (CT ′) are respectively:

CT =









x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

x4 x8 x12 x16









CT
′ =









x′

1 x′

5 x′

9 x′

13

x′

2 x′

6 x′

10 x′

14

x′

3 x′

7 x′

11 x′

15

x′

4 x′

8 x′

12 x′

16









where xi ∈ {0, . . . , 255} ∀i ∈ {1, . . . , 16}.
We also define the key matrix for the subkeys used in the ninth and tenth round as:

K10 =









k1 k5 k9 k13
k2 k6 k10 k14
k3 k7 k11 k15
k4 k8 k12 k16









K9 =









k′

1 k′

5 k′

9 k′

13

k′

2 k′

6 k′

10 k′

14

k′

3 k′

7 k′

11 k′

15

k′

4 k′

8 k′

12 k′

16









The encryption itself is conducted by the repeated use of a number of round functions:

– The SubBytes function is the only non-linear step of the block cipher. It is a bricklayer permu-
tation consisting of an S-box applied to the bytes of the state. Each byte of the state matrix
is replaced by its multiplicative inverse, followed by an affine mapping. Thus the input byte
x is related to the output y of the S-Box by the relation, y = Ax−1 + B, where A and B
are constant matrices. In the remainder of this paper we will refer to the function S as the
SubBytes function and S−1 as the inverse of the SubBytes function.

– The ShiftRows function is a byte-wise permutation of the state.
– The KeySchedule function generates the next round key from the previous one. The first round

key is the input key with no changes, subsequent round keys are generated using the SubBytes
function and XOR operations. This is shown in Algorithm 2 which shows how the rth round
key is computed from the (r − 1)th round key. The value hr is a constant defined for the rth

round, and << is used to denote a bitwise left shift.
– The MixColumn is a bricklayer permutation operating on the state column by column. Each

column of the state matrix is considered as a 4-dimensional vector where each element belongs
to F(28). A 4×4 matrix M whose elements are also in F(28) is used to map this column into a

new vector. This operation is applied on all the 4 columns of the state matrix. Here M and its
inverse M−1 are defined as:

M =









2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2









M
−1 =









14 11 13 9

9 14 11 13

13 9 14 11

11 13 9 14









All the elements in M and M−1 are elements of F(28) expressed as a decimal digit.
– AddRoundKey: Each byte of the array is XORed with a byte from a corresponding array of round

subkeys.

Algorithm 2: The AES-128 KeySchedule function.

Input: (r − 1)th round key (X = xi for i ∈ {1, . . . , 16}).
Output: rth round key X.

for i← 0 to 3 do

x(i<<2)+1 ← x(i<<2)+1 ⊕ S(x(((i+1)∧3)<<2)+4)
end

x1 ← x1 ⊕ hr

for i← 1 to 16 do

if (i− 1) mod 4 6= 0 then

xi ← xi ⊕ xi−1

end

end

return X

2.2 The Fault Model

The implementation of AES we target is an iterative one, as described in [1]. The literature shows
that unrolled or pipelined designs of AES are unpopular because they do not allow a block cipher
to operate in Output Feedback Mode (OFB) or Cipher Block Chaining (CBC) mode [17].

Since designs are typically synchronous, an attacker can expect to be able to predict at what
point in time certain events take place, e.g. when a particular round commences. Moreover, the
time certain events take can often be determined by analyzing a suitable side channel. For example,
the power consumption of a FPGA or microprocessor has been shown to reveal the details of an
implementation (e.g. see [15,24]).

In this paper we discuss two different fault models, that we use to build a method for Differential
Fault Analysis of AES.

Random Effect on One Byte. The first fault model that we consider is the same as that used
in many other papers, for example [19], where we assume that the effect of an induced fault is to
change one byte to a random value.

For example, an attacker could attempt to use a glitch in the clock to create a fault at the
input of a particular round with a certain probability. An iterative design helps in this regard, as
the attacker is able to control the timing of fault induction by simply counting the number of clock
edges from the start of an encryption. Also, it may be noted that our experiments show that the
registers internal to a FPGA device take a certain amount of time to change their value to the
next correct value. During the migration, there is a certain amount of time where, if the clock
terminates too soon, the correct value will not be written to the registers. This effect applied to a
microprocessor is described in [2].

Fixing a Byte Value. The second fault that we consider is where an instruction is missed in
a process and the potential effects this can have on an implementation of AES. Specifically, where
this missing of instruction implies that one byte becomes a known, or predictable value.

It has been shown that a glitch in the clock or voltage applied to a microprocessor can be
used to make the value returned from one specific instruction constant [2] or skip an instruction [8]
respectively. In [8], the authors describe an attack where the round counter of AES is modified to
reduce the number of rounds to one. In our case we will consider a more subtle effect where the
loop implementing a round function is terminated early so that one byte of the current state matrix
is not overwritten. In this case the value is unknown, but can be computed for a hypothesized key.

3 The Fault Analysis

In this section we define the strategy to perform a fault analysis, where we assume that an adversary
has induced a fault in a byte of the input to the eighth round. The first step of the fault attack is
equivalent to the analysis described in [19], and extended in the second step. We are also assuming
that the fault corresponds to the first fault model discussed above where this byte becomes some
random and unknown value.

3.1 The First Step of the Fault Attack

If a fault is induced in a byte of the state matrix, which is then input to the eighth round, the
MixColumn operation at the end of the round propagates this fault to the entire column of the
state. The ShiftRow operation at the beginning of the following round will then shift these bytes
to occupy different columns. The next MixColumn operation will then propagate the fault to the
remaining twelve bytes.

This process is shown in Figure 1 where we show the diffusion of a byte fault induced at the
input of the eighth round. The XOR difference of the state matrices of the two results, one fault
free and the other faulty, is shown. This is what we use as basis for a differential fault analysis.

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
1

A
2

A
3

A
4

A
6

A
7

A
8

A
5

A
10

A
9

A
11

A
12

A
13

A
14

A
15

A
16

1F

F 4

F 2

F 3

Round
Shift
Row

Eighth

F 3

F 3

F 1

12F

F 13

F 4

F 4

F 1 F 4 3

4F2 F2

F 32

F3 2

F 33 F22

F2

F 1

F 4

F 3

F2

2f’

f’

f’

3f’

Round
Mix Column

Eighth

Round
Byte Sub

f’f

Eighth

Ninth Round Byte Sub

Tenth Round Byte SubTenth Round Shift Row Ninth Round Mix Column

Ninth Round Shift Row

f’

Fig. 1: Propagation of Fault Induced in the input of eighth round of AES.

If, given a fault in the input to the eighth round, we consider the state of the differences after
the ninth round shift row, we can obtain the following set of equations that include the values of

the key bytes k1, k8, k11 and k14, thus giving an expression for 32 bits of K10.

2 δ1 = S
−1(x1 ⊕ k1)⊕ S

−1(x′

1 ⊕ k1)

δ1 = S
−1(x14 ⊕ k14)⊕ S

−1(x′

14 ⊕ k14)

δ1 = S
−1(x11 ⊕ k11)⊕ S

−1(x′

11 ⊕ k11)

3 δ1 = S
−1(x8 ⊕ k8)⊕ S

−1(x′

8 ⊕ k8)

,

Where δ1, k1, k8, k11 and k14 are all unknown values ∈ {0, . . . , 255}.

The above system of equations can be used to reduce the possibilities for these 32 bits of the
key. An attacker would select a value for δ1 and determine which values of k1, k8, k11 and k14
satisfy the equations using four independent exhaustive searches. Each equation will return 0, 2,
or 4 hypotheses [23]. If any of the four equations cannot be satisfied, i.e. there is an impossible
differential [14], then any hypotheses for that value of δ1 can be discarded.

As noted in [12,18] one can apply the same technique to recover information on the remaining
bytes of the last sub key. That is, information on the remaining key bytes can be derived by using
the following sets of equations: In order to obtain information on k2, k5, k12 and k15 an attacker
can use

3 δ2 = S
−1(x5 ⊕ k5)⊕ S

−1(x′

5 ⊕ k5)

2 δ2 = S
−1(x2 ⊕ k2)⊕ S

−1(x′

2 ⊕ k2)

δ2 = S
−1(x15 ⊕ k15)⊕ S

−1(x′

15 ⊕ k15)

δ2 = S
−1(x12 ⊕ k12)⊕ S

−1(x′

12 ⊕ k12)

.

In order to obtain information on k3, k6, k9 and k16 an attacker can use the following equations:

δ3 = S
−1(x9 ⊕ k9)⊕ S

−1(x′

9 ⊕ k9)

3 δ3 = S
−1(x6 ⊕ k6)⊕ S

−1(x′

6 ⊕ k6)

2 δ3 = S
−1(x3 ⊕ k3)⊕ S

−1(x′

3 ⊕ k3)

δ3 = S
−1(x16 ⊕ k16)⊕ S

−1(x′

16 ⊕ k16)

Finally, in order to obtain information on k4, k7, k10 and k13 an attacker can use the following
equations:

δ4 = S
−1(x13 ⊕ k13)⊕ S

−1(x′

13 ⊕ k13)

δ4 = S
−1(x10 ⊕ k10)⊕ S

−1(x′

10 ⊕ k10)

3 δ4 = S
−1(x7 ⊕ k7)⊕ S

−1(x′

7 ⊕ k7)

2 δ4 = S
−1(x4 ⊕ k4)⊕ S

−1(x′

4 ⊕ k4)

It can be noted that the equations have an identical structure, and, therefore, the solutions are of
similar nature. An evaluation of each set of equations will be expected to return 28 unique hypotheses
for the key bytes concerned. Therefore, an attacker would expect to have 232 key hypotheses for
the secret key used.

3.2 Analysis of the first step of the fault attack

The first step of the fault attack uses four sets of equations to reduce the key space of AES. In this
section we determine the expected number of key hypotheses that an attacker will have at each
stage of an attack.

In order to analyze the number of valid hypotheses in the first stage of the attack we consider
the first set of equations given in Section 3.1. In this set of equations δ1 is ∈ {1, . . . , 255}. If δ1 is
equal to zero then one could say that the expected fault has not been injected. If δ1 is zero it would
imply that x1 is equal to x′

1 and all 256 key hypotheses are possible. Let us first consider the first
equation in this set:

2 δ1 = S
−1(x1 ⊕ k1)⊕ S

−1(x′

1 ⊕ k1)

We know the values of x1 and x′

1 from the correct and faulty ciphertexts respectively. For a given
value of 2 δ1 there will 0, 2 or 4 valid key hypotheses. The mean hypotheses for all δ1 ∈ {1, . . . , 255}
is approximately one, and, therefore, 256 key hypotheses when all δ1 ∈ {1, . . . , 255} are considered.

The same can be said for each of the four equations in the set given above. However, for a given
value of δ1 each of the four equations would be expected to return approximately one hypothesis
for a key byte. These values will give one hypothesis for the quartet of key bytes {k1, k8, k11, k14}.
Given that an attacker will have to take into account all the values in {0, . . . , 255} there will be 256
possible values for the quartet {k1, k8, k11, k14}. After an attacker has analyzed the four equations
defined in Section 3.1 there would be an expected 232 key hypotheses.

3.3 The Second Step of the Fault Attack

In order to further reduce the key hypotheses we use the relationship between the ninth round key
and the tenth round key.

We consider the key-scheduling algorithm (see Algorithm 2), the ninth round key, K9, generates
the tenth round key, K10. The key schedule is invertible and K9 can be expressed in terms of
elements of K10. The value of K9 can be expressed as









k1 ⊕ S(k14 ⊕ k10)⊕ h10 k5 ⊕ k1 k9 ⊕ k5 k13 ⊕ k9
k2 ⊕ S(k15 ⊕ k11) k6 ⊕ k2 k10 ⊕ k6 k14 ⊕ k10
k3 ⊕ S(k16 ⊕ k12) k7 ⊕ k3 k11 ⊕ k7 k15 ⊕ k11
k4 ⊕ S(k13 ⊕ k9) k8 ⊕ k4 k12 ⊕ k8 k16 ⊕ k12









.

We can observe that the fault values in the first column of the state matrix at the output of the
eighth round MixColumn is (2 f ′, f ′, f ′, 3 f ′), where f ′ is a non-zero arbitrary value in F28 . Using the
InverseMixColumn operation and using the inter-relations between the fault values, we can define
the following equation:

2 f
′ =S

−1(14 (S−1(x1 ⊕ k1)⊕ k
′

1)⊕ 11(S−1(x14 ⊕ k14)⊕ k
′

2)⊕

13 (S−1(x11 ⊕ k11)⊕ k
′

3)⊕ 9 (S−1(x8 ⊕ k8)⊕ k
′

4))⊕

S
−1(14 (S−1(x′

1 ⊕ k1)⊕ k
′

1)⊕ 11(S−1(x′

14 ⊕ k14)⊕ k
′

2)⊕

13 (S−1(x′

11 ⊕ k11)⊕ k
′

3)⊕ 9 (S−1(x′

8 ⊕ k8)⊕ k
′

4))

=S
−1(14 (S−1(x1 ⊕ k1)⊕ ((k1 ⊕ S(k14 ⊕ k10)⊕ h10)))⊕

11 (S−1(x14 ⊕ k14)⊕ (k2 ⊕ S(k15 ⊕ k11)))⊕

13 (S−1(x11 ⊕ k11)⊕ (k3 ⊕ S(k16 ⊕ k12)))⊕

9 (S−1(x8 ⊕ k8)⊕ (k4 ⊕ S(k13 ⊕ k9))))⊕

S
−1(14 (S−1(x′

1 ⊕ k1)⊕ ((k1 ⊕ S(k14 ⊕ k10)⊕ h10)))⊕

11 (S−1(x′

14 ⊕ k14)⊕ (k2 ⊕ S(k15 ⊕ k11))⊕

13 (S−1(x′

11 ⊕ k11)⊕ (k3 ⊕ S(k16 ⊕ k12)))⊕

9 (S−1(x′

8 ⊕ k8)⊕ (k4 ⊕ S(k13 ⊕ k9))))

Similarly, we can define the following equations:

f
′ =S

−1(9 (S−1(x13 ⊕ k13)⊕ (k4 ⊕ k9))⊕

14 (S−1(x10 ⊕ k10)⊕ (k10 ⊕ k14)))⊕ 11 (S−1(x7 ⊕ k7)⊕

(k15 ⊕ k11))⊕ 13 (S−1(x4 ⊕ k4)⊕ (k16 ⊕ k12)))⊕

S
−1(9 (S−1(x′

13 ⊕ k13)⊕ (k13 ⊕ k9))⊕

14 (S−1(x′

10 ⊕ k10)⊕ (k10 ⊕ k14)))⊕ 11 (S−1(x′

7 ⊕ k7)⊕

(k15 ⊕ k11))⊕ 13 (S−1(x′

4 ⊕ k4)⊕ (k16 ⊕ k12)))

f
′ =S

−1(13 (S−1(x9 ⊕ k9)⊕ (k9 ⊕ k5))⊕

9 (S−1(x6 ⊕ k6)⊕ (k10 ⊕ k6))) ⊕ 14 (S−1(x3 ⊕ k3)

⊕ (k11 ⊕ k7))⊕ 11 (S−1(x16 ⊕ k16)⊕ (k12 ⊕ k8)))⊕

S
−1(13 (S−1(x′

9 ⊕ k9)⊕ (k9 ⊕ k5))⊕

9 (S−1(x′

6 ⊕ k6)⊕ (k10 ⊕ k6)))⊕ 14 (S−1(x′

3 ⊕ k3)⊕

(k11 ⊕ k7))⊕ 11 (S−1(x′

16 ⊕ k16)⊕ (k12 ⊕ k8)))

3 f ′ =S
−1(11 (S−1(x5 ⊕ k5)⊕ (k5 ⊕ k1))⊕

13 (S−1(x2 ⊕ k2)⊕ (k6 ⊕ k2)))⊕ 9 (S−1(x15 ⊕ k15)⊕

(k7 ⊕ k3))⊕ 8 (S−1(x12 ⊕ k12)⊕ (k8 ⊕ k4)))⊕

S
−1(11 (S−1(x′

5 ⊕ k5)⊕ (k5 ⊕ k1))⊕

13 (S−1(x′

2 ⊕ k2)⊕ (k6 ⊕ k2))) ⊕ 9 (S−1(x′

15 ⊕ k15)⊕

(k7 ⊕ k3))⊕ 14 (S−1(x′

12 ⊕ k12)⊕ (k8 ⊕ k4)))

The second stage of the attack is coupled with the first stage, and can be used to further reduce
the number of key hypotheses.

3.4 Analysis of the second step of the fault attack

The expected number of hypotheses produced by the second step of the attack follows a similar
reasoning to the analysis of the first step, given in Section 3.2.

If we consider the second equation defined in Section 3.3, it can be rewritten as

f
′ = A⊕B ,

where A and B are defined as

A =S
−1(9 (S−1(x13 ⊕ k13)⊕ (k13 ⊕ k9))⊕

14 (S−1(x10 ⊕ k10)⊕ (k10 ⊕ k14)))⊕ 11 (S−1(x7 ⊕ k7)⊕

(k15 ⊕ k11))⊕ 13 (S−1(x4 ⊕ k4)⊕ (k16 ⊕ k12)))

and

B =S
−1(9 (S−1(x′

13 ⊕ k13)⊕ (k13 ⊕ k9))⊕

14 (S−1(x′

10 ⊕ k10)⊕ (k10 ⊕ k14)))⊕ 11 (S−1(x′

7 ⊕ k7)⊕

(k15 ⊕ k11))⊕ 13 (S−1(x′

4 ⊕ k4)⊕ (k16 ⊕ k12)))

.

We can consider A and B to be random values in F28 . For a given values of f ′ the difference
between A and B will be equal to f ′ with a probability of 1

28
. Using the same reasoning, the

probability of all four equations being valid is
(

1
28

)4
= 1

232
.

We have to consider all the possible values of f ′, i.e. {0, . . . , 255}. A given key hypothesis will,
therefore, be valid for some arbitrary value of f ′ with a probability of 28× 1

232
= 1

224
. The first step

of the attack is expected to return 232 hypotheses each of which still be under consideration at the
end of the second step with a probability of 1

224
. One would, therefore, expect the second step of

the attack to produce 28 possible key hypotheses.

3.5 Attacking Other Bytes

In the previous sections we describe an attack where we base our Differential Fault Analysis on
the knowledge that a fault has been induced in the first byte of the state matrix. However, we can
note that the analysis returns a very small number of hypotheses. We can, therefore, conduct 16
independent analyses under the assumption that a fault is induced each of the 16 bytes of of the
state at the beginning of the eighth round. An attacker would expect this to produce 24 × 28 = 212

valid key hypotheses, which is still a trivial exhaustive search.

4 Extending the Fault Attack

In this section we demonstrate that the fault attack described in the previous attack can be extended
using the second fault model defined in Section 2.2. The model requires more assumptions but allows
the number of hypotheses to be further reduced.

In the second model defined in Section 2.2 we assume that a fault is injected that modifies
the opcodes being processed in a microprocessor. Specifically, we consider a fault that reduces the
number of bytes processed by the MixColumn function in the eighth round from 16 bytes to 15 bytes,
i.e. there is one byte that remains unchanged by this function.

The advantage of this type of fault is that an attacker would expect to be able to identify when
the desired fault has been induced by observing a suitable side channel. For example, Figure 2 shows
the power consumption of an ARM7TDMI microprocessor [22] towards the end of a computation
of the MixColumn function. The black trace shows the power consumption where the MixColumn

function treats all 16 bytes. The gray trace shows the power consumption where the MixColumn

function treats 15 bytes. The traces have an almost identical power consumption on the left side of
the figure, and diverge towards the middle of the figure. This difference could be seen by an attacker
and the corresponding faulty ciphertext could then be used to derive information on the secret key
using the method described in this paper.

An attacker could treat this acquired faulty ciphertext and the correct ciphertext to conduct the
attack described in Section 3. After generating an expected 28 possible key hypotheses, an attacker
could proceed to verify that the effect of the fault is possible with the generated key hypotheses,
i.e. the input of the relevant byte to the MixColumn function is the same as the output when a fault
is induced. This verification can be conducted in parallel with the evaluation of the second set of
equations described in Section 3.3.

The expected number of hypotheses that would be returned by this verification would be ap-
proximately two. This can be seen that if we consider that of the 28 possible hypotheses returned
by the analysis described in Section 3, one of these hypotheses will be the correct key and each of
the remaining hypotheses will have a probably of satisfying the test with a probability of 1

256
. The

expected number of key hypotheses is, therefore, 1 255
256

.

As with the attack described in Section 3, the same analysis could be applied if an attacker is
not able to determine what byte has been affected. In this case, an attacker would expect to have
16 255

256
key hypotheses (if a set of 28 hypotheses does not contain the correct key value, random

values would be valid with a probability of 1
256

).

Fig. 2: Overlaid power consumption traces taken during the computation of the end of the
MixColumn function when treating 16 bytes (black) and 15 bytes (gray).

5 Experimental Results

In this section we present the results of two implementations of the attacks described above. The
first targets an FPGA and uses a glitch in the supplied clock to induce a fault. The second targets
a microprocessor and uses a glitch in the power supply to induce a fault.

5.1 Experiments on a FPGA

An iterative AES-128 was implemented on a Xilinx Spartan-3E xc3s500E device using Verilog
HDL which required an operating clock speed of 36 MHz. The experimental set up consisted of
two different clocks, one of which was too high for the design and would therefore induce a fault.
Experiments similar to this are described in more detail by Fukunaga and Takahashi [10].

When a 36 MHz clock is used the implementation functions as expected. However, when the
system is switched to a clock with a higher frequency faults are generated. The frequency of the
faster clock was chosen to ensure that the clock frequency violates the set up time requirement by
the design. This frequency was determined using the Xilinx ChipScope 7.1 Pro tool.

In order to control the timing of the fault, as per the requirements of our attack, we switched
from the slow to the faster clock at the beginning of the eighth round for one clock cycle. In table
1 we provide observations on the nature of the random one byte faults generated using different
clock frequencies. We started the experiment with a high clock frequency set to 72 MHz, which did
not create any faults.

The clock frequency was incrementally increased by 0.2 MHz for subsequent experiments and
we performed 512 attacks for each iteration. Our experiments showed that a clock frequency of 72.6
MHz is the lowest clock frequency that would inject a one byte fault, and the same behavior was
observed with a clock frequencies up to 73.8 MHz. Frequencies higher than this induced faults that
affected multiple byte faults. The table further shows that the probability of a fault being induced
and the number of bytes affected by an induced fault increases as the clock frequency is increased.

The faulty ciphertexts obtained were analyzed by a software program written in C to derive the
key using the two phases of the attack.

Table 1: Fault Induction on AES running on Xilinx Spartan-3E using Clock Glitchings

Clock Number Number Number
Frequency with no of multiple of one
(MHz.) Fault Byte Faults Byte Faults

72.0 512 0 0
72.2 512 0 0
72.6 510 0 2
72.8 511 0 1
73.0 508 0 4
73.2 504 0 8
73.4 507 0 5
73.6 490 0 22
73.8 489 0 23
74 419 14 79
76 158 163 191
77 0 492 20

5.2 Experiments on a Microprocessor

A second set of experiments was conducted where we injected a fault into an implementation of
AES on an ARM7TDMI microprocessor using a glitch on the power supply to the core of the chip.
Specifically, we reduced the core power supply of an NXP LPC2124 [22] microprocessor, which is
typically set to 1.8, while the clock frequency was set to 29.5 MHz. The voltage was lowered for
four clock cycles and then returned to 1.8 volts.

The approximate location of the MixColumn function computed in the seventh round was located
approximately using Simple Power Analysis, i.e. by observing the pattern created by the round
function in the power consumption over time as described in [15]. A window of 501 clock cycles
was selected that encompassed this the MixColumn function. Ten attempts to inject a fault were
conducted at each of these 501 points in time (the leading edge of the glitch was set to this point
in time).

This process was initially conducted using a glitch that reduced the voltage supplied to the
core of the microprocessor from 1.8 volts to 1.45 volts. The process was then repeated reducing the
voltage by increments of 0.05 volts until 1.10 volts. The results of these experiments are summarized
in Table 2.

Table 2: Fault Induction on AES running on ARM7TDMI using a glitch in the Vcc.

Glitch Number Number Number
Voltage with no of multiple of one

Fault Byte Faults Byte Faults

1.45 5009 1 0
1.40 4709 128 173
1.35 3984 448 295
1.30 3450 1356 204
1.25 2989 1288 733
1.20 2370 1803 837
1.15 2369 1813 828
1.10 2311 1926 773

As in the previous section, the faulty ciphertexts obtained were analyzed by a software program
written in C to derive the key that was used to generate the ciphertexts.

5.3 Comments on the Experimental Results

In our experiments we have seen a large proportion of faults that only affect one byte, thus demon-
strating that the attack is possible and the first fault model described in Section 2.2 is realistic.
Erroneous ciphertexts that could correspond to the second fault model described in Section 2.2
were observed. However, these erroneous ciphertexts were not observed in sufficient quantity to be
statistically significant. That is, the frequency of these ciphertexts will appear to correspond to the
second model with a probability of 1/256. Such faults have been demonstrated to be possible in
practice [2], but our observations show that these faults were not in large numbers on the present
target processor. The second fault model described in Section 2.2, and the attack described in
Section 4, thus applies to specific microprocessors.

6 Comparison with Previous Work

There are several versions of fault-based differential cryptanalysis that are able to reduce the number
of key hypotheses from two faults injected into an implementation of AES, as described in [13,19,25].
However, the analysis proposed in this paper is more effective, since the resulting exhaustive search
can be reduced to a trivial size using one fault. The number of key hypotheses returned by previous
work would be somewhat time consuming. The advantage of the proposed attack is that it does not
need to reproduce a successful attack in order to able to determine a secret key. Acquiring multiple
faulty ciphertexts can be problematic as faults are only successful with a certain probability, and
the effect cannot always be predetermined. This would mean that an attacker could potentially
have to search among numerous faulty ciphertexts to find a pair that both have the desired fault.

In our experiments it has taken approximately 50 minutes to generate all the possible key
hypotheses, which would mean that an attacker would expect to find a given secret key after 25
minutes if they tested each possible key as it was generated. When compared to the attacks described
in [13, 19, 25], it is somewhat time consuming but it reduces the key space from around 232 to a
mere 28 values. The reduction in key space has two advantages. First, the attack works even if the
location of the faulty byte in the state matrix is unknown, as it still keeps the key space trivial in
size. The main contribution of the work is that the fault attack is successful with one single fault.
Hence the attack proposed in this paper does allow an attacker to minimize the number of attacks
that are required to derive a secret key. This is important as each fault injected into a given device
may also render that device unusable. This is because each fault will stress a device and there will
be some probability that it will produce a permanent, rather than transient, fault.

7 Conclusion

This paper proposes a fault-based differential cryptanalysis of AES, that is an extended version
of the attack described in [19]. An attacker would expect to be able to reduce the number of
key hypotheses from 2128 to 28 with one well placed fault. As noted in [18], these attacks can be
conducted without any knowledge of the plaintext being enciphered, as an attacker would just need
to know the plaintexts were the same. Furthermore we have demonstrated that this attack can
be successfully applied to FPGA and microprocessors and the the amount of faults produced that
correspond to the required model make the attack very practical.

We also present an extension to our attack based on a fault model presented in [2]. However,
we were unable to demonstrate that this attack could be used to attack an AES implementation
on either a FPGA or a microprocessor. This attack is, therefore, only likely to be possible in
very specific circumstances. That is, a combination of a specific fault an microprocessor, since a
mechanism for injecting a fault will have a particular effect on a microprocessor. It is typically not
possible to predict this effect without extensive experimentation, or reverse engineering, and it the
faults produced will not correspond to all the models used in the literature.

There are many descriptions of a fault-based differential cryptanalysis of AES that could be
prevented by repeating the last two or three rounds of an implementation of AES, to verify that
no exploitable fault has been inserted [5, 9, 11, 25, 30]. However, to prevent the attack described in
this paper the last four rounds would need to be repeated to check no fault was injected. Moreover,
given how much information can be gleaned from one fault, one would expect there are attacks
that require more faulty ciphertexts that would be able to make use of faults in earlier rounds. One
would, therefore, suggest that in order to protect an implementation of AES the last five rounds
should be protected against fault injection.

Acknowledgements

The work described in this paper has been supported in part by the European Commission IST
Programme under Contract ICT-2007-216676 ECRYPT II and EPSRC grant EP/F039638/1 “In-
vestigation of Power Analysis Attacks”. The second author would like to acknowledge the support of
Department of Science and Technology (DST) India under the Fast Track Proposals for Young Sci-
entists for the proposal entitled ”Design and Analysis of Side Channel Attack Resistant Symmetric
Key Cryptosystems”.‘

References

1. M. Alam, S. Ray, D. Mukhopadhyay, S. Ghosh, D. Roy C., and I. Sengupta. An area optimized
reconfigurable encryptor for AES-Rijndael. In R. Lauwereins and J. Madsen, editors, Design,

Automation and Test in Europe Conference and Exposition — DATE 2007, pages 1116–1121.
ACM, 2007.

2. F. Amiel, C. Clavier, and M. Tunstall. Collision fault analysis of DPA-resistant algorithms. In
L. Breveglieri, I. Koren, D. Naccache, and J.-P. Seifert, editors, Fault Diagnosis and Tolerance

in Cryptography 2006 — FDTC 06, volume 4236 of Lecture Notes in Computer Science, pages
223–236. Springer-Verlag, 2006.

3. H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The sorcerer’s apprentice
guide to fault attacks. Proceedings of the IEEE, 94(2):370–382, 2006.

4. E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems. In B. S. Kaliski,
editor, Advances in Cryptology — CRYPTO ’97, volume 1294 of Lecture Notes in Computer

Science, pages 513–525. Springer-Verlag, 1997.
5. J. Blömer and J.-P. Seifert. Fault based cryptanalysis of the advanced encryption standard

(AES). In R. N. Wright, editor, Financial Cryptography — FC 2003, volume 2742 of Lecture
Notes in Computer Science, pages 162–181. Springer-Verlag, 2003.

6. D. Boneh, R. DeMillo, and R. Lipton. On the importance of checking cryptographic protocols
for faults. In W. Fumy, editor, Advances in Cryptology — EUROCRYPT ’97, volume 1233 of
Lecture Notes in Computer Science, pages 37–51. Springer-Verlag, 1997.

7. D. Boneh, R. DeMillo, and R. Lipton. On the importance of checking cryptographic protocols
for faults. Journal of Cryptology, 14(2):101–119, 2001.

8. H. Choukri and M. Tunstall. Round reduction using faults. In L. Breveglieri and I. Koren,
editors, Workshop on Fault Diagnosis and Tolerance in Cryptography 2005 — FDTC 05, pages
13–24, 2005.

9. P. Dusart, G. Letourneux, and O. Vivolo. Differential fault analysis on A.E.S. In J. Zhou,
M. Yung, and Y. Han, editors, Applied Cryptography and Network Security — ACNS 2003,
volume 2846 of Lecture Notes in Computer Science, pages 293–306. Springer-Verlag, 2003.

10. T. Fukunaga and J. Takahashi. Practical fault attack on a cryptographic LSI with ISO/IEC
18033-3 block ciphers. In D. Naccache and E. Oswald, editors, Fault Diagnosis and Tolerance

in Cryptography — 2009, pages 84–92, 2009.
11. C. Giraud. DFA on AES. In H. Dobbertin, V. Rijmen, and A. Sowa, editors, International

Conference Advanced Encryption Standard — AES 2004, volume 3373 of Lecture Notes in

Computer Science, pages 27–41. Springer-Verlag, 2004.
12. C. Giraud and A. Thillard. Piret and Quisquater’s DFA on AES revisited. Cryptology ePrint

Archive, Report 2010/440, 2010. http://eprint.iacr.org/.

13. C. H. Kim and J.-J. Quisquater. New differential fault analysis on aes key schedule: Two faults
are enough. In G. Grimaud and F.-X. Standaert, editors, Smart Card Research and Advanced

Applications — CARDIS 2008, volume 5189 of Lecture Notes in Computer Science, pages 48–60.
Springer-Verlag, 2008.

14. L. Knudsen. Deal — a 128-bit block cipher. Technical report no. 151. Department of Informatics,
University of Bergen, Norway, 1998.

15. P. C. Kocher, J. Jaffe, and B./Jun. Differential power analysis. In M. J. Wiener, editor,
Advances in Cryptology — CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science,
pages 388–397. Springer-Verlag, 1999.

16. Yang Li, Shigeto Gomisawa, Kazuo Sakiyama, and Kazuo Ohta. An information theoretic
perspective on the differential fault analysis against aes. Cryptology ePrint Archive, Report
2010/032, 2010. http://eprint.iacr.org/.

17. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press,
1997.

18. A. Moradi, M. T. Manzuri Shalmani, and M. Salmasizadeh. A generalized method of differential
fault attack against AES cryptosystem. In L. Goubin and M. Matsui, editors, Cryptographic
Hardware and Embedded Systems — CHES 2006, volume 4249 of Lecture Notes in Computer

Science, pages 91–100. Springer-Verlag, 2006.
19. D. Mukhopadhyay. An improved fault based attack of the advanced encryption standard. In

B. Preneel, editor, Progress in Cryptology — AFRICACRYPT 2009, volume 5580 of Lecture
Notes in Computer Science, pages 421–434. Springer-Verlag, 2009.

20. National Institute of Standards and Technology (NIST). Data encryption standard (DES).
FIPS Publication 46-3, available for download at http://www.itl.nist.gov/fipspubs/, 1999.

21. National Institute of Standards and Technology (NIST). Advanced Encryption Standard (AES).
FIPS Publication 197, available for download at http://www.itl.nist.gov/fipspubs/, 2001.

22. NXP B.V. LPC2114/2124 single-chip 16/32-bit microcontrollers.
http://www.nxp.com/documents/data_sheet/LPC2114_2124.pdf, 2007.

23. K. Nyberg. Differentially uniform mappings for cryptography. In T. Helleseth, editor, Advances
in Cryptology — EUROCRYPT ’93, volume 765 of Lecture Notes in Computer Science, pages
55–64. Springer-Verlag, 1993.

24. S. B. Ors, E. Oswald, and B. Preneel. Power-analysis attacks on an FPGA — first experimental
results. In C. D. Walter, Ç. K. Koç, and C. Paar, editors, Cryptographic Hardware and Embedded

Systems — CHES 2003, volume 2779 of Lecture Notes in Computer Science, pages 35–50.
Springer-Verlag, 2003.

25. G. Piret and J.-J. Quisquater. A differential fault attack technique against SPN structure,
with application to the AES and KHAZAD. In C. D. Walter, Ç. K. Koç, and C. Paar, editors,
Cryptographic Hardware and Embedded Systems — CHES 2003, volume 2779 of Lecture Notes

in Computer Science, pages 77–88. Springer-Verlag, 2003.
26. R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures and

public key cryptosystems. Communications of the ACM, 21(2):120–126, February 1978.
27. D. Samyde, S. P. Skorobogatov, R. J. Anderson, and J.-J. Quisquater. On a new way to

read data from memory. In Proceedings of the First International IEEE Security in Storage

Workshop, pages 65–69, 2002.
28. S. Skorobogatov and R. Anderson. Optical fault induction attacks. In B. S. Kaliski, Ç. K. Koç,

and C. Paar, editors, Cryptographic Hardware and Embedded Systems — CHES 2002, volume
2523 of Lecture Notes in Computer Science, pages 2–12. Springer-Verlag, 2002.

29. J. Takahashi and T. Fukunaga. Differential fault analysis on the AES key schedule. Cryptology
ePrint Archive, Report 2007/480, 2007. http://eprint.iacr.org/.

30. J. Takahashi, T. Fukunaga, and K. Yamakoshi. DFA mechanism on the AES schedule. In Fault

Diagnosis and Tolerance in Cryptography 2007 — FDTC 07, pages 62–72, 2007.

