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Abstract. We propose a semantically-secure public-key encryption scheme whose security is polynomial-
time equivalent to the hardness of solving random instances of the subset sum problem. The subset sum
assumption required for the security of our scheme is weaker than that of existing subset-sum based
encryption schemes, namely the lattice-based schemes of Ajtai and Dwork (STOC ’97), Regev (STOC
’03, STOC ’05), and Peikert (STOC ’09). Additionally, our proof of security is simple and direct. We
also present a natural variant of our scheme that is secure against key-leakage attacks, as well as an
oblivious transfer protocol that is secure against semi-honest adversaries.

1 Introduction

Since the early days of modern cryptography, the presumed intractability of the subset sum problem
has been considered an interesting alternative to hardness assumptions based on factoring and the
discrete logarithm problem. The appeal of the subset sum problem stems from the fact that it is
simple to describe, and computing the subset sum function requires only a few addition operations.
Another attractive feature is that the subset sum problem seems to be rather different in nature
from number-theoretic problems. In fact, while there are polynomial-time quantum algorithms
that break virtually all number-theoretic cryptographic assumptions [Sho97], there are currently
no known quantum algorithms that perform better than classical ones on the subset sum problem.

The subset sum problem, SS(n,M), is parameterized by two integers n and M . An instance of
SS(n,M) is created by picking a uniformly random vector a ∈ ZnM , a uniformly random vector
s ∈ {0, 1}n, and outputting a together with T = a · s mod M . The problem is to find s, given a and
T . The hardness of breaking SS(n,M) depends on the ratio between n and logM , which is usually
referred to as the density of the subset sum instance. When n/logM is less than 1/n or larger than
n/log2 n, the problem can be solved in polynomial time [LO85,Fri86,FP05,Lyu05,Sha08]. However,
when the density is constant or even as small as O(1/log n), there are currently no algorithms that
require less than 2Ω(n) time. It is also known that the subset sum problem can only get harder as
its density gets closer to one [IN96].

Starting with the Merkle-Hellman cryptosystem [MH78], there have been many proposals for
constructions of public-key encryption schemes that were somewhat based on subset sum. Unfortu-
nately, all of these proposals have subsequently been broken (see [Odl90] for a survey). While efforts
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to build subset-sum based public-key encryption schemes were met with little success, Impagliazzo
and Naor were able to construct provably-secure primitives such as universal one-way hash func-
tions, pseudorandom generators and bit-commitment schemes, based on the subset sum problem,
that remain secure until this day [IN96]. The main difference between the public-key constructions
and the “minicrypt” constructions in [IN96] is that the latter could be proved secure based on
random instances of the standard subset sum problem, whereas the former modified the subset
sum instances in order to allow decryption. Unfortunately, these modifications always seemed to
introduce fatal weaknesses.

A provably-secure cryptosystem based on subset sum was finally constructed by Ajtai and
Dwork [AD97], who showed that their scheme is as hard to break as solving worst-case instances
of a lattice problem called the “unique shortest vector problem.” The reduction of subset sum to
breaking their scheme is then obtained via the classic reduction from random subset sum to the
unique shortest vector problem [LO85,Fri86]. While the Ajtai-Dwork and the subsequent lattice-
based cryptosystems [Reg03,Reg05,Pei09] are as hard to break as the average-case subset sum
problem, these schemes are based on subset sum in a somewhat indirect way, and this causes their
connection to the subset sum problem to not be as tight as possible.

In this work, we present a cryptosystem whose security is equivalent to the hardness of the
SS(n, qn) problem, where q is a positive integer of magnitude Õ(n). Compared to the lattice-based
cryptosystems, the subset sum assumption required for the security of our scheme is weaker, and
the proof of security is much simpler. We direct the reader to Section 1.2 for a more in-depth
comparison between our scheme and the lattice-based ones.

In addition to our semantically-secure public-key encryption scheme, we present a semi-honest
oblivious transfer protocol based on the same hardness assumption. We also show that a natural
variant of our encryption scheme is resilient to key-leakage attacks (as formalized by Akavia et al.
[AGV09]), but under slightly stronger assumptions than our basic cryptosystem.

1.1 Our Contributions and Techniques

Semantically-secure public-key encryption. Our main contribution is a semantically secure
public-key encryption scheme whose security is based directly on the hardness of the subset sum
problem. The construction of our scheme is similar in spirit to the cryptosystem of Alekhnovich
based on the Learning Parity with Noise (LPN) problem [Ale03], and that of Regev based on the
Learning With Errors (LWE) problem [Reg05]. Both of the aforementioned schemes are built from
the assumption that for a randomly chosen matrix A ∈ Zm×nq , a random vector s ∈ Znq , and some
“small” noise vector c ∈ Zmq , the distribution (A,As+c) is computationally indistinguishable from

the uniform distribution over Zm×(n+1)
q . To construct our scheme, we show that the subset sum

problem can be made to look very similar to the LWE problem. Then the main ideas (with a few
technical differences) used in constructing cryptosystems based on LWE [Reg05,GPV08,Pei09] can
be transferred over to subset sum.

Consider instances of the subset sum problem SS(n, qm) where q is some small integer. If a
is a vector in Znqm and s is a vector in {0, 1}n, then a · s mod qm, written in base q, is equal to
As + c mod q, where A ∈ Zm×nq is a matrix whose i-th column corresponds to ai written in base q,
and c is a vector in Zmq that corresponds to the carries when performing “grade-school” addition.
For example, let q = 10, m = n = 3, a = (738, 916, 375), and s = (0, 1, 1). Then

a · s mod 103 = 916 + 375 mod 103 = 291,
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which can be written as addition in base q as follows:7 9 3
3 1 7
8 6 5

0
1
1

+

0
1
0

 =

2
9
1


where all operations are performed over Zq.

The key observation is that the magnitude of the entries in the carries vector [ 0 1 0 ]T is at
most n − 1, and so if q � n, then As + c mod q ≈ As mod q. In fact, the elements of the vector
c are distributed normally around n/2 with standard deviation

√
n. In the instantiation of our

scheme described in Section 3, we generate the elements in A from the range [− q−1
2 , q−1

2 ] and so
the entries in the carries vector are normally distributed around 0 with standard deviation

√
n.

Readers familiar with the cryptosystems based on LWE [Reg05,GPV08,Pei09] should recognize
the resemblance of the carry vector c to the noise vector in the LWE-based schemes. The main
difference is that in the latter the noise vector is chosen independently at random, whereas in our
scheme, the carries vector c occurs “naturally” and is completely determined by the matrix A and
the vector s. The fact that the “noise” vector is not random is of no consequence to us, since it was
shown by Impagliazzo and Naor that distinguishing (a,a · s mod qm) from uniform is as hard as
recovering s [IN96]. Thus the distribution (A,As+c mod q), which is just the base q representation
of the previous distribution, is also computationally indistinguishable from uniform, based on the
hardness of subset sum. The following theorem summarizes our main result:

Theorem 1.1. For any integer q > 10n log2 n, there exists a semantically secure cryptosystem en-
crypting k bits whose security is polynomial-time equivalent to the hardness of solving the SS(n, qn+k)
problem.

Leakage-resilient public-key encryption. We show that a natural variant of our encryption
scheme is resilient to any non-adaptive leakage of L(1− o(1)) bits of its secret key, where L is the
length of the secret key (see Appendix A.3 for the formal definition of non-adaptive key-leakage
attacks). In this paper we deal with the non-adaptive setting of key leakage, and note that this
notion of leakage is still very meaningful as it captures many realistic attacks in which the leakage
does not depend on the parameters of the encryption scheme. For example, it captures the cold boot
attacks of Halderman et al. [HSH+08], in which the leakage depends only on the properties of the
hardware devices that are used for storing the secret key. We note that although Naor and Segev
[NS09] presented a generic and rather simple construction that protects any public-key encryption
scheme from non-adaptive leakage attacks, we show that for our specific scheme an even simpler
modification suffices.

Oblivious transfer. We use our original encryption scheme to construct an oblivious transfer (OT)
protocol that provides security for the receiver against a cheating sender and security for the sender
against an honest-but-curious receiver. Our protocol is an instance of a natural construction used
by Gertner et al. [GKM+00], based on ideas of Even et al. [EGL82,EGL85], to show that public-key
encryption with a certain property implies two-message semi-honest OT. The property is roughly
that public keys can be sampled “separately of private keys,” while preserving the semantic security
of the encryption. Pseudorandomness of subset sum implies that our encryption scheme satisfies
this property.
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1.2 Comparisons with Lattice-Based Schemes

To the best of our knowledge, the only other cryptosystems based on subset sum are those that
are based on the worst-case hardness of the approximate unique shortest vector problem (uSVPγ)
[AD97,Reg03,Reg05,Pei09]. The cryptosystems of Regev [Reg03] and Peikert [Pei09] are both based
on the hardness of uSVPn1.5 (the latter is based on uSVP via a reduction in [LM09]). What this
means is that an algorithm that breaks these cryptosystems can be used to find the shortest vector
in any lattice whose shortest vector is a factor of n1.5 shorter than the next shortest vector that is
not a multiple of it.

A reduction from the random subset sum problem to uSVPγ was given in [LO85,Fri86]. The
exact parameter γ depends on the density of the subset sum instance. The smaller the density, the
larger the γ can be, and the easier the uSVPγ problem becomes. The reduction from an instance
of SS(n,M) to uSVPγ is as follows:

Given an instance of SS(n,M) consisting of a vector a ∈ ZnM and an element T ∈ ZM , we define
the lattice L as

L = {x ∈ Zn+1 : [a|| − T ] · x mod M = 0}.

Notice that the vector x = [s||1] is in L for the s for which a · s mod M = T , so the `2 norm of
the shortest vector is approximately

√
n. The next shortest non-parallel vector is the vector that

meets the Minkowski bound of
√
n+ 1 · det(L)

1
n+1 ≈

√
nM1/n, which is a factor M1/n larger than

the shortest vector. Therefore solving uSVPn1.5 allows us to solve instances of SS(n,M) where
M ≈ n1.5n.

The cryptosystem that we construct in this paper is based on the hardness of SS(n,M) where
M ≈ nn. In order to have a lattice scheme based on the same subset sum assumption, it would
need to be based on uSVPn. The construction of such a scheme is currently not known and would
be considered a breakthrough.

We want to point out that we are not claiming that just because our scheme is based on a
weaker instance of subset sum, it is somehow more secure than the lattice-based schemes. All we
are claiming is that the connection of our scheme to the subset sum problem is better. In terms of
security, the lattice-based schemes based on LWE [Reg05,Pei09] and our scheme are actually very
similar because the LWE and subset sum problems can both be viewed as average-case instances
of the “bounded distance decoding” problem, with essentially the same parameters but different
distributions. Unfortunately, we do not know of any tight reduction between the two distributions,
so there is no clear theoretical connection between LWE and subset sum.

In practice, though, there may be some advantages of our scheme over the lattice-based ones.
The secret key in our scheme is an n-bit vector s ∈ {0, 1}n, whereas the secret keys in lattice-based
schemes are on the order of n log n bits. Also, the public key in our scheme is a matrix A ∈ Zn×nq ,
whereas lattice-based schemes use an n × n log n matrix. The reason for the savings of a factor of
log n in the size of both the secret and public keys in our scheme has to do with the fact that the
distribution (A,As + c) is indistinguishable from random, where s ∈ {0, 1}n, based on the subset
sum assumption. But in order to get a proof of security based on lattices, the vector s has to be
chosen uniformly from Znq (see [ACPS09] for a slight improvement), and is thus log n times longer.
One can thus view our proof of security based on subset sum as justification that having s come
from a smaller set and having the “noise” be a deterministic function of A and s, is still secure.
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1.3 Open Problems

Our construction of the subset sum cryptosystem involves transforming the subset sum problem
into something that very much resembles the LWE problem. It would be interesting to see whether
the same type of idea could be used to transform other problems into LWE-type problems upon
which semantically-secure cryptosystems can be built.

Another open problem concerns weakening the computational assumption underlying the multi-
bit version of our scheme. While our one-bit cryptosystem is based on the hardness of solving
instances of SS(n, qn) for some q = Õ(n), when simultaneously encrypting k bits using the same
randomness our cryptosystem becomes equivalent to the easier SS(n, qn+k) problem (clearly, it is
possible to encrypt k bits bit-by-bit, but this is less efficient). This is somewhat peculiar since one
can simultaneously encrypt polynomially-many bits using the LWE cryptosystem without making
the underlying assumption stronger [PVW08], while simultaneously encrypting Ω(n2) bits in our
scheme is completely insecure (since the SS(n, qn

2
) problem can be solved in polynomial time

[LO85,Fri86]). We believe that this weakness in the subset sum construction is due to the fact that
the noise in the LWE schemes is generated independently, whereas in our scheme, the “noise” is
just the carry bits. It is an interesting open problem to see whether one can modify our scheme so
that its security does not depend on the number of bits being simultaneously encrypted using the
same randomness.

Another interesting open problem concerns security against leakage attacks. First, we were not
able to prove the security of our scheme against adaptive key-leakage attacks, in which the leakage
can be chosen as a function of the public key as well. Although our scheme is somewhat similar to
that of Akavia et al. [AGV09], it seems that their approach for proving security against adaptive
attacks does not immediately apply to our setting. Second, our leakage-resilient scheme relies on
a slightly stronger assumption than our basic scheme, and it will be interesting to minimize the
required computational assumption.

Finally, we leave it as an open problem to construct a CCA-secure scheme in the standard
model based directly on subset sum. While there are CCA-secure encryption schemes based on
lattice problems (and thus on subset sum as well) [PW08,Pei09], it would be interesting to build
one directly based on subset sum that will hopefully require weaker assumptions than the lattice
based ones.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we formally define the subset sum
problem and present notation that will be used throughout the paper. In Section 3 we describe our
encryption scheme. In Section 4 we show that a variant of our scheme is resilient to key leakage.
Finally, in Section 5 we present an oblivious transfer protocol. For ease of reference, standard
cryptographic definitions and tools used in our constructions are presented in Appendix A.

2 Preliminaries

2.1 The Subset Sum Problem

The subset sum problem with parameters n and qm, where n and m are integers and q is a positive
integer such that 2n < qm, is defined as follows: Given n numbers a1, . . . , an ∈ Zqm and a target
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T ∈ Zqm , find a subset S ⊆ {1, . . . , n} such that
∑

i∈S ai = T mod qm. This can be viewed as the
problem of inverting the function fa : {0, 1}n → Zqm defined as

fa(s1, . . . , sn) =
n∑
i=1

siai mod qm ,

where a = (a1, . . . , an) ∈ Znqm is its index (i.e., this is a collection of functions, where a function is
sampled by choosing its index a uniformly at random).

We denote by SS(n, qm) the subset sum problem with parameters n and qm. Using the above
notion, the hardness of the subset sum problem is the assumption that {fa}a∈Znqm is a collection
of one-way functions. We now state two properties of the subset sum problem that were proved by
Impagliazzo and Naor [IN96] and are used in analyzing the security of our constructions. The first
property is that subset sum instances with larger moduli are not harder than subset sum instances
with smaller moduli. The second property is that if the subset sum is a one-way function, then it
is also a pseudorandom generator. In the following two statements, we fix n, m and q as above.

Lemma 2.1 ([IN96]). For any integers i and j such that i < j, if qm+i > 2n, then the hardness
of SS(n, qm+j) implies the hardness of SS(n, qm+i).

Lemma 2.2 ([IN96]). The hardness of SS(n, qm) implies that the distributions (a, fa(s)) and
(a, t) are computationally indistinguishable, where a ∈ Znqm, s ∈ {0, 1}n, and t ∈ Zqm are chosen
independently and uniformly at random.4

2.2 Notation

We represent vectors by bold-case letters and all vectors will be assumed to be column vectors.
Unless stated otherwise, all scalar and vector operations are performed modulo q. For simplicity,
we will assume that q is odd, but our results follow for all q with minimal changes. We represent
elements in Zq by integers in the range [−(q − 1)/2, (q − 1)/2]. For an element e ∈ Zq, its length,
denoted by |e| is the absolute value of its representative in the range [−(q − 1)/2, (q − 1)/2]. For a
vector e = (e1, . . . , em) ∈ Zmq , we define ‖e‖∞ = max1≤i≤m |ei|.

We now present some notation that is convenient for describing the subset sum function. For a
matrix A ∈ Zm×nq and a vector s ∈ {0, 1}n, we define A� s as the vector tT = (t0, . . . , tm−1) such
that |ti| ≤ (q − 1)/2 for every 1 ≤ i ≤ m, and

m−1∑
i=0

tiq
i ≡

n−1∑
j=0

sj

m−1∑
i=0

Ai,jq
i

 mod qm .

In other words, we interpret the n columns of A as elements in Zqm represented in base q, and sum
all the elements in the columns j where sj = 1. The result is an element in Zqm , which we write in
base q using coefficients between −(q−1)/2 and (q−1)/2. We then write the coefficients of the base
q representation as an m-dimensional vector t. It will sometimes be more convenient to consider
the subset sum of the numbers represented by the rows of A, and to this effect we naturally define
rT �A =

(
AT � r

)T .

4 Impagliazzo and Naor [IN96] only prove their result for q’s that are prime or a power of 2, but their results extend
to all q.
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3 The Encryption Scheme

In this section we present our main contribution: a public-key encryption scheme that is based
directly on the hardness of the subset sum problem. Given a security parameter n, we set q(n) to
be some number greater than 10n log2 n, let k ∈ N be the number of bits we want to encrypt, and
define the following encryption scheme:

– Key generation: On input 1n sample A′ ∈ Zn×nq and s1, . . . , sk ∈ {0, 1}n independently and
uniformly at random. For every 1 ≤ i ≤ k let ti = A′� si, and let A = [A′||t1|| · · · ||tk]. Output
PK = A and SK = (s1, . . . , sk).

– Encryption: On input a message z ∈ {0, 1}k, sample r ∈ {0, 1}n uniformly at random, and
output the ciphertext uT = rT �A + ( q−1

2 )[0n||zT ].
– Decryption: On input a ciphertext uT = [vT ||w1|| · · · ||wk] where v ∈ Znq and w1, . . . , wk ∈ Zq,

for every 1 ≤ i ≤ k compute yi = vT si − wi. If |yi| < q/4 then set zi = 0 and otherwise set
zi = 1. Output zT = (z1, . . . , zk).

The intuition for the semantic security of the scheme is fairly simple. Because the vectors ti are
subset sums of the numbers represented by the columns of A′, the public key A is computationally
indistinguishable from random. Therefore, to an observer, the vector rT �A, which is a subset sum
of numbers represented by the rows of A, is again computationally indistinguishable from uniform.
The formal proof is in Section 3.1.

The intuition for decryption is based on the fact that A′ � si ≈ A′si and rT �A ≈ rTA. For
simplicity, assume that A′ � si = A′si and rT �A = rTA. Then it is not hard to see that

|vT si − wi| =
∣∣∣∣(rTA′)si −

(
rT (A′si) +

q − 1
2

zi

)∣∣∣∣ =
q − 1

2
zi ,

and we recover zi. Because the subset sum function does not quite correspond to a vector/matrix
multiplication, decryption will recover q−1

2 zi + error. What we will need to show is that this error
term is small enough so that we can still tell whether zi was 0 or 1. The proof is in Section 3.2.

3.1 Proof of Security

Our scheme enjoys a rather simple and direct proof of security. The proof consists of two applications
of the pseudorandomness of the subset sum function, which by Lemma 2.2 is implied by the hardness
of the subset sum problem. Informally, the first application allows us to replace the values A′ �
s1, . . . ,A′ � sk in the public key with k vectors that are sampled independently and uniformly
at random. Then, the second application allows us to replace the value rT � A in the challenge
ciphertext with an independently and uniformly chosen vector. In this case, the challenge ciphertext
is statistically independent of the encrypted message and the security of the scheme follows. More
formally, the following theorem establishes the security of the scheme:

Theorem 3.1. Assuming the hardness of the SS(n, qn+k) problem, where n is the security param-
eter and k is the plaintext length, the above public-key encryption scheme is semantically secure.

Proof. We show that for any two messages m0,m1 ∈ {0, 1}k, the ensembles (PK, EPK(m0)) and
(PK, EPK(m1)) are computationally indistinguishable. In fact, we prove an even stronger statement,
namely that (A, rT �A) is computationally indistinguishable from (M,v), where M ∈ Zn×(n+k)

q
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and v ∈ Zn+k
q are sampled independently and uniformly at random. This, in turn, implies that

for every b ∈ {0, 1}, the distribution (PK, EPK(mb)) is computationally indistinguishable from
a distribution that perfectly hides the message mb. Therefore, any probabilistic polynomial-time
adversary attacking the scheme will have a negligible cpa-advantage.

The hardness of the SS(n, qn) problem, Lemmas 2.1 and 2.2, and a standard hybrid argument
imply that the distributions (A′,A′�s1, . . . ,A′�sk) and (A′,b1, . . . ,bk), where b1, . . . ,bk ∈ Znq are
sampled independently and uniformly at random, are computationally indistinguishable. Letting
M = [A′||b1|| · · · ||bk], it then follows that the distributions (A, rT � A) and (M, rT �M), are
computationally indistinguishable. Now, the hardness of the SS(n, qn+k) problem and Lemma 2.2
imply that the latter distribution is computationally indistinguishable from (M,v), where v ∈ Zn+k

q

is sampled uniformly at random, independently of M. This concludes the proof of the theorem. ut

3.2 Proof of Correctness

We will use the following bound due to Hoeffding [Hoe63] throughout our proof.

Lemma 3.2 (Hoeffding Bound). Let X1, . . . , Xn be independent random variables in the range
[a, b] and let X = X1 + . . .+Xn. Then

Pr[|X − E[X]| ≥ t] ≤ 2e
−

(
2t2

n(a−b)2

)
.

The next lemma shows that the carries during the subset sum operation rT �A are distributed
with mean 0 and their absolute value is bounded (with high probability) by

√
n log n. In addition,

the carries are almost independent of each other. The slight dependency comes from the fact that
a carry element can cause the following carry to increase by 1.

Lemma 3.3. For any n,m ∈ N and r ∈ {0, 1}n,

Pr
A

$←Zn×mq

[
‖rT �A− rTA‖∞ <

√
n log n

]
= 1− n−ω(1).

Furthermore, the vector rT �A− rTA can be written as a sum of two vectors x,y ∈ Zmq where all
the coordinates of x are independently distributed with mean 0, while all the coordinates of y have
absolute value at most 1 (but could be dependent among themselves).

Proof. Computing rT�A can be done via the following algorithm, where ai is the i-th column of A:

c0 = 0
for i = 0 to m− 1

bi = (ci + rTai) mod q
ci+1 =

⌈
ci+rT ai

q

⌋
output bT = (b0, . . . , bm−1)

Notice that this algorithm is just performing addition in base q, where all the coefficients are
between −(q−1)/2 and (q−1)/2. The difference rT �A−rTA is simply the “carries” ci. Note that
the only dependency among the ci’s is that ci+1 slightly depends on ci. We can rewrite the above
algorithm by writing each ci as xi + yi such that all the xi’s are independent among themselves,
whereas the yi’s could be dependent but are very small.

8



x0 = 0 ; y0 = 0
for i = 0 to m− 1

bi = (xi + yi + rTai) mod q
xi+1 =

⌈
rT ai
q

⌋
yi+1 =

⌈
xi+yi+rT ai

q

⌋
−
⌈

rT ai
q

⌋
output bT = (b0, . . . , bm−1)

Notice that in the second algorithm, the xi’s are completely independent among themselves. We
now bound the absolute value of the xi’s. Each vector ai consists of numbers uniformly distributed
between −(q − 1)/2 and (q − 1)/2. Applying the Hoeffding bound (Lemma 3.2), we obtain that

Pr[|rTai| ≥ q
√
n log n] ≤ 2e−2 log2 n .

Therefore, with probability 1 − n−ω(1), |xi| ≤
√
n log n for all 0 ≤ i ≤ m − 1. Also notice that by

symmetry, E[xi] = 0. By induction, we will now show that |yi| ≤ 1. This is true for y0, and assume
it is true for yi. Then,

|yi+1| =
∣∣∣∣⌈xi + yi + rTai

q

⌋
−
⌈

rTai
q

⌋∣∣∣∣ ≤ ∣∣∣∣⌈xi + yi
q

⌋
+ 1
∣∣∣∣ ≤ 1,

where the last inequality follows because |xi| ≤
√
n log n < q/2−1 and |yi| ≤ 1, and so

⌈
xi+yi
q

⌋
= 0.
ut

Lemma 3.4. For any r, s ∈ {0, 1}n,

Pr
A

$←Zn×nq

[
‖(rT �A)s− rTAs‖∞ < n log2 n

]
= 1− n−ω(1)

Proof. Using Lemma 3.3, we can rewrite rT � A as rTA + xT + yT where each element of x is
independently distributed around 0 with magnitude at most

√
n log n, and each element of y has

magnitude at most 1. Multiplying by s, we obtain (rT �A)s− rTAs = xT s + yT s.
Because ‖y‖∞ ≤ 1, we have |yT s| ≤ n. By the Hoeffding bound (Lemma 3.2), we obtain that

Pr[|xT s| ≥ n log2 n] ≤ 2e−
log2 n

2 ,

and the lemma is proved. ut

Theorem 3.5. Decryption succeeds with probability 1− n−ω(1).

Proof. The encryption of a message z is the vector uT = rT�A+( q−1
2 )(0n||zT ). To decrypt bit i, we

write uT = [vT ||w1|| . . . ||wk] and compute vT si−wi. Observe that vT is equal to rT�A′+(0n−1||ν)
and wi = rT ti + q−1

2 zi + η, where ν, η are carries whose magnitudes are less than n (actually, we
can show that with high probability ν, η <

√
n log n, but the looser bound suffices here). Therefore,

vT si − wi = (rT �A′ + (0n−1||ν))si −
(

rT ti +
q − 1

2
zi + η

)
= (rT �A′)si + νsn −

(
rT (A′ � si) +

q − 1
2

zi + η

)
,
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where sn is the last element of si. We will now show that q−1
2 zi is the dominant term in the second

equation. Therefore, if zi = 0, the result will be close to 0, and if zi = 1, the result will be close to
−(q − 1)/2. We will show this by bounding the magnitude of the other terms.

|(rT �A′)si + νsn − rT (A′ � si)− η|
≤
∣∣(rT �A′)si − rTA′si − rT (A′ � si) + rTA′si

∣∣+ |νsn|+ |η|
≤
∣∣(rT �A′)si − rTA′si

∣∣+
∣∣rT (A′ � si)− rTA′si

∣∣+ 2n

≤ n log2 n+ n log2 n+ 2n ,

where the last inequality follows from applying Lemma 3.4 to bound
∣∣(rT �A′)si − rTA′si

∣∣ and
applying it one more time to bound

∣∣rT (A′ � si)− rTA′si
∣∣. So if zi = 0, we will have

|vT si − wi| ≤ 2n log2 n+ 2n < q/4

with probability 1− n−ω(1), and we will decrypt to 0. If zi = 1, we will have

|vT si − wi| ≥ (q − 1)/2− 2n log2 n− 2n > q/4,

and we will decrypt to 1. ut

4 Security Against Key-Leakage Attacks

In this section we prove that a natural variant of the scheme described in Section 3 is resilient
to any non-adaptive leakage of L(1 − o(1)) bits, where L is the length of the secret key (see
Appendix A.3 for the formal definition of non-adaptive key-leakage attacks). Given a security
parameter n and a leakage parameter λ = λ(n), set q = O

((
n+ λ

logn

)
n log2 n

)
, T =

√
q, and

m ≥ (dn log qe+ λ+ ω(log n)) / log T . Consider the following encryption scheme:

– Key generation: On input 1n sample A′ ∈ Zn×mq and s ∈ {−(T − 1)/2, . . . , (T − 1)/2}m
uniformly and independently at random, and let A = [A′||A′s]. Output PK = A and SK = s.

– Encryption: On input a bit b, sample r ∈ {0, 1}n uniformly at random, and output the
ciphertext uT = rT �A + ( q−1

2 )[0m||b].
– Decryption: On input a ciphertext uT = [vT ||w] where v ∈ Zmq and w ∈ Zq, compute y =

vT s− w. If |y| < q/4 then output 0, and otherwise output 1.

The main idea underlying the scheme is that the min-entropy of the secret key is m log T ≥
dn log qe+λ+ω(log n), and therefore even given any leakage of λ bits it still has average min-entropy
at least dn log qe+ω(log n). The fact that the leakage is independent of the public key enables us to
apply the leftover hash lemma and argue that A = [A′||A′s] is statistically-close to uniform, even
given the leakage.

We note that in this scheme, unlike in the scheme presented in Section 3, we use matrix-
vector multiplication instead of the subset sum operation in forming the public key. The proof
of correctness in this case is similar to that presented in Section 3. Specifically, a generalization
of Lemma 3.4 shows that for every r ∈ {0, 1}n and s ∈ {−(T − 1)/2, . . . , (T − 1)/2}m, with
overwhelming probability over the choice of A $← Zn×mq it holds that ‖(rT � A)s − rTAs‖∞ <√
Tmn log2 n+ Tm. Then, as in the proof of Theorem 3.5, this implies that vT s− w = γ + q−1

2 z,
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where |γ| ≤
√
Tmn log2 n + (T + 2)m, and therefore we need to set q to be any integer such that

q/4 >
√
Tmn log2 n+(T+2)m. By setting roughly q =

(
n+ λ

logn

)
n log2 n (ignoring a small leading

constant) and T =
√
q, we can base the security of the scheme on the hardness of the SS(n, qm)

problem, where

qm = q
n log q+λ+ω(logn)

log T = q
2·

(
n+

λ+ω(logn)
log q

)
=
((

n+
λ

log n

)
n log2 n

)2n

· 4λ+ω(logn) .

The following theorem establishes the security of the scheme:

Theorem 4.1. Assuming the hardness of the SS(n, qm+1) problem for q = q(n) and m = m(n) as
above, the scheme is semantically secure against non-adaptive λ(n)-key-leakage attacks, where n is
the security parameter.

Proof. We show that for any efficiently computable leakage function f mapping secret keys into
{0, 1}λ, the ensembles (PK, EPK(0), f(SK)) and (PK, EPK(1), f(SK)) are computationally indis-
tinguishable. In fact, we prove even a stronger statement, showing that (A, rT �A, f(s)) is com-
putationally indistinguishable from (M,v, f(s)), where M ∈ Zn×(m+1)

q and v ∈ Zm+1
q are sampled

independently and uniformly at random.
Lemma A.1 guarantees that the average min-entropy of s given f(s) is at least m log T − λ ≥

n log q + ω(log n), and therefore the leftover hash lemma (when adapted to the notion of aver-
age min-entropy – see Lemma A.3) implies that the statistical distance between the distributions
(A′,A′s, f(s)) and (A′, t, f(s)) where t ∈ Znq is sampled uniformly at random is negligible in n. Let-
ting M = [A′||t] and noting that applying a deterministic function cannot increase the statistical
distance between distributions, it then follows that the statistical distance between (A, rT�A, f(s))
and (M, rT �M, f(s)) where M ∈ Zn×(m+1)

q is sampled uniformly at random is negligible. Now,
the hardness of the SS(n, qm+1) problem implies that the latter distribution is computationally
indistinguishable from (M,v, f(s)), where v ∈ Zm+1

q is sampled uniformly at random and indepen-
dently of M, and this concludes the proof of the theorem. ut

5 Oblivious Transfer Protocol

In this section we present an oblivious transfer (OT) protocol based on subset sum that provides
security for the receiver against a cheating sender, and security for the sender against an honest-but-
curious receiver. (See Appendix A.4 for the formal definition of oblivious transfer.) Our protocol is
an instance of a construction proposed by Gertner et al. [GKM+00], based on protocols by Even
et al. [EGL82,EGL85], to show that a special property of public-key encryption is sufficient for
the construction of two-message semi-honest OT. Informally, the property is that it is possible
to efficiently sample a string PK with a distribution indistinguishable from that of a properly
generated public key, while preserving the semantic security of the encryption EPK . Our encryption
scheme satisfies this property, by pseudorandomness of subset sum. For the sake of self-containment,
however, we provide direct proofs of our OT protocol’s correctness and security.

5.1 OT Based on Subset Sum

Our oblivious transfer protocol is a simple application of our encryption scheme. We denote by G,
E and D, respectively, the key-generation, encryption and decryption algorithms of the public-key
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encryption scheme described in Section 3. The receiver with inputs 1n, b first sends a properly
generated public key PKb and a uniformly random fake public key PK1−b ∈ Zn×(n+k)

q . The sender
with inputs 1n, z0, z1 uses each key PKi to encrypt its input zi and replies with the ciphertexts
uT0 ,u

T
1 . The receiver can then retrieve zb by decrypting uTb , using the secret key corresponding to

PKb. Details follow.

Let n, k ∈ N, b ∈ {0, 1}, and z0, z1 ∈ {0, 1}k

Receiver R(1n, b): (PKb, SKb)
$← G(1n) ; PK1−b

$← Zn×(n+k)
q ; Send PK0, PK1

Sender S(1n, z0, z1): uT0 ← EPK0(z0) ; uT1 ← EPK1(z1) ; Send uT0 ,u
T
1

Receiver R: zb ← DSKb(uTb ) ; Return zb

5.2 Proofs of Correctness and Security

We now show that correctness follows directly from correctness of the cryptosystem.

Theorem 5.1. If the sender and receiver both follow the protocol, then the former outputs nothing
and the latter outputs zb with probability 1− n−ω(1).

Proof. Since PKb is a properly generated public key corresponding to secret key SKb, uTb is a valid
encryption of message zb under PKb, and the receiver computes the decryption of uTb using SKb,
the proof follows from Theorem 3.5. ut

Security for the receiver is proved based on the pseudorandomness of subset sum. A properly
generated public key is indistinguishable from a uniformly random element in Zn×(n+k)

q . Therefore,
for any input bit, the receiver’s message consists of two elements from computationally indistin-
guishable distributions. It follows that the distribution of the receiver’s message when the input
is 0 is computationally indistinguishable from the distribution when the input is 1. The precise
statement of this result is the following.

Theorem 5.2. Assuming the hardness of the SS(n, qn) problem, where n is the security parameter,
the above OT protocol is secure for the receiver.

Proof. Let R(1n, b) denote the message sent by the honest receiver with inputs 1n, b. We show that
the ensembles R(1n, 0) and R(1n, 1) are computationally indistinguishable.

As in the proof of Theorem 3.1, the hardness of the SS(n, qn) problem implies that the dis-
tributions PK0 and PK1 are computationally indistinguishable. This implies that the ensembles
R(1n, 0) and R(1n, 1) are computationally indistinguishable as well. ut

The protocol is not secure against malicious receivers. Indeed, a malicious receiver can prop-
erly generate two key pairs PK0, SK0 and PK1, SK1, and then use the secret keys to decrypt
both ciphertexts uT0 ,u

T
1 . The protocol is, however, secure for the sender against honest-but-curious

receivers, as we now show.

Theorem 5.3. Assuming the hardness of the SS(n, qn+k) problem, where n is the security param-
eter and k is the length of the sender’s input messages, the above OT protocol is secure for the
sender against an honest-but-curious receiver.

12



Proof. LetR(1n, b) denote the message sent by the honest receiver with inputs 1n, b, and S(1n, z0, z1,
R(1n, b)) denote the reply of the honest sender with inputs 1n, z0, z1. We show that the ensembles
(S(1n, z0, z1, R(1n, 0)), R(1n, 0)) and (S(1n, z0, 0k, R(1n, 0)), R(1n, 0)) are computationally indistin-
guishable, and the ensembles (S(1n, z0, z1, R(1n, 1)), R(1n, 1)) and (S(1n, 0k, z1, R(1n, 1)), R(1n, 1))
are computationally indistinguishable.

In the proof of Theorem 3.1, we showed that for any two messages m0,m1 ∈ {0, 1}k the ensem-
bles (PK, EPK(m0)) and (PK, EPK(m1)) are computationally indistinguishable. This is true when
PK is a properly generated public key and also when PK is a random element in Zn×(n+k)

q . There-
fore, the ensembles (PK1−b, EPK1−b(z1−b)) and (PK1−b, EPK1−b(0

k)) are computationally indistin-
guishable. Hence for b ∈ {0, 1} the ensembles (S(1n, zb, z1−b, R(1n, b)), R(1n, b)) and (S(1n, zb, 0k,
R(1n, b)), R(1n, b)) are computationally indistinguishable. This completes the proof. ut
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A Cryptographic Definitions

A.1 Public-Key Encryption

A public-key encryption scheme PKE = (G, E ,D) is specified by three polynomial-time algorithms:
a public/secret key pair is generated via (PK,SK) $← G(1n), where n is the security parameter; a
message M is encrypted via C $← EPK(M); and a ciphertext C is decrypted via M ← DSK(C). It
is required that DSK(EPK(M)) = M with overwhelming probability for all (PK,SK) that can be
output by G(1n) and every message M .

We recall the definition of security against chosen-plaintext attack that originated in [GM84].
Associate to PKE and n ∈ N the following game between a challenger and an adversary A:

The challenger runs G(1n) to generate a pair (PK,SK) and sends PK to A.
A outputs two messages M0,M1.
The challenger chooses a random bit b $← {0, 1}, computes C $← EPK(Mb), and sends C to A.
Finally, A outputs a bit d

The cpa-advantage of A against PKE at n is defined as |Pr [ d = b ]− 1/2|.
We say that PKE is secure against chosen-plaintext attack or, equivalently, semantically secure,

if for every probabilistic polynomial-time adversary A, the cpa-advantage of A against PKE at n
grows negligibly in n.
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A.2 Randomness Extraction

The statistical distance between two random variables X and Y over a finite domain Ω is de-
fined as SD(X,Y ) = 1

2

∑
ω∈Ω |Pr [X = ω] − Pr [Y = ω] |. We say that two variables are ε-close

if their statistical distance is at most ε. The min-entropy of a random variable X is H∞ (X) =
− log(maxx Pr [X = x]).

Dodis et al. [DORS08] formalized the notion of average min-entropy that captures the remaining
unpredictability of a random variable X conditioned on the value of a random variable Y , formally
defined as follows:

H̃∞ (X|Y ) = − log
(
Ey←Y

[
2−H∞(X|Y=y)

])
.

The average min-entropy corresponds exactly to the optimal probability of guessing X, given knowl-
edge of Y . The following bound on average min-entropy was proved in [DORS08]:

Lemma A.1 ([DORS08]). If Y has 2r possible values and Z is any random variable, then

H̃∞ (X|(Y, Z)) ≥ H∞ (X|Z)− r .

A main tool in our constructions in this paper is a strong randomness extractor. The following
definition naturally generalizes the standard definition of a strong extractor to the setting of average
min-entropy:

Definition A.2 ([DORS08]). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is an average-case
(k, ε)-strong extractor if for all random variables X and I such that X ∈ {0, 1}n and H̃∞ (X|I) ≥ k
it holds that

SD ((Ext(X,S), S, I), (Um, S, I)) ≤ ε ,

where S is uniform over {0, 1}d.

Dodis et al. proved the following lemma stating that any strong extractor is in fact also an
average-case strong extractor:

Lemma A.3 ([DORS08]). For any δ > 0, if Ext is a (worst-case) (m − log(1/δ), ε)-strong ex-
tractor, then Ext is also an average-case (m, ε+ δ)-strong extractor.

A.3 Key-Leakage Attacks

We follow the framework introduced by Akavia et al. [AGV09] and recall their notion of a key-
leakage attack. Informally, an encryption scheme is secure against key-leakage attacks if it is se-
mantically secure even when the adversary obtains sensitive leakage information. This is modeled
by allowing the adversary to submit any function f and receive f(SK), where SK is the secret key,
as long as the output length of f is bounded by a predetermined parameter λ.

Akavia et al. defined two notions of key-leakage attacks: adaptive attacks and non-adaptive
attacks. In an adaptive key-leakage attack, the adversary is allowed to choose the leakage function
after seeing the public key, and in a non-adaptive key-leakage attack the adversary has to choose
the leakage function in advance. In this paper we deal with the non-adaptive setting, and note
that this notion of leakage is still very meaningful as it captures many realistic attacks in which
the leakage does not depend on the parameters of the encryption scheme. For example, it captures
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the cold boot attacks of Halderman et al. [HSH+08], in which the leakage depends only on the
properties of the hardware devices that are used for storing the secret key.

Formally, for a public-key encryption scheme (G, E ,D) we denote by SKn and PKn the sets of
secret keys and public keys that are produced by G(1n). That is, G(1n) : {0, 1}∗ → SKn ×PKn for
every n ∈ N. The following defines the notion of a non-adaptive key-leakage attack:

Definition A.4 (non-adaptive key-leakage attacks). A public-key encryption scheme (G, E ,D)
is semantically secure against non-adaptive λ(n)-key-leakage attacks if for any collection F ={
fn : SKn → {0, 1}λ(n)

}
n∈N of efficiently computable functions, and for any two messages m0 and

m1, the distributions (PK, EPK(m0), fn(SK)) and (PK, EPK(m1), fn(SK)) are computationally
indistinguishable, where (SK,PK) $← G(1n).

A.4 Oblivious Transfer

Oblivious Transfer (OT) is a cryptographic primitive, introduced by Rabin [Rab81], which has
been shown to be sufficiently strong to enable any multiparty computation [Yao86,GMW87,Kil88].
There are several equivalent formulations of OT in the literature. We use the version of Even, et
al. [EGL85], known as 1-out-of-2 oblivious transfer, and refer to it as simply OT. Crépeau [Cré87]
showed that this variant is equivalent to the original definition of oblivious transfer.

A 1-out-of-2 oblivious transfer is a two-party protocol in which a sender has two secret strings
z0, z1 and a receiver has a secret bit b. At the end of the interaction, the receiver learns zb but has
no information about z1−b, and the sender learns nothing about b. General OT guarantees security
even in the face of cheating parties who deviate from the prescribed protocol. Honest OT, on the
other hand, guarantees security only against honest-but-curious parties. These are parties that
follow the protocol, but keep a record of all intermediate results and may perform any computation
to extract additional information from this record, once the protocol ends. Any honest OT protocol
can be transformed into a general OT protocol, using either black-box techniques [Hai08], or using
zero-knowledge proofs to force parties to behave in an honest-but-curious manner [Gol04]. The
formal definition of OT follows.

Definition A.5. Oblivious Transfer (OT) is a two-party protocol involving a sender S with inputs
1n and z0, z1 ∈ {0, 1}k, where k is a constant, and a receiver R with inputs 1n and b ∈ {0, 1}. S
and R are polynomial-time randomized algorithms such that if both follow the protocol, then the
former outputs nothing and the latter outputs zb (with overwhelming probability). We consider the
following security requirements:

Security for the receiver: Let R(1n, b) denote the message sent by the honest receiver with inputs
1n, b. Then the ensembles {R(1n, 0)}n∈N and {R(1n, 1)}n∈N are computationally indistinguishable.

Security for the sender: Let S(1n, z0, z1,m) denote the message sent by the honest sender with
inputs 1n, z0, z1 when the (possibly cheating, polynomial time) receiver’s message is m. Then for
every z0, z1 ∈ {0, 1}k and every polynomial-length message m ∈ {0, 1}∗, either the ensembles
{S(1n, z0, z1,m),m}n∈N and {S(1n, z0, 0k,m),m}n∈N or the ensembles {S(1n, z0, z1,m),m}n∈N
and {S(1n, 0k, z1,m),m}n∈N are computationally indistinguishable.

Security against honest-but-curious (a.k.a. “semi-honest”) receivers relaxes the second condition
above to consider only a receiver that faithfully follows the protocol, but keeps a record of all
intermediate results and may perform any computation, after the protocol is completed, to extract
additional information from this record.
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